JPH01117384A - Control method for gas laser oscillation device - Google Patents

Control method for gas laser oscillation device

Info

Publication number
JPH01117384A
JPH01117384A JP62274798A JP27479887A JPH01117384A JP H01117384 A JPH01117384 A JP H01117384A JP 62274798 A JP62274798 A JP 62274798A JP 27479887 A JP27479887 A JP 27479887A JP H01117384 A JPH01117384 A JP H01117384A
Authority
JP
Japan
Prior art keywords
output
discharge current
discharge
value
instruction value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62274798A
Other languages
Japanese (ja)
Inventor
Motosumi Yura
元澄 由良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okuma Corp
Amada Co Ltd
Original Assignee
Amada Co Ltd
Okuma Machinery Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Amada Co Ltd, Okuma Machinery Works Ltd filed Critical Amada Co Ltd
Priority to JP62274798A priority Critical patent/JPH01117384A/en
Publication of JPH01117384A publication Critical patent/JPH01117384A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/097Processes or apparatus for excitation, e.g. pumping by gas discharge of a gas laser
    • H01S3/09705Processes or apparatus for excitation, e.g. pumping by gas discharge of a gas laser with particular means for stabilising the discharge

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Laser Beam Processing (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To enable an output laser ray with a various output pattern to be controlled stably without making an electrode large in size by a method wherein when an output instruction value of an output laser ray is zero, a prescribed pre-discharge current is made to outputted if a rise time of the output instruction value is smaller than a prescribed value and a pre-discharge current is made to be outputted immediately before the rise of the output instruction value of the output laser rays if a rise time is larger than a prescribed value. CONSTITUTION:A laser ray output instruction generator 11 which generates an output instruction value SL for an output laser ray L, a pre-discharge instruction generator 12 which generates an instruction value CS for a pre-discharge current iS, and a current instruction generator 13 are provided. When the output instruction value SL of an output laser ray L outputted from the generator 11 is zero, the instruction value CS for the pre-discharge current iS is made to be outputted if a rise time of the output instruction value SL of the output laser ray L is smaller than a prescribed value. And, the instruction value CS for the pre-discharge current iS is made to be outputted just prior to (hundreds musec before) the rise of the instruction value SL if the above rise time is larger than the prescribed value. And, the generator 13 is made to output the instruction value CL corresponding to a discharge current iL.

Description

【発明の詳細な説明】 (発明の技術芳性) 本発明は、ガスレーザ発振装置におけるレーザガス中の
放電電流の制御による出力レーザ光の出力の制御方式に
関する。
DETAILED DESCRIPTION OF THE INVENTION (Technical Advantages of the Invention) The present invention relates to a method for controlling the output of an output laser beam by controlling a discharge current in a laser gas in a gas laser oscillation device.

(技術的背景と解決すべき問題点) 第5図は、光を複数回折返すレーザ共振器構造を有する
三軸直交型のガスレーザ発振装置の一例を示す斜視図で
あり、第6図はその側面図である。このガスレーザ発振
装置は、交流高電圧を発生する高圧交流電源1と、所定
の空隙を開けて平行に配設され、高圧交流電源1によっ
て交流高電圧が印加される電極装置2^及び2Bと、前
記所定の空隙を介して対向するように、各電極装置2八
及び2Bに複数個配列され、対応する2者の間で交流グ
ロー放電が生じる電極3A及び3Bと、電極装置2A及
び2Bの一端の前記所定の空隙に配設され、電極3A及
び3B間で生じた交流グロー放電の方向Zと直交する方
向Xに発生した光りを全反射する全反射鏡4及びこの先
lを数十%通過させ、出力レーザ光りを出力する部分透
過鏡5と、電極装置2A及び2Bの両端の前記所定の空
隙に配設され、前記光1を折返し反射させ、レーザ発振
させる折返し鏡6^及び6Bとが設けられている。
(Technical background and problems to be solved) Fig. 5 is a perspective view showing an example of a triaxial orthogonal type gas laser oscillation device having a laser resonator structure that refracts light multiple times, and Fig. 6 is a side view of the device. It is a diagram. This gas laser oscillation device includes a high-voltage AC power supply 1 that generates an AC high voltage, electrode devices 2^ and 2B arranged in parallel with a predetermined gap, and to which an AC high voltage is applied by the high-voltage AC power supply 1. A plurality of electrodes 3A and 3B are arranged in each electrode device 28 and 2B so as to face each other with the predetermined gap interposed therebetween, and an alternating current glow discharge occurs between the two corresponding electrodes 3A and 3B, and one end of the electrode devices 2A and 2B. A total reflection mirror 4 is disposed in the predetermined gap and totally reflects the light generated in the direction , a partially transmitting mirror 5 that outputs an output laser beam, and folding mirrors 6 and 6B that are disposed in the predetermined gaps at both ends of the electrode devices 2A and 2B, and that reflect the light 1 back and oscillate the laser beam. It is being

このような構成において、その動作を説明すると、高圧
交流電源1により電極装置2A及び2Bに所定の放電電
流iの交流高電圧を印加すると複数の電極3^及び3B
間に交流グロー放電が生じる。この交流グロー放電は複
数の電極3A及び3Bに接続されたコンデンサ7A及び
7Bを介して行なわれるため、複数の電極3A及び3B
間で均一で、かつアーク放電に移行しない安定した放電
となる。このように複数の電極3^及び3B間に交流グ
ロー放電が生じると、レーザガスGが励起されて交流グ
ロー放電の方向2及びレーザGの流れ方向yと直交方向
Xにiが発生し、全反射鏡41部分透過鏡5及び折返し
鏡6^、6Bで構成される共振器内でレーザ発振が起り
、部分透過鏡5より出力レーザ光りが出力される。この
出力レーザ光りの出力は励起されたレーザガスGの分子
数にほぼ比例し−ているので、高圧交流電源1からの放
電電流iを制御することによって出力レーザ光りの出力
を制御することができる。
To explain the operation of such a configuration, when a high voltage AC voltage with a predetermined discharge current i is applied to the electrode devices 2A and 2B by the high voltage AC power supply 1, the plurality of electrodes 3^ and 3B
An alternating current glow discharge occurs in between. Since this alternating current glow discharge is performed via the capacitors 7A and 7B connected to the plurality of electrodes 3A and 3B, the plurality of electrodes 3A and 3B
This results in a stable discharge that is uniform between the two and does not transition to arc discharge. When an AC glow discharge occurs between the plurality of electrodes 3^ and 3B in this way, the laser gas G is excited and i is generated in the direction 2 of the AC glow discharge and the direction X perpendicular to the flow direction y of the laser G, resulting in total reflection. Laser oscillation occurs within a resonator made up of the mirror 41, partially transmitting mirror 5, and folding mirrors 6^, 6B, and output laser light is output from the partially transmitting mirror 5. Since the output of this output laser beam is approximately proportional to the number of molecules of the excited laser gas G, the output of the output laser beam can be controlled by controlling the discharge current i from the high voltage AC power supply 1.

第7図は、高圧交流電源1からの放電電流iと電極3A
及び3B間の放電電圧Vとの関係を示すものであり、放
電電流iを徐々に増加させた静的な場合の特性を実線a
で示す。この場合は領域■で安定な交流グロー放電が行
なわれており、通常、レーザ発振を行なう場合は放電電
流iをこの領域■内で制御している。ところが、放電電
流iを領域■内に上昇させると、−時的に放電電圧Vが
上昇した後に放電が不安定となって電極3A及び3B間
に輝度の高いアーク放電が発生し、ついには放電電圧V
が低下□して電極3^及び3B間全域にアーク放電が発
生する。また、放電電流iを零から所定値まで数百μs
ec以下の短い時間で変化させた過渡的な場合の特性を
点線すで示す、この場合は領域■で安定な交流グロー放
電が行なわれており、静的な場合に比べて過渡的な場合
の方が低い放電電流iでアーク放、電が発生する゛。
Figure 7 shows the discharge current i from the high voltage AC power supply 1 and the electrode 3A.
and 3B, and the solid line a shows the characteristics in a static case where the discharge current i is gradually increased.
Indicated by In this case, stable alternating current glow discharge is occurring in region (2), and normally, when laser oscillation is performed, the discharge current i is controlled within this region (2). However, when the discharge current i is increased within the region (3), the discharge becomes unstable after the discharge voltage V rises for a period of time, and a high-intensity arc discharge occurs between the electrodes 3A and 3B. Voltage V
decreases □ and arc discharge occurs in the entire area between electrodes 3^ and 3B. In addition, the discharge current i is increased from zero to a predetermined value in several hundred μs.
The dotted line already shows the characteristics in a transient case where the change is made in a short time less than ec. In this case, a stable AC glow discharge is occurring in the region Arc discharge and electricity occur at a lower discharge current i.

ここで1.このような現象の起こる原因について詳述す
る。交流グロー放電における放電空間中の電位分布V、
正イオン分布ρ+、電子分布ρ−は第8図に示すように
なっており、交流グロー放電を維持するにはカソードフ
ォール領域と呼ばれる正イオンの集中、蓄積が不可欠で
ある。一般に、放電電流iが零の初期状態では放電空間
中に正イオンが存在しないのでカソードフォール領域を
形成することができず、放電電流iが立上がってから放
電空間中において電子の衝突電離によって発生した正イ
オンが徐々に陰極に引寄せられてカソードフォール領域
を形成する。しかし、正イオンが陰極に引寄せられる際
の8動速度が遅いため、カソードフォール領域を形成す
るまでに数百μsecの時間を要するので、前述した静
的な場合は問題ないが過渡的な場合、例えば出力レーザ
光りをパルス発振させるために放電電流をパルス状に断
続させる場合はカソードフォール領域が十分に形成され
ていない状態で大きな放電電流iが投入されることにな
る。そこで、第7図の点線すに示すような特性となって
アーク放電が発生する。
Here 1. The cause of this phenomenon will be explained in detail. Potential distribution V in the discharge space in AC glow discharge,
The positive ion distribution ρ+ and the electron distribution ρ− are as shown in FIG. 8, and in order to maintain AC glow discharge, concentration and accumulation of positive ions called a cathode fall region is essential. Generally, in the initial state when the discharge current i is zero, there are no positive ions in the discharge space, so a cathode fall region cannot be formed, and after the discharge current i rises, a cathode fall region is generated by collision ionization of electrons in the discharge space. The positive ions are gradually attracted to the cathode and form a cathode fall region. However, since the kinetic speed when positive ions are attracted to the cathode is slow, it takes several hundred microseconds to form the cathode fall region, so there is no problem in the static case described above, but in the transient case For example, when the discharge current is intermittent in a pulsed manner in order to pulse the output laser light, a large discharge current i is applied before a sufficient cathode fall region is formed. Therefore, arc discharge occurs with characteristics as shown by the dotted line in FIG.

そして、このようなアーク放電が発生すると出力レーザ
光りを効率良く得ることができず、また電極3A及び3
Bの溶融を起こすことも有る。よって、出力レーザ光り
の最大出力は、電極3^及び3B間に投入できる最大の
放電電力を決定するアーク放電発生寸前の放電電流iに
よって決定されるので、第9図に示すようにパルス発振
時の放電電流ipは連続発振時の放電電流icの約6割
程度になる。即ち、パルス発振時の出力レーザ光りの出
力指令値spは連続発振時の出力レーザ光りの出力指令
値SCより小さい値でしか指令することができない。
When such an arc discharge occurs, output laser light cannot be obtained efficiently, and electrodes 3A and 3
It may also cause B to melt. Therefore, the maximum output of the output laser beam is determined by the discharge current i just before arc discharge occurs, which determines the maximum discharge power that can be input between the electrodes 3^ and 3B. The discharge current ip is about 60% of the discharge current ic during continuous oscillation. That is, the output command value SP of the output laser light during pulse oscillation can only be set to a smaller value than the output command value SC of the output laser light during continuous oscillation.

しかしながら、レーザ加工等の用途において、立上り時
間が短く、かつ出力が大きい出力レーザ光をパルス発振
させることが要望されており、このために必要以上に大
きな電極を使用しなければならないという問題があった
However, in applications such as laser processing, there is a demand for pulsed oscillation of output laser light with a short rise time and high output, and there is a problem in that it is necessary to use a larger electrode than necessary for this purpose. Ta.

(発明の目的) 本発明は上述のような事情から成されたものであり、本
発明の目的は、立上り時間が短く、かつ出力が大きいパ
ルス状等の出力レーザ光を安定に制御することができる
ガスレーザ発振装置の制御方式を提供することにある。
(Objective of the Invention) The present invention was made in view of the above-mentioned circumstances, and an object of the present invention is to stably control output laser light such as a pulsed laser beam having a short rise time and a large output. An object of the present invention is to provide a control method for a gas laser oscillation device that can be controlled.

(問題点を解決するための手段) 本発明は、ガスレーザ発振装置の出力レーザ光の出力指
令値で放電電流を可変することによって前記出力レーザ
光の出力を制御する方式に関するものであり、本発明の
上記目的は、前記出力レーザ光の出力指令値が零の場合
、この出力指令値が立上がるまでの時間が所定値以下の
ときは所定の予備放電電流を出力し、前記時間が前記所
定値以上のときは前記出力レーザ光の出力指令値が立上
がる直前に前記予備放電電流を出力するようにすること
によって達成される。
(Means for Solving the Problems) The present invention relates to a method of controlling the output of the output laser light by varying the discharge current with the output command value of the output laser light of a gas laser oscillation device, The above purpose is to output a predetermined preliminary discharge current when the output command value of the output laser beam is zero and the time until the output command value rises is less than or equal to a predetermined value, The above can be achieved by outputting the preliminary discharge current immediately before the output command value of the output laser beam rises.

(発明の作用) 本発明のガスレーザ発振装置の制御方式は、出力レーザ
光の出力指令値が零である期間にも予備放電電流を流し
て放電を継続させているので、立上り時間が短く、かつ
出力の大きいパルス状等のレーザ光を出力する際におい
ても電極のもつ最大放電電流まで利用して出力の大きい
出力レーザ光を得ることができるものである。
(Function of the Invention) The control method of the gas laser oscillator of the present invention continues the discharge by flowing the preliminary discharge current even during the period when the output command value of the output laser beam is zero, so the rise time is short and Even when outputting high output pulsed laser light, it is possible to obtain high output laser light by utilizing up to the maximum discharge current of the electrodes.

(発明の実施例) 第1図は、本発明のガスレーザ発振装置の制御方式を実
現する制御装置の一例を示すブロック図であり、出力レ
ーザ光りの出力指令値SLを発生するレーザ光出力指令
発生器11と、予備放電電流i。
(Embodiment of the Invention) FIG. 1 is a block diagram showing an example of a control device that realizes the control method of the gas laser oscillation device of the present invention, and generates a laser beam output command that generates an output command value SL of the output laser beam. 11, and a preliminary discharge current i.

の指令値CSを発生する予備放電指令発生器12と、レ
ーザ光出力指令発生器11からの出力レーザ光りの出力
指令値SLが零の場合、出力レーザ光りの出力指令値S
Lが立上がるまでの時間が所定値以下のときは予備放電
指令発生器12からの予備放電電流isの指令値CSを
出力し、上記時間が所定値以上のときは出力レーザ光り
の出力指令値SLが立上がる直前(数百前μsee前)
に予備放電電流igの指令値C5を出力し、出力レーザ
光りの出力指令値SLが立上がった後は相応の放電電流
iLの指令値CLを出力する電流指令発生器13とを有
している。そして、電流指令発生器13からの放電電流
iLの指令値CL又は予備放電電流i、の指令値CSと
電流検出器17からの検出値CDとを基に放電電流iの
フィードバック制御を行なう加算器14.誤差増幅器1
5.電力変換器16.電流検出器17が設けられている
When the output command value SL of the output laser light from the preliminary discharge command generator 12 which generates the command value CS and the laser light output command generator 11 is zero, the output command value S of the output laser light
When the time until L rises is less than a predetermined value, the pre-discharge command generator 12 outputs the command value CS of the pre-discharge current is, and when the time is more than the pre-determined value, the output command value of the output laser beam is output. Immediately before SL rises (several hundred before μsee)
A current command generator 13 outputs a command value C5 of a preliminary discharge current ig, and outputs a command value CL of a corresponding discharge current iL after the output command value SL of the output laser beam rises. . Then, an adder performs feedback control of the discharge current i based on the command value CL of the discharge current iL from the current command generator 13 or the command value CS of the preliminary discharge current i and the detected value CD from the current detector 17. 14. error amplifier 1
5. Power converter 16. A current detector 17 is provided.

第2図は、出力レーザ光りの出力指令値SLが立上がる
までの時間t、が所定値以下のときの放電電流I、の指
令値CL及び予備放電電流13の指令値CSを示すもの
であり、第3図は、出力レーザ光りの出力指令値SLが
立上がるまでの時間t2が所定値以上のときの放電電流
11.の指令値CL及び予備放電電流i3の指令値C5
を示すものである。このように、放電電流iLの前に予
備放電電流isを流すことで、放電空間中に正イオンを
予め発生させてカソードフォール領域を十分に形成させ
ておくことができるので、短時間に大きな放電電流iが
投入されてもアーク放電を発生せずに交流グロー放電を
得ることができる。なお、この予備放電電流i3は、第
4図に示すように放電電流iと出力レーザ光りの出力p
との関係が一般的に非線形であることから出力レーザ光
りの出力pに一切影響を与えない範囲(図示矢印a)に
設定すれば良い。
FIG. 2 shows the command value CL of the discharge current I and the command value CS of the preliminary discharge current 13 when the time t until the output command value SL of the output laser beam rises is less than a predetermined value. , FIG. 3 shows the discharge current 11. when the time t2 until the output command value SL of the output laser beam rises is equal to or more than a predetermined value. Command value CL of and command value C5 of preliminary discharge current i3
This shows that. In this way, by flowing the preliminary discharge current is before the discharge current iL, positive ions can be generated in the discharge space in advance and a sufficient cathode fall region can be formed, so that a large discharge can be generated in a short time. Even when the current i is applied, an AC glow discharge can be obtained without generating an arc discharge. Note that this preliminary discharge current i3 is determined by the discharge current i and the output p of the output laser beam, as shown in FIG.
Since the relationship between p and p is generally non-linear, it may be set within a range (arrow a in the figure) that does not affect the output p of the output laser beam at all.

(発明の効果) 以上のように本発明のガスレーザ発振装置の制御方式に
よれば、電極を大型化しなくても種々の出カバターンの
出力レーザ光を安定に制御することができるので、小型
の発振器で大出力のレーザ光を得ることができる。また
、アーク放電による電極の損傷が無くなるので、ガスレ
ーザ発振装置の信頼性を向上させることができる。
(Effects of the Invention) As described above, according to the control method of the gas laser oscillation device of the present invention, it is possible to stably control the output laser light of various output patterns without increasing the size of the electrode. It is possible to obtain high output laser light. Furthermore, since damage to the electrodes due to arc discharge is eliminated, the reliability of the gas laser oscillation device can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明のガスレーザ発振装置の制御方式を実
現する制御装置の一例を示すブロック図、第2図及び第
3図はその制御信号を示す図、第4図は一般的なガスレ
ーザ発振装置の放電電流と出力レーザ光の出力との関係
を示す図、第5図は一般的なガスレーザ発振装置の一例
を示す斜視図、第6図はその側面図、第7図はその放電
電流と放電電圧との関係を示す図、第8図はその放電空
間中の状態を示す図、第9図は従来のガスレーザ発振装
置の制御方式による制御信号を示す図である。  。 1・・・高圧交流電源、2^、2B・・・電極装置、3
A。 3ト・・電極、4・・・全反射鏡、5・・・部分透過鏡
、6A。 6ト・・折返し鏡、7A、7B・・・コンデンサ、11
・・・レーザ光出力指令発生器、12・・・予備放電指
令発生器、l3・・・電流指令発生器、14・・・加算
器、15・・・誤差増幅器、16・・・電力変換器、1
7・・・電流検出器。 出願人代理人   安 形 雄 三 第2回 第3日 出力L−サ°尤り 第6回・ 〆70
FIG. 1 is a block diagram showing an example of a control device that implements the control method of the gas laser oscillation device of the present invention, FIGS. 2 and 3 are diagrams showing the control signals, and FIG. 4 is a general gas laser oscillation device. A diagram showing the relationship between the discharge current of the device and the output of the output laser beam, FIG. 5 is a perspective view showing an example of a general gas laser oscillation device, FIG. 6 is a side view thereof, and FIG. 7 is a diagram showing the discharge current and output of the output laser beam. FIG. 8 is a diagram showing the relationship with discharge voltage, FIG. 8 is a diagram showing the state in the discharge space, and FIG. 9 is a diagram showing control signals according to a conventional control method of a gas laser oscillation device. . 1... High voltage AC power supply, 2^, 2B... Electrode device, 3
A. 3... Electrode, 4... Totally reflecting mirror, 5... Partially transmitting mirror, 6A. 6t... folding mirror, 7A, 7B... condenser, 11
... Laser light output command generator, 12 ... Preliminary discharge command generator, l3 ... Current command generator, 14 ... Adder, 15 ... Error amplifier, 16 ... Power converter ,1
7... Current detector. Applicant's representative Yuji Yasugata 2nd 3rd day output L-sample 6th 70th

Claims (1)

【特許請求の範囲】[Claims] ガスレーザ発振装置の出力レーザ光の出力指令値で放電
電流を可変することによって前記出力レーザ光の出力を
制御する際、前記出力レーザ光の出力指令値が零の場合
、この出力指令値が立上がるまでの時間が所定値以下の
ときは所定の予備放電電流を出力し、前記時間が前記所
定値以上のときは前記出力レーザ光の出力指令値が立上
がる直前に前記予備放電電流を出力するようにしたこと
を特徴とするガスレーザ発振装置の制御方式。
When controlling the output of the output laser beam by varying the discharge current with the output command value of the output laser beam of the gas laser oscillation device, if the output command value of the output laser beam is zero, this output command value rises. When the time up to that point is less than or equal to a predetermined value, a predetermined pre-discharge current is output, and when the time is greater than or equal to the predetermined value, the pre-discharge current is output immediately before the output command value of the output laser beam rises. A control method for a gas laser oscillation device characterized by the following.
JP62274798A 1987-10-30 1987-10-30 Control method for gas laser oscillation device Pending JPH01117384A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62274798A JPH01117384A (en) 1987-10-30 1987-10-30 Control method for gas laser oscillation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62274798A JPH01117384A (en) 1987-10-30 1987-10-30 Control method for gas laser oscillation device

Publications (1)

Publication Number Publication Date
JPH01117384A true JPH01117384A (en) 1989-05-10

Family

ID=17546713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62274798A Pending JPH01117384A (en) 1987-10-30 1987-10-30 Control method for gas laser oscillation device

Country Status (1)

Country Link
JP (1) JPH01117384A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60251684A (en) * 1984-05-29 1985-12-12 Amada Co Ltd Gas laser oscillator

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60251684A (en) * 1984-05-29 1985-12-12 Amada Co Ltd Gas laser oscillator

Similar Documents

Publication Publication Date Title
JPH0212035B2 (en)
JPH01117384A (en) Control method for gas laser oscillation device
JPS5810872B2 (en) Laser Hatsei Souchi
US4024465A (en) Generation of corona for laser excitation
JP2666149B2 (en) Ultraviolet preionization electrode for discharge-excited gas laser device.
JPH02158180A (en) Corona pre-ionizer
JP3432854B2 (en) Pulse gas laser oscillator
Goldberg Laser-based discharge ignition for capillary waveguides
JPS6339111B2 (en)
JPS631086A (en) Gas laser oscillator
JPS6339113B2 (en)
JPS61251087A (en) Discharge excitation type short pulse laser device
JPS6321885A (en) Discharge type gas laser
JPH0263180A (en) Pulse laser oscillator
CA1040736A (en) Independent initiation technique of glow discharge production in high-pressure gas laser cavities
JPH0754865B2 (en) Discharge excited short pulse laser device
JPH01214180A (en) Pulse laser oscillating device
JPH02130973A (en) Laser oscillator
JPH0730177A (en) Pulse laser oscillation device
JPH06275897A (en) Discharge excited gas laser device
JPH02266875A (en) Pulse power source device
JPH01194481A (en) Gas laser oscillating apparatus
JPH0318075A (en) Metal vapor laser device
JPS63228681A (en) Gas laser oscillator
JPH0343796B2 (en)