JPH01115809A - Production of active carbon - Google Patents

Production of active carbon

Info

Publication number
JPH01115809A
JPH01115809A JP62271651A JP27165187A JPH01115809A JP H01115809 A JPH01115809 A JP H01115809A JP 62271651 A JP62271651 A JP 62271651A JP 27165187 A JP27165187 A JP 27165187A JP H01115809 A JPH01115809 A JP H01115809A
Authority
JP
Japan
Prior art keywords
furnace
gas
activation
combustion
supplied
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62271651A
Other languages
Japanese (ja)
Other versions
JPH068165B2 (en
Inventor
Yasuo Okuyama
奥山 泰男
Kunio Miyazawa
邦夫 宮澤
Shunichi Sugiyama
峻一 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP62271651A priority Critical patent/JPH068165B2/en
Publication of JPH01115809A publication Critical patent/JPH01115809A/en
Publication of JPH068165B2 publication Critical patent/JPH068165B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)

Abstract

PURPOSE:To produce active carbon without supplying heat energy from the outside, by feeding a combustion gas prepared by burning a carbonizing furnace gas to an activating furnace, burning an activating gas and sending to the carbonizing furnace. CONSTITUTION:Coal 4 is fed to an oxidizing furnace 1 and oxidized with air 8 at 200-300 deg.C to a slight degree to give oxidized coal 5, which is sent to a carbonizing furnace 2, heated to 500-700 deg.C to remove volatile content. The prepared carbonized coal 6 is supplied to an activating furnace 3, heated in a steam atmosphere to about 1,000 deg.C and activated to give active carbon 7. A carbonizing furnace gas 13 generated in the furnace 2 is burnt by a combustion furnace 12, fed to the furnace 3, part 14 of an activating furnace gas 13 discharged from the furnace 3 is sent to a furnace 12 and burnt with steam 17 fed from a steam generating device 18 and circulated to the furnace 3. The remaining gas 13 is burnt by a combustion device 15 for the activating furnace gas, part 17 of a generated combustion exhaust gas 16 is fed to an outer heat part of the furnace 2 and the residue is supplied as a heat source for the device 18.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は石炭を原料とした活性炭の製造技術に係り、製
造工程で発生する排ガスの熱・エネルギーを有効利用す
る省エネルギーの製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a technology for manufacturing activated carbon using coal as a raw material, and relates to an energy-saving manufacturing method that effectively utilizes the heat and energy of exhaust gas generated during the manufacturing process.

[従来技術] 石炭から活性炭を製造する技術としては数多くの方法が
開発されているが、これらの方法は、石炭を軽度に酸化
して粘結性を低下させるための酸化炉(粘結性を有しな
い石炭を使用の場合には省略される)、揮発分を除去す
るための乾留炉および吸着機能を持たせるための賦活炉
を備える方法が一般に行われている。
[Prior art] Many methods have been developed to produce activated carbon from coal, but these methods require an oxidation furnace (in which the caking property is reduced) to slightly oxidize the coal to reduce its caking property. (omitted when using coal that does not have a carbon content), a carbonization furnace to remove volatile matter, and an activation furnace to provide an adsorption function are generally used.

上記の各炉からは大量の排ガスを放出するが、この排ガ
スは高温であるとともに、可燃成分を含むため、従来か
ら排ガスの熱エネルギーの回収が行われている。
A large amount of exhaust gas is emitted from each of the above-mentioned furnaces, and since this exhaust gas has a high temperature and contains combustible components, the thermal energy of the exhaust gas has conventionally been recovered.

従来の熱回収については特公昭53−45196および
特公昭51−7158に開示されている。特公昭53−
45196の方法は第3図に示す如く賦活炉だけについ
て行われるものである。
Conventional heat recovery is disclosed in Japanese Patent Publication No. 53-45196 and Japanese Patent Publication No. 51-7158. Special Public Service 1973-
The method of No. 45196 is carried out only in the activation furnace as shown in FIG.

この方法は賦活炉30の排ガスを二分し、その−方の排
ガス31を燃焼炉32で燃焼して賦活炉30に供給する
。また、他方の排ガス33は燃焼炉34で燃焼したのち
課熱を回収して大気放出する方法である。
In this method, the exhaust gas from the activation furnace 30 is divided into two parts, and the exhaust gas 31 of the other half is combusted in a combustion furnace 32 and supplied to the activation furnace 30. The other exhaust gas 33 is burned in a combustion furnace 34, and then the heat is recovered and released into the atmosphere.

また、特公昭51−7158の方法は、第4図に示す如
く乾留、賦活の2炉よりなる活性炭の製造法で、乾留用
ロータリーキルン40で発生した乾留炉ガスの全量を排
ガスダクト41を経由して賦活用ロータリーキルン42
に送り、賦活用ロータリーキルン42の補助燃料として
使用する方法である。
In addition, the method disclosed in Japanese Patent Publication No. 51-7158 is a method for producing activated carbon that consists of two furnaces, carbonization and activation, as shown in Fig. 4. Rotary kiln 42
In this method, the fuel is sent to the fuel tank and used as auxiliary fuel in the recycling rotary kiln 42.

[発明が解決しようとする問題点] しかし、上記の従来技術においては、賦活炉あるいは乾
留炉から発生する排ガスの熱エネルギーを゛、それぞれ
単独に回収しているだけに通ず、製造工程全体に亘る熱
回収は図られていない、また、いづれの方法も回収した
熱エネルX−だけでは賦活炉の熱源を確保することは出
来ず、外部からの供給熱源である重油の吹き込み燃焼を
必要としている。
[Problems to be Solved by the Invention] However, in the above-mentioned conventional technology, the thermal energy of the exhaust gas generated from the activation furnace or the carbonization furnace is not only recovered individually, but also used in the entire manufacturing process. There is no plan for comprehensive heat recovery, and neither method can secure the heat source for the activation furnace with the recovered heat energy X- alone, and requires blow-in combustion of heavy oil, which is a heat source supplied from outside. .

本発明はこのような従来技術の問題点を解決するために
なされたものであり、乾留炉および賦活炉から発生する
排ガスを有効に活用し、外部からの熱源の供給を不要と
するか、あるいは、外部からの熱源の供給を極めて少な
くすることができる活性炭の製造法を提供することを目
的とする。
The present invention was made in order to solve the problems of the conventional technology, and effectively utilizes the exhaust gas generated from the carbonization furnace and the activation furnace, thereby eliminating the need for an external heat source, or The object of the present invention is to provide a method for producing activated carbon that can extremely reduce the supply of heat source from the outside.

[問題点を解決するための手段] 本発明は、石炭を原料とする活性炭の製造法において、
乾留炉から発生する乾留炉ガスを燃焼させた燃焼ガスと
、蒸気発生装置で発生させた水蒸気を、賦活炉に供給し
て賦活反応を行い、前記賦活炉から発生する賦活炉ガス
の一部を燃焼させて前記賦活炉に循環させ、残部の賦活
炉ガスを燃焼し、その燃焼によって生成した燃焼排ガス
の一部を前記乾留炉の加熱熱源として供給し、他を前記
蒸気発生装置に蒸気発生熱源として供給することを特徴
とする活性炭の製造法である。
[Means for solving the problems] The present invention provides a method for producing activated carbon using coal as a raw material,
The combustion gas produced by burning the carbonization furnace gas generated from the carbonization furnace and the steam generated by the steam generator are supplied to the activation furnace to perform an activation reaction, and a part of the activation furnace gas generated from the activation furnace is The remaining activating furnace gas is combusted and circulated to the activation furnace, and a part of the combustion exhaust gas generated by the combustion is supplied as a heating heat source to the carbonization furnace, and the other part is supplied to the steam generator as a steam generation heat source. This is a method for producing activated carbon, characterized in that it is supplied as activated carbon.

[作用] 乾留炉ガス、賦活炉排ガスは高温であり、且つ可燃成分
が含まれているので高い熱エネルギーを有している。こ
のため、本発明においては、これらの排ガスを乾留炉、
賦活炉の間を循環させて、効率よく熱エネルギーを回収
することを図っている。即ち、乾留炉から発生した乾留
炉ガスを燃焼し、この燃焼ガスを賦活炉に供給する。賦
活炉においては賦活反応によって賦活炉ガスが発生する
ので、この賦活炉ガスを燃焼して乾留炉に供給する。
[Operation] Carbonization furnace gas and activation furnace exhaust gas are high in temperature and contain combustible components, so they have high thermal energy. Therefore, in the present invention, these exhaust gases are treated in a carbonization furnace,
The aim is to efficiently recover heat energy by circulating it between the activation furnaces. That is, the carbonization furnace gas generated from the carbonization furnace is combusted, and this combustion gas is supplied to the activation furnace. In the activation furnace, activation furnace gas is generated by the activation reaction, so this activation furnace gas is combusted and supplied to the carbonization furnace.

このようにして、乾留炉→賦活炉→乾留炉の順序で排ガ
スが循環することにより、乾留炉、賦活炉の2処理工程
間に熱エネルギーの循環流路が形成される。そして、賦
活炉には、賦活炉ガスの一部を燃焼させて循環させ、さ
らに、賦活炉排ガスを燃焼させた燃焼排ガスを熱源とし
て発生させた水蒸気を供給して、賦活処理工程内にも熱
エネルギーの循環流路を形成させる。上記のごとく、本
発明においては、乾留炉、賦活炉の2処理工程間および
賦活処理工程内に熱エネルギーの循環流路が形成してお
り、これにより、排ガスは熱エネルギーを十分に回収さ
れたのち排気される。
In this way, by circulating the exhaust gas in the order of carbonization furnace → activation furnace → carbonization furnace, a thermal energy circulation path is formed between the two processing steps of the carbonization furnace and the activation furnace. Then, a part of the activation furnace gas is combusted and circulated in the activation furnace, and steam generated by using the combustion exhaust gas obtained by combusting the activation furnace exhaust gas as a heat source is supplied, and heat is also generated during the activation treatment process. Forms an energy circulation path. As described above, in the present invention, a circulation flow path for thermal energy is formed between the two treatment steps of the carbonization furnace and the activation furnace, and within the activation treatment step, so that the exhaust gas has sufficient thermal energy recovered. It is later exhausted.

[発明の実施例] 以下、実施例により具体的に説明する。第1図は本発明
の一実施例を示す説明図である。第1図において、1は
ロータリーキルン式の酸化炉、2はロータリーキルン式
で外熱方式の乾留炉、3はロータリーキルン式の賦活炉
である。石炭4は酸化炉1において200〜300℃の
空気で軽度に酸化されて酸化炭5になり、酸化炭5は乾
留炉2で500〜700℃に加熱され揮発分を除去され
て乾留炭6になり、そして、乾留炭6は賦活炉3におい
て多量の水蒸気の雰囲気下で約1000℃に加熱されて
賦活され、製品である活性炭7となる。
[Examples of the Invention] Hereinafter, the invention will be specifically explained using Examples. FIG. 1 is an explanatory diagram showing one embodiment of the present invention. In FIG. 1, 1 is a rotary kiln type oxidation furnace, 2 is a rotary kiln type external heating carbonization furnace, and 3 is a rotary kiln type activation furnace. Coal 4 is lightly oxidized with air at 200 to 300°C in oxidation furnace 1 to become oxidized carbon 5, and oxidized carbon 5 is heated to 500 to 700°C in carbonization furnace 2 to remove volatile matter and become carbonized carbon 6. Then, the carbonized carbon 6 is activated by being heated to about 1000° C. in an atmosphere of a large amount of water vapor in the activation furnace 3, and becomes activated carbon 7, which is a product.

これらの各炉における処理は、いづれも加熱処理であり
、その加熱方法について説明する。酸化炉1には加熱さ
れた空気8が供給され、石炭4を酸化したのち酸化炉ガ
ス9として排気される。乾留炉2においては、その外熱
部に燃焼排ガス17を供給して加熱し、外熱排ガス10
は排気する。
The treatment in each of these furnaces is a heat treatment, and the heating method will be explained. Heated air 8 is supplied to the oxidation furnace 1, oxidizes the coal 4, and then exhausts it as oxidation furnace gas 9. In the carbonization furnace 2, the combustion exhaust gas 17 is supplied to the external heating part and heated, and the external heating exhaust gas 10 is heated.
is exhausted.

乾留炉2から発生した乾留炉ガス11は燃焼炉12で燃
焼させたのち、賦活炉3に供給する。賦活炉3から排気
された賦活炉ガス13の一部14は燃焼炉12で乾留炉
ガス11とともに燃焼させて賦活炉3に循環させる。そ
して、残部の賦活炉ガス13は賦活炉ガス燃焼炉15で
燃焼させて燃焼排ガス16を生成させる。この燃焼排ガ
ス16は、その一部17を前記のように乾留炉2の外熱
部に供給し、他を蒸気発生装置18の熱源として供給し
、熱回収した後、排気する0発生した水蒸気19は燃焼
炉12に供給する。
Carbonization furnace gas 11 generated from carbonization furnace 2 is combusted in combustion furnace 12 and then supplied to activation furnace 3 . A part 14 of the activation furnace gas 13 exhausted from the activation furnace 3 is burned together with the carbonization furnace gas 11 in the combustion furnace 12 and circulated to the activation furnace 3. The remaining activation furnace gas 13 is then combusted in an activation furnace gas combustion furnace 15 to generate combustion exhaust gas 16. A part 17 of this combustion exhaust gas 16 is supplied to the external heating part of the carbonization furnace 2 as described above, and the other part is supplied as a heat source to the steam generator 18, and after recovering the heat, it is exhausted. is supplied to the combustion furnace 12.

ここで、賦活炉ガス13を水蒸気に変換して賦活炉3に
循環する理由は、賦活反応は乾留炭と水蒸気との反応を
行わせるものであり、その反応速度は加熱ガス中の水蒸
気の分圧によって大きく影響される。賦活反応を順調に
進行させるためには、賦活炉3内における水蒸気の分圧
は約0.7以上を必要とし、このため、水蒸気分圧を約
0.7に維持するために水蒸気19が供給される。゛な
お、水蒸気分圧を維持するためには、さらに、別の工夫
も凝らされている。
Here, the reason why the activation furnace gas 13 is converted into steam and circulated to the activation furnace 3 is that the activation reaction causes a reaction between carbonized carbon and steam, and the reaction rate is determined by the amount of steam in the heated gas. It is greatly affected by pressure. In order for the activation reaction to proceed smoothly, the partial pressure of water vapor in the activation furnace 3 needs to be about 0.7 or more, and therefore, the water vapor 19 is supplied to maintain the water vapor partial pressure at about 0.7. be done. Furthermore, in order to maintain the water vapor partial pressure, other measures have been taken.

燃焼炉12における乾留炉ガス11および賦活炉ガスの
一部14の燃焼に際しては、酸素源として空気20が供
給されるが、さらに必要に応じ、酸素21も供給して酸
素富化燃焼を行うことがある。この酸素富化燃焼は原料
である石炭中の揮発分の多少により実施される0例えば
、石炭の揮発分が少ないと乾留炉ガス11の熱エネルギ
ーが減少するので、賦活炉3の温度維持のために、賦活
炉ガス14の循環量を多くする必要がある。そして、賦
活炉ガス14は循環中に窒素、炭酸ガス等反応に寄与し
ないガスが次第に増加するので、水蒸気19を多量に供
給しないと、目標とする水蒸気分圧が維持できなくなる
。このため、賦活処理工程の熱バランスを維持するため
に、酸素を供給し、水蒸気の供給量が増加しないように
する。
When burning the carbonization furnace gas 11 and the part 14 of the activation furnace gas in the combustion furnace 12, air 20 is supplied as an oxygen source, but if necessary, oxygen 21 may also be supplied to perform oxygen-enriched combustion. There is. This oxygen-enriched combustion is carried out depending on the amount of volatile content in the raw material coal. For example, if the volatile content of the coal is low, the thermal energy of the carbonization furnace gas 11 decreases, so it is necessary to maintain the temperature of the activation furnace 3. In addition, it is necessary to increase the circulation amount of the activation furnace gas 14. During the circulation of the activation furnace gas 14, gases such as nitrogen and carbon dioxide that do not contribute to the reaction gradually increase, so unless a large amount of steam 19 is supplied, the target steam partial pressure cannot be maintained. Therefore, in order to maintain the heat balance in the activation treatment process, oxygen is supplied to prevent the amount of water vapor supplied from increasing.

次に、他の実施例について説明する。第2図は本発明の
より好ましい態様を示、す説明図である。
Next, other embodiments will be described. FIG. 2 is an explanatory diagram showing a more preferred embodiment of the present invention.

この方法が第1図の方法と異なる点は・乾留炉2の加熱
の仕方であり、第1図の方法が賦活炉ガス13を燃焼し
て生成させた燃焼排ガスの一部17を乾留炉2の外熱部
に供給するだけで乾留炉2を加熱しているのに対し、こ
の方法は燃焼排ガスの一部17による外熱加熱のほかに
、蒸気発生装置18で発生させた水蒸気の一部22を乾
留炉2内に供給する点が相違する。乾留炉2から発生す
る乾留炉ガス11は第1図の方法と同様に燃焼炉12に
送って燃焼し、賦活炉3に供給す葛、酸化炉1から乾留
炉2に供給される酸化炭6には若干の空気が含まれてい
るので、酸化炭6の一部がが燃焼するが、乾留炉2に水
蒸気を供給すると、乾留炉2内が水蒸気雰囲気になり、
乾留過程の処理物の燃焼を防止することができる。この
ため、乾留炉2内への水蒸気22の供給は活性炭の品質
および歩留まりを向上に対する効果がある。
This method differs from the method shown in FIG. 1 in the method of heating the carbonization furnace 2. In the method shown in FIG. In contrast, this method heats the carbonization furnace 2 by simply supplying it to the external heat section of the combustion exhaust gas, whereas in this method, in addition to external heat heating using a portion 17 of the combustion exhaust gas, a portion of the steam generated by the steam generator 18 is heated. The difference is that 22 is supplied into the carbonization furnace 2. The carbonization furnace gas 11 generated from the carbonization furnace 2 is sent to the combustion furnace 12 and burned in the same manner as in the method shown in FIG. contains some air, so some of the oxidized carbon 6 burns, but when water vapor is supplied to the carbonization furnace 2, the interior of the carbonization furnace 2 becomes a steam atmosphere,
It is possible to prevent combustion of the processed material during the carbonization process. Therefore, supplying the steam 22 into the carbonization furnace 2 has the effect of improving the quality and yield of activated carbon.

次に、本発明の方法により活性炭を製造した実験例につ
いて説明する。
Next, an experimental example in which activated carbon was produced by the method of the present invention will be described.

(実験例1) 第1図に示した構成による装置を使用して活性炭の製造
実験を実施した。酸化炉1(ロータリーキルン式、内径
1200關、長さ9000龍)に粒度が1.0〜3.0
111Iの石炭(水分3wt%、灰分および揮発分が無
水基準で、それぞれ1 wt%以下、45wt%)を5
25kg/時の割合で供給し、260℃の加熱空気8を
供給して石炭4を酸化させ、434kg/時の酸化炭5
を得た。この酸化炭5を、顕熱を有効に利用するために
極力冷却されないようにして、乾留炉2(外熱ロータリ
ーキルン式、内径1424龍、長さ14000龍)に供
給し、賦活炉ガス13を燃焼させて生成させた700℃
の燃焼排ガスの一部17を乾留炉2の外熱部に供給して
加熱した。乾留の最終温度は650℃になり、289k
g/時の乾留炭6を得た。乾留炭6は、次に、賦活炉3
(ロータリーキルン式、内径2700龍、長さ3200
0朋)に送り、水蒸気分圧0.7.1000℃のガスを
供給して、162kg/時(石炭1を当たり308−)
の活性炭7を得た。なお、賦活炉3に供給する前記水蒸
気分圧0,7.1000℃のガスは、480℃、139
Nnf/時の乾留炉ガス11と、780℃、 2934
  Nn(/時の賦活炉ガスノ一部14と、蒸気発生装
W118で発生させた水蒸気2060kg/時と、11
05 Nボッ時の空気および116Nnr/時の酸素を
燃焼炉12に供給し、燃焼させて得た。
(Experimental Example 1) An activated carbon production experiment was carried out using an apparatus having the configuration shown in FIG. Oxidation furnace 1 (rotary kiln type, inner diameter 1200mm, length 9000mm) has a particle size of 1.0 to 3.0.
111I coal (moisture 3 wt%, ash content and volatile content 1 wt% or less and 45 wt%, respectively, on an anhydrous basis) was
Coal 4 is supplied at a rate of 25 kg/hour, heated air 8 at 260° C. is supplied to oxidize coal 4, and oxidized carbon 5 is produced at a rate of 434 kg/hour.
I got it. This oxidized carbon 5 is supplied to a carbonization furnace 2 (external heat rotary kiln type, inner diameter 1424 mm, length 14000 mm) with as little cooling as possible in order to effectively utilize sensible heat, and the activation furnace gas 13 is combusted. 700℃ generated by
A part 17 of the combustion exhaust gas was supplied to the external heating section of the carbonization furnace 2 and heated. The final temperature of carbonization is 650℃, 289k
6 g/h of carbonized charcoal were obtained. The carbonized coal 6 is then passed through the activation furnace 3.
(Rotary kiln type, inner diameter 2700 mm, length 3200 mm
0), supplying gas with a steam partial pressure of 0.7.
Activated carbon 7 was obtained. Note that the gas with a water vapor partial pressure of 0.7.1000°C supplied to the activation furnace 3 is 480°C and 139°C.
Nnf/hour carbonization furnace gas 11, 780°C, 2934
Nn (/hour) 14 parts of the activation furnace gas, 2060 kg/hour of steam generated by the steam generator W118, and 11
05 Nr/hr of air and 116 Nnr/hr of oxygen were supplied to the combustion furnace 12 and burned.

製造された活性炭は第1表に示すような良質の製品であ
った。
The activated carbon produced was of good quality as shown in Table 1.

第  1  表 比表面積の測定は窒素によるBET法 第  2  表      (VofI%)C6HIO
は軽質タール分の換算値である。
Table 1 Measurement of specific surface area by BET method using nitrogen Table 2 (VofI%) C6HIO
is the converted value of light tar content.

第  3  表 また、各々の炉から発生するガスの組成は第2表に、そ
して、各炉への供給するガスおよび各炉からの発生ガス
の温度、流量は第3表に示す。
Table 3 The composition of the gas generated from each furnace is shown in Table 2, and the temperature and flow rate of the gas supplied to each furnace and the gas generated from each furnace is shown in Table 3.

(実験例2) 第1図の構成による装置を使用し、賦活炉3に供給する
ガスを生成させる燃焼炉12における燃焼に酸素を使用
しなかった場合の実験結果について説明する。実験条件
は、酸素を供給しないこと以外は実験例1と同条件で行
った。
(Experimental Example 2) Experimental results will be described in the case where the apparatus having the configuration shown in FIG. 1 is used and oxygen is not used for combustion in the combustion furnace 12 that generates the gas to be supplied to the activation furnace 3. The experimental conditions were the same as in Experimental Example 1 except that oxygen was not supplied.

賦活炉3に供給するガスは、乾留炉ガス11と、780
℃、2998N/イ時の賦活炉ガスの一部14と、17
32kg/時の水蒸気19および1663Nn?時の空
気を燃焼炉12で燃焼させて、生成させた。ここで生成
したガスは温度988℃、水蒸気分圧0.65であった
。このガスで乾留炭6を賦活した結果、ガスの水蒸気分
圧が低いため、反応速度が遅くなった。そして、製品の
活性炭の品質は実験例1の場合に比べ若干低下し、ヨウ
素吸着量は960〜990mg/g−ACであった。
The gases supplied to the activation furnace 3 are carbonization furnace gas 11 and 780
Parts 14 and 17 of the activation furnace gas at ℃, 2998N/I
32 kg/h steam 19 and 1663 Nn? It was generated by burning the air in the combustion furnace 12. The gas produced here had a temperature of 988° C. and a water vapor partial pressure of 0.65. As a result of activating the carbonized coal 6 with this gas, the reaction rate became slow due to the low water vapor partial pressure of the gas. The quality of the activated carbon product was slightly lower than that in Experimental Example 1, and the iodine adsorption amount was 960 to 990 mg/g-AC.

(実験例3) 第2図の構成による装置により活性炭を製造した結果に
ついて説明する。この実験は乾留炉の加熱方法として、
外熱加熱のほかに、乾留炉内に水蒸気を供給する手段を
併用した実験である。実験条件は実験例1の場合と同じ
にして行った結果、原料の石炭525)cg/時を供給
して、乾留炭298kg/時を得、この乾留炭を賦活し
て活性炭298kg/時(石炭1を当たり318kg/
時)が得られ、実験例1の場合に比べ、約3%の歩留ま
りの向上となった。
(Experimental Example 3) The results of producing activated carbon using the apparatus configured as shown in FIG. 2 will be described. This experiment was conducted as a heating method for a carbonization furnace.
This experiment used a method of supplying steam into the carbonization furnace in addition to external heating. The experimental conditions were the same as in Experimental Example 1. As a result, 525) cg/hour of raw coal was supplied, 298 kg/hour of carbonized coal was obtained, and this carbonized coal was activated to produce activated carbon 298 kg/hour (coal 318kg/1
) was obtained, and compared to Experimental Example 1, the yield was improved by about 3%.

以上の説明のごとく、本発明は、従来技術のように賦活
炉あるいは乾留炉から発生するガスのエネルギーを、そ
れぞれ単独に回収するのではなく、賦活炉ガスを燃焼さ
せた燃焼排ガスを、そのまま、あるいは、水蒸気に変換
して乾留炉の加熱に使用するので、乾留および賦活の処
理においては、外部から熱源を供給することなく活性炭
を製造することができる。
As explained above, the present invention does not separately recover the energy of the gas generated from the activation furnace or the carbonization furnace, as in the prior art, but instead uses the combustion exhaust gas obtained by combusting the activation furnace gas as it is. Alternatively, since it is converted into water vapor and used for heating the carbonization furnace, activated carbon can be produced without supplying an external heat source during the carbonization and activation processes.

なお、酸化炉においても、次の手段を採用すれば外部か
ら熱源を供給する必要はなくなる。乾留炉の外熱加熱に
使用したのち排気される外熱排ガスは約500℃の温度
があり、この熱量で酸化炉に供給する空気を熱交換すれ
ば、酸化炉の加熱源として十分活用することができる。
In addition, even in the oxidation furnace, if the following means is adopted, there is no need to supply a heat source from the outside. The external heat exhaust gas that is exhausted after being used for external heat heating in the carbonization furnace has a temperature of approximately 500°C, and if this amount of heat is used to exchange heat with the air supplied to the oxidation furnace, it can be fully utilized as a heating source for the oxidation furnace. Can be done.

また、酸化炉ガスは可燃成分が含まれており、約400
Kca9/Nrrlの熱量があるので、これを賦活炉ガ
ス燃焼炉に送って賦活炉ガスとともに燃焼させて熱回収
をすることもできる。
In addition, the oxidation furnace gas contains combustible components, approximately 400%
Since it has a calorific value of Kca9/Nrrl, it can also be sent to the activation furnace gas combustion furnace and burned together with the activation furnace gas to recover heat.

[発明の効果] 本発明は、乾留炉および賦活炉から発生する排ガスのエ
ネルギーを、それぞれ単独に回収するものではなく、前
記各炉から回収した熱エネルギーを乾留炉、賦活炉の間
を循環させるので、乾留炉および賦活炉においては、外
部からの供給をすることなく活性炭を製造することがで
きる。
[Effect of the invention] The present invention does not recover the energy of the exhaust gas generated from the carbonization furnace and the activation furnace individually, but circulates the thermal energy recovered from each of the furnaces between the carbonization furnace and the activation furnace. Therefore, in the carbonization furnace and the activation furnace, activated carbon can be produced without external supply.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す説明図、第2図は他の
実施例を示す説明図、第3図および第4図は従来技術の
説明図である。 2・・・乾留炉、3・・・賦活炉、4・・・石炭、7・
・・活性炭、11・・・乾留炉ガス、13.14・・・
賦活炉ガス、15.17・・・燃焼排ガス、18・・・
蒸気発生装置、19.22・・・水蒸気。
FIG. 1 is an explanatory diagram showing one embodiment of the present invention, FIG. 2 is an explanatory diagram showing another embodiment, and FIGS. 3 and 4 are explanatory diagrams of the prior art. 2... Carbonization furnace, 3... Activation furnace, 4... Coal, 7.
...Activated carbon, 11... Carbonization furnace gas, 13.14...
Activation furnace gas, 15.17... Combustion exhaust gas, 18...
Steam generator, 19.22... water vapor.

Claims (1)

【特許請求の範囲】[Claims] 石炭を原料とする活性炭の製造法において、乾留炉から
発生する乾留炉ガスを燃焼させた燃焼ガスと、蒸気発生
装置で発生させた水蒸気を、賦活炉に供給して賦活反応
を行い、前記賦活炉から発生する賦活炉ガスの一部を燃
焼させて前記賦活炉に循環させ、残部の賦活炉ガスを燃
焼し、その燃焼によって生成した燃焼排ガスの一部を前
記乾留炉の加熱熱源として供給し、他を前記蒸気発生装
置に蒸気発生熱源として供給することを特徴とする活性
炭の製造法。
In a method for producing activated carbon using coal as a raw material, combustion gas generated by burning carbonization furnace gas generated from a carbonization furnace and steam generated in a steam generator are supplied to an activation furnace to perform an activation reaction, and A part of the activation furnace gas generated from the furnace is combusted and circulated to the activation furnace, the remaining activation furnace gas is combusted, and a part of the combustion exhaust gas generated by the combustion is supplied as a heating heat source for the carbonization furnace. , and the like to the steam generator as a steam generation heat source.
JP62271651A 1987-10-29 1987-10-29 Activated carbon manufacturing method Expired - Lifetime JPH068165B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62271651A JPH068165B2 (en) 1987-10-29 1987-10-29 Activated carbon manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62271651A JPH068165B2 (en) 1987-10-29 1987-10-29 Activated carbon manufacturing method

Publications (2)

Publication Number Publication Date
JPH01115809A true JPH01115809A (en) 1989-05-09
JPH068165B2 JPH068165B2 (en) 1994-02-02

Family

ID=17503008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62271651A Expired - Lifetime JPH068165B2 (en) 1987-10-29 1987-10-29 Activated carbon manufacturing method

Country Status (1)

Country Link
JP (1) JPH068165B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2507153C1 (en) * 2012-07-17 2014-02-20 Открытое акционерное общество "Московский коксогазовый завод" Method of obtaining active coals from charges of coking production

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2507153C1 (en) * 2012-07-17 2014-02-20 Открытое акционерное общество "Московский коксогазовый завод" Method of obtaining active coals from charges of coking production

Also Published As

Publication number Publication date
JPH068165B2 (en) 1994-02-02

Similar Documents

Publication Publication Date Title
JP4502331B2 (en) Method and system for cogeneration with a carbonization furnace
JPS6115800A (en) Heat treatment method of substance containing carbon, particularly, sludge
JP4091071B2 (en) Pyrolysis apparatus that heats waste directly by introducing molten exhaust gas into a pyrolysis furnace, and pyrolysis process using the same
JP2017127797A (en) Sludge incineration system
RU98111508A (en) METHOD FOR PRODUCING IRON BY DIRECT RECOVERY AND DEVICE FOR ITS IMPLEMENTATION
KR860000354A (en) Carbon Vaporization
KR20160066122A (en) Method of Increasing the Heat Recovery using Coke Dry Quenching
US9005570B2 (en) Method for treating a carbon dioxide-containing waste gas from an electrofusion process
JPH01115809A (en) Production of active carbon
US4036753A (en) Pyrolysis process for treating sewage sludge containing chromium
US20140000535A1 (en) Metallurgical plant with efficient waste-heat utilization
CN105883797A (en) Oxidation and carbonization system and method for flue gas internal circulation
CN113845942B (en) Coking and flue gas treatment system and method
CN216572397U (en) Coking and flue gas treatment system
JP4473568B2 (en) CO-containing reducing gas production equipment
JPS5819384A (en) Heating of coke oven
JP2001220121A (en) Method for manufacturing activated carbon from waste and manufacturing device
ES2003449A6 (en) Process for treating an aqueous condensate.
JP2001220120A (en) Method for manufacturing activated carbon from waste and manufacturing device
JPH10332134A (en) Production of reformed coal and equipment therefor
JP2004168836A (en) Method for treatment of waste wood
JP3721531B2 (en) Method and apparatus for producing activated carbon
JP4198664B2 (en) Sewage sludge gasification power generation facility and sewage sludge gasification power generation method
JP5631099B2 (en) Carbide manufacturing plant and carbide manufacturing method
JP3054595B2 (en) Pyrolysis melting gasification of waste