JPH01115045A - Electron beam microanalizer - Google Patents

Electron beam microanalizer

Info

Publication number
JPH01115045A
JPH01115045A JP62274127A JP27412787A JPH01115045A JP H01115045 A JPH01115045 A JP H01115045A JP 62274127 A JP62274127 A JP 62274127A JP 27412787 A JP27412787 A JP 27412787A JP H01115045 A JPH01115045 A JP H01115045A
Authority
JP
Japan
Prior art keywords
component
characteristic
sample
ray
peak
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62274127A
Other languages
Japanese (ja)
Inventor
Hideto Furuaji
秀人 古味
Takeshi Araki
武 荒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP62274127A priority Critical patent/JPH01115045A/en
Publication of JPH01115045A publication Critical patent/JPH01115045A/en
Pending legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE:To use one species of spectroscopic crystal and to enable the upgrading of quantitative precision by extruding a first component from a characteristic X-ray peak which contains both the first and second components and computing the second component based on the X-ray peak of the second component standard sample. CONSTITUTION:Characteristic X rays from a sample are separated to be detected by the use of single spectroscopic crystal 1. A characteristic X-ray spectrum of a first component in a standard sample, that of a second component in the standard sample, and that of an unknown sample are memorized. The first component is computed from the single characteristic X-ray peak of the first component in the unknown sample and that X-ray peak of the first component in the standard sample. The first component is extruded from the characteristic X-ray peak which contains both the first and second components to compute the characteristic X-ray peak of the second component. The second component is computed on the basis of the characteristic X-ray peak of the second component in the standard sample. Quantitative analysis can be thus made possible with good precision by one spectroscopic crystal part.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は化合物試料の定量分析を自動的に行うことので
きる機能を備えた電子線マイクロアナライザに関し、特
に例えば窒化チタン(TiNx)のような一方の成分の
特性X線スペクトルのピークが他方の成分のピークと重
なる場合にも定量分析を行うことのできる電子線マイク
ロアナライザに関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an electron beam microanalyzer equipped with a function that can automatically perform quantitative analysis of compound samples, particularly for example, titanium nitride (TiNx). The present invention relates to an electron beam microanalyzer that can perform quantitative analysis even when the peak of the characteristic X-ray spectrum of one component overlaps the peak of the other component.

(従来の技術) 例えば窒化チタンの定量分析を行う場合、分光結晶とし
てLiFとPb5Dの2種類の結晶を使用し、LiFを
用いてチタンのにα線を測定し、Pb5Dを用いて窒素
のにα線とチタンのしQfiとを測定する。チタンのに
α線のピークは単独のピークであるので標準試料の特性
X線スペクトルからチタンの量を定量する。一方、窒素
のにα線はチタンのLQ線とピークが重なるため、m定
したチタンのにα線のピークを元にして重なったピーク
からチタンのLQ線部分を除き、窒素のにα線のピーク
を算出する。その算出されたにα線ピークと標準試料の
特性X線スペクトルとから窒素の量を定量する。
(Prior art) For example, when performing quantitative analysis of titanium nitride, two types of crystals, LiF and Pb5D, are used as spectroscopic crystals. LiF is used to measure the alpha rays of titanium, and Pb5D is used to measure the Measure alpha rays and titanium radiation Qfi. Since the α-ray peak of titanium is a single peak, the amount of titanium is determined from the characteristic X-ray spectrum of the standard sample. On the other hand, since the peaks of the alpha rays of nitrogen overlap with the LQ rays of titanium, we removed the LQ rays of titanium from the overlapping peaks based on the peak of the alpha rays of titanium determined by m. Calculate the peak. The amount of nitrogen is determined from the calculated α-ray peak and the characteristic X-ray spectrum of the standard sample.

(発明が解決しようとする問題点) チタンのにα線とチタンのLA線は特性X線の波長差が
大きいため、単一の分光結晶で分光することが難しく、
2種類の分光結晶を用いなければならない。
(Problem to be solved by the invention) Since the characteristic X-ray wavelengths of α-rays from titanium and LA-rays from titanium have a large difference in wavelength, it is difficult to analyze them with a single spectroscopic crystal.
Two types of spectroscopic crystals must be used.

また、チタンのにα線とチタンのLfl線、窒素のにα
線の特性X線の波長差が大きく、試料中でのこれらの特
性X線の振舞いに相当な違いがあるため、定量精度が上
がらない。
In addition, the alpha rays of titanium, the Lfl rays of titanium, and the alpha rays of nitrogen
Since the wavelength difference between the characteristic X-rays is large and the behavior of these characteristic X-rays in the sample is considerably different, quantitative accuracy cannot be improved.

本発明は1種類の分光結晶を用い、しかもエネルギーの
近い特性X線を用いて定量分析を行うことにより、定量
精度を上げることのできる電子線マイクロアナライザを
提供することを目的とするものである。
An object of the present invention is to provide an electron beam microanalyzer that can improve quantitative accuracy by using one type of spectroscopic crystal and performing quantitative analysis using characteristic X-rays with similar energy. .

(問題点を解決するための手段) 第1図を参照して本発明を説明すると、試料からの特性
X線を分光する単一の分光結晶1と1分光された特性X
線を検出する検出手段2,3.4と、試料の第1の成分
の標準試料の特性X線スペクトルを記憶する第1成分の
記憶手段5と、第2の成分の標準試料の特性X線スペク
トルを記憶する第2成分の記憶手段6と、未知試料の特
性X線スペクトルを記憶する手段7と、未知試料の第1
の成分の単独の特性X線ピークと第1成分の記憶手段5
に記憶された第1の成分の標準試料の同特性X線ピーク
とから第1の成分を算出する第1成分算出手段8と、第
1の成分と第2の成分をともに含む特性X線ピークから
第1の成分を除き、第2成分の記憶手段6に記憶された
第2の成分の標準試料の同特性X線ピークをもとにして
第2の成分を算出する第2成分算出手段9と、試料がバ
ルクである場合に定量補正を行なう補正手段10と、分
析結果を表示する表示手段11とを備えている。
(Means for Solving the Problems) The present invention will be explained with reference to FIG.
Detection means 2, 3.4 for detecting radiation, first component storage means 5 for storing the characteristic X-ray spectrum of the standard sample of the first component of the sample, and characteristic X-ray spectrum of the standard sample of the second component of the sample. A second component storage means 6 for storing a spectrum, a means 7 for storing a characteristic X-ray spectrum of an unknown sample, and a first component storage means 6 for storing a characteristic X-ray spectrum of an unknown sample.
storage means 5 for the individual characteristic X-ray peak of the component and the first component;
a first component calculation means 8 for calculating the first component from the same characteristic X-ray peak of the standard sample of the first component stored in the first component; and a characteristic X-ray peak containing both the first component and the second component. a second component calculation means 9 for calculating the second component based on the same characteristic X-ray peak of the standard sample of the second component stored in the second component storage means 6 by removing the first component from the second component; , a correction means 10 for performing quantitative correction when the sample is a bulk sample, and a display means 11 for displaying analysis results.

(作用) 窒化チタンの定量分析を例として、第2図(A)から同
図(E)及び第3図を用いて説明する。
(Function) Taking quantitative analysis of titanium nitride as an example, it will be explained using FIGS. 2(A) to 2(E) and FIG. 3.

まず、チタンの標準試料に電子線を照射してチタンの標
準スペクトル(A)を測定し、これを第1成分標準スペ
クトル記憶手段5に記憶する。同様にして窒素の標準試
料に電子線を照射し、そのスペクトル(B)を第2成分
標準スペクトル記憶手段6に記憶する。次に、測定しよ
うとする窒化チタンの試料に電子線を照射し、スペクト
ル(C)を測定してこれを未知試料スペクトル記憶手段
7に記憶する。チタンについてはLα線とL12線とを
測定し、窒素についてはにα線を測定する。チタンLQ
線と窒素にα線とは特性X線のピーク波長が重なる。チ
タンのLQ線とLα線はエネルギーが接近しているので
単一の分光結晶で検出することができる。
First, a titanium standard sample is irradiated with an electron beam to measure a titanium standard spectrum (A), and this is stored in the first component standard spectrum storage means 5. Similarly, a nitrogen standard sample is irradiated with an electron beam, and its spectrum (B) is stored in the second component standard spectrum storage means 6. Next, the titanium nitride sample to be measured is irradiated with an electron beam, and a spectrum (C) is measured and stored in the unknown sample spectrum storage means 7. For titanium, Lα rays and L12 rays are measured, and for nitrogen, α rays are measured. Titanium LQ
The characteristic X-ray peak wavelengths of the X-rays, nitrogen, and α-rays overlap. Since the LQ line and Lα line of titanium have close energies, they can be detected with a single spectroscopic crystal.

チタン上α線のピークについて、スペクトル(A)と(
C)とから次の第(1)式によってチタンの一次測定値
I (Ti)を算出することができる。
Spectra (A) and (
C), the primary measured value I (Ti) of titanium can be calculated using the following equation (1).

I(Ti)=TiLαu/TiLa5  −(1)Ti
LαUはチタンのしα線の未知試料のピーク高さ、Ti
LαSはチタンのLα線の標準試料のピーク高さである
I(Ti)=TiLαu/TiLa5 −(1)Ti
LαU is the peak height of the titanium α-ray unknown sample, Ti
LαS is the peak height of the titanium Lα ray standard sample.

次に、未知試料のスペクトルのチタンLαピークでチタ
ンLQピークの大きさを算出し、それをチタンLfi線
と窒素にα線の重なったピークから差し引き、同図(E
)に示されるように未知試料の窒素にα線のピークを算
出する。この窒素にα線のピークを用いて次の第(2)
式によって窒素の一次測定値I (N)を算出する。
Next, the magnitude of the titanium LQ peak is calculated from the titanium Lα peak in the spectrum of the unknown sample, and it is subtracted from the peak where the titanium Lfi line and the α line overlap with nitrogen.
) Calculate the peak of alpha rays in the nitrogen of the unknown sample. Using the α-ray peak for this nitrogen, the following (2)
The primary measured value of nitrogen I (N) is calculated by the formula.

I(N)=NKau/NKas   −・=(2)NK
αUは窒素のにα線の未知試料のピーク高さ、NKαS
は窒素のにα線の標準試料のピーク高さである。
I(N)=NKau/NKas −・=(2)NK
αU is the peak height of the unknown sample of nitrogen α rays, NKαS
is the peak height of the standard sample of nitrogen alpha rays.

試料が薄膜試料である場合はこの算出された一次測定値
I (Ti)、I (N)が濃度となる。一方、試料が
バルクである場合は一次測定値I (Ti)、I (N
)に既知のZAF補正を施す。そのように補正された定
量値が濃度となる。
When the sample is a thin film sample, the calculated primary measurement values I (Ti) and I (N) become the concentration. On the other hand, when the sample is bulk, the primary measured values I (Ti), I (N
) is subjected to known ZAF correction. The quantitative value corrected in this way becomes the concentration.

(実施例) 第4図に一実施例を示す。(Example) FIG. 4 shows an example.

12はX方向、Y方向及びZ方向に移動可能なステージ
であり、ステージ制御部16により制御されるXモータ
13、Yモータ14及びZモータ15によって移動させ
られる。ステージ12に固定された試料台17には測定
しようとする未知試料18、第1の成分であるチタンの
標準試料19と第2の成分である窒素の標準試料20と
が設けられている。21は電子ビームであり、ステージ
12を移動させることにより電子ビーム21を未知試料
18、標準試料19.20のいずれかに照射することが
できる。
Reference numeral 12 denotes a stage movable in the X, Y, and Z directions, and is moved by an X motor 13, a Y motor 14, and a Z motor 15 controlled by a stage control section 16. A sample stage 17 fixed to the stage 12 is provided with an unknown sample 18 to be measured, a standard sample 19 of titanium as a first component, and a standard sample 20 of nitrogen as a second component. 21 is an electron beam, and by moving the stage 12, the electron beam 21 can be irradiated onto either the unknown sample 18 or the standard sample 19 or 20.

22は分光器であり、電子ビーム21が照射された試料
18又は標準試料19.20からの特性X線を分光する
分光結晶1と、分光された特性X線を検出する検出器2
とを備えている。分光結晶1としては人口累積膜結晶を
使用する。検出器2の検出信号は増幅器3で増幅され、
計数回路4で計数された後、CPU23に取り込まれる
Reference numeral 22 denotes a spectrometer, which includes a spectroscopic crystal 1 that spectrally spectra the characteristic X-rays from the sample 18 or standard sample 19, 20 irradiated with the electron beam 21, and a detector 2 that detects the spectroscopic characteristic X-rays.
It is equipped with As the spectroscopic crystal 1, a population accumulation film crystal is used. The detection signal of the detector 2 is amplified by the amplifier 3,
After being counted by the counting circuit 4, it is taken into the CPU 23.

CPU23は特性X線スペクトルを記憶するとともに、
重なったピークの波形分離を行い、定量分析を行う機能
を備えている。第1図に示される第1成分標準スペクト
ル記憶手段5.第2成分標準スペクトル記憶手段6、未
知試料スペクトル記憶手段7.第1成分算出手段8、第
2成分算出手段9及び補正手段10はCPU23により
実現される。CPU23はまた、試料台17上の試料1
8、標準試料19.20を選択して電子ビーム21が照
射される位置に移動させるためにステージ制御器工6を
制御する機能や、分光器制御器24を経て分光結晶1を
回転させる機能を備えている。
The CPU 23 stores the characteristic X-ray spectrum, and
It has the ability to separate waveforms of overlapping peaks and perform quantitative analysis. First component standard spectrum storage means 5 shown in FIG. Second component standard spectrum storage means 6, unknown sample spectrum storage means 7. The first component calculation means 8, the second component calculation means 9, and the correction means 10 are realized by the CPU 23. The CPU 23 also controls the sample 1 on the sample stage 17.
8. The function of controlling the stage controller 6 in order to select the standard sample 19.20 and move it to the position where it is irradiated with the electron beam 21, and the function of rotating the spectroscopic crystal 1 via the spectrometer controller 24. We are prepared.

11は表示手段のC,RTである。11 are display means C and RT.

本発明の電子線マイクロアナライザを用いると、窒化チ
タン以外に例えばバナジウム酸化物を定量することがで
きる。バナジウム酸化物ではバナジウムのLβ線と酸素
のにα線のピークが重なるので、バナジウムのしα線ピ
ークによってバナジウムを定量し、その後バナジウム上
β線ピークと酸素にα線ピークを分離して酸素の定量を
行うことができる。
By using the electron beam microanalyzer of the present invention, it is possible to quantify vanadium oxide, for example, in addition to titanium nitride. In vanadium oxide, the Lβ line of vanadium and the α line peak of oxygen overlap, so vanadium is quantified by the α line peak of vanadium, and then the β line peak of vanadium and the α line peak of oxygen are separated to determine the oxygen concentration. Quantification can be performed.

(発明の効果) 本発明では試料からの特性X線を単一の分光結晶により
分光して検出し、試料の第1の成分の標準試料の特性X
線スペクトル、第2の成分の標準試料の特性X線スペク
トル及び未知試料の特性X線スペクトルを記憶し、未知
試料の第1の成分の単独の特性X線ピークと第1の成分
の標準試料の同特性X線ピークとから第1の成分を算出
し、第1の成分と第2の成分をともに含む特性X線ピー
クから第1の成分を除いて第2の成分の特性X線ピーク
を算出し、第2の成分の標準試料の同特性X線ピークを
もとにして第2の成分を算出するようにしたので、1個
の分光結晶で定量分析を行うことができる。しかも、エ
ネルギーの接近した特性X線ピークを用いるので定量精
度が高くなる。
(Effect of the invention) In the present invention, characteristic X-rays from a sample are spectrally detected using a single spectroscopic crystal, and characteristic X-rays of a standard sample of the first component of the sample are detected.
The line spectrum, the characteristic X-ray spectrum of the standard sample of the second component, and the characteristic X-ray spectrum of the unknown sample are stored, and the single characteristic X-ray peak of the first component of the unknown sample and the characteristic X-ray spectrum of the standard sample of the first component are stored. The first component is calculated from the same characteristic X-ray peak, and the characteristic X-ray peak of the second component is calculated by removing the first component from the characteristic X-ray peak that includes both the first and second components. However, since the second component is calculated based on the same characteristic X-ray peak of the standard sample of the second component, quantitative analysis can be performed with one spectroscopic crystal. Moreover, since characteristic X-ray peaks with energies close to each other are used, the quantitative accuracy is increased.

また、分光結晶が1個ですむので自動化の制御が容易に
なる。
Furthermore, since only one spectroscopic crystal is required, automation control becomes easy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を示すブロック図、第2図(A)から同
図(E)は動作の一例を示す波形図、第3図は動作の一
例を示すフローチャート、第4図は一実施例を示す概略
図である。 1・・・・・・分光結晶。 2・・・・・・検出器。 3・・・・・・増幅器、 4・・・・・・計数回路。 5・・・・・・第1成分標準スペクトル記憶手段、6・
・・・・・第2成分標準スペクトル記憶手段、7・・・
・・・未知試料スペクトル記憶手段、8・・・・・・第
1成分算出手段、 9・・・・・・第2成分算出手段、 10・・・・・・補正手段。 11・・・・・・表示手段。 特許出願人 株式会社島津製作所
FIG. 1 is a block diagram showing the present invention, FIGS. 2(A) to 2(E) are waveform diagrams showing an example of the operation, FIG. 3 is a flowchart showing an example of the operation, and FIG. 4 is an embodiment. FIG. 1... Spectroscopic crystal. 2...Detector. 3...Amplifier, 4...Counting circuit. 5... First component standard spectrum storage means, 6.
...Second component standard spectrum storage means, 7...
... unknown sample spectrum storage means, 8 .... first component calculation means, 9 .... second component calculation means, 10 .... correction means. 11...Display means. Patent applicant: Shimadzu Corporation

Claims (1)

【特許請求の範囲】[Claims] (1)試料からの特性X線を分光する単一の分光結晶と
、分光された特性X線を検出する検出手段と、試料の第
1の成分の標準試料の特性X線スペクトルを記憶する第
1成分の記憶手段と、第2の成分の標準試料の特性X線
スペクトルを記憶する第2成分の記憶手段と、未知試料
の特性X線スペクトルを記憶する手段と、未知試料の第
1の成分の単独の特性X線ピークと前記第1成分の記憶
手段に記憶された第1の成分の標準試料の同特性X線ピ
ークとから第1の成分を算出する第1成分算出手段と、
第1の成分と第2の成分をともに含む特性X線ピークか
ら第1の成分を除き、前記第2成分の記憶手段に記憶さ
れた第2の成分の標準試料の同特性X線ピークをもとに
して第2の成分を算出する第2成分算出手段と、試料が
バルクである場合に定量補正を行なう補正手段と、分析
結果を表示する表示手段とを備えた電子線マイクロアナ
ライザ。
(1) A single spectroscopic crystal that spectrally spectra characterizes the characteristic X-rays from the sample, a detection means that detects the spectroscopic characteristic X-rays, and a single spectroscopic crystal that stores the characteristic X-ray spectrum of the standard sample of the first component of the sample. a second component storage means for storing a characteristic X-ray spectrum of a standard sample of a second component; a means for storing a characteristic X-ray spectrum of an unknown sample; and a first component of the unknown sample. a first component calculation means for calculating a first component from a single characteristic X-ray peak of and the same characteristic X-ray peak of a standard sample of the first component stored in the first component storage means;
The first component is removed from the characteristic X-ray peak containing both the first component and the second component, and the same characteristic X-ray peak of the standard sample of the second component stored in the storage means for the second component is also extracted. An electron beam microanalyzer comprising: a second component calculation means for calculating a second component; a correction means for performing quantitative correction when the sample is a bulk; and a display means for displaying analysis results.
JP62274127A 1987-10-28 1987-10-28 Electron beam microanalizer Pending JPH01115045A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62274127A JPH01115045A (en) 1987-10-28 1987-10-28 Electron beam microanalizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62274127A JPH01115045A (en) 1987-10-28 1987-10-28 Electron beam microanalizer

Publications (1)

Publication Number Publication Date
JPH01115045A true JPH01115045A (en) 1989-05-08

Family

ID=17537397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62274127A Pending JPH01115045A (en) 1987-10-28 1987-10-28 Electron beam microanalizer

Country Status (1)

Country Link
JP (1) JPH01115045A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008020386A (en) * 2006-07-14 2008-01-31 Jeol Ltd Method and apparatus for analyzing chemical state by auger electron spectroscopy

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008020386A (en) * 2006-07-14 2008-01-31 Jeol Ltd Method and apparatus for analyzing chemical state by auger electron spectroscopy

Similar Documents

Publication Publication Date Title
JP3108660B2 (en) X-ray analysis method and apparatus
JP6232568B2 (en) X-ray fluorescence analyzer
US10613043B2 (en) Method and apparatus for sample analysis
JP2000329712A (en) Data processor for x-ray fluorescence analysis
JPH0774784B2 (en) Infrared analyzer
JPH04274745A (en) X-ray analyzer
JPH01115045A (en) Electron beam microanalizer
JP3610256B2 (en) X-ray fluorescence analyzer
JP4523958B2 (en) X-ray fluorescence analyzer and program used therefor
JP3569734B2 (en) X-ray fluorescence analyzer
JPS59214743A (en) X-ray analyzing apparatus
JP2564930B2 (en) X-ray fluorescence analyzer
JP3059403B2 (en) X-ray analysis method and apparatus
JP2645226B2 (en) X-ray fluorescence analysis method
JP3389161B2 (en) X-ray fluorescence analyzer and recording medium used therein
JP2000097885A (en) Fluorescence x-ray analyzing method, and fluorescence x-ray analyzer
JPH09269305A (en) Method and apparatus for fluorescent x-ray analysis
JP2000046764A (en) Method and apparatus for fluorescent x-ray analysis by quantitative analysis
JP2002090319A (en) Fluorescent x-ray analysis device
JP3377328B2 (en) X-ray fluorescence analysis method
JP2645227B2 (en) X-ray fluorescence analysis method
JPH0553390B2 (en)
JPH03285153A (en) Quantitative analyser with x-rays
JPS62121383A (en) Radiant ray measuring instrument
JP2002181740A (en) Method and apparatus for semi quantitative analysis