JPH01113733A - Liquid crystal display element - Google Patents

Liquid crystal display element

Info

Publication number
JPH01113733A
JPH01113733A JP62270888A JP27088887A JPH01113733A JP H01113733 A JPH01113733 A JP H01113733A JP 62270888 A JP62270888 A JP 62270888A JP 27088887 A JP27088887 A JP 27088887A JP H01113733 A JPH01113733 A JP H01113733A
Authority
JP
Japan
Prior art keywords
liquid crystal
display element
crystal display
pair
ultrafine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62270888A
Other languages
Japanese (ja)
Other versions
JPH07113719B2 (en
Inventor
Kazuhide Ota
和秀 太田
Shigeki Hamaguchi
浜口 茂樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP62270888A priority Critical patent/JPH07113719B2/en
Publication of JPH01113733A publication Critical patent/JPH01113733A/en
Publication of JPH07113719B2 publication Critical patent/JPH07113719B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

PURPOSE:To easily prevent UV rays and to improve the heat resistance, wear resistance and durability of an element by dispersing the fine particles of a UV nontransmittable inorg. system having a prescribed grain size to the inside of either of the high-molecular oriented films disposed on the inside front face side of transparent glass substrates and the high-molecular protective films formed on the outside surfaces of the transparent glass substrates disposed at need. CONSTITUTION:Electrode layers 2, 2A are formed on the inside surfaces of a pair of the transparent glass substrates 1, 1A of the liquid crystal display element. The high-molecular oriented films 3, 3A and a liquid crystal layer 4 are disposed on the inside surfaces of the electrode layers 2, 2A. The high- molecular protective films 7 are formed on the outside surfaces at need. The fine particles 6 of the UV nontransmittable inorg. system having 0.01-1mum grain size are dispersed into either of the high-molecular oriented films 3, 3A or the protective films 7 of this liquid crystal display element. The UV rays are easily prevented and the heat resistance, wear resistance and durability of the liquid crystal display element are improved.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は液晶表示素子に関し、さらに詳しくいえば安価
にかつ簡便に紫外線に対して耐久性があり耐熱性および
耐摩耗性に優れた液晶表示素子に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a liquid crystal display element, and more specifically, the present invention relates to a liquid crystal display element, and more specifically, a liquid crystal display element that is inexpensive and simple, has durability against ultraviolet rays, and has excellent heat resistance and abrasion resistance. Regarding elements.

[従来の技術] 従来の紫外線防止用の液晶表示素子に用いられる保護用
フィルター71としては、第6図に示すようにベンゾフ
ェノン系、金属キレート系などの紫外線吸収剤を所定量
含む粘着剤層を有するフィルム又はシートを持つものが
知られている(実公昭56−28568号公報、実公昭
56−28569号公報)。
[Prior Art] As shown in FIG. 6, a protective filter 71 used in a conventional liquid crystal display element for preventing ultraviolet rays has an adhesive layer containing a predetermined amount of an ultraviolet absorber such as a benzophenone type or a metal chelate type. There are known films or sheets having the following properties (Japanese Utility Model Publication No. 56-28568 and Japanese Utility Model Publication No. 56-28569).

又従来の耐紫外線性を有する液晶パネルとして基板の外
面又は内面に所定mの一酸化珪素を含む酸化第二セリウ
ムからなる薄膜を形成し紫外線の透過を阻止する構成と
したものが知られている(特公昭56−19609号公
報)。
Furthermore, as a conventional liquid crystal panel having ultraviolet ray resistance, a structure is known in which a thin film made of ceric oxide containing silicon monoxide of a predetermined thickness is formed on the outer or inner surface of a substrate to block the transmission of ultraviolet rays. (Special Publication No. 56-19609).

[発明が解決しようとする問題点] 上記前者の保護フィルム又はシートを用いる場合には、
この紫外線防止用フィルターを形成するための工程が必
要となり、歩留り、コストの点で問題がある。又大きな
曲率を有する曲面基板または大面III板にこれらのフ
ィルムを均一にしかも気泡を含まない状態で添付づるの
が困難な場合が多い。
[Problems to be solved by the invention] When using the above-mentioned former protective film or sheet,
A process for forming this ultraviolet protection filter is required, which poses problems in terms of yield and cost. Furthermore, it is often difficult to apply these films uniformly and without bubbles to curved substrates or large III-plates having large curvatures.

又、上記後者の紫外線透過阻止用薄膜を形成する場合に
は、その耐摩耗性が低く耐久性が劣り又大面積基板の場
合にはこの薄膜を形成するのが困難な場合が多い。
Furthermore, when forming the latter thin film for blocking ultraviolet transmission, its abrasion resistance is low and durability is poor, and it is often difficult to form this thin film in the case of a large-area substrate.

本発明は、上記観点に鑑みてなされたものであり、安価
にかつ容易に紫外線を防止でき更に耐熱性、耐摩耗性及
び耐久性に優れた液晶表示素子を提供することを目的と
する。
The present invention has been made in view of the above points, and an object of the present invention is to provide a liquid crystal display element that can inexpensively and easily prevent ultraviolet rays and has excellent heat resistance, abrasion resistance, and durability.

[問題点を解決するための手段] 本第1発明の液晶表示素子は、少なくとも一方が透明で
ある一対のガラス基板と、該一対のガラス基板の内表面
に形成された一対の電極層と、該一対の電極層の表面に
形成され相対向するように配置される一対の高分子配向
膜と、該一対の高分子配向膜間に形成される液晶層と、
を具備する液晶表示素子において、 少なくとも前記透明なガラス基板の内表面側に配置され
た高分子配向膜、及び必要に応じて配置され前記透明な
ガラス基板の外表面、Fに形成された高分子保護膜のう
ちの少なくとも一つの内部に、粒径0.01〜1μmの
紫外線非透過性無機質系超微粒子を分散させたことを特
徴とする。
[Means for Solving the Problems] The liquid crystal display element of the first invention includes a pair of glass substrates, at least one of which is transparent, a pair of electrode layers formed on the inner surfaces of the pair of glass substrates, a pair of polymer alignment films formed on the surfaces of the pair of electrode layers and arranged to face each other; a liquid crystal layer formed between the pair of polymer alignment films;
A liquid crystal display element comprising: a polymer alignment film disposed at least on the inner surface side of the transparent glass substrate, and a polymer disposed as necessary and formed on the outer surface of the transparent glass substrate, F. It is characterized in that ultrafine inorganic particles that do not transmit ultraviolet light and have a particle size of 0.01 to 1 μm are dispersed inside at least one of the protective films.

即ち本第1発明の液晶表示素子は透明基板としてガラス
基板を用いるものである。本素子において、前記超微粒
子は透明なガラス基板すなわち入射光側のガラス基板の
みの内表面側に形成された高分子配向膜等の内部に分散
されていてもよいし、一対のガラス基板の両方のガラス
基板の内表面側に配置された高分子配向膜等の内部に分
散されていてもよい。又この超微粒子は高分子配向膜の
みに分散されていてもよいし、高分子保護膜のみに分散
されていてもよいし、この両者に分散されていてもよい
。このうち前者が工程上有利で、耐久性が高いので、好
ましい。
That is, the liquid crystal display element of the first invention uses a glass substrate as a transparent substrate. In this device, the ultrafine particles may be dispersed inside a polymer alignment film formed on the inner surface of only the transparent glass substrate, that is, the glass substrate on the incident light side, or may be dispersed inside a polymer alignment film formed on the inner surface of only the glass substrate on the incident light side, or both of the glass substrates of the pair. It may be dispersed inside a polymer alignment film or the like disposed on the inner surface side of the glass substrate. Further, the ultrafine particles may be dispersed only in the polymer alignment film, only in the polymer protective film, or in both. Among these, the former is preferred because it is advantageous in terms of process and has high durability.

この超微粒子は紫外線非透過性の無機質系のものからな
る。即ち紫外線を散乱、反射または吸収するものである
。そして特に液晶に有害な0.4〜0.45μm以下の
紫外線を排除するものが好ましい。又この材質は光透過
域の下限が0.4〜0.45μmで上限が少なくとも0
.8μmのものが好ましい。この材料とし、では表に示
すものをあげることができ、特にそのうち0.45μm
以下の波長の光を透過しない材質、例えば二酸化チタン
、塩化第一タリウム、臭化第一タリウム又は臭化銀を用
いるのが好ましい。又この超微粒子の粒径は0.01〜
1μmである。一般に無色透明の物質を1μmを亀える
粒径の粉体としたとき、光の散乱により白色となる。屈
折率の大きい物質の粉体はど光の散乱が大きくなり白色
度が増す。
These ultrafine particles are made of an inorganic material that does not transmit ultraviolet rays. That is, it scatters, reflects or absorbs ultraviolet rays. Particularly preferred is one that excludes ultraviolet rays of 0.4 to 0.45 μm or less, which are harmful to liquid crystals. Also, this material has a light transmission range with a lower limit of 0.4 to 0.45 μm and an upper limit of at least 0.
.. Preferably, the thickness is 8 μm. With this material, we can list the ones shown in the table, especially 0.45 μm
It is preferable to use a material that does not transmit light of the following wavelengths, such as titanium dioxide, thallous chloride, thallous bromide, or silver bromide. Also, the particle size of these ultrafine particles is 0.01~
It is 1 μm. Generally, when a colorless and transparent substance is made into a powder with a particle size of approximately 1 μm, it becomes white due to light scattering. Powder of a substance with a high refractive index scatters more light and increases its whiteness.

しかし粒径が光の波長に比べ例えば1/10以下程以下
用微粒子となると、散乱が小さくなり透明(以下余白) 性が高くなる。前記範囲の粒径の超微粒子を無色透明の
ポリイミド等の高分子配向膜中に分散した場合、透明性
は失わず、液晶に有害な0.4〜0゜45μm以下の紫
外線を排除することができる。
However, if the particle size is 1/10 or less of the wavelength of light, for example, the scattering will be small and the transparency (hereinafter referred to as "margin") will be high. When ultrafine particles with a particle size in the above range are dispersed in a colorless and transparent polymer alignment film such as polyimide, transparency is not lost and ultraviolet rays of 0.4 to 0.45 μm or less, which are harmful to liquid crystals, can be eliminated. can.

上記第1発明は少なくとも一方が透明である一対のガラ
ス基板を用いているが、第2R明においては少なくとも
一方が透明である一対の樹脂′IIJ基板と前記一対の
電極層と前記液晶層とを具備する液晶表示素子において
、 前記透明な樹脂+!!1基板、必要に応じて配置され少
なくとも前記透明な樹脂製基板の内表面上に配置される
高分子配向膜、及び前記高分子保護膜のうちの少なくと
も一つの内部に前記超微粒子を分散させることを特徴と
する。
The first invention uses a pair of glass substrates, at least one of which is transparent, but the second invention uses a pair of resin 'IIJ substrates, at least one of which is transparent, the pair of electrode layers, and the liquid crystal layer. In the liquid crystal display element comprising: the transparent resin +! ! 1. Dispersing the ultrafine particles within at least one of one substrate, a polymer alignment film that is optionally arranged on at least the inner surface of the transparent resin substrate, and the polymer protective film. It is characterized by

即ちこの第2発明においては基板として樹脂製基板を用
い、この透明な即ち入射光側に配置された樹脂製基板の
内部にも前記超微粒子を分散さ往ることができ、またこ
の樹脂製基板のみならず高分子配向膜または前記高分子
保護膜の内部にも前記超微粒子を分散させることができ
、又それらの2つ又は3つに分散させることもできる。
That is, in this second invention, a resin substrate is used as the substrate, and the ultrafine particles can be dispersed even inside this transparent resin substrate, which is arranged on the incident light side. The ultrafine particles can be dispersed not only inside the polymer alignment film or the polymer protective film, but also in two or three of them.

この発明に用いられる超微粒子も前記第1発明で記述し
たものと同様のものを用いる。
The ultrafine particles used in this invention are also the same as those described in the first invention.

[実施例] 以下、実施例により本発明を説明する。[Example] The present invention will be explained below with reference to Examples.

(実施例1) 本実施例の液晶表示素子において、基板は透明ガラス基
板1.1Δを用い、超微粒子6は一対の高分子配向膜3
.3Aに分散されている。この説明新面図を第1図に示
す。
(Example 1) In the liquid crystal display element of this example, a transparent glass substrate 1.1Δ is used as the substrate, and the ultrafine particles 6 are formed by a pair of polymer alignment films 3.
.. It is distributed in 3A. This explanatory new view is shown in FIG.

本液晶表示素子は、一対のガラス基板1.1Aと一対の
電極層2.2△と一対の高分子配向膜3.3Aと液晶層
4とこのガラス基板1.1Aの外周内端面に配置された
シール部材5とスペーサ(図示せず)とからなる。
This liquid crystal display element includes a pair of glass substrates 1.1A, a pair of electrode layers 2.2Δ, a pair of polymer alignment films 3.3A, a liquid crystal layer 4, and an inner end surface of the outer periphery of the glass substrate 1.1A. It consists of a sealed seal member 5 and a spacer (not shown).

前記ガラス基板1.1Aは、透明であり、ソーダガラス
からなる。一対の電極層2.2Aは、−対のガラス基板
1.1Aの内表面に形成されている。この電極層2.2
Aは、ITO(インジウム−チン−オキサイド)から構
成されている。前記高分子配向膜3.3Aは、一対の電
極層2.2Δの表面に形成され、相対向するように配置
されている。この配向膜3.3Aは、ポリイミド31と
この高分子31中に分散された超微粒子6とからなり、
その膜厚は500〜2000人である。超微粉子6は、
紫外線非透過性無機質材料の二酸化チタンからなってい
る。この二酸化チタンは第1表に示すように光透過域は
0.45〜6μmであり、屈折率は2.61である。こ
の超微粒子6の粒径は約0.03μm(300人)であ
る。この超微粒子6は一対の高分子配向膜3.3Aの双
方に分散配置されている。そしてこの超微粒子6の濃度
は、配向膜の全体容量に対して約1容積%であり、光が
直接内部にはいらず必ず粒子と衝突するだけの密度とな
っている。
The glass substrate 1.1A is transparent and made of soda glass. A pair of electrode layers 2.2A are formed on the inner surface of a negative pair of glass substrates 1.1A. This electrode layer 2.2
A is composed of ITO (indium-tin-oxide). The polymer alignment film 3.3A is formed on the surfaces of the pair of electrode layers 2.2Δ and is arranged to face each other. This alignment film 3.3A is made of polyimide 31 and ultrafine particles 6 dispersed in this polymer 31,
The film thickness is 500 to 2000 people. The ultrafine powder 6 is
It is made of titanium dioxide, an inorganic material that does not transmit ultraviolet light. As shown in Table 1, this titanium dioxide has a light transmission range of 0.45 to 6 μm and a refractive index of 2.61. The particle size of the ultrafine particles 6 is about 0.03 μm (300 people). The ultrafine particles 6 are dispersed in both of the pair of polymer alignment films 3.3A. The concentration of the ultrafine particles 6 is about 1% by volume with respect to the total volume of the alignment film, and the density is such that light does not enter directly inside but always collides with the particles.

前記液晶層4は、液晶(rZL I−1565J、rZ
L [−1940J等)から構成されており、その厚さ
は約7μmである。又シール部材4はエポキシ系接着剤
から構成され、スペーサ(図示せず)はポリスチレンピ
ーズからなっている。
The liquid crystal layer 4 is made of liquid crystal (rZL I-1565J, rZ
L [-1940J, etc.), and its thickness is approximately 7 μm. The sealing member 4 is made of epoxy adhesive, and the spacer (not shown) is made of polystyrene beads.

前記微粒子6が分散された配向It!J3.3Aは、ポ
リアミック酸をNメチルピロリドンで10%に薄めた溶
液100mJに4.0gの二酸化チタン超微粒子([T
itanium  0xide  P25」、日本アエ
ロジル株式会社製)を分散し、凸版で前記ガラス基板1
.1Aに印刷して30Q℃で焼成後、ラビングして形成
された。
Orientation It! in which the fine particles 6 are dispersed! J3.3A is a method in which 4.0 g of titanium dioxide ultrafine particles ([T
itanium Oxide P25'', manufactured by Nippon Aerosil Co., Ltd.), and printed it on the glass substrate 1 using a letterpress.
.. It was formed by printing on 1A, firing at 30Q°C, and then rubbing.

この液晶表示素子(実施例量)の分光特性(透過率)を
第2図に示した。この透過率の測定は分光光度計により
測定した。第2図に示すように本液晶表示素子において
は、超微粒子6を添加せずにして同様にして製作された
液晶表示素子(比較例量)においては、約220〜40
0μmにおいて即ち紫外線領域において大きな透過率を
示す。
The spectral characteristics (transmittance) of this liquid crystal display element (example amount) are shown in FIG. This transmittance was measured using a spectrophotometer. As shown in FIG. 2, in this liquid crystal display element, in a liquid crystal display element manufactured in the same manner without adding ultrafine particles 6 (comparative example amount), approximately 220 to 40
It exhibits large transmittance at 0 μm, that is, in the ultraviolet region.

−六本液晶表示素子においては、400μm以下の透過
率は極めて小さいので、液晶の紫外線劣化を防止するこ
とができる。又本実施例品において用いられる微粒子の
粒径は小さくそのMも少ないので、透明性は失われてい
ない。
- In the six-line liquid crystal display element, the transmittance of 400 μm or less is extremely small, so it is possible to prevent UV deterioration of the liquid crystal. Furthermore, since the particle size of the fine particles used in the product of this example is small and its M is small, transparency is not lost.

次に、サンシャインウエザオメーターで耐候試験を行い
、時間に対する電流値の変化を検討しその結果を第3図
に示した。この結果によれば、液晶の劣化により比較例
量の消費電流は、1.9mAから1000時間後6.7
mAに増加した。−方本実施例品では、同時間後3.8
0mAに増加したにとどまった。本実施例の液晶表示素
子の耐候性は従来のものと比べて著しく向上している。
Next, a weather test was conducted using a Sunshine Weather-Ometer, and the changes in current value over time were examined, and the results are shown in FIG. According to this result, due to the deterioration of the liquid crystal, the current consumption of the comparative example decreased from 1.9 mA to 6.7 mA after 1000 hours.
mA. - For this example product, after the same time 3.8
It only increased to 0mA. The weather resistance of the liquid crystal display element of this example is significantly improved compared to the conventional one.

また本実施例では容易に超微粒子を樹脂膜内に分散でき
た。
Further, in this example, the ultrafine particles could be easily dispersed within the resin film.

(実施例2) ドアミラー用曲面ガラス基板(曲率半径100100Q
に、スピンコードで実施例1と同様にして配向膜を形成
し、同様な検討を行った。その結果液晶の劣化は、実施
例1と同様に従来品に比べて小さかった。
(Example 2) Curved glass substrate for door mirror (curvature radius 100100Q
Next, an alignment film was formed using a spin code in the same manner as in Example 1, and the same study was conducted. As a result, as in Example 1, the deterioration of the liquid crystal was smaller than that of the conventional product.

なお、本発明においては、上記実施例に示すものに限ら
れず、目的、用途に応じて本発明の範囲内で種々変更し
た実施例とすることができる。
It should be noted that the present invention is not limited to those shown in the above-mentioned embodiments, but can be modified in various ways within the scope of the present invention depending on the purpose and use.

即ち紫外線非透過性無1質系超微粒子tよ、第4図に示
すように入射光側に配置された透明基板の外表面上に配
置された高分子保護膜(樹脂製保護フィルム)7の内部
に分散させたものとすることができる。そしてこのフィ
ルムは粘着剤を介してガラス基板の外表面上に配置され
る。またこの超微粒子を粘着剤中ねり込むこともできる
。又保護膜でも保護フィルムでも使用ができ、保護フィ
ルムの場合粘着剤中に混合することもできる。この超微
粒子は、第5図に示すように透明な樹脂製ガラス基板6
の内部に分散させることができる。この場合には白濁し
ないように、その添加借を調整する必要がある。この超
微粒子を分散形成させる方法としては、これらのフィル
ム又は樹脂製基板を成形する場合に、均一に練り込んだ
ものを押出等により成形することができる。
That is, ultrafine ultrafine particles t that are non-transparent to ultraviolet rays are formed on the polymer protective film (resin protective film) 7 disposed on the outer surface of the transparent substrate disposed on the incident light side, as shown in FIG. It can be dispersed internally. This film is then placed on the outer surface of the glass substrate via an adhesive. Moreover, these ultrafine particles can also be incorporated into the adhesive. It can also be used as a protective film or a protective film, and in the case of a protective film, it can be mixed into the adhesive. These ultrafine particles are deposited on a transparent resin glass substrate 6 as shown in FIG.
can be dispersed inside the In this case, it is necessary to adjust the additive amount to avoid clouding. As a method for dispersing and forming the ultrafine particles, when molding these films or resin substrates, the particles can be uniformly kneaded and molded by extrusion or the like.

[発明の効果] 本発明は少なくとも透明なガラス基板の内表面側に配置
された一方の高分子配向膜、および必要において配置さ
れる高分子保護膜のうちの少なくとも一つの内部に、更
には透明な樹脂’IJM板を用いる場合にはこの樹脂%
基板、必要において配置され、この樹脂製基板の内周面
上に配置される高分子配向膜及び高分子保護膜のうちの
少なくとも一つの内部に、粒径0.01〜1μmの紫外
線非透過性無機質系超微粒子を分散させることを特徴と
する。
[Effects of the Invention] The present invention provides at least one polymer alignment film disposed on the inner surface side of a transparent glass substrate, and at least one of a polymer protective film disposed if necessary. When using a resin IJM board, this resin%
A UV-impermeable particle having a particle size of 0.01 to 1 μm is placed inside at least one of a polymer alignment film and a polymer protective film, which are arranged on the inner circumferential surface of the resin substrate. It is characterized by dispersing inorganic ultrafine particles.

従って本液晶表示素子においては、安価にかつ容易に紫
外線を防止できるので、液晶(液晶表示素子)の耐久性
を高めることができ、さらに白濁化を防止して透明性を
確保できるので液晶表示素子機能も阻害されない。
Therefore, in this liquid crystal display element, ultraviolet rays can be easily prevented at a low cost, so the durability of the liquid crystal (liquid crystal display element) can be increased, and transparency can be ensured by preventing clouding, so the liquid crystal display element can be protected from ultraviolet rays easily. Function is not hindered either.

また本表示素子は、化学的に安定な無機質系超微粒子を
用いるので、配向膜等の耐熱性および耐摩耗性を高める
ことができる。     ゛特に樹脂製配向膜に所定の
超微粒子を分散さIる場合には、この耐摩耗性が向上す
るので、ラビングをした場合に目に見える大きな傷は付
きにくい。又この配向膜厚に対して、一般に粒径が1/
10以下と小さいのでこの配向膜は従来同様平坦である
。またこの場合には、大きな曲率半径(例えば1001
00Oをもつ曲面基板又は大面積基板への対応が極めて
容易となる。又この場合には、配向膜中への超微粒子の
分散量により、配向膜の屈折率を調整することができ、
光の反射の最−す小さい最適膜厚を従来に比べ薄くする
こともできる。
Furthermore, since this display element uses chemically stable inorganic ultrafine particles, it is possible to improve the heat resistance and abrasion resistance of the alignment film and the like. In particular, when predetermined ultrafine particles are dispersed in the resin alignment film, this abrasion resistance is improved, so that large visible scratches are less likely to occur when rubbed. In addition, the grain size is generally 1/1 of the thickness of the oriented film.
Since it is as small as 10 or less, this alignment film is flat like the conventional one. Also, in this case, a large radius of curvature (for example, 1001
It is extremely easy to deal with curved substrates or large-area substrates with 00O. In this case, the refractive index of the alignment film can be adjusted by adjusting the amount of ultrafine particles dispersed in the alignment film.
The optimum film thickness for minimizing light reflection can also be made thinner than in the past.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例1に変わる液晶表示素子の説明断面図で
ある。第2図は実施例1における液晶表示素子の波長と
透過率の関係を示すグラフである。 第3図は実施例1に係わる液晶表示素子の時間と電流の
関係であって耐候性試験の結果を示すグラフである。第
4図は超微粒子が分散された保護膜をもつ液晶表示素子
の説明断面図である。第5図は超微粒子が分散された樹
脂製基板をもつ液晶表示素子の説明断面図である。第6
図は従来の液晶表示素子の説明断面図である。 1・・・基板      2・・・電極層3・・・配向
膜     4・・・液晶層5・・・シール部材   
6・・・無Ia質系超微粒子7・・・保護膜 第1図
FIG. 1 is an explanatory cross-sectional view of a liquid crystal display element that is an alternative to the first embodiment. FIG. 2 is a graph showing the relationship between wavelength and transmittance of the liquid crystal display element in Example 1. FIG. 3 is a graph showing the relationship between time and current of the liquid crystal display element according to Example 1, and showing the results of a weather resistance test. FIG. 4 is an explanatory cross-sectional view of a liquid crystal display element having a protective film in which ultrafine particles are dispersed. FIG. 5 is an explanatory cross-sectional view of a liquid crystal display element having a resin substrate in which ultrafine particles are dispersed. 6th
The figure is an explanatory cross-sectional view of a conventional liquid crystal display element. 1... Substrate 2... Electrode layer 3... Alignment film 4... Liquid crystal layer 5... Seal member
6... Ia-free ultrafine particles 7... Protective film Figure 1

Claims (6)

【特許請求の範囲】[Claims] (1)少なくとも一方が透明である一対のガラス基板と
、該一対のガラス基板の内表面に形成された一対の電極
層と、該一対の電極層の表面に形成され相対向するよう
に配置される一対の高分子配向膜と、該一対の高分子配
向膜間に形成される液晶層と、を具備する液晶表示素子
において、少なくとも前記透明なガラス基板の内表面側
に配置された高分子配向膜、及び必要に応じて配置され
前記透明なガラス基板の外表面上に形成された高分子保
護膜のうちの少なくとも一つの内部に、粒径0.01〜
1μmの紫外線非透過性無機質系超微粒子を分散させた
ことを特徴とする液晶表示素子。
(1) A pair of glass substrates, at least one of which is transparent, a pair of electrode layers formed on the inner surfaces of the pair of glass substrates, and a pair of electrode layers formed on the surfaces of the pair of electrode layers and arranged to face each other. In a liquid crystal display element comprising a pair of polymer alignment films, and a liquid crystal layer formed between the pair of polymer alignment films, the polymer alignment film disposed at least on the inner surface side of the transparent glass substrate. Inside at least one of the film and a polymeric protective film arranged as necessary and formed on the outer surface of the transparent glass substrate, particles having a particle size of 0.01 to
A liquid crystal display element characterized by dispersing inorganic ultrafine particles that are opaque to ultraviolet rays and having a diameter of 1 μm.
(2)紫外線非透過性無機質系超微粒子はその粒径が0
.1μm以下である特許請求の範囲第1項記載の液晶表
示素子。
(2) The particle size of UV-impermeable inorganic ultrafine particles is 0.
.. The liquid crystal display element according to claim 1, which has a thickness of 1 μm or less.
(3)紫外線非透過性無機質系超微粒子は二酸化チタン
、塩化第一タリウム、臭化第一タリウムまたは臭化銀で
ある特許請求の範囲第1項記載の液晶表示素子。
(3) The liquid crystal display element according to claim 1, wherein the ultraviolet-opaque inorganic ultrafine particles are titanium dioxide, thallous chloride, thallous bromide, or silver bromide.
(4)少なくとも一方が透明である一対の樹脂製基板と
、該一対の樹脂製基板の内表面に形成された一対の電極
層と、該一対の電極層間に形成される液晶層と、を具備
する液晶表示素子において、少なくとも前記透明な樹脂
製基板、必要に応じて配置され前記透明な樹脂製基板の
内表面上に形成される高分子配向膜及び必要に応じて配
置され前記透明な樹脂製基板の外表面上に形成された高
分子保護膜のうちの少なくとも一つの内部に粒径0.0
1〜1μmの紫外線非透過性無機質系超微粒子を分散さ
せたことを特徴とする液晶表示素子。
(4) A pair of resin substrates, at least one of which is transparent, a pair of electrode layers formed on the inner surfaces of the pair of resin substrates, and a liquid crystal layer formed between the pair of electrode layers. In the liquid crystal display element, at least the transparent resin substrate, a polymer alignment film arranged as necessary and formed on the inner surface of the transparent resin substrate, and an optionally arranged polymer alignment film formed on the inner surface of the transparent resin substrate At least one of the polymer protective films formed on the outer surface of the substrate contains particles with a particle size of 0.0.
A liquid crystal display element characterized by dispersing inorganic ultrafine particles that are opaque to ultraviolet rays and have a diameter of 1 to 1 μm.
(5)紫外線非透過性無機質系超微粒子は、その粒径が
0.1μn、以下である特許請求の範囲第4項記載の液
晶表示素子。
(5) The liquid crystal display element according to claim 4, wherein the inorganic ultrafine particles that do not transmit ultraviolet rays have a particle size of 0.1 μn or less.
(6)紫外線非透過性無機質系超微粒子は、二酸化チタ
ン、塩化第一タリウム、臭化第一タリウムまたは臭化銀
である特許請求の範囲第4項記載の液晶表示素子。
(6) The liquid crystal display element according to claim 4, wherein the inorganic ultrafine particles that do not transmit ultraviolet light are titanium dioxide, thallous chloride, thallous bromide, or silver bromide.
JP62270888A 1987-10-27 1987-10-27 Liquid crystal display element Expired - Lifetime JPH07113719B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62270888A JPH07113719B2 (en) 1987-10-27 1987-10-27 Liquid crystal display element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62270888A JPH07113719B2 (en) 1987-10-27 1987-10-27 Liquid crystal display element

Publications (2)

Publication Number Publication Date
JPH01113733A true JPH01113733A (en) 1989-05-02
JPH07113719B2 JPH07113719B2 (en) 1995-12-06

Family

ID=17492364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62270888A Expired - Lifetime JPH07113719B2 (en) 1987-10-27 1987-10-27 Liquid crystal display element

Country Status (1)

Country Link
JP (1) JPH07113719B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105384189A (en) * 2015-12-23 2016-03-09 济南大学 Method for preparing caesium-lead halide nanorod and product obtained through method
CN105883909A (en) * 2016-01-22 2016-08-24 重庆大学 Method for preparing CsPbBrxI3-x nanorod
US11169419B2 (en) 2019-03-29 2021-11-09 Sharp Kabushiki Kaisha Photo-alignment film, retardation substrate, liquid crystal display device, and method for producing photo-alignment film

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4966151A (en) * 1972-10-26 1974-06-26
JPS52129254U (en) * 1976-03-27 1977-10-01
JPS56116012A (en) * 1980-02-19 1981-09-11 Sharp Corp Liquid-crystal cell
JPS5975960A (en) * 1982-10-25 1984-04-28 Matsushita Electric Ind Co Ltd Paint composition for selective absorption
JPS6111724A (en) * 1984-06-28 1986-01-20 Canon Inc Liquid crystal element
JPS61286222A (en) * 1985-06-13 1986-12-16 Nippon Shokubai Kagaku Kogyo Co Ltd Superfine particle containing zirconia
JPS63217323A (en) * 1987-03-06 1988-09-09 Konica Corp Liquid crystal display device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4966151A (en) * 1972-10-26 1974-06-26
JPS52129254U (en) * 1976-03-27 1977-10-01
JPS56116012A (en) * 1980-02-19 1981-09-11 Sharp Corp Liquid-crystal cell
JPS5975960A (en) * 1982-10-25 1984-04-28 Matsushita Electric Ind Co Ltd Paint composition for selective absorption
JPS6111724A (en) * 1984-06-28 1986-01-20 Canon Inc Liquid crystal element
JPS61286222A (en) * 1985-06-13 1986-12-16 Nippon Shokubai Kagaku Kogyo Co Ltd Superfine particle containing zirconia
JPS63217323A (en) * 1987-03-06 1988-09-09 Konica Corp Liquid crystal display device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105384189A (en) * 2015-12-23 2016-03-09 济南大学 Method for preparing caesium-lead halide nanorod and product obtained through method
CN105883909A (en) * 2016-01-22 2016-08-24 重庆大学 Method for preparing CsPbBrxI3-x nanorod
US11169419B2 (en) 2019-03-29 2021-11-09 Sharp Kabushiki Kaisha Photo-alignment film, retardation substrate, liquid crystal display device, and method for producing photo-alignment film

Also Published As

Publication number Publication date
JPH07113719B2 (en) 1995-12-06

Similar Documents

Publication Publication Date Title
CN108885362B (en) Light modulation device
EP2343580B1 (en) Protective film for polarizing plate
CA2186318C (en) Light modulating film of improved uv stability for a light valve
US11442322B2 (en) Light control sheet and light control window
JPH05173707A (en) Handwriting input tablet
KR100286635B1 (en) Films containing encapsulated liquid suspensions, light valves comprising the films and methods of making such films
JPH01113733A (en) Liquid crystal display element
TW569064B (en) Reflection type liquid crystal display device
JPH1130714A (en) Polarizing plate, elliptic polarizing plate, and liquid crystal display device
JPH0667172A (en) Liquid crystal display element and ts production
JP2000284276A (en) Liquid crystal display device
US7081941B2 (en) Liquid-crystal display device and colored resin substrate
JPS6349231B2 (en)
JPS629319A (en) Liquid crystal display cell
JPH0521099Y2 (en)
CN216351323U (en) Polaroid capable of widening visual angle of liquid crystal display
JPH05333306A (en) Liquid crystal optical reflection element
JP2010049207A (en) Transflective liquid crystal display device and method for manufacturing the same
KR100925330B1 (en) Method for manufacturing polarizer of lcd
JPH05341123A (en) Polarizing plate and liquid crystal display
JPH10246892A (en) Liquid crystal display element
JPH08297210A (en) Optical film and liquid crystal display device
JPH07287216A (en) Liquid crystal display device
JP2945573B2 (en) Liquid crystal display
JP2006139289A5 (en)