JPH01113688A - Measuring apparatus of distance by laser - Google Patents

Measuring apparatus of distance by laser

Info

Publication number
JPH01113688A
JPH01113688A JP62270414A JP27041487A JPH01113688A JP H01113688 A JPH01113688 A JP H01113688A JP 62270414 A JP62270414 A JP 62270414A JP 27041487 A JP27041487 A JP 27041487A JP H01113688 A JPH01113688 A JP H01113688A
Authority
JP
Japan
Prior art keywords
phase
distance
phase difference
laser
acousto
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62270414A
Other languages
Japanese (ja)
Other versions
JPH0456269B2 (en
Inventor
Minoru Kimura
実 木村
Hidemi Takahashi
秀実 高橋
Osamu Yamada
修 山田
Hiroyuki Naito
宏之 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP62270414A priority Critical patent/JPH01113688A/en
Publication of JPH01113688A publication Critical patent/JPH01113688A/en
Publication of JPH0456269B2 publication Critical patent/JPH0456269B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Optical Radar Systems And Details Thereof (AREA)

Abstract

PURPOSE:To facilitate the correction of a zero-point drift, by a method wherein comparison is made with a theoretical phase difference of a known distance by a phase comparator and the position of interactions of an ultrasonic wave and a laser light in an acoustooptic modulator is shifted on the basis of a signal of this phase comparator. CONSTITUTION:A laser light reflected on a reference object is reflected by a reflector 5 and detected by a photodetector 8 for measuring a distance. A phase difference between a signal obtained by the photodetector 8 and a reference signal from an oscillator 3 is found by a phase detector 10. A distance to a measuring object 7 is calculated from this phase difference, an output phase difference of the phase detector 10 is given to a phase comparator 11 and compared with a theoretical phase difference corresponding to a known distance, and a signal corresponding to the phase difference thus compared is outputted. A phase correction element 12 is controlled by this output to correct a phase slippage. By this constitution, the correction of a zero-point drift can be corrected every easily and a distance can be measured with excellent accuracy.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はレーザ光を用いて対象物までの距離を測定する
レーザカ11距装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a laser distance device that measures the distance to an object using laser light.

従来の技術 従来のこの種のレーザ測距装置としては、例えばグロシ
ーディングス・オブ・ザ・アイ・イー争イー・イー 第
65巻、206〜220頁、1977年(Proc、I
EFiEVo 、L 65. pp206〜220.1
977)に記載されている構成が知られている。以下、
第4図を参照しながら従来のレーザ測距装置について説
明する。
2. Description of the Related Art Conventional laser distance measuring devices of this type include, for example, Grosseings of the IE, Vol. 65, pp. 206-220, 1977 (Proc.
EFiEVo, L 65. pp206-220.1
977) is known. below,
A conventional laser distance measuring device will be explained with reference to FIG.

第4図において、レーザ発振器1から出たレーザ光を発
振器3により駆動される音響光学光変調器2で強度変調
を行う。強度変調したレーザ光はビームスプリッタ−4
で分割され、1つは参照信号用の光検出器6へ入り、他
の1つはレーザ光照射用の反射鏡5の一方の面で反射さ
れ測定対象物7へ照射される。測定対象物7から反射し
たレーザ光は再び反射鏡5の他の面で反射され、測距用
の光検出器8へ入射する。参照信号用の光検出器6の出
力rと測距用の光検出器8の出力iは位相検出器10に
導かれ、この位相検出器10により位相測定が行われる
。この時の位相差φは測定対原物7までの距離りに比例
して犬きくなり、光の速度をC1音響光学光変調器2で
の変調周波数をfmとすると 1)=Cφ/4π「□    ・・・・・・ (1)で
表わされ、位相差φから測定対象物7までの距離りを測
定することができる。
In FIG. 4, a laser beam emitted from a laser oscillator 1 is intensity-modulated by an acousto-optic modulator 2 driven by an oscillator 3. In FIG. The intensity-modulated laser beam is sent to the beam splitter 4.
One enters the photodetector 6 for reference signal, and the other is reflected by one surface of the reflecting mirror 5 for laser beam irradiation and is irradiated onto the measurement object 7. The laser beam reflected from the object to be measured 7 is reflected again by the other surface of the reflecting mirror 5 and enters the photodetector 8 for distance measurement. The output r of the reference signal photodetector 6 and the output i of the ranging photodetector 8 are guided to a phase detector 10, and the phase detector 10 performs phase measurement. The phase difference φ at this time increases in proportion to the distance between the measurement object and the original 7, and if the speed of light is C1 and the modulation frequency in the acousto-optic modulator 2 is fm, then 1)=Cφ/4π □ ...... It is represented by (1), and the distance to the measurement object 7 can be measured from the phase difference φ.

反射鏡5を二次元に走査して測距を行えば、距離情報に
基づく距離画像が得られる。電だ、光検出器8の出力i
の強度を強度検出器9で検出することによりテレビカメ
ラによる測定と類似の暉度画像情報が得られる。
If distance measurement is performed by scanning the reflecting mirror 5 two-dimensionally, a distance image based on distance information can be obtained. The output i of the photodetector 8
By detecting the intensity with the intensity detector 9, intensity image information similar to that measured by a television camera can be obtained.

発明が解決゛しようとする問題点 しかし、以上のような従来のレーザ測距装置では、位相
検出器10の位相検出精度によって測距精度が決捷るが
、位相検出器10によって位相測定を行うと、回路系な
どの温度特性によって時間的な零点ドリフトを生ずる。
Problems to be Solved by the Invention However, in the conventional laser distance measuring device as described above, the distance measuring accuracy is determined by the phase detection accuracy of the phase detector 10. Then, a temporal zero point drift occurs due to the temperature characteristics of the circuit system, etc.

その結果、測距精度の低下を来してしまい、測定対象物
7までの正確な距離を測定することができない。
As a result, the accuracy of distance measurement decreases, making it impossible to accurately measure the distance to the object 7 to be measured.

本発明は、上記のような従来例の問題点を解決するもの
で、零点ドリフトを簡単に補正して測定対象物までの距
離を正確に測定することができるようにしたレーザ測距
装置を提供することを目的とするものである。
The present invention solves the problems of the conventional examples as described above, and provides a laser distance measuring device that can easily correct the zero point drift and accurately measure the distance to the object to be measured. The purpose is to

問題点を解決するための手段 そして上記問題点を解決する本発明の技術的な手段は、
レーザ発振器と、このレーザ発振器から出たレーザ光を
強度変調するだめの音響光学光変調器と、強度変調され
たレーザ光を測定対象物に照射する手段と、測定対象物
からの反射光を検出する光検出器と、反射光信号の位相
差から距離を算出するだめの位相検出器と、既知の距離
にある測定対象物の測定位相差と(1)式で定まる理論
位相差を比較する位相比較器と、この位相比較器からの
信号によって上記音響光学光変調器とレーザ発振器から
出たレーザ光の光軸の少なくとも一方を移動する移動機
構からなる位相補正手段とを備えたものである。
Means for solving the problems and technical means of the present invention for solving the above problems are as follows:
A laser oscillator, an acousto-optic modulator for intensity modulating the laser beam emitted from the laser oscillator, a means for irradiating the intensity-modulated laser beam onto a measurement object, and detecting reflected light from the measurement object. A phase detector that calculates the distance from the phase difference of the reflected light signal, and a phase detector that compares the measured phase difference of the object at a known distance with the theoretical phase difference determined by equation (1). The apparatus includes a comparator and a phase correction means comprising a moving mechanism that moves at least one of the optical axes of the laser light emitted from the acousto-optic modulator and the laser oscillator in response to a signal from the phase comparator.

作用 この技術的手段による作用は次のようになる。action The effect of this technical means is as follows.

すなわち、音響光学光変調器を用いてレーザ光を強度変
調する場合、変調のための基準信号と、変調されたレー
ザ光との初期の位相差は、音響光学光変調器の中を伝播
する変調された超音波のどの位相の部分でレーザ光が変
調されるかによって決まる。換言すれば、超音波とレー
ザ光が相互に作用している位置を移動することにより、
基準信号とレーザ光の位相差は調整可能である。そこで
、位相測定の零点ドリフトが生じた場合、既知の距離の
位相差が常に現論値になるように位相比較器の出力を用
いて音響光学光変調器とレーザ光の光軸との少なくとも
一方の位置を移動させ、超音波とレーザ光との相互作用
位置を制御することにより零点ドリフトによる誤差を補
正することができる。
That is, when intensity modulating a laser beam using an acousto-optic modulator, the initial phase difference between the reference signal for modulation and the modulated laser beam is determined by the modulation propagating through the acousto-optic modulator. It is determined by which phase of the generated ultrasonic wave the laser light is modulated. In other words, by moving the position where the ultrasound and laser light interact,
The phase difference between the reference signal and the laser beam is adjustable. Therefore, when a zero point drift occurs in phase measurement, the output of the phase comparator is used to adjust the distance between at least one of the acousto-optic modulator and the optical axis of the laser beam so that the phase difference at a known distance is always the actual value. Errors due to zero point drift can be corrected by moving the position of and controlling the interaction position between the ultrasonic wave and the laser beam.

実施例 以下、本発明の実施例を図面に基づいて説明する。Example Embodiments of the present invention will be described below based on the drawings.

第1図は本発明の一実施例におけるレーザ測距装置の全
体構成を示すブロック図である。第1図において、■は
レーザ発振器、2はレーザ発振器1から出たレーザ光を
強度変調する音響光学光変調器、3は音響光学光変調器
2を駆動する発振器、5は強度変調されたレーザ光を反
射させて測定対象物7に照射する反射鏡、8は測定対象
物7で反射し、反射鏡5で反射したレーザ光を検出する
測距用の光検出器、10は測距用の光検出器8で得られ
た信号と発振器3からの基準信号との位相差を検出する
位相検出器、11は測定対象物7として既知の距離にあ
る対象物を測定したときの位相検出器100位相差と、
その既知の距離に対応して(1)式により定まる理論位
相差との比較を行う位相比較器、12は位相比較器11
からの信号出方により音響光学光変調器2を制御する位
相補正部である。
FIG. 1 is a block diagram showing the overall configuration of a laser ranging device according to an embodiment of the present invention. In FIG. 1, ■ is a laser oscillator, 2 is an acousto-optic modulator that modulates the intensity of the laser beam emitted from the laser oscillator 1, 3 is an oscillator that drives the acousto-optic modulator 2, and 5 is an intensity-modulated laser. a reflector that reflects light and irradiates it onto the measurement target 7; 8 a photodetector for distance measurement that detects the laser beam reflected by the measurement target 7 and reflected by the reflector 5; 10 a distance measurement photodetector; A phase detector 11 detects the phase difference between the signal obtained by the photodetector 8 and the reference signal from the oscillator 3, and 11 is a phase detector 100 used when measuring an object at a known distance as the measurement object 7. phase difference and
A phase comparator 12 performs a comparison with a theoretical phase difference determined by equation (1) corresponding to the known distance; 12 is a phase comparator 11;
This is a phase correction unit that controls the acousto-optic modulator 2 based on the way the signal is output from the acousto-optic modulator 2.

次に上記実施例の動作について説明する。まず、測定対
象物7として既知の距離にある基準対象物を測定する。
Next, the operation of the above embodiment will be explained. First, a reference object at a known distance is measured as the measurement object 7.

レーザ発振器1から出たレーザ光を発振器3によって、
駆動される音響光学光変調器2で強度変調し、反射鏡5
により測定対象物7へ照射する。基準対象物で反射した
レーザ光は反射鏡5で反射され、測距用の光検出器8で
検出する。光検出器8で得られた信号と発振器3からの
基準信号との位相差を位相検出器10で求める。この位
相差から、測定対象物7までの距離を算出する。位相検
出器10の出力位相差は位相比較器11に加えられ、(
11式により定まる既知の距離に対応した理論位相差と
比較してその位相ずれに応じた信号を出力する。この位
相ずれが零点ドリフトに相当する。位相比較器11の出
力は位相補正部12を制御して上記位相ずれが生じない
ように位相補正を行う。
The laser beam emitted from the laser oscillator 1 is transmitted by the oscillator 3,
The intensity is modulated by the driven acousto-optic modulator 2, and the reflecting mirror 5
The object to be measured 7 is irradiated with the light. The laser beam reflected by the reference object is reflected by a reflecting mirror 5 and detected by a photodetector 8 for distance measurement. The phase difference between the signal obtained by the photodetector 8 and the reference signal from the oscillator 3 is determined by the phase detector 10. The distance to the measurement object 7 is calculated from this phase difference. The output phase difference of the phase detector 10 is added to the phase comparator 11, and (
It compares it with a theoretical phase difference corresponding to a known distance determined by Equation 11, and outputs a signal according to the phase shift. This phase shift corresponds to zero point drift. The output of the phase comparator 11 controls a phase correction section 12 to correct the phase so that the above-mentioned phase shift does not occur.

この位相補正については後述する。This phase correction will be described later.

位相補正が終ったら距離が未知の測定対象物7の距離を
測定する。測定方法は上記既知の距離の測定対象物の場
合と同様に行えばよく、音響光学光変調器2で強度変調
されたレーザ発振器1からのレーザ光を反射鏡5で測定
対象物7に照射し、その反射光を光検出器8で検出して
得られた信号と発振器3からの基準信号との位相差φを
位相検出器10で求めて測定対象物7までの距離を算出
する。このときの距離は、音響光学光変調器2での位相
補正がなされているので零点ドリフトのない正確な値と
して得られる。
After the phase correction is completed, the distance of the object 7 whose distance is unknown is measured. The measurement method may be carried out in the same manner as in the case of the object to be measured at a known distance, in which the laser beam from the laser oscillator 1 whose intensity is modulated by the acousto-optic modulator 2 is irradiated onto the object to be measured 7 using the reflecting mirror 5. , the phase difference φ between the signal obtained by detecting the reflected light by the photodetector 8 and the reference signal from the oscillator 3 is determined by the phase detector 10, and the distance to the object to be measured 7 is calculated. The distance at this time can be obtained as an accurate value without zero point drift because the phase has been corrected by the acousto-optic modulator 2.

次に位相補正動作について更に詳細に説明する。Next, the phase correction operation will be explained in more detail.

第2図は上記音響光学光変調器2の原理図を示している
。第2図において、13は音響光学変調素子で、CO2
レーザ光用の場合、ゲルマニウム(Ge)が用いられる
。14は音響光学変調素子13の一側に貼付けられた圧
電素子である。そして圧電素子14に発振器3から高周
波電力を印加し、音響光学変調素子13の中に超音波の
波を発生させる。超音波は音響光学変調素子13の中を
速度Vで伝播し、ある距離りの位置でレーザ光15と相
互作用し、回折光16と透過光17を生ずる。
FIG. 2 shows a principle diagram of the acousto-optic modulator 2. As shown in FIG. In FIG. 2, 13 is an acousto-optic modulator, which is a CO2
For laser light, germanium (Ge) is used. 14 is a piezoelectric element attached to one side of the acousto-optic modulator 13. Then, high frequency power is applied from the oscillator 3 to the piezoelectric element 14 to generate ultrasonic waves in the acousto-optic modulation element 13. The ultrasound propagates through the acousto-optic modulator 13 at a velocity V and interacts with the laser beam 15 at a certain distance, producing diffracted light 16 and transmitted light 17.

回折光16は変調周波数fmで強度変調されており、こ
の回折光16を光検出器(図示省略)で検出した電気信
号と発振器3からの基準信号との位相差は位相検出器1
0によシΦとして得られる。
The diffracted light 16 is intensity-modulated at a modulation frequency fm, and the phase difference between the electric signal detected by the photodetector (not shown) and the reference signal from the oscillator 3 is determined by the phase detector 1.
It is obtained as 0 and Φ.

ここで、超音波とレーザ光15との相互作用位置りを微
小距離△t(m)移動すると、位相差出力Φは△〆だけ
変化する。△〆の変化量は超音波伝播速度をv (m)
、変調周波数をfm(Hz)とすると、△〆/△t=3
6(lfm/v (度/m)で求められ、fmを5MH
zとすれば、Δ〆/△2=0.327(度/μm) 面図を示している。第3図において、18はペース、1
9は音響光学光変調器2を装着した移動台で、ベース1
8に対し、機械的なガタが少ない精密なスライド機構に
よりスライド可能に支持されている。20は駆動手段、
21は駆動手段20の駆動力を移動台19に伝達する伝
達機構である。
Here, when the interaction position between the ultrasonic wave and the laser beam 15 is moved by a minute distance Δt (m), the phase difference output Φ changes by Δ〆. The amount of change in △〆 is the ultrasonic propagation velocity v (m)
, if the modulation frequency is fm (Hz), △〆/△t=3
6 (lfm/v (degrees/m)), fm is 5MH
If z, then Δ〆/△2=0.327 (degrees/μm). In Figure 3, 18 is pace, 1
9 is a movable table equipped with an acousto-optic light modulator 2;
8, it is slidably supported by a precise slide mechanism with little mechanical play. 20 is a driving means;
21 is a transmission mechanism that transmits the driving force of the driving means 20 to the movable table 19.

本実施例では、駆動手段20として圧電素子を用い、5
00vの電圧で20μmの移動量を得ている。これは位
相角度として6.54度の補正量であシ、5MHz変調
の測距距離に換算すると、0.545 mに相当してい
る。
In this embodiment, a piezoelectric element is used as the driving means 20, and 5
A displacement of 20 μm is obtained with a voltage of 00 V. This is a correction amount of 6.54 degrees as a phase angle, which corresponds to 0.545 m when converted to the distance measured by 5 MHz modulation.

このように移動量も実用上数10μm と微小であり、
駆動手段20にピエゾ等の圧電素子を用いることが可能
であり、これにより装置の小形化を図ることができる。
In this way, the amount of movement is practically small at several tens of micrometers,
It is possible to use a piezoelectric element such as a piezo for the driving means 20, thereby making it possible to downsize the device.

上記駆動手段20として、この他、パルスモータやサー
ボモータを用いても良く、また伝達機構21としてボー
ルねじ等を用いても良い。
In addition to this, a pulse motor or a servo motor may be used as the driving means 20, and a ball screw or the like may be used as the transmission mechanism 21.

なお、上記実梅例では、音響光学光変調器2を移動する
場合について説明したが、超音波とレーザ光15との相
互作用位置を変えることにより位相の補正を行っている
ので、レーザ光15の光軸位置を移動して位相補正全行
っても、全く同様の効果を得ることができる。
In the above example, the case where the acousto-optic modulator 2 is moved was explained, but since the phase is corrected by changing the interaction position between the ultrasonic wave and the laser beam 15, the laser beam 15 Exactly the same effect can be obtained even if the optical axis position is moved and all phase correction is performed.

発明の効果 以上述べたように本発明によれば、レーザ発振器から出
たレーザ光を音響光学光変調器により強度変調して既知
の距離にある測定対象物に照射し、この測定対象物から
の反射光を光検出器により検出し、位相検出器により反
射光信号の位相差を検出し、この位相差出力と既知の距
離の理論位相差を位相比較器により比較し、この位相比
較器からの信号によって上記音響光学光変調器の中の超
音波とレーザ光の相互作用位置を移動し、位相の補正を
行うようにしている。そして移動看と補正位相角度は比
例関係にあるため、電気回路定数を変えて位相を補正す
る方法に比べ、非常に簡単で、かつ安定性に優れた補正
を行うことができる。従って零点ドリフトを簡単に補正
することができ、精度の良い距離測定を行うことができ
る。
Effects of the Invention As described above, according to the present invention, a laser beam emitted from a laser oscillator is intensity-modulated by an acousto-optic modulator and irradiated onto an object to be measured at a known distance. The reflected light is detected by a photodetector, the phase difference of the reflected light signal is detected by a phase detector, this phase difference output is compared with the theoretical phase difference of a known distance by a phase comparator, and the output from this phase comparator is The signal moves the interaction position of the ultrasonic wave and laser light in the acousto-optic modulator to correct the phase. Since the movement angle and the corrected phase angle are in a proportional relationship, it is possible to perform correction that is much simpler and more stable than the method of correcting the phase by changing electric circuit constants. Therefore, zero point drift can be easily corrected and distance measurement can be performed with high accuracy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第3図は本発明の一実施例におけるレーザ
測距装置を示し、第1図は全体構成を示すブロック図、
第2図は音響光学光変調器の原理図、第3図は位相補正
部の詳細な構成を示す側面図、第4図は従来のレーザ測
距装置を示す全体構成を示すブロック図である。 ■・・・レーザ発振器、2・・・音響光学光変調器、3
・・・発振器、5・・・反射鏡、7・・・測定対象物、
8・・・光検出器、10・・・位相検出器、11・・・
位相比較器、12・・・位相補正部、13・・・音響光
学変調素子、14・・・圧電素子、19・・・移動台、
20・・・駆動手段、21・・・伝達機構。 特許出願人 工業技術院長 飯 塚 幸 三鷹1図 2音τ光宇九麦調S i!ご乙φ 第3図 20駈動+段 、/
1 to 3 show a laser distance measuring device according to an embodiment of the present invention, and FIG. 1 is a block diagram showing the overall configuration,
FIG. 2 is a principle diagram of an acousto-optic modulator, FIG. 3 is a side view showing the detailed configuration of a phase correction section, and FIG. 4 is a block diagram showing the overall configuration of a conventional laser distance measuring device. ■... Laser oscillator, 2... Acousto-optic light modulator, 3
...Oscillator, 5...Reflector, 7...Measurement object,
8... Photodetector, 10... Phase detector, 11...
Phase comparator, 12... Phase correction unit, 13... Acousto-optic modulation element, 14... Piezoelectric element, 19... Moving table,
20... Drive means, 21... Transmission mechanism. Patent applicant: Director of the Agency of Industrial Science and Technology Yuki Iizuka Mitaka 1 figure 2 sounds τ Hikaru Kumugi style S i! Gootsu φ Fig. 3 20 canter + steps, /

Claims (1)

【特許請求の範囲】[Claims] レーザ発振器と、このレーザ発振器から出たレーザ光を
強度変調するための音響光学光変調器と、強度変調され
たレーザ光を測定対象物に照射する手段と、測定対象物
からの反射光を検出する光検出器と、反射光信号の位相
差から距離を算出するための位相検出器と、既知の距離
にある測定対象物の測定位相差と理論位相差を比較する
位相比較器と、この位相比較器からの信号によって上記
音響光学光変調器とレーザ発振器から出たレーザ光の光
軸の少なくとも一方を移動する移動機構からなる位相補
正手段とを備えたことを特徴とするレーザ測距装置。
A laser oscillator, an acousto-optic modulator for intensity modulating the laser light emitted from the laser oscillator, a means for irradiating the measurement object with the intensity-modulated laser light, and detecting the reflected light from the measurement object. a phase detector that calculates the distance from the phase difference of the reflected optical signal, a phase comparator that compares the measured phase difference and the theoretical phase difference of an object at a known distance, and a phase detector that calculates the distance from the phase difference of the reflected optical signal. A laser distance measuring device comprising: a phase correction means comprising a moving mechanism that moves at least one of the acousto-optic modulator and the optical axis of the laser beam emitted from the laser oscillator in response to a signal from a comparator.
JP62270414A 1987-10-28 1987-10-28 Measuring apparatus of distance by laser Granted JPH01113688A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62270414A JPH01113688A (en) 1987-10-28 1987-10-28 Measuring apparatus of distance by laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62270414A JPH01113688A (en) 1987-10-28 1987-10-28 Measuring apparatus of distance by laser

Publications (2)

Publication Number Publication Date
JPH01113688A true JPH01113688A (en) 1989-05-02
JPH0456269B2 JPH0456269B2 (en) 1992-09-07

Family

ID=17485932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62270414A Granted JPH01113688A (en) 1987-10-28 1987-10-28 Measuring apparatus of distance by laser

Country Status (1)

Country Link
JP (1) JPH01113688A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013003025A (en) * 2011-06-20 2013-01-07 Mitsubishi Electric Corp Laser distance measuring device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013003025A (en) * 2011-06-20 2013-01-07 Mitsubishi Electric Corp Laser distance measuring device

Also Published As

Publication number Publication date
JPH0456269B2 (en) 1992-09-07

Similar Documents

Publication Publication Date Title
JP2538456B2 (en) Optical displacement measuring device
US7667851B2 (en) Method and apparatus for using a two-wave mixing ultrasonic detection in rapid scanning applications
JPH05100174A (en) Laser-beam scanner
JPS6371674A (en) Laser distance measuring instrument
JPH01113688A (en) Measuring apparatus of distance by laser
JP3236941B2 (en) Distance measurement method for lightwave distance meter
JPH0954158A (en) Wide angle optical wave distance-measuring apparatus
JPS6371675A (en) Laser distance measuring instrument
US20100134781A1 (en) System and method for motion based velocity discrimination for doppler velocimeters
JPH0875433A (en) Surface form measuring device
JP2013057670A (en) Position detection method, and position detection device
JPH0968414A (en) Dimension measuring apparatus
JP2524746B2 (en) Surface roughness measuring device
JPH0438313B2 (en)
JPS6053804A (en) Thickness measuring device
JPH01299487A (en) Distance measuring apparatus
JPH0663826B2 (en) Characteristic measuring device for ultrasonic vibration detection sensor
JP3135630B2 (en) Laser-based measuring instrument using Doppler effect
JPS6383686A (en) Laser distance measuring instrument
JP2022035565A (en) Displacement measuring device and displacement measuring method
JPS6220484B2 (en)
JP2000221077A (en) Vibration measuring device
JP2005024523A (en) Range finder and projector having range finder
JPS6231281B2 (en)
JPS6379082A (en) Laser distance measuring apparatus

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term