JPH01113646A - Composite sensor for coal heap - Google Patents

Composite sensor for coal heap

Info

Publication number
JPH01113646A
JPH01113646A JP27035587A JP27035587A JPH01113646A JP H01113646 A JPH01113646 A JP H01113646A JP 27035587 A JP27035587 A JP 27035587A JP 27035587 A JP27035587 A JP 27035587A JP H01113646 A JPH01113646 A JP H01113646A
Authority
JP
Japan
Prior art keywords
sensor
coal
water
moisture
gypsum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27035587A
Other languages
Japanese (ja)
Other versions
JPH0445779B2 (en
Inventor
Kazuo Koyata
小谷田 一男
Tetsuo Ono
哲夫 小野
Yujiro Uchino
内野 裕次郎
Toshihiro Sakamoto
坂元 敏宏
Toshihiko Kumon
久門 敏彦
Masaaki Kono
正明 河野
Nobuyuki Miyamoto
宮本 伸幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAIHATSU DENSHI GIJUTSU KK
Electric Power Development Co Ltd
Central Research Institute of Electric Power Industry
Fuji Electric Co Ltd
KEC Corp
Original Assignee
KAIHATSU DENSHI GIJUTSU KK
Electric Power Development Co Ltd
Central Research Institute of Electric Power Industry
Fuji Electric Co Ltd
KEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAIHATSU DENSHI GIJUTSU KK, Electric Power Development Co Ltd, Central Research Institute of Electric Power Industry, Fuji Electric Co Ltd, KEC Corp filed Critical KAIHATSU DENSHI GIJUTSU KK
Priority to JP27035587A priority Critical patent/JPH01113646A/en
Publication of JPH01113646A publication Critical patent/JPH01113646A/en
Publication of JPH0445779B2 publication Critical patent/JPH0445779B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To remove the effect of the sort and the particle size of coal on a water detection characteristic, by mixing silica glass particles in a prescribed ratio in the gypsum of a composite sensor for a coal heap. CONSTITUTION:Electrode 13 and 13' are provided in a hollow part of a sensor main body 15, and an absorption-dehydration material C prepared by mixing silica glass particles sin gypsum are filled up therein. The absorption-dehydration material C contacts with a coal pile through openings 17 and is put in a state of equilibrium with water inside the pile permeating thereinto, and water detection and temperature detection by a radiation thermocouple 13A are executed. When a sensor is pulled out of the coal heap and left in the air, the water is evaporated and the sensor becomes reusable. While an output of the temperature sensor 13A is led to a temperature detecting circuit through lead wires L2 and L3, an output of a water sensor formed by the electrodes 13 and 13' in a pair is led to a water detecting circuit through lead wires L0 and L1, and the water is determined from the prescribed relationship between a detection resistance and the water in the coal by a prescribed circuit. According to this constitution, the water can be detected at high speed and with high accuracy without any specific consideration for the sort and the particle size of the coal.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、屋内、屋外の貯炭場に堆積された石炭(以
下、堆積石炭または石炭パイルともいう、)の温度と水
分含有量とを同時に検出するセンサ(以下、複合センサ
ともいう、)に関する。
[Detailed Description of the Invention] [Industrial Application Field] This invention simultaneously measures the temperature and moisture content of coal deposited in an indoor or outdoor coal storage yard (hereinafter also referred to as deposited coal or coal pile). The present invention relates to a detecting sensor (hereinafter also referred to as a composite sensor).

〔従来の技術〕[Conventional technology]

例えば、石炭を使用する石炭焚火力発電所等においては
、石炭を貯蔵すべく屋内または屋外の貯炭場に長時間堆
積した状態で放置しておくことがあるが、か\る場合に
は、堆積時間が経過するにつれて温度が徐々に上昇し、
水分も減少して遂には自然発火に至るおそれのあること
が知られている。この発火の条件は大体のところ温度と
水分に依存しており、例えば、石炭表面に付着している
水分(付着水分)が1%以下、または付着水分と石炭細
孔内に含まれる水分(固有水分)との和で表わされる全
水分が5%以下で、温度が80〜90°C以上になると
発火すること、また、石炭パイルにおいては、その表面
から2〜3mの深さにある所が最も高温になり易く、発
火し易い部分であること等の点が明らかにされている。
For example, in coal-fired power plants that use coal, coal is sometimes left in an indoor or outdoor coal yard for a long time in a piled state. As time passes, the temperature gradually increases,
It is known that moisture content may also decrease, potentially leading to spontaneous combustion. The conditions for this ignition generally depend on temperature and moisture; for example, the moisture adhering to the coal surface (adhered moisture) is less than 1%, or the adhering moisture and the moisture contained in the coal pores (inherent moisture) are less than 1%. If the total moisture (expressed as the sum of moisture) is less than 5% and the temperature exceeds 80 to 90 degrees Celsius, it will ignite.In addition, in a coal pile, a portion 2 to 3 meters deep from the surface will ignite. It has been clarified that this is the part that easily reaches the highest temperature and is most likely to catch fire.

したがって、石炭パイルの複数箇所にそれぞれセンサを
予め挿入しておくか、あるいは赤外線カメラにて自然発
火のおそれのある位置を予め検出し、その都度該当位置
にセンサを挿入して石炭パイル内温度と水分含有量とを
検知しなければならず、さらに危険が検知されたらブル
ドーザ等を用いて掘削、転圧したり、または放水する等
して自然発火を未然に防ぐことが必要となる。
Therefore, it is necessary to insert sensors in advance at multiple locations in the coal pile, or to use an infrared camera to detect locations where there is a risk of spontaneous combustion, and to insert sensors at the relevant locations each time to check the temperature inside the coal pile. It is necessary to detect the moisture content, and if danger is detected, it is necessary to prevent spontaneous combustion by excavating or compacting using a bulldozer or the like, or by spraying water.

そこで、出願人は石炭パイル内の同一箇所における水分
と温度の同時測定が可能な複合センサを出願している(
特開昭60−144651号公報参照)。これは、石炭
パイルに対して挿抜自在な保護管内に温度センサと、こ
のセンサ表面に形成した電極と他の電極との間に石膏を
充填して形成された水分センサとを併設し、同一位置の
温度と水分とを同時に測定できるようにしたものである
Therefore, the applicant has applied for a composite sensor that can simultaneously measure moisture and temperature at the same location in a coal pile (
(See Japanese Patent Application Laid-Open No. 144651/1983). This system has a temperature sensor inside a protective tube that can be inserted into and removed from the coal pile, and a moisture sensor that is formed by filling plaster between an electrode formed on the surface of this sensor and another electrode. This allows for simultaneous measurement of temperature and moisture content.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしなから、か−る複合センサは石炭の銘柄(種類)
や粒子の大きさ(粒径)により、特に水分検出特性が可
成り異なると云う問題がある。
However, for some reason, the composite sensor is able to detect the brand (type) of coal.
There is a problem in that the moisture detection characteristics in particular vary considerably depending on the size of the particles (particle diameter).

したがって、この発明は特に石炭の銘柄や粒径によって
水分検出特性が余り影響を受けない、堆積石炭用複合セ
ンサを提供することを目的とする。
Therefore, it is an object of the present invention to provide a composite sensor for deposited coal whose moisture detection characteristics are not particularly affected by the brand or particle size of the coal.

〔問題点を解決するための手段〕[Means for solving problems]

堆積石炭用複合センサの石膏内に、石英ガラス粒子を所
定の割合で混入する。
Quartz glass particles are mixed into the gypsum of the composite sensor for deposited coal at a predetermined ratio.

〔作用〕[Effect]

石膏内に石英ガラス粒子を混入すると、水分検出特性が
石炭の銘柄や粒径に関係なく略−義的に定まることを数
々の実験により確かめ、これを利用することにより上記
問題の解決を図る。なお、石炭の銘柄と粒径を変えてそ
の水分W(%)と検出抵抗R(KΩ)との関係を求めた
実験結果を第8図に示す。同図からも明らかなように、
多小のばらつきはあるもの一路1つの線X上にあると考
えることができる。つまり、検出抵抗R(KΩ)と水分
W(%)との関係には、 LogR= A + B LogW     ・−41
)なる関係にあることが実験の結果明らかにされている
。こ−に、A、Bはセンサの電極構造等によって定まる
定数である。
Through a number of experiments, we have confirmed that when quartz glass particles are mixed into gypsum, the moisture detection characteristics are essentially fixed regardless of the brand of coal or the particle size, and by utilizing this we aim to solve the above problem. Incidentally, FIG. 8 shows the results of an experiment in which the relationship between the water content W (%) and the detection resistance R (KΩ) was determined by changing the brand of coal and the particle size. As is clear from the figure,
It can be considered that all variations are on a single line X. In other words, the relationship between detection resistance R (KΩ) and moisture W (%) is as follows: LogR = A + B LogW ・-41
) has been revealed through experiments. Here, A and B are constants determined by the electrode structure of the sensor, etc.

〔実施例〕〔Example〕

第1図はこの発明による複合センサの内部構造を示す断
面図、第1A図は第1図の線A−A’に沿う断面図、第
2図は複合センサの外観図である。
FIG. 1 is a sectional view showing the internal structure of a composite sensor according to the present invention, FIG. 1A is a sectional view taken along line AA' in FIG. 1, and FIG. 2 is an external view of the composite sensor.

この発明による複合センサ1は、外観的には第2図に示
すように、保護管10と先端部11と取っ手12とから
構成され、石炭パイル2の内部所定位置に挿入して使用
される。前述の如く、石炭パイル2はその表面から2〜
3mの深さにある位置が最も高温になり易いので、複合
センサ1の全長も2〜3m程度に選ばれ、その先端部1
1は石炭パイル2内への挿入が容易になるように、例え
ば円錐形状に形成される一方、その他端には挿抜を容易
にするための取っ手12が設けられる。なお、この取っ
手12はセンサlが石炭パイル内に潜り込んでしまわな
いように、潜り止めの役目も果している。保護管10は
ステンレス製のパイプからなり、その先端部近傍の所定
位置には、水分を吸、脱水するための複数の開口17が
形成されている。
As shown in FIG. 2, the composite sensor 1 according to the present invention is comprised of a protective tube 10, a tip 11, and a handle 12, and is used by being inserted into a predetermined position inside a coal pile 2. As mentioned above, the coal pile 2 is
Since the position at a depth of 3 m is likely to reach the highest temperature, the total length of the composite sensor 1 is also selected to be approximately 2 to 3 m, and its tip 1
1 is formed into a conical shape, for example, so that it can be easily inserted into the coal pile 2, and a handle 12 is provided at the other end to facilitate insertion and removal. Note that this handle 12 also serves as a stopper to prevent the sensor l from sinking into the coal pile. The protection tube 10 is made of a stainless steel pipe, and a plurality of openings 17 for absorbing and dehydrating water are formed at predetermined positions near the tip thereof.

センサ内部は第1図の如く、先端部11、電極13.1
3’、本体部15およびジヨイント部16に大別され、
本体部15と先端部11.ジヨイント部16はそれぞれ
ネジ部18によって結合されている。本体部15の中空
部には電極13.13′が設けられており、これらの間
には例えば石膏に石英ガラス粒子を混入した、水分の吸
脱木材Cが充填されている(斜線部参照)。本体部15
の周辺には石炭中の水分の吸収、脱水のための開口17
が複数設けられているので、吸脱木材Cはこの間口17
を通して外部と接触することになり、したがって、複合
センサが石炭パイル内に挿入されると、その内部の水分
は吸脱木材Cを通して浸透して水分の平衡状態が保たれ
、これによって水分検知が行なわれる一方、熱電対13
Aによる温度検知が行なわれる。なお、このセンサを石
炭パイルから抜き出して大気中に放置すると石膏内の水
分は蒸発し、再び使用可能な状態に復元する。
As shown in Figure 1, the interior of the sensor includes a tip 11 and an electrode 13.1.
3', main body part 15 and joint part 16,
Main body part 15 and tip part 11. The joint parts 16 are connected by threaded parts 18, respectively. Electrodes 13, 13' are provided in the hollow part of the main body 15, and a moisture absorbing/absorbing wood C made of, for example, plaster mixed with quartz glass particles is filled between these electrodes (see the shaded area). . Main body part 15
There are openings 17 around the coal for absorption and dehydration of moisture in the coal.
Since there are multiple openings, the suction/extraction wood C is
Therefore, when the composite sensor is inserted into the coal pile, the moisture inside will penetrate through the adsorption-extraction wood C to maintain the moisture equilibrium state, thereby performing moisture detection. On the other hand, thermocouple 13
Temperature detection is performed by A. Note that when this sensor is removed from the coal pile and left in the atmosphere, the moisture in the gypsum evaporates and the sensor is restored to a usable state.

また、19は絶縁部であり、電極13.13’と保護管
10、本体部15およびジヨイント部−6とを電気的に
絶縁するために設けられている。さらに、電極13は例
えばシース形熱電対13Aからなる測温センサの表面に
金メツキを施して形成し、これにより温度センサと水分
センサとの双方を備えた複合センサを構成するようにし
ている。
Moreover, 19 is an insulating part, which is provided to electrically insulate the electrodes 13 and 13' from the protective tube 10, the main body part 15, and the joint part-6. Further, the electrode 13 is formed by, for example, plating the surface of a temperature sensor consisting of a sheathed thermocouple 13A with gold, thereby configuring a composite sensor having both a temperature sensor and a moisture sensor.

なお、このよう゛に構成される複合センサは、石炭パイ
ル中に挿入されるような苛酷な状況下で使用されること
から、特に図示はしていないが、水密。
Note that the composite sensor configured in this manner is used under harsh conditions such as being inserted into a coal pile, so it is watertight, although not particularly shown.

気密となるように工夫されている。It is designed to be airtight.

温度センサ13Aからの出力は、リード線L2゜L3を
介して図示されない温度検出回路に与えられて温度計測
が行なわれる一方、1対の電極13゜13′からなる水
分センサからの出力は、リード線LO,Llを介して水
分検出回路に与えられて水分計測が行なわれる。第3図
に水分検出回路の具体例を示す。
The output from the temperature sensor 13A is sent to a temperature detection circuit (not shown) via lead wires L2゜L3 to measure the temperature, while the output from the moisture sensor consisting of a pair of electrodes 13゜13' It is applied to the moisture detection circuit via lines LO and Ll to perform moisture measurement. FIG. 3 shows a specific example of the moisture detection circuit.

同図において、31は水分センサ、32は発振器、33
はローパスフィルタ、34A、34Bはダイオード、3
5は対数増幅器(ログアンプ)、36は出力アンプであ
る。
In the figure, 31 is a moisture sensor, 32 is an oscillator, and 33 is a moisture sensor.
is a low-pass filter, 34A and 34B are diodes, 3
5 is a logarithmic amplifier, and 36 is an output amplifier.

すなわち、水分センサ31の出力を発振器32からの所
定周波数の交流信号によって変調し、その一方をローパ
スフィルタ33およびダイオード34Aを介して、また
他方をダイオード34Bを介してそれぞれ整流した後、
対数増幅器35にてセンサ出力の対数出力を得、これを
出力アンプ36を介して取り出すものである。こ\で、
対数増幅器35を用いるのは、検出抵抗と石炭中の水分
との関係が先の(1)式の如く、対数の関係で表わされ
るからである。
That is, after modulating the output of the moisture sensor 31 with an AC signal of a predetermined frequency from the oscillator 32, and rectifying one of them through the low-pass filter 33 and the diode 34A, and the other through the diode 34B,
A logarithmic output of the sensor output is obtained by a logarithmic amplifier 35 and taken out via an output amplifier 36. Here,
The reason why the logarithmic amplifier 35 is used is that the relationship between the detection resistance and the moisture in the coal is expressed as a logarithmic relationship as shown in equation (1) above.

第4図はこの発明の他の実施例を示す断面図、第4A図
はそのA−A’線に沿う断面図である。
FIG. 4 is a sectional view showing another embodiment of the present invention, and FIG. 4A is a sectional view taken along the line AA'.

これは第1図に示す電極13’のかわりに導電部14を
設ける一方、保護管10を導電体とし、これらの間に吸
脱木材Cを配置して水分センサを形成することにより、
構造の簡略化を図ったものである。したがって、図示さ
れないリード線LOは保護管10と接続され、これとリ
ード線L1を第3図に示す水分検出回路に導くことによ
り、第1図の場合と同様に水分検出が可能となる。
This is achieved by providing a conductive portion 14 instead of the electrode 13' shown in FIG. 1, using the protective tube 10 as a conductor, and arranging the suction/extraction wood C between them to form a moisture sensor.
This is an attempt to simplify the structure. Therefore, the lead wire LO (not shown) is connected to the protection tube 10, and by guiding this and the lead wire L1 to the moisture detection circuit shown in FIG. 3, moisture detection becomes possible in the same manner as in the case of FIG. 1.

第4図の構成で、吸脱木材を石膏のみとした場合と、石
膏に石英ガラス粒子を混入した場合の、水分対検出抵抗
との関係を示すと、例えば第5図の如くなる。こ−に、
「OJ印で表わされる点が。
For example, in the configuration shown in FIG. 4, the relationship between moisture and detection resistance is shown in FIG. 5 when only gypsum is used as the adsorbing/extracting wood and when quartz glass particles are mixed in the gypsum. To this day,
``The point indicated by the OJ seal.

石膏のみの場合を示し、「Δ」印で表わされる点が石英
ガラス混入の場合を示している。両者を比較すれば明ら
かなように、石英ガラスを混入した場合の方が、同じ検
出抵抗範囲に対して水分の変化範囲が大きいので、精度
良く水分検出が行なわれることになる。なお、石英ガラ
ス粒子の混入割合は、強度との関係から略20%程度と
される。
The case where only gypsum is used is shown, and the points indicated by the "Δ" mark show the case where quartz glass is mixed. As is clear from comparing the two, when quartz glass is mixed, the range of moisture change is larger for the same detection resistance range, so moisture detection can be performed with higher accuracy. Note that the mixing ratio of quartz glass particles is approximately 20% from the viewpoint of strength.

同様に、吸脱木材を石膏のみとした場合と、石膏に石英
ガラスを混入した場合の、水分センサ出力を経過時間と
\もに観測すると、例えば第6図のようになる。こ\に
、「O」印で表わされる点が石英ガラス混入の場合を示
し、「口」印で表わされる点が石膏のみの場合を示して
いる。これらから、石英ガラスを混入した場合の方が、
水分センサ出力が安定化する迄の時間、つまり応答時間
が短縮されることがわかる。
Similarly, when the moisture sensor output is observed with respect to the elapsed time when only gypsum is used as the adsorbing/extracting wood and when quartz glass is mixed with the gypsum, the results are as shown in FIG. 6, for example. Here, the points indicated by the "O" mark indicate the case where quartz glass is mixed, and the points indicated by the "mouth" mark indicate the case where only gypsum is present. From these, it is better to mix quartz glass.
It can be seen that the time it takes for the moisture sensor output to stabilize, that is, the response time, is shortened.

、 第7図は水分センサの電極間距離および電極構造を
変えた場合の水分検出特性の変化を示すもので、同図(
イ)は電極間間隔(第4図D1参照)を変えた場合、同
図(ロ)は電極の直径(第4図D2参照)は変えずにそ
の長さ(第4図D3参照)を変えた場合をそれぞれ示し
ている。
, Figure 7 shows the change in moisture detection characteristics when the distance between the electrodes of the moisture sensor and the electrode structure are changed.
(a) is when the inter-electrode spacing (see Fig. 4 D1) is changed, and the same figure (b) is when the length (see Fig. 4 D3) is changed without changing the electrode diameter (see Fig. 4 D2). Each case is shown below.

なお、第1図の場合でも、第5図および第6図の如き特
性を示すことは云う迄もない。
It goes without saying that even the case shown in FIG. 1 exhibits the characteristics as shown in FIGS. 5 and 6.

〔発明の効果〕〔Effect of the invention〕

この発明によれば、石膏に石英ガラス粒子を混入するだ
けで、石炭の銘柄や粒径を意識すること無く、高速かつ
高精度に水分検出を行なうことが可能になる利点がもた
らされる。
According to the present invention, an advantage is provided that moisture can be detected at high speed and with high precision simply by mixing quartz glass particles into gypsum without being concerned with the brand of coal or the particle size.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明による複合センサの内部構造を示す断
面図、第1A図は第1図の線A−A’に沿う断面図、第
2図は複合センサの外観図、第3図は水分検出回路の具
体例を示すブロック図、第4図はこの発明の他の実施例
を示す構成図、第4A図は第4図の線A−A’に沿う断
面図、第5図は石膏だけの場合と石膏に石英ガラス粒子
を混入した場合の水分検出特性の相違を説明するための
グラフ、第6図は石膏だけの場合と石膏に石英ガラス粒
子を混入した場合の水分検出応答特性の相違を説明する
ためのグラフ、第7図は水分センサの電極間距離および
電極構造を変えた場合の水分検出特性の変化を説明する
ためのグラフ、第8図は石炭の銘柄1粒径を変えたとき
の水分と検出抵抗との関係を示すグラフである。 符号説明 1・・・・・・複合センサ、2・・・・・・石炭パイル
、10・・・・・・保護管、11・・・・・・先端部、
12・・・・・・取っ手、13.13’・・・・・・電
極、13A・・・・・・熱電対(温度センサ)、14・
・・・・・導電部、15・・・・・・本体部、16・・
・・・・ジヨイント部、17・・・開口、18・・・・
・・ネジ部、19・・・絶縁部、31・・・・・・水分
センサ、32・・・・・・発振器、33・・・・・・ロ
ーパスフィルタ、34A、34B・・・・・・ダイオー
ド、35・・・・・・対数増幅器(ログアンプ)、36
・・・・・・出力アンプ、C・・・・・・吸脱木材、L
O〜L3・・・・・・リード線。 代理人 弁理士 並 木 昭 夫 代理人 弁理士 松 崎   清 簾1511        遍IA囚 冨 2 図 第 3 図 114図 15図         。2 水分(2)− 第 6 図 MiaB寺F5  (JIvL) 水分(%)− !I7 因 1口) 水’?j(’/、)−
Fig. 1 is a sectional view showing the internal structure of a composite sensor according to the present invention, Fig. 1A is a sectional view taken along line A-A' in Fig. 1, Fig. 2 is an external view of the composite sensor, and Fig. 3 is a sectional view showing the internal structure of the composite sensor according to the present invention. FIG. 4 is a block diagram showing a specific example of the detection circuit, FIG. 4 is a configuration diagram showing another embodiment of the present invention, FIG. 4A is a cross-sectional view taken along line A-A' in FIG. 4, and FIG. 5 shows only plaster. Figure 6 is a graph to explain the difference in moisture detection characteristics between when gypsum is used and when quartz glass particles are mixed into plaster. Figure 7 is a graph to explain the change in moisture detection characteristics when the distance between the electrodes of the moisture sensor and the electrode structure are changed. Figure 8 is a graph when the grain size of one brand of coal is changed. It is a graph showing the relationship between moisture and detection resistance at the time. Description of symbols 1...Composite sensor, 2...Coal pile, 10...Protection tube, 11...Tip part,
12...Handle, 13.13'...Electrode, 13A...Thermocouple (temperature sensor), 14.
...Conductive part, 15... Main body part, 16...
...Joint part, 17...Opening, 18...
...Screw part, 19...Insulation part, 31...Moisture sensor, 32...Oscillator, 33...Low pass filter, 34A, 34B... Diode, 35... Logarithmic amplifier (log amplifier), 36
...Output amplifier, C...Suction/extraction wood, L
O~L3...Lead wire. Agent Patent Attorney Akio Namiki Agent Patent Attorney Seiren Matsuzaki 1511 Ben IA Prisoner 2 Figure 3 Figure 114 Figure 15. 2 Moisture (2) - Figure 6 MiaB temple F5 (JIvL) Moisture (%) - ! I7 1 mouth) Water'? j('/,)−

Claims (1)

【特許請求の範囲】 1)所定部分に複数の開口を有し堆積された石炭に対し
て挿抜自在な所定長さの保護管内部に石膏を充填し、さ
らにその内部に堆積石炭内所定位置の温度を検出する温
度センサと、1対の電極からなり前記保護管に形成され
た開口を介して石膏に吸、脱水される水分による電極間
抵抗値から水分含有量を検出する水分センサとを有して
なる堆積石炭用複合センサにおいて、 前記石膏内に石英ガラス粒子を所定の割合をもって混入
したことを特徴とする堆積石炭用複合センサ。 2)特許請求の範囲第1項に記載の堆積石炭用複合セン
サにおいて、前記保護管を導電性とし、これを前記水分
センサの一方の電極として用いることを特徴とする堆積
石炭用複合センサ。 3)特許請求の範囲第1項に記載の堆積石炭用複合セン
サにおいて、前記1対の電極の一方を温度センサ表面に
形成することを特徴とする堆積石炭用複合センサ。
[Claims] 1) A protective tube of a predetermined length that has a plurality of openings in a predetermined portion and can be inserted into and removed from the deposited coal is filled with gypsum, and the inside of the protective tube is filled with gypsum. It has a temperature sensor that detects temperature, and a moisture sensor that is made up of a pair of electrodes and that detects moisture content from the interelectrode resistance value due to moisture absorbed and dehydrated by the plaster through an opening formed in the protective tube. A composite sensor for deposited coal, characterized in that quartz glass particles are mixed in the gypsum at a predetermined ratio. 2) The composite sensor for deposited coal according to claim 1, wherein the protective tube is electrically conductive and is used as one electrode of the moisture sensor. 3) The composite sensor for deposited coal according to claim 1, wherein one of the pair of electrodes is formed on the surface of the temperature sensor.
JP27035587A 1987-10-28 1987-10-28 Composite sensor for coal heap Granted JPH01113646A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27035587A JPH01113646A (en) 1987-10-28 1987-10-28 Composite sensor for coal heap

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27035587A JPH01113646A (en) 1987-10-28 1987-10-28 Composite sensor for coal heap

Publications (2)

Publication Number Publication Date
JPH01113646A true JPH01113646A (en) 1989-05-02
JPH0445779B2 JPH0445779B2 (en) 1992-07-27

Family

ID=17485112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27035587A Granted JPH01113646A (en) 1987-10-28 1987-10-28 Composite sensor for coal heap

Country Status (1)

Country Link
JP (1) JPH01113646A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5947455A (en) * 1995-12-05 1999-09-07 Honda Giken Kogyo Kabushiki Kaisha Liquid-encapsulated vibration-proof mount device
JP2009075076A (en) * 2007-08-28 2009-04-09 Yamari Sangyo Kk Heat-resistant protective box of temperature measuring instrument, temperature measuring device using this, and temperature measuring method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5947455A (en) * 1995-12-05 1999-09-07 Honda Giken Kogyo Kabushiki Kaisha Liquid-encapsulated vibration-proof mount device
JP2009075076A (en) * 2007-08-28 2009-04-09 Yamari Sangyo Kk Heat-resistant protective box of temperature measuring instrument, temperature measuring device using this, and temperature measuring method

Also Published As

Publication number Publication date
JPH0445779B2 (en) 1992-07-27

Similar Documents

Publication Publication Date Title
JP2008209416A (en) Method and tape for detecting moisture in water-absorbing material
WO2004100657A1 (en) White ant sensor and invaded white ant detecting system
JPH01113646A (en) Composite sensor for coal heap
Klõšeiko et al. Effect of freezing and thawing on the performance of “capillary active” insulation systems: a comparison of results from climate chamber study to HAM modelling
CN108332801A (en) Concrete temperature and humidity measurement equipment and its measurement method
CN205015234U (en) Building material hardness -testing device
CN208012662U (en) Concrete temperature and humidity measurement equipment
JPS60144651A (en) Composite sensor for deposited coal
JPS55144579A (en) Detector of underground buried material
CN208171142U (en) A kind of detection device of concrete spray coating thickness
EP1104885A3 (en) Fire detector
JPS5580047A (en) Production of gas detection element
SU1146601A1 (en) Device for measuring moisture content of soil
SU877080A1 (en) Method of monitoring the level of filling a chamber with hardening composition
SU1728761A1 (en) Humidity measuring method
JPS55146030A (en) Measuring unit of water content rate
JPS6111648A (en) Detecting device for raindrop
JPS55132945A (en) Electrical testing method of hermetically sealed package
JPS54155886A (en) Leakage position detector of liquid transport pipe
RU2052781C1 (en) Device for detecting through cracks in article
SU765713A1 (en) Method of detecting and determining fatigue crack coordinate
TAKASHI et al. Influence of Permeability of Unfrozen Soil on Frost Heave
JPS539196A (en) Oil detection method
JPS5323687A (en) Leak detector petroleum or the like
Caputo et al. Calibration of a New Device to Measure Water Content of Rocks

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees