JPH01113634A - Infrared-ray moisture measuring apparatus - Google Patents

Infrared-ray moisture measuring apparatus

Info

Publication number
JPH01113634A
JPH01113634A JP62270365A JP27036587A JPH01113634A JP H01113634 A JPH01113634 A JP H01113634A JP 62270365 A JP62270365 A JP 62270365A JP 27036587 A JP27036587 A JP 27036587A JP H01113634 A JPH01113634 A JP H01113634A
Authority
JP
Japan
Prior art keywords
moisture
light
amount
measured
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62270365A
Other languages
Japanese (ja)
Inventor
Seiichi Kubota
久保田 誠一
Shigeru Shibazaki
茂 柴崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Tobacco Inc
Original Assignee
Japan Tobacco Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Tobacco Inc filed Critical Japan Tobacco Inc
Priority to JP62270365A priority Critical patent/JPH01113634A/en
Publication of JPH01113634A publication Critical patent/JPH01113634A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3554Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for determining moisture content

Abstract

PURPOSE:To measure accurately the amounts of moisture in salt, potassium chloride and the like, by calculating the values of the polynominals of higher orders, in which the ratio between the reflected amount of the reference light and that of the measured light, both outputted from a moisture detecting part, is made a variable and displaying the amount of moisture based on the result of the operation. CONSTITUTION:The output S of the measured light voltage and the output R or the reference light voltage, which are outputted from a moisture detecting part 1, are sampled in a sample and hold circuit 22 through a multiplexer 21 in a control part 2. The sampled outputs S and R are stored in a RAM 24 through an A/D converter 23. A CPU 26 computes the ratio between the signal R and the signal S based on an operation program stored in a ROM 25. Meanwhile, coefficient values, which are set with calibration, are stored in the RAM 24 beforehand. The measured value of the amount of the moisture is computed based on the ratio between the signal R and the signal S and the coefficient value. The amount of the moisture is displayed on a display instrument 3 based on the result of the computation. Thus, the amounts of the moistures of salt, potassium chloride and the like can be measured accurately.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、被測定物に近赤外線を照射して被測定物中の
水分量を測定する装置に係わり、特に塩の含水量を測定
するのに適した赤外線水分測定装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an apparatus for measuring the water content in a measured object by irradiating the object with near infrared rays, and in particular for measuring the water content of salt. This invention relates to an infrared moisture measuring device suitable for.

(従来の技術〕 従来、近赤外線を利用した反射式赤外線水分計は、検出
器と変換器とから構成され、検出器は光学系と光電変換
部、変換器は検出信号を表示用の出力信号に変換する電
子回路で構成される。
(Prior art) Conventionally, a reflection-type infrared moisture meter that uses near-infrared rays is composed of a detector and a converter. It consists of an electronic circuit that converts

検出器は、水分に対して高い吸収特性を示す近赤外線領
域の測定光とこの測定光付近の波長を有する参照光とを
被測定物に照射するとともに、それらの反射光量を検出
して電気信号に変換する。
The detector irradiates the object to be measured with measurement light in the near-infrared region, which exhibits high absorption characteristics for moisture, and reference light with a wavelength near this measurement light, and detects the amount of reflected light to generate an electrical signal. Convert to

そして、変換器で反射光の電圧出力の比が水分量を示す
出力信号に変、換され、この出力信号に基づいて水分量
が測定される。
Then, a converter converts the voltage output ratio of the reflected light into an output signal indicating the moisture content, and the moisture content is measured based on this output signal.

すなわち、被測定物によって反射・吸収された測定光を
光電変換してえられる電圧出力をS、反射された参照光
の電圧出力をR5水分による吸収率をm、被測定物に照
射した測定光と参照光のエネルギー量をそれぞれE、お
よびEえとすると、の関係があり、電圧出力S、Rを測
定することにより水分量を知ることができる。
In other words, S is the voltage output obtained by photoelectrically converting the measurement light reflected and absorbed by the object to be measured, R is the voltage output of the reflected reference light, m is the absorption rate by moisture, and is the measurement light irradiated onto the object to be measured. Let E and E be the energy amounts of the reference light, respectively, and there is the following relationship, and by measuring the voltage outputs S and R, the water content can be determined.

また、変換器で電圧出力の比を測定値を示す出力信号に
変換する際には、キャリブレーションにより予め設定さ
れた係数α、βを用い、Y=α+β・In(R/S) のように、電圧出力の比(R/S)を対数変換して1次
近似をし、これによって出力信号Yを得るようにしてい
る。
In addition, when converting the ratio of voltage output into an output signal indicating the measured value using a converter, coefficients α and β set in advance by calibration are used, and Y = α + β · In (R / S). , the voltage output ratio (R/S) is logarithmically transformed to perform first-order approximation, thereby obtaining the output signal Y.

なお、これらの技術は特開昭58−204336に記載
されており公知である。
Incidentally, these techniques are described in Japanese Patent Laid-Open No. 58-204336 and are well known.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、上記のような従来の水分計によれば、水
分量を示す出力信号を電圧出力の比(R/S)の対数変
換と1次近似によって得るようにしているが、塩、塩化
カリウムあるいは臭化カリウム等の場合には乾燥法等に
より測定された実際の水分量と出力信号とが線型関係に
ならず、測定誤差が大きくなるという問題があった。
However, according to the conventional moisture meter described above, the output signal indicating the moisture content is obtained by logarithmic transformation of the voltage output ratio (R/S) and first-order approximation. In the case of potassium bromide, etc., there is a problem in that the actual moisture content measured by a drying method and the output signal do not have a linear relationship, resulting in a large measurement error.

〔問題点を解決するための手段〕[Means for solving problems]

上記の目的を達成するためになした本発明の赤外線水分
測定装置は、被測定物の水分量によって吸収特性が変化
する近赤外線領域の測定光と水分量にかかわりなく吸収
特性が変化しない参照光とを被測定物に照射してこの参
照光と測定光との反射光量を検出する水分検出部と、上
記水分検出部から出力される参照光の反射光量と測定光
の反射光量との比を求める除算手段と、予め設定される
値を係数とするとともに上記除算手段が出力する反射光
量の比を変数とする2次以上の高次多項式の値を演算す
る演算手段とを備え、上記演算手段による演算結果に基
づいて水分量を表示するようにしたことを特徴とする。
The infrared moisture measuring device of the present invention, which has been made to achieve the above object, has a measurement light in the near-infrared region whose absorption characteristics change depending on the moisture content of the object to be measured, and a reference beam whose absorption characteristics do not change regardless of the moisture content of the object to be measured. a moisture detection section that irradiates the object to be measured and detects the amount of reflected light between the reference light and measurement light, and a moisture detection section that detects the amount of reflected light of the reference light and the amount of reflected light of the measurement light output from the moisture detection section. a calculating means for calculating a value of a second-order or higher-order polynomial having a preset value as a coefficient and a ratio of reflected light amounts outputted by the dividing means as a variable; The feature is that the moisture content is displayed based on the calculation result.

〔作 用〕[For production]

水分検出部により、被測定物に照射された測定光と参照
光との反射光量がそれぞれ検出され、この参照光の反射
光量と測定光の反射光量との比が除算手段により求めら
れる。そして、キャリブレーションなどにより予め設定
された値を係数とするとともに上記除算手段が出力する
反射光量の比を変数とする2次以上の高次多項式の値が
演算手段により水分量を示す出力信号として得られ、こ
の出力信号に基づいて水分量の表示が行われる。
The moisture detecting section detects the amount of reflected light of the measuring light and the reference light irradiated onto the object to be measured, and the ratio of the amount of reflected light of the reference light to the amount of reflected light of the measuring light is determined by the dividing means. Then, the value of a second-order or higher-order polynomial whose coefficient is a value preset by calibration or the like and the ratio of the amount of reflected light outputted by the dividing means is used as an output signal indicating the water content by the calculation means. The moisture content is displayed based on this output signal.

〔実施例〕〔Example〕

第1図は本発明の赤外線水分測定装置の一実施例を示す
ブロック図である。
FIG. 1 is a block diagram showing an embodiment of the infrared moisture measuring device of the present invention.

図において、1は水分検出部であり、光源11、集光レ
ンズ12、回転ディスク13、同期信号発生器13a、
反射鏡14、凹面鏡151、凸面鏡152、光電変換器
16、増幅器17、信号分離器18i 、182.18
gおよび加算器19が含まれる。
In the figure, 1 is a moisture detection section, which includes a light source 11, a condensing lens 12, a rotating disk 13, a synchronization signal generator 13a,
Reflector 14, concave mirror 151, convex mirror 152, photoelectric converter 16, amplifier 17, signal separator 18i, 182.18
g and an adder 19.

2は除算手段および演算手段としてのマイクロコンピュ
ータなどによる制御部、3は表示計器であり、後述説明
するように前記水分検出部1で得られる出力信号に基づ
いて表示計器3で測定値の表示が行われる。
Reference numeral 2 denotes a control unit such as a microcomputer as a dividing means and calculation means, and 3 a display instrument, which displays the measured value based on the output signal obtained from the moisture detection section 1, as will be explained later. It will be done.

4はキャリブレーション等を行うときにデータを入力す
るキーボード、5は制御部2のコントローラ28によっ
てデータを出力表示するLED表示器である。
Reference numeral 4 represents a keyboard for inputting data when performing calibration, etc., and reference numeral 5 represents an LED display for outputting and displaying data by the controller 28 of the control unit 2.

回転ディスク13には異なる波長を選択透過する3種類
のフィルタが同心円上に設けられており、光源11から
集光レンズ12を介して放射される光は回転ディスク1
3の回転にともなって、被測定物の水分量によって吸収
特性が変化する近赤外の測定光と2種類の参照光に選択
的に切り替えられる。
Three types of filters that selectively transmit different wavelengths are provided concentrically on the rotating disk 13, and the light emitted from the light source 11 through the condensing lens 12 is transmitted through the rotating disk 1.
3, the light is selectively switched to near-infrared measurement light whose absorption characteristics change depending on the moisture content of the object to be measured and two types of reference light.

この2種類の参照光には、水分量にかかわらず吸収特性
が変化しない近赤外線と、−被測定物の材質などの1つ
の特性によって吸収特性が変化する近赤外線とがそれぞ
れ用いられ、この第1.第2の2種類の参照光によって
被測定物の1つの特性による影響が補正される。
These two types of reference light include near-infrared rays, whose absorption characteristics do not change regardless of the moisture content, and near-infrared rays, whose absorption characteristics change depending on one characteristic such as the material of the object to be measured. 1. The influence of one characteristic of the object to be measured is corrected by the second two types of reference beams.

これら測定光および第1.第2の参照光は反射鏡14を
通してベルトコンベア7上の被測定物6に照射され、反
射光を凹面鏡151および凸面鏡152を介して光電変
換器16に集光される。そして、被測定物6からの反射
光の光量に応じて光電変換器16から出力される信号は
増幅器17で増幅され、信号分離器18s y18t 
y18gに入力される。
These measurement lights and the first. The second reference light is irradiated onto the object to be measured 6 on the belt conveyor 7 through the reflecting mirror 14, and the reflected light is focused onto the photoelectric converter 16 via the concave mirror 151 and the convex mirror 152. Then, a signal outputted from the photoelectric converter 16 according to the amount of reflected light from the object to be measured 6 is amplified by an amplifier 17, and then passed through a signal separator 18s y18t.
Input to y18g.

一方、前記回転ディスク13の近傍に配設された同期信
号発生器13aからは回転ディスク13の回転に同期し
た信号が出力され、この同期信号によって上記信号分離
器18s 、182 .18aは測定光および第1.第
2の参照光のそれぞれの反射光量に応じた信号を分離す
る。
On the other hand, a synchronizing signal generator 13a disposed near the rotary disk 13 outputs a signal synchronized with the rotation of the rotary disk 13, and this synchronizing signal causes the signal separators 18s, 182 . 18a is the measurement light and the first. Separate signals according to respective amounts of reflected light of the second reference light.

信号分離器181からは測定光による信号を分離して測
定光電圧出力Sが得られ、信号分離器182518aは
第1.第2の参照光による信号をそれぞれ分離して加算
器19に入力する。そして、この加算器19からは被測
定物の1つの特性による影響を補正した参照光の出力と
して参照光電圧出力Rが得られる。
The signal separator 181 separates the signal caused by the measurement light to obtain the measurement light voltage output S, and the signal separator 182518a separates the signal caused by the measurement light. The signals from the second reference light are separated and input to the adder 19. Then, from this adder 19, a reference light voltage output R is obtained as an output of the reference light corrected for the influence of one characteristic of the object to be measured.

上記のようにして水分検出部1から出力される測定光電
圧出力Sおよび参照光電圧出力Rは制御部2のマルチプ
レクサ(MPX)21を介してサンプルホールド回路(
SH)22でサンプリングされ、このサンプリングされ
た測定光電圧出力Sおよび参照光電圧出力RはA/D変
換器23でディジタルデータに変換されてRAM24に
格納される。
The measurement optical voltage output S and the reference optical voltage output R outputted from the moisture detection section 1 as described above are passed through the sample and hold circuit (MPX) 21 of the control section 2.
SH) 22, and the sampled measurement optical voltage output S and reference optical voltage output R are converted into digital data by the A/D converter 23 and stored in the RAM 24.

ROM25には演算プログラムが記録されており、この
演算プログラムに基づいてCPU26の制御によって、
参照光電圧信号Rと測定光電圧信号Sの比、 X=  − が算出される。
An arithmetic program is recorded in the ROM 25, and based on this arithmetic program, under the control of the CPU 26,
A ratio between the reference optical voltage signal R and the measured optical voltage signal S, X=-, is calculated.

一方、RAM24にはキャリブレーションによって設定
された係数値α、β、γが予め格納されており、上記参
照光電圧信号Rと測定光電圧信号Sの比Xと、係数値α
、β、Tによって、水分量の測定値、 Y=α+βX+γX2 ・・・・・・(1)が算出され
る。
On the other hand, the coefficient values α, β, and γ set by calibration are stored in the RAM 24 in advance, and the ratio X of the reference optical voltage signal R and the measurement optical voltage signal S, and the coefficient value α
, β, and T, the measured value of water content, Y=α+βX+γX2 (1), is calculated.

そして、この測定値YはD/A変換器27でアナログ信
号に変換されて水分量に対して線型関係を有する出力信
号として出力され、この出力信号によって表示計器3に
水分量が表示される。
This measured value Y is converted into an analog signal by the D/A converter 27 and output as an output signal having a linear relationship with the moisture content, and the moisture content is displayed on the display meter 3 based on this output signal.

第2図〜第4図は実施例の赤外線水分測定装置と従来の
水分計との水分測定の結果を比較して示す図であり、第
2図は精製塩、第3図は塩化カリウム、第4図は臭化カ
リウムについての測定結果をそれぞれ示す。また、第2
図〜第4図において、図(a)は実施例の赤外線水分測
定装置による測定結果を、図(b)は従来の水分計によ
る測定結果を示す。
Figures 2 to 4 are diagrams showing a comparison of the results of moisture measurement between the infrared moisture measuring device of the example and a conventional moisture meter, in which Figure 2 shows purified salt, Figure 3 shows potassium chloride, Figure 4 shows the measurement results for potassium bromide. Also, the second
In Figures 4 to 4, Figure (a) shows the measurement results by the infrared moisture measuring device of the embodiment, and Figure (b) shows the measurement results by the conventional moisture meter.

この第2図〜第4図かられかるように、対数変換と1次
近似によって測定値を得るようにしている従来の水分計
では、測定結果と乾燥法により実測された水分量との誤
差は大きいが、実施例のように高次多項式によって測定
値を得るようにした実施例の装置では、測定値と実測値
との誤差はほとんど生じていない。
As can be seen from Figures 2 to 4, with conventional moisture meters that obtain measured values by logarithmic transformation and first-order approximation, the error between the measurement results and the actual moisture content measured by the drying method is small. Although this is large, in the apparatus of the embodiment in which the measured value is obtained using a high-order polynomial as in the embodiment, there is almost no error between the measured value and the actual measured value.

上記の実施例では、検出した水分量の測定値として2次
の多項式を用いるようにしているが、Y=α+βX+γ
X2+δX3・・・・・・(2)のように、3次の多項
式によって求めるようにすることもできる。
In the above embodiment, a quadratic polynomial is used as the measured value of the detected moisture content, but Y=α+βX+γ
It is also possible to obtain it using a third-order polynomial, such as X2+δX3 (2).

第5図は第2図の場合と同様の精製塩について、3次の
多項式を用いた水分量の測定結果を示す図であり、同図
かられかるように3次の多項式を用いた場合はさらに測
定精度が高められる。
Figure 5 is a diagram showing the results of measuring the water content using a third-order polynomial for the same purified salt as in Figure 2; Furthermore, measurement accuracy is improved.

なお、高次多項式の各項の係数α、β、γ、δ等は前記
のようにキャリブレーションによって設定される。
Note that the coefficients α, β, γ, δ, etc. of each term of the high-order polynomial are set by calibration as described above.

すなわち、制御部2のキーボード4からダミーの係数α
′ 、β′ 、γ′ 、δ′を入力してY’ =α′+
β′X+γ′X2+δ′X3・・・・・・(3)とし、
この(3)式の演算によって被測定物の水分量を測定す
るとともに、乾燥法によって実際の水分量を求める。
That is, the dummy coefficient α is input from the keyboard 4 of the control unit 2.
′ , β′ , γ′ , δ′ and calculate Y' = α′+
β′X+γ′X2+δ′X3・・・・・・(3),
The moisture content of the object to be measured is measured by calculating equation (3), and the actual moisture content is determined by the drying method.

そして測定値Y′から変量Xを算出し、その変量Xと乾
燥法による実測値から高次回帰分析を行って係数α、β
、γ、δが求められる。
Then, a variable X is calculated from the measured value Y', and a high-order regression analysis is performed using the variable
, γ, and δ are obtained.

なお、このような高次回帰分析およびダミーの係数の設
定等はプログラム化して自動的に行うようにすることが
できる。
Note that such higher-order regression analysis, setting of dummy coefficients, etc. can be programmed and automatically performed.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明の赤外線水分測定装置によれ
ば、被測定物に照射した参照光と測定光の反射光量の比
を求め、この反射光量の比の2次以上の高次多項式の値
によって水分量の測定値を得るようにしたので、塩、塩
化カリウム、臭化カリウム等の水分量を正確に測定する
ことができる。
As explained above, according to the infrared moisture measuring device of the present invention, the ratio of the amount of reflected light between the reference light irradiated onto the object to be measured and the measurement light is determined, and the value of the second-order or higher-order polynomial of the ratio of the amount of reflected light is obtained. Since the measured value of the water content is obtained by the method, the water content of salt, potassium chloride, potassium bromide, etc. can be accurately measured.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の赤外線水分測定装置の一実施例のブロ
ック図、 第2図は実施例の赤外線水分測定装置と従来の水分計に
よる精製塩についての測定結果を示す図、 第3図は実施例の赤外線水分測定装置と従来の水分計に
よる塩化カリウムについての測定結果を示す図、 第4図は実施例の”赤外線水分測定装置と従来の水分計
による臭化カリウムについての測定結果を示す図、 第5図は本発明を適用した3次の多項式を用いて測定を
行う赤外線水分測定装置による精製塩についての測定結
果を示す図である。 1・・・水分検出部、2・・・制御部、3・・・表示計
器。 特許出願人  日本たばこ産業株式会社ft;4?ja
g7>  1’/、WEθ         クト’−
f@ f、 プ1ptmeJ(a)         
    (b)第2図 (a)              (b)f純刷n−
力さW回        水8r彎カドW明(a)  
           (b)第4図 3フr%4靜n仁カー
Fig. 1 is a block diagram of an embodiment of the infrared moisture measuring device of the present invention, Fig. 2 is a diagram showing measurement results for purified salt using the infrared moisture measuring device of the embodiment and a conventional moisture meter, and Fig. 3 is a diagram showing measurement results for purified salt using the infrared moisture measuring device of the embodiment and a conventional moisture meter. Figure 4 shows the measurement results for potassium bromide using the infrared moisture measuring device of the example and the conventional moisture meter. Figure 4 shows the measurement results of potassium bromide using the infrared moisture measuring device of the example and the conventional moisture meter. Figure 5 is a diagram showing the measurement results of purified salt by an infrared moisture measuring device that performs measurement using a third-order polynomial to which the present invention is applied.1... Moisture detection section, 2... Control unit, 3...Display instrument. Patent applicant: Japan Tobacco Inc. ft;4?ja
g7>1'/, WEθ ct'-
f@f, pu1ptmeJ(a)
(b) Figure 2 (a) (b) f pure printing n-
Power W times Water 8r Kado W Ming (a)
(b) Figure 4

Claims (1)

【特許請求の範囲】 被測定物の水分量によって吸収特性が変化する近赤外線
領域の測定光と水分量にかかわりなく吸収特性が変化し
ない参照光とを被測定物に照射してこの参照光と測定光
との反射光量を検出する水分検出部と、 上記水分検出部から出力される参照光の反射光量と測定
光の反射光量との比を求める除算手段と予め設定される
値を係数とするとともに上記除算手段が出力する反射光
量の比を変数とする2次以上の高次多項式の値を演算す
る演算手段とを備え、 上記演算手段による演算結果に基づいて水分量を表示す
るようにしたことを特徴とする赤外線水分測定装置。
[Scope of Claims] Measurement light in the near-infrared region whose absorption characteristics change depending on the moisture content of the measured object and reference light whose absorption characteristics do not change regardless of the moisture content are irradiated onto the measured object. a moisture detection section that detects the amount of light reflected from the measurement light; a division means that calculates the ratio between the amount of reflected light of the reference light outputted from the moisture detection section and the amount of reflected light of the measurement light; and a preset value as a coefficient. and a calculation means for calculating the value of a second-order or higher-order polynomial in which the ratio of the amount of reflected light outputted by the division means is a variable, and the water content is displayed based on the calculation result by the calculation means. An infrared moisture measuring device characterized by:
JP62270365A 1987-10-28 1987-10-28 Infrared-ray moisture measuring apparatus Pending JPH01113634A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62270365A JPH01113634A (en) 1987-10-28 1987-10-28 Infrared-ray moisture measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62270365A JPH01113634A (en) 1987-10-28 1987-10-28 Infrared-ray moisture measuring apparatus

Publications (1)

Publication Number Publication Date
JPH01113634A true JPH01113634A (en) 1989-05-02

Family

ID=17485251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62270365A Pending JPH01113634A (en) 1987-10-28 1987-10-28 Infrared-ray moisture measuring apparatus

Country Status (1)

Country Link
JP (1) JPH01113634A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012164440A (en) * 2011-02-03 2012-08-30 Furukawa Battery Co Ltd:The Method of manufacturing electrode plate for lead storage battery
EP2414817A4 (en) * 2009-03-30 2018-01-24 Honeywell Asca, Inc. Spectroscopy having correction for broadband distortion for analyzing multi-component samples
JP2019148607A (en) * 2019-06-12 2019-09-05 Jfeテクノリサーチ株式会社 Inspection device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5566736A (en) * 1978-11-15 1980-05-20 Yokogawa Hokushin Electric Corp Moisture meter

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5566736A (en) * 1978-11-15 1980-05-20 Yokogawa Hokushin Electric Corp Moisture meter

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2414817A4 (en) * 2009-03-30 2018-01-24 Honeywell Asca, Inc. Spectroscopy having correction for broadband distortion for analyzing multi-component samples
JP2012164440A (en) * 2011-02-03 2012-08-30 Furukawa Battery Co Ltd:The Method of manufacturing electrode plate for lead storage battery
JP2019148607A (en) * 2019-06-12 2019-09-05 Jfeテクノリサーチ株式会社 Inspection device

Similar Documents

Publication Publication Date Title
US4627008A (en) Optical quantitative analysis using curvilinear interpolation
US4205913A (en) Determination of the partial pressure and the concentration of a gas
US8035816B2 (en) Method and apparatus for measuring the optical absorption of samples
JPH02306140A (en) Infrared-ray spectrometer
US4467435A (en) Infrared gas analyzer having detector elements of differing types
WO2022118694A1 (en) Gas analysis device and gas analysis method
JPS58103604A (en) Method and device for measuring thickness of film
JPH01113634A (en) Infrared-ray moisture measuring apparatus
JPS6311619B2 (en)
JPS61194332A (en) Method and device for measuring gas concentration
JP3024904B2 (en) Optical gas analyzer
JPS58156837A (en) Measuring device for optical gas analysis
JPH0269639A (en) Laser system gas sensor
US6218665B1 (en) Infrared detector and gas analyzer
JP6530669B2 (en) Gas concentration measuring device
JPH0875642A (en) Infrared gas analyzer
JPH07260680A (en) Infrared ray sensor
JPH0415543A (en) Method and instrument for measuring ozone concentration
JPH04313007A (en) Film inspecting device
JPS5933215B2 (en) Photoacoustic analyzer signal processing circuit
JP3172649B2 (en) Interference correction method for infrared gas analyzer
JPH01235834A (en) Signal processing system of laser system gas sensor
JPS63127127A (en) Light power measuring device
JP6571476B2 (en) Gas concentration measuring device
JPS63263450A (en) Moisture measuring instrument