JPH01112218A - Hydrophobic optical member - Google Patents

Hydrophobic optical member

Info

Publication number
JPH01112218A
JPH01112218A JP62270033A JP27003387A JPH01112218A JP H01112218 A JPH01112218 A JP H01112218A JP 62270033 A JP62270033 A JP 62270033A JP 27003387 A JP27003387 A JP 27003387A JP H01112218 A JPH01112218 A JP H01112218A
Authority
JP
Japan
Prior art keywords
optical member
oxide
hydrophobic
visible rays
transmittivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62270033A
Other languages
Japanese (ja)
Other versions
JP2628319B2 (en
Inventor
Takeshi Owaki
健史 大脇
Yasunori Taga
康訓 多賀
Hiroaki Shinkai
新開 広明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Priority to JP62270033A priority Critical patent/JP2628319B2/en
Publication of JPH01112218A publication Critical patent/JPH01112218A/en
Application granted granted Critical
Publication of JP2628319B2 publication Critical patent/JP2628319B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Surface Treatment Of Optical Elements (AREA)

Abstract

PURPOSE:To obtain a hydrophobic optical member having both hydrophobic characteristic and durability and to improve seeing through characteristic by forming a compound layer having >=90 deg. angle of contact with water and <=5mum thickness consisting of a fluororesin having transmittivity for visible rays and an oxide having also transmittivity for visible rays on a substrate having transmittivity for visible rays. CONSTITUTION:The optical member has a compound layer having >=90 deg. angle of contact with water and <=5mum thickness consisting of a fluoroesin having transmittivity for visible rays and an oxide having also transmittivity for visible rays on a substrate having transmittivity for visible rays. Suitable fluororesin constituting the compound layer is polytetrafluoroethylene (PTFE), tetrafluoroethylene/hexafluoropropylene copolymer (FEP), etc., and suitable oxide is SiO2, Ta2O5, and In2O3. An optical member being transparent to visible rays, and having hydrophobic characteristic and durability is obtd. by combining these materials so as to exhibit superior characteristics.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は自動車等の車両、船舶、航空機および建築物の
窓、ミラーなどに使用される疎水性光学部材に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a hydrophobic optical member used in windows, mirrors, etc. of vehicles such as automobiles, ships, aircraft, and buildings.

(従来技術) 従来、雨天の際や高湿度下において車両、船舶。(Conventional technology) Conventionally, vehicles and ships are used in rainy weather or under high humidity.

航空機、建築物の窓やミラーに使用されているガラスな
どに水滴が付着したり曇りが生じたり視認性が低下する
問題が発生していた。
Problems have arisen in which water droplets adhere to the glass used in windows and mirrors of aircraft and buildings, causing fogging and reducing visibility.

その対策として、1)光学部材の加熱、2)表面の親水
化処理、3)表面の疎水化処理が実施されている。1)
の方法は付着した水を加熱により蒸発させ除去するもの
で加熱装置の組み込みおよびその使用においてコスト高
であるので、限られた場合にのみ使用されているだけで
ある。
As countermeasures, 1) heating of the optical member, 2) surface hydrophilic treatment, and 3) surface hydrophobic treatment are implemented. 1)
This method involves evaporating and removing adhering water by heating, and it is expensive to install and use a heating device, so it is used only in limited cases.

2)の表面の親水化処理は、付着する水を水滴とせず一
様に濡らす方法であり、親水性の界面活性剤や多価アル
コールあるいは親水性重合体を部材表面に被覆する方法
(特開昭53−58492号)、MgFz 、SiOな
どの無機化合物を被覆する方法などがある。しかしなが
ら、−様に水で表面が濡れているため光学部材を通して
みた像が歪みを生じたり、親水性という性質上表面エネ
ルギーが高いため汚れが付着しやすいという欠点を有す
る。
2) Surface hydrophilization treatment is a method of uniformly wetting adhering water without turning it into droplets, and is a method of coating the surface of the member with a hydrophilic surfactant, polyhydric alcohol, or hydrophilic polymer (Unexamined Japanese Patent Publication No. There are methods of coating with inorganic compounds such as MgFz, SiO, etc. However, since the surface is wet with water, the image seen through the optical member may be distorted, and because of its hydrophilic nature, the surface energy is high, so dirt tends to adhere to it.

3)の疎水化処理には、■有機シリコン系またはフッ素
系の疎水剤を塗布またはスプレー法によって表面に被覆
する方法、■フルオロカーボン系またはフッ素系の重合
膜をプラズマ重合法によって被覆する方法(特公昭60
−13065号)。
3) Hydrophobization treatment includes: ■ coating the surface with an organic silicone-based or fluorine-based hydrophobic agent by coating or spraying, and ■ coating the surface with a fluorocarbon-based or fluorine-based polymer film using a plasma polymerization method (specifically). Kosho 60
-13065).

■Ce○2.Tie□などの薄膜をPVD、CVDによ
って被覆する方法がある。
■Ce○2. There is a method of coating a thin film such as Tie□ by PVD or CVD.

疎水性は水の接触角で判断され、実用」−90度以上が
必要とされる。■、■の方法によって形成された物質は
90度以上の水の接触角を有し疎水性に優れているが1
時間と共に劣化したり、摩耗によって脱落し疎水効果が
減退し、耐久性がない。
Hydrophobicity is determined by the contact angle of water, which is required to be -90 degrees or more for practical purposes. The substances formed by methods ① and ② have a water contact angle of 90 degrees or more and are excellent in hydrophobicity;
It deteriorates over time, falls off due to wear, reduces its hydrophobic effect, and is not durable.

特に車両、船舶、航空機などにおいて耐摩耗性などが要
求される所では疎水効果の耐久性が殆どない。また、■
の方法によって形成された薄膜は耐久性及びガラス等と
の密着性に優れているが疎水性能が接触角にして約80
度と、■、■の方法の90度以上に比較して劣っている
In particular, where wear resistance is required in vehicles, ships, aircraft, etc., the durability of the hydrophobic effect is almost non-existent. Also,■
The thin film formed by this method has excellent durability and adhesion to glass, etc., but its hydrophobicity is approximately 80% in terms of contact angle.
degree, which is inferior to 90 degrees or more in methods (■) and (■).

本発明は従来技術における上記問題点を解決するために
なされたものであり、可視光透過性基板上に複合層を形
成し、疎水性と耐久性を兼ね備えた視認性に優れた光学
部材を提供することを目的とする。
The present invention was made to solve the above-mentioned problems in the prior art, and provides an optical member with excellent visibility that has both hydrophobicity and durability by forming a composite layer on a visible light-transmitting substrate. The purpose is to

(発明の説明) 本発明は可視光透過性基板上に水の接触角が90度以上
、厚さが5μm以下で可視光透過性を有するフッ素樹脂
と可視光透過性を有する酸化物とからなる複合層を有す
ることを特徴とする疎水性光学部材に関するものである
(Description of the invention) The present invention consists of a fluororesin that has a visible light transmittance and an oxide that has a visible light transmittance, and has a water contact angle of 90 degrees or more and a thickness of 5 μm or less on a visible light transmittable substrate. The present invention relates to a hydrophobic optical member characterized by having a composite layer.

可視光透過性基板上に形成される複合層の内部において
、フッ素樹脂と酸化物がどのような状態になっているか
明確でないが、該複合層は個々の物質が有する優れた性
質を複合化した性質を有する。すなわち、フッ素樹脂は
水の接触角が90度以上のものを用いているので、水の
接触角が80度と劣っている酸化物が含まれていても該
複合層はフッ素樹脂に近い優れた疎水性を示す。また。
Although it is not clear what state the fluororesin and oxide are in inside the composite layer formed on the visible light transparent substrate, the composite layer combines the excellent properties of the individual substances. have a property. In other words, since the fluororesin used has a water contact angle of 90 degrees or more, even if it contains an oxide with an inferior water contact angle of 80 degrees, the composite layer has an excellent property close to that of the fluororesin. Shows hydrophobicity. Also.

本発明で用いた酸化物は耐摩耗性と上記基板との密着性
に優れているため、複合層の耐摩耗性および基板との密
着性がフッ素樹脂単一層の場合に比し著しく向上し、疎
水性能の耐久性が半永久的に持続する。また、フッ素樹
脂、酸化物ともに可視光透過性を有するので本発明品は
光学部材として可視光に対し透過・反射が必要とされる
場所に広く利用できる。
Since the oxide used in the present invention has excellent abrasion resistance and adhesion to the substrate, the abrasion resistance and adhesion to the substrate of the composite layer are significantly improved compared to a single layer of fluororesin. The durability of hydrophobic performance lasts semi-permanently. Furthermore, since both the fluororesin and the oxide have visible light transmittance, the product of the present invention can be widely used as an optical member in places where transmission and reflection of visible light is required.

(実施態様の説明) 複合層を構成するフッ素樹脂として、ポリテトラフルオ
ロエチレン(PTFE)、テトラフルオ= 5− ロエチレンーへキサフルオロプロピレン共重合体(FE
P)、テトラフルオロエチレン−パーフルオロアルキル
ビニルエーテル共重合体(pFA)。
(Description of embodiments) As the fluororesin constituting the composite layer, polytetrafluoroethylene (PTFE), tetrafluoro-5-roethylene-hexafluoropropylene copolymer (FE
P), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (pFA).

ポリフッ化ビニリデン(PVDF)およびポリクロロト
リフルオロエチレン(PCTFE)などがある。これら
のフッ素樹脂は他の有機材料に比し。
Examples include polyvinylidene fluoride (PVDF) and polychlorotrifluoroethylene (PCTFE). These fluororesins are compared to other organic materials.

耐熱性に優れている。しかしながら、硬度が低く。Excellent heat resistance. However, the hardness is low.

耐摩耗性に劣るのが欠点である。The disadvantage is that it has poor abrasion resistance.

一方、酸化物としては、S ioz 、Ta205およ
びInzOsを用いる。これらの酸化物はフッ素樹脂と
比較すると表面張力が大きいため水の接触角が40〜6
0度と小さく疎水性能は良くないが、可視光に対し透明
で、かつ、高硬度で耐摩耗性に優れている。また、ガラ
スなどとの密着性にも優れている。可視光透過性基板は
窓やミラーなど可視光の透過および反射を利用する所に
使用されるソーダ石灰ガラスなどの無機ガラスや有機樹
脂を用いる。すべての可視光に対して透過性を有する材
料に限定されず、可視光の一領域に透過性を有するもの
でもよい。
On the other hand, Sioz, Ta205, and InzOs are used as the oxides. These oxides have a higher surface tension than fluororesins, so the contact angle of water is 40 to 6.
Although it has a small hydrophobic property of 0 degrees, it is transparent to visible light, has high hardness, and has excellent abrasion resistance. It also has excellent adhesion to glass and the like. The visible light transmitting substrate is made of inorganic glass such as soda lime glass or organic resin, which is used in windows, mirrors, and other places that utilize the transmission and reflection of visible light. The material is not limited to a material that is transparent to all visible light, but may be a material that is transparent to one region of visible light.

本実施態様は上記の材料を組合せそれらの優れた特性を
発現させたものであり、可視光に対し透明であり、かつ
疎水性、耐久性を有する。5i02 、T a 20s
 、  I nz 03は、1種または2種以上をフッ
素樹脂に混合させて用いる。
This embodiment combines the above-mentioned materials to exhibit their excellent properties, and is transparent to visible light, hydrophobic, and durable. 5i02, T a 20s
, Inz 03 is used alone or in combination of two or more in a fluororesin.

複合層中の酸化物の組成は1体積%(以下1体積%をv
o1%と表記する)で25〜75%の範囲内が望ましい
。75%以上の場合は耐久性に優れるが疎水性能が落ち
、水の接触角にして90°以下になる。これに対し、2
5%より酸化物が少ないと耐久性が低下するため疎水性
を長期にわたって維持するのが困難になる。
The composition of the oxide in the composite layer is 1% by volume (hereinafter 1% by volume is v)
o1%) is preferably within the range of 25 to 75%. When it is 75% or more, the durability is excellent, but the hydrophobic performance deteriorates, and the contact angle of water becomes 90° or less. On the other hand, 2
When the oxide content is less than 5%, durability decreases and it becomes difficult to maintain hydrophobicity over a long period of time.

複合層の厚さは0,05〜2μmの範囲が好ましく、2
μmを越えると引っ張り応力により剥離を生じやすい。
The thickness of the composite layer is preferably in the range of 0.05 to 2 μm;
If it exceeds μm, peeling is likely to occur due to tensile stress.

逆に0.05μmより薄いと耐久性が悪くなる。On the other hand, if it is thinner than 0.05 μm, durability will deteriorate.

本実施態様における複合層は物理的蒸着法(PVD)に
よって形成する。
The composite layer in this embodiment is formed by physical vapor deposition (PVD).

PVDにはスパッタ法、蒸着法、イオンブレーティング
法などがある。このうちスパッタ法が200°C以下で
処理でき1層中の組成の制御が容易でかつ形成された層
が緻密であるので最も望ましい。まず、被処理材である
可視光透過性基板をアルコールなどで脱脂した後、真空
処理室内にセラ)L3X10−5To r r以下まで
真空排気する。
PVD includes a sputtering method, a vapor deposition method, an ion blating method, and the like. Among these, the sputtering method is the most preferred because it can be processed at 200° C. or lower, the composition in one layer can be easily controlled, and the formed layer is dense. First, a visible light transmitting substrate, which is a material to be processed, is degreased with alcohol or the like, and then the vacuum processing chamber is evacuated to a temperature below L3X10-5 Torr.

次にArを導入し、3〜5X10−3To r rの雰
囲気中で基板表面にRFイオンエツチングを施す。
Next, Ar is introduced and RF ion etching is performed on the substrate surface in an atmosphere of 3 to 5×10 −3 Torr.

エツチング条件は投入電力30〜100W、5〜30分
程度程度えば十分である。この工程は重要であり、基板
表面を活性化し、複合層の密着性を向上させる。イオン
エツチング後、RF同時スパッタ法によりフッ素樹脂と
酸化物を部材表面に被覆する。この時使用するフッ素樹
脂および酸化物のターゲットは純度99.9%程度の市
販品でよい。
As for the etching conditions, an input power of 30 to 100 W for about 5 to 30 minutes is sufficient. This step is important because it activates the substrate surface and improves the adhesion of the composite layer. After ion etching, the surface of the member is coated with fluororesin and oxide by RF simultaneous sputtering. The fluororesin and oxide targets used at this time may be commercially available products with a purity of about 99.9%.

スパッタリング条件は2通常の表面処理で用いられる条
件、マグネトロンタイプでは3〜5×10−’T o 
r r台のAr雰囲気中で両ターゲットとも200Wま
での投入電力、二極タイプでは2〜4X 10−2To
 r r台のAr中で同様の投入電力で行う。
The sputtering conditions are 2 conditions used in normal surface treatment, and 3 to 5 x 10-'T o for magnetron type.
Input power up to 200W for both targets in an Ar atmosphere of r r, 2 to 4X 10-2To for bipolar type
The test was carried out in Ar of the order of r with the same input power.

(実施例) 実施例1 ソーダ石灰ガラス基板上にRFマグネトロンスパッタに
よって5iO7とPTFEからなる複合層を形成し、そ
の疎水性能を調べた。
(Examples) Example 1 A composite layer consisting of 5iO7 and PTFE was formed on a soda lime glass substrate by RF magnetron sputtering, and its hydrophobic performance was investigated.

まず基板表面をアルコールで脱脂し、真空処理室内に配
置した。該室内をlXl0−5Torrまで排気した後
、Arを導入して5X10−3Torrとし、50Wの
電力を5分間投入しマツチングを行った。基板表面はA
rイオンの衝撃によって。
First, the surface of the substrate was degreased with alcohol and placed in a vacuum processing chamber. After the chamber was evacuated to 1X10-5 Torr, Ar was introduced to bring the temperature to 5X10-3 Torr, and a power of 50 W was applied for 5 minutes to perform matching. The substrate surface is A
by r-ion bombardment.

清浄化された。次に、酸化物としてSiO□、フッ素樹
脂としてPTFEをそれぞれターゲットに用いて、該タ
ーゲットをArイオンによってスパッタし、基板上に複
合層を形成した。スパッタは4、lX10−3To r
 rのAr雰囲気中で各ターゲットに0〜180Wの電
力を投入して30〜300分行った。各ターゲットに印
加する電力を変えることにより複合層中のSiO□の量
を30〜70vo1%と変化させ、またスパッタ時間を
変えて複合層の厚さを変えた。このように作製した複合
層の疎水性能を水の接触角を測定することにより評価し
た。
Cleaned. Next, using SiO□ as the oxide and PTFE as the fluororesin as targets, the targets were sputtered with Ar ions to form a composite layer on the substrate. Sputtering is 4,1X10-3 Tor
Power of 0 to 180 W was applied to each target in an Ar atmosphere of 30 to 300 minutes. The amount of SiO□ in the composite layer was varied from 30 to 70 vol% by changing the power applied to each target, and the thickness of the composite layer was varied by varying the sputtering time. The hydrophobic performance of the composite layer thus prepared was evaluated by measuring the contact angle of water.

また、疎水性能の耐久性を調べるために耐熱試験および
布ふきテストを実施した。
In addition, a heat resistance test and a cloth wiping test were conducted to examine the durability of hydrophobic performance.

耐熱試験は100°Cの大気雰囲気炉中に1時間放置す
ることにより、また、布ふきテストは複合層表面に50
0gの荷重で布を押しつけ1000回繰り返し摺動する
ことにより評価した。第1表に本実施例で評価した複合
層の組成、Nの厚さならびに初期の接触角および耐久性
試験後の接触角を示す。また、同時に比較例として複合
層中のSiO2の量を20vo1%以下および80vo
1%以上とした場合も付記しである。
The heat resistance test was carried out by leaving it in an atmospheric oven at 100°C for 1 hour, and the cloth wiping test was carried out by applying 50% to the surface of the composite layer.
The evaluation was made by pressing the cloth with a load of 0 g and sliding it repeatedly 1000 times. Table 1 shows the composition, N thickness, initial contact angle, and contact angle after the durability test of the composite layer evaluated in this example. At the same time, as a comparative example, the amount of SiO2 in the composite layer was set to 20vo 1% or less and 80vo
An additional note is also provided when the amount is 1% or more.

第1表から明らかなごとく本実施例に係る複合層は、初
期および耐熱試験後において優れた疎水性能を示し、布
ふき試験後においても良好な疎水性能を有する。一方、
比較例として示したSiO2の体積%が75%より多い
場合には、耐久性は良いが疎水性能抱く悪(,5in2
が25体積%より少ない場合には、初期疎水性能は良い
が耐久性が劣っていることが確かめられた。
As is clear from Table 1, the composite layer according to this example exhibits excellent hydrophobic performance both initially and after the heat resistance test, and also has good hydrophobic performance after the cloth wiping test. on the other hand,
When the volume % of SiO2 shown as a comparative example is more than 75%, the durability is good but the hydrophobic performance is poor (5in2
It was confirmed that when the amount was less than 25% by volume, the initial hydrophobic performance was good but the durability was poor.

実施例2 透明アクリル基板上に酸化物としてTatOsまたはI
 n、 Oz 、フッ素樹脂としてPTFE。
Example 2 TatOs or I as an oxide on a transparent acrylic substrate
n, Oz, PTFE as fluororesin.

PVDFまたはPFAを用いた複合層をRFマグネトロ
ンスパッタによって実施例1とほぼ同様の条件で形成し
、その疎水性能を調べた。疎水性能および耐久性は実施
例1と同様に評価した。また比較例として酸化物にTi
 02 、Ant OsまたはZnOを用いた場合につ
いても評価した。第2表に複合層の組成2層の厚さなら
びに初期の接触角および耐久試験後の接触角を示した。
A composite layer using PVDF or PFA was formed by RF magnetron sputtering under substantially the same conditions as in Example 1, and its hydrophobic performance was examined. Hydrophobic performance and durability were evaluated in the same manner as in Example 1. In addition, as a comparative example, Ti
02, Ant Os or ZnO were also evaluated. Table 2 shows the composition of the composite layer, the thickness of the two layers, the initial contact angle, and the contact angle after the durability test.

第2表から明らかなごとく1本実施例に係る複合層は優
れた疎水性およびその耐久性を有する。
As is clear from Table 2, the composite layer according to this example has excellent hydrophobicity and durability.

一方、比較例において用いた酸化物は特に耐久試験後の
疎水性が劣っていた。
On the other hand, the oxide used in the comparative example had poor hydrophobicity especially after the durability test.

Claims (4)

【特許請求の範囲】[Claims] (1)可視光透過性基板上に、水の接触角が90度以上
、厚さが5μm以下で可視光透過性を有するフッ素樹脂
と可視光透過性を有する酸化物とからなる複合層を有す
ることを特徴とする疎水性光学部材。
(1) On a visible light transparent substrate, there is a composite layer with a water contact angle of 90 degrees or more and a thickness of 5 μm or less, consisting of a fluororesin that is transparent to visible light and an oxide that is transparent to visible light. A hydrophobic optical member characterized by:
(2)フッ素樹脂はポリテトラフロロエチレン(PTF
E)、テトラフルオロチレン−ヘキサフルオロプロピレ
ン共重合体(FEP)、テトラフルオロエチレン−パー
フルオロアルキルビニルエーテル共重合体(PFA)、
ポリフッ化ビニリデン(PVDF)またはポリクロロト
リフルオロエチレン(PCTFE)の1種または2種以
上である特許請求の範囲第(1)項記載の疎水性光学部
材。
(2) Fluororesin is polytetrafluoroethylene (PTF)
E), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA),
The hydrophobic optical member according to claim (1), which is one or more of polyvinylidene fluoride (PVDF) and polychlorotrifluoroethylene (PCTFE).
(3)酸化物はSiO_2、Ta_2O_5またはIn
_2O_3の1種または2種以上である特許請求の範囲
第(1)項記載の疎水性光学部材。
(3) The oxide is SiO_2, Ta_2O_5 or In
The hydrophobic optical member according to claim (1), which is one or more of _2O_3.
(4)複合層中の酸化物の体積割合は25〜75%であ
る特許請求の範囲第(1)項記載の疎水性光学部材。
(4) The hydrophobic optical member according to claim (1), wherein the volume proportion of the oxide in the composite layer is 25 to 75%.
JP62270033A 1987-10-26 1987-10-26 Hydrophobic optical member and method for manufacturing the same Expired - Lifetime JP2628319B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62270033A JP2628319B2 (en) 1987-10-26 1987-10-26 Hydrophobic optical member and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62270033A JP2628319B2 (en) 1987-10-26 1987-10-26 Hydrophobic optical member and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JPH01112218A true JPH01112218A (en) 1989-04-28
JP2628319B2 JP2628319B2 (en) 1997-07-09

Family

ID=17480596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62270033A Expired - Lifetime JP2628319B2 (en) 1987-10-26 1987-10-26 Hydrophobic optical member and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2628319B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07333404A (en) * 1994-02-15 1995-12-22 Dainippon Printing Co Ltd Optical functional membrane, optical functional film, antidazzle antireflection film, its production, polarizing plate and liquid crystal display device
DE102005021087A1 (en) * 2005-05-06 2006-11-09 Rehau Ag + Co. Coating, useful for light sources, preferably fluorescent tubes, comprises at least one part-crystalline fluorine polymer and at least one component of an organic- and inorganic UV absorber, where the coat has a specific thickness

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5687001A (en) * 1979-12-17 1981-07-15 Nippon Kogaku Kk <Nikon> Formation of fog resistant film
JPS6242242A (en) * 1985-08-20 1987-02-24 Matsushita Electric Ind Co Ltd Supervisory unit for cpu abnormality

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5687001A (en) * 1979-12-17 1981-07-15 Nippon Kogaku Kk <Nikon> Formation of fog resistant film
JPS6242242A (en) * 1985-08-20 1987-02-24 Matsushita Electric Ind Co Ltd Supervisory unit for cpu abnormality

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07333404A (en) * 1994-02-15 1995-12-22 Dainippon Printing Co Ltd Optical functional membrane, optical functional film, antidazzle antireflection film, its production, polarizing plate and liquid crystal display device
DE102005021087A1 (en) * 2005-05-06 2006-11-09 Rehau Ag + Co. Coating, useful for light sources, preferably fluorescent tubes, comprises at least one part-crystalline fluorine polymer and at least one component of an organic- and inorganic UV absorber, where the coat has a specific thickness

Also Published As

Publication number Publication date
JP2628319B2 (en) 1997-07-09

Similar Documents

Publication Publication Date Title
CA2120875C (en) Durable low-emissivity solar control thin film coating
CA2366406C (en) Double silver low-emissivity and solar control coatings
BE1009536A5 (en) Bearing substrate coating and manufacturing method thereof.
US5756192A (en) Multilayer coating for defrosting glass
AU657014B2 (en) Durable low-emissivity solar control thin film coating
TW459058B (en) Dual titanium nitride layers for solar control
WO1997027997A1 (en) Methods and apparatus for providing an absorbing, broad band, low brightness antireflection coating
WO2014119683A1 (en) Method for producing infrared radiation reflecting film
US3998991A (en) Transparent abrasion-resistant coating for a styrene acrylonitrile copolymer and method
JPS6059864B2 (en) Articles with composite membranes
CN101493534B (en) Dereflection screen of display and method for making same
FR3038595A1 (en) GLAZING COMPRISING A FUNCTIONAL COATING BASED ON SILVER AND INDIUM
JPH01112218A (en) Hydrophobic optical member
JPH03187735A (en) Selective permeable membrane
JPH07104102A (en) Water repellant reflection preventive film for glass-made optical parts and production thereof
WO2001087789A1 (en) Method for imparting hydrophilicity to substrate
JP3200637B2 (en) Heat shielding glass
EP0872570B1 (en) Synthetic resin moldings and process for producing the same
JPH04300227A (en) Glass coated with thin tisin film
CA3104401A1 (en) Glazing comprising a stack of thin layers acting on solar radiation and a barrier layer
JP4018420B2 (en) Antifogging antireflection film, optical member using the same, and method of forming antifogging antireflection film
JPH07270601A (en) Optical thin film
JP7476564B2 (en) Superhydrophilic film, its manufacturing method, and optical member
JPH03255401A (en) Formation of mgf2 film on plastic substrate
JP2003139909A (en) Conductive antireflection film and glass panel for cathode ray tube