JPH01110239A - Precise differential refractometer - Google Patents

Precise differential refractometer

Info

Publication number
JPH01110239A
JPH01110239A JP26737287A JP26737287A JPH01110239A JP H01110239 A JPH01110239 A JP H01110239A JP 26737287 A JP26737287 A JP 26737287A JP 26737287 A JP26737287 A JP 26737287A JP H01110239 A JPH01110239 A JP H01110239A
Authority
JP
Japan
Prior art keywords
section
telescope
collimator
light
box frame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26737287A
Other languages
Japanese (ja)
Inventor
Akira Masumura
増村 明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ohara Inc
Original Assignee
Ohara Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ohara Inc filed Critical Ohara Inc
Priority to JP26737287A priority Critical patent/JPH01110239A/en
Publication of JPH01110239A publication Critical patent/JPH01110239A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length
    • G01N21/4133Refractometers, e.g. differential
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length
    • G01N21/4133Refractometers, e.g. differential
    • G01N2021/4146Differential cell arrangements

Abstract

PURPOSE:To eliminate the unstableness of optical axes at parts of an optical system due to a geometric change or the like caused by mechanical vibration and aging of material of apparatus, by fastening on a box frame body a collimator section and a telescope section optically connected with a retroreflector. CONSTITUTION:Light from a light source 2 is condensed onto a slit 6 via a condenser lens 3 and a small reflection mirror 4 and passes through a collimator section 8 to emit a parallel light beam. This parallel light beam is turned back reversely with a retroreflector (corner cube) 13 maintaining parallelism with an outgoing light and incident into a telescope objective mirror 9 via a differential section 18 with a V-block prism 16 which carries a reference sample or a sample 17 to be inspected on a sample base 15 to form an image of the slit 6. The position of the image is measured with a light position detector 19. It should be noted that a telescope section 11 provided with the collimator section 8, a lens section 9 and an opening 10 is fastened on a one-piece stainless steel box frame body 5 divided vertically in two inside along an optical path thereof.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、固体または液体の屈折率測定に用いられる精
密示差屈折計に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a precision differential refractometer used for measuring the refractive index of solids or liquids.

[従来の技術] 従来から、固体または液体の屈折率測定装置として、示
差屈折計が知られている。この装置は、通常、末尾図面
第5図に示すとおり、光線径路に従い、定盤1上におい
て、直線的に、順次、単色光源部2、スリット6と対物
レンズ7を備えたコリメーター8、屈折率値既知のVブ
ロックプリズムまたは被検体溶液収納Vプリズムセル1
6を備えた示差部18、対物レンズ9を備えた望遠鏡1
1、および望遠鏡11にはスリット6の結像位置を測定
するための測微計または光位置検出器19が配置されて
いる。測定操作は、例えば、固体試料の場合、予め、■
ブロックプリズム上にこれと同じ屈折率を有し、かつ頂
角が90’である基準試料をこれとほぼ同等の屈折率を
有する液膜を介し載置して、基準合わせの測定を行ない
、ついで被検体試料を同様に測定して前者の測定との差
異から被検体試料の屈折率を判定している。
[Prior Art] A differential refractometer has been known as a solid or liquid refractive index measuring device. Usually, as shown in FIG. 5 of the appendix, this device linearly and sequentially moves a monochromatic light source section 2, a collimator 8 having a slit 6 and an objective lens 7, and a refractor on a surface plate 1 according to a light beam path. V-block prism with known rate value or V-prism cell containing sample solution 1
6, a telescope 1 equipped with a differential section 18 and an objective lens 9.
1 and the telescope 11, a micrometer or optical position detector 19 for measuring the imaging position of the slit 6 is arranged. For example, in the case of a solid sample, the measurement operation is performed in advance by
A reference sample having the same refractive index and an apex angle of 90' is placed on the block prism via a liquid film having approximately the same refractive index, and measurement is performed for reference alignment. The object sample is similarly measured, and the refractive index of the object sample is determined from the difference from the former measurement.

[解決しようとする問題点] しかしながら、前記従来の技術において、測定精度を向
上させるためには、設計上、コリメーターおよび望遠鏡
の焦点距離をそれぞれ長くする必要があり、従って、こ
れらを直線上に配置した装置は、全体が甚だ長大なもの
となっている。このため、従来の示差屈折計は、機械的
安定性が悪く、振動や定盤の経時変化によるたわみ等の
影響を受けて、コリメーターや望遠鏡に位置ズレを生じ
て、光学系各部の光軸の角度安定性が悪化し、高い測定
精度を得がたいという欠点がある。
[Problem to be solved] However, in the conventional technology described above, in order to improve the measurement accuracy, it is necessary to increase the focal length of the collimator and the telescope due to the design. The installed equipment is extremely large. For this reason, conventional differential refractometers have poor mechanical stability, and are affected by vibrations and deflection due to changes in the surface plate over time, which can cause misalignment of the collimator and telescope, and the optical axis of each part of the optical system. The disadvantage is that the angular stability deteriorates, making it difficult to obtain high measurement accuracy.

本発明は、前記従来技術の有する欠点にかんがみ、機械
的安定性に優れ、−段と高精度な精密示差屈折計を提供
することを目的とする。
SUMMARY OF THE INVENTION In view of the drawbacks of the prior art, it is an object of the present invention to provide a precision differential refractometer with excellent mechanical stability and extremely high precision.

[問題点を解決するための手段] 木兄切者は、前記目的を達成するため、種々試験研究を
重ねたところ、コリメーター部と望遠鏡部を強固な箱枠
体に固設するとともに、上記コリメーター部と望遠鏡部
との光路間に、位置の微小変動があっても入反射両光線
の角度関係を正確に一定維持するレトロレフレクタ−を
配置して上記両部を結合することにより、前記目的を達
成し得ることをみいだし、本発明を完成させるに至った
[Means for solving the problem] In order to achieve the above-mentioned purpose, Ki-ai Kirisha conducted various tests and research, and found that the collimator section and the telescope section were fixed to a strong box frame body, and the above-mentioned solution was achieved. By arranging a retroreflector between the optical paths of the collimator section and the telescope section, which maintains the angular relationship between the incident and reflected rays accurately and constant even if there is a slight change in position, the two sections are coupled together. The inventors have found that the above object can be achieved and have completed the present invention.

すなわち、本発明にかかる精密示差屈折計の構成の特徴
は、光線径路に従い、順次、光源部、コリメーター部、
示差部、望遠鏡部および光位置検出器を備えた示差屈折
計において、コリメーター部と望遠鏡部を強固な箱枠体
に固設するとともに、コリメーター部から出射された光
線を逆方向に平行に折り返して望遠鏡部に入射するよう
、コリメーター部と望遠鏡部との光路間にレトロレフレ
クタ−を設けたことにある。
That is, the feature of the configuration of the precision differential refractometer according to the present invention is that the light source section, collimator section, and
In a differential refractometer equipped with a differential section, a telescope section, and an optical position detector, the collimator section and telescope section are fixed to a strong box frame, and the light rays emitted from the collimator section are directed in parallel in opposite directions. The reason is that a retroreflector is provided between the optical path of the collimator section and the telescope section so that the light is reflected back and enters the telescope section.

上記本発明の精密示差屈折計において、コリメーター部
と望遠鏡部は箱枠体内に並列配置されている場合、他の
配置形態に比べ単純であるので好ましい。また、これら
両部の内部構成は、いずれもレンズ系または反射系のい
ずれであってもよく、または両部が互いに異なる系の組
合わせであってもよい。しかし、広い範囲の波長に渡っ
て色収差を避け、またUV光線の強度を減らすことなく
測定するためには、反射光学系をコリメーター部および
望遠鏡部の双方に備えることが一段と好ましい。
In the precision differential refractometer of the present invention, it is preferable that the collimator section and the telescope section are arranged in parallel within the box frame because this arrangement is simpler than other arrangements. Further, the internal configurations of both of these parts may be either a lens system or a reflection system, or both parts may be a combination of different systems. However, in order to avoid chromatic aberration over a wide range of wavelengths and to measure without reducing the intensity of the UV light, it is even more preferable to provide reflective optical systems in both the collimator section and the telescope section.

なお本発明の精密示差屈折計において、光源部、レトロ
レフレクタ−および示差部は、一般に、適正位置に設置
後、微小な位置変動があっても測定精度に影響を及ぼさ
ないので、定盤上に直接設置し得るが、光位置検出器は
望遠鏡箱枠体部に固設されていることが望ましい。゛ [実施例] 実施例1 本発明にかかる精密示差屈折計の実施例をレンズ光学系
のコリメーターおよび望遠鏡、並びに光路媒体を用いた
レトロレフレクタ−(コーナーキューブ)を備えた場合
の固体屈折率測定用屈折計について、図面に即して説明
する。
In the precision differential refractometer of the present invention, the light source section, retroreflector, and differential section are generally placed on the surface plate, since even minute positional fluctuations do not affect measurement accuracy after they are installed at appropriate positions. However, it is preferable that the optical position detector is fixedly attached to the telescope box frame.゛[Example] Example 1 Solid-state refraction when an example of the precision differential refractometer according to the present invention is equipped with a collimator of a lens optical system, a telescope, and a retroreflector (corner cube) using an optical path medium. The refractometer for index measurement will be explained with reference to the drawings.

第1図は、装置全体の一部透視平面図であり、第2図は
、第1図X−Y線の一部切断側面図である。この屈折計
装置は、図示していない除振台上に設置した定盤l、単
色光源2、集光レンズ3、小型平面反射鏡4、光路に沿
って内部を縦に二分割した一体構造のステンレス鋼製箱
枠体5、箱枠体5の一分割部に付設したスリット6およ
び対物レンズ7を備えたコリメーター部8、箱枠体5の
他方の分割部に上記コリメーター部8と並列してその光
軸と平行な光軸を有するレンズ9および開口10を備え
た望遠鏡部11.光路筒12、支持体14によって支持
されたコーナーキューブ13、試料台15上において基
準試料または被検体試料17を載置するVブロックプリ
ズム16を有する示差部18、箱枠体5に固設した支持
台20上に固定された光位置検出器19を備えている。
FIG. 1 is a partially transparent plan view of the entire apparatus, and FIG. 2 is a partially cutaway side view taken along line X--Y in FIG. This refractometer device consists of a surface plate L installed on an anti-vibration table (not shown), a monochromatic light source 2, a condensing lens 3, a small flat reflector 4, and an integral structure in which the interior is vertically divided into two along the optical path. A stainless steel box frame 5, a collimator section 8 equipped with a slit 6 and an objective lens 7 attached to one division of the box frame 5, and a collimator section 8 attached to the other division of the box frame 5 in parallel with the collimator section 8. and a telescope section 11, which includes a lens 9 and an aperture 10, each having an optical axis parallel to the optical axis of the telescope section 11. An optical path tube 12 , a corner cube 13 supported by a support 14 , a differential section 18 having a V-block prism 16 on which a reference sample or a subject sample 17 is placed on a sample stage 15 , and a support fixed to the box frame 5 An optical position detector 19 fixed on a table 20 is provided.

この光位置検出器は、図示していない振動スリット、微
小移動装置、測微計および光電検知器からなっている。
This optical position detector consists of a vibrating slit, a micro-movement device, a micrometer, and a photoelectric detector (not shown).

図において、光源2から発した光は、集光レンズ3およ
び小型反射鏡4を経てスリット6上に集光され、コリメ
ーター部8を通過して平行光線を出射する。この平行光
線は、コーナーキューブ13により、出射光の光軸に対
し平行関係を維持しつつ逆向きに折り返され、示差部1
8をへて。
In the figure, light emitted from a light source 2 passes through a condenser lens 3 and a small reflecting mirror 4, is condensed onto a slit 6, passes through a collimator section 8, and is emitted as a parallel beam. This parallel light ray is turned back in the opposite direction by the corner cube 13 while maintaining a parallel relationship with the optical axis of the emitted light, and the differential section 1
Go to 8.

望遠鏡対物レンズ9に入射しスリット6の像を結ぶ。こ
の像の位置は光位置検出器19によって測定される。
The light enters the telescope objective lens 9 and forms an image of the slit 6. The position of this image is measured by an optical position detector 19.

本実施例の構成による屈折計を用いて、被検体の屈折率
を日常の作業環境下において測定したところ、従来の屈
折計では10−5のオーダーの屈折率値を保証するのが
精−杯であったのに対し、10−6のオーダーの値を容
易に保証することができ、測定精度が格段に向上した。
When the refractive index of a subject was measured in a daily work environment using the refractometer configured in this example, it was found that conventional refractometers were unable to guarantee a refractive index value on the order of 10-5. On the other hand, it was possible to easily guarantee a value on the order of 10-6, and the measurement accuracy was significantly improved.

実施例2 本発明にかかる精密示差屈折計の他の実施例を反射光学
系のコリメーターおよび望遠鏡、並びに光路媒体を用い
ないアクロマチイック・レトロレフレクタ−を備えた場
合の固体屈折率測定用屈折計について、同様に述べる。
Example 2 Another example of the precision differential refractometer according to the present invention is used for solid refractive index measurement when equipped with a reflective optical system collimator and telescope, and an achromatic retroreflector that does not use an optical path medium. A similar statement will be made regarding the refractometer.

第3図は、本実施例の一部透視平面図であり、第4図は
第3図X−Y線の一部切断側面図である。図において、
この屈折計は、定盤l、白色または単色光源2、石英製
集光レンズ3、任意波長の光を選択可能なモノクロメー
タ−21、集光光学系装置22、小型平面反射鏡4、前
記実施例1と同様、内部を縦に二分割した一体構造の鋳
鉄製箱枠体5′、箱枠体5′の一分割部に付設したスリ
ット6および同一垂直面上を斜めに対向配置した上部平
面反射鏡23と下部凹面反射鏡24とを備えたコリメー
ター部8′、コリメーター部8′と同様に配置した下部
凹面反射鏡26と上部平面反射鏡25を備え、かつコリ
メーター部8′の光軸と平行な光軸を与えて並列配置し
た望遠鏡部11′、支持体14に固設したアクロマチイ
ック・レトロレフレクタ−13′、および支持台20上
に固定し、広い波長域を測定可能な高感度CODを有す
る光位置検出器19’を備えている。
FIG. 3 is a partially transparent plan view of this embodiment, and FIG. 4 is a partially cutaway side view taken along line X--Y in FIG. In the figure,
This refractometer includes a surface plate 1, a white or monochromatic light source 2, a quartz condensing lens 3, a monochromator 21 capable of selecting light of any wavelength, a condensing optical system device 22, a small flat reflecting mirror 4, and the above-mentioned implementation. Similar to Example 1, the cast iron box frame 5' has an integral structure with the interior vertically divided into two parts, the slit 6 attached to one division of the box frame 5', and the upper planes arranged diagonally opposite each other on the same vertical plane. A collimator section 8' includes a reflector 23 and a lower concave reflector 24, a lower concave reflector 26 and an upper flat reflector 25 arranged in the same manner as the collimator section 8', and the collimator section 8' A telescope section 11' arranged in parallel with the optical axis parallel to the optical axis, an achromatic retroreflector 13' fixed on the support 14, and fixed on the support 20 measure a wide wavelength range. It is equipped with an optical position detector 19' with possible high sensitivity COD.

この反射光学系の屈折計では、高精度を維持するため、
コリメーター部と望遠鏡部は、長焦点とし、しかも収差
を打消す設計とする必要から、上記の構造がとられてい
る。コリメーター部8′に入射した光は、上部平面反射
鏡23で反射し、ついで下部凹面反射鏡24で再び反射
し平行光線となって出射した後、レフレクタ−13’に
向い。
This reflective optical system refractometer maintains high accuracy by
The collimator section and the telescope section have the above structure because they need to have a long focal point and are designed to cancel out aberrations. The light incident on the collimator section 8' is reflected by the upper plane reflecting mirror 23, then reflected again by the lower concave reflecting mirror 24, and is emitted as parallel light beams, which are then directed toward the reflector 13'.

示差部18を経て、望遠鏡部11’に入り、下部凹面反
射鏡26で反射、集光し、上部平面反射鏡25で反射し
て、光位置検出器19’で焦点を結ぶ。
The light passes through the differential section 18, enters the telescope section 11', is reflected and condensed by the lower concave reflecting mirror 26, is reflected by the upper flat reflecting mirror 25, and is focused by the optical position detector 19'.

本実施例の屈折計において、被検体の屈折率を測定した
ところ、前記実施例1と同様1O−6のオーダーの値を
容易に保証することができた。そのうえ、本実施例の屈
折計は、光学系全体が可視光線はもとより紫外線、赤外
線にわたる広い波長域から任意の波長を選択して測定し
得るので、測定の応用範囲が非常に広い利点がある。
When the refractive index of the object was measured using the refractometer of this example, it was possible to easily guarantee a value on the order of 1O-6, as in Example 1. Furthermore, the refractometer of this embodiment has the advantage that the entire optical system can select any wavelength from a wide wavelength range ranging from visible light to ultraviolet rays and infrared rays, so that the measurement can be applied in a very wide range of applications.

以上、実施例について述べたが、本発明の精密示差屈折
計は、上記実施例に限られず、例えば箱枠体内のコリメ
ーター部と望遠鏡部は、垂直面並列配置であってもよく
、また必ずしもこれらを並列配置しなくともよく、ざら
に箱枠体の材料は機械強度が十分な公知の低膨張性のセ
ラミクスや金属であってもよい等1本発明の基本的技術
思想を逸脱しない範囲で適宜変更し得る。
Although the embodiments have been described above, the precision differential refractometer of the present invention is not limited to the above embodiments. For example, the collimator section and the telescope section within the box frame may be arranged in parallel on a vertical plane, and are not necessarily limited to the above embodiments. It is not necessary to arrange these in parallel, and the material of the box frame body may be a known low-expansion ceramic or metal with sufficient mechanical strength, etc., as long as it does not deviate from the basic technical idea of the present invention. It can be changed as appropriate.

[発明の効果] 以上説明したとおり、本発明の精密示差屈折計は、前記
レトロレフレクタ−を導入することによって、コリメー
ター部と望遠鏡部を光学的に結合し、これらを箱枠体に
固設することによって、機械的振動や装置材料の経時に
よる形状変化などによる光学系各部の光軸の不安定性を
排除したので、従来より一段と優れた高精度の屈折率測
定を容易かつ安定して行なうことができる。
[Effects of the Invention] As explained above, the precision differential refractometer of the present invention optically couples the collimator section and the telescope section by introducing the retroreflector, and fixes them to the box frame. This eliminates the instability of the optical axis of each part of the optical system due to mechanical vibrations or changes in the shape of the equipment material over time, making it easier and more stable to measure refractive index with higher precision than before. be able to.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例の一部透視平面図であり、
第2図は第1図X−Y線の一部切断側面図である。第3
図および第4図は、本発明の他の実施例の同様の図であ
る。第5図は、従来の装置の側面図である。 (記号) 2・・Φ・・・・・・光源 3・・・参・・・・・集光レンズ 4・・・・・・・・・小型平面反射鏡 6・・・・働・・・・スリット 7.9・・・・・・・対物レンズ 8.8′・・・・・・コリメーター部 10.10’・・・・開口部 11.11′・・・・望遠鏡部 13.13’・−・・レトロレフレクタ−16・・・・
・・拳−■ブロックプリズム17・会・・・・・・試料 19.19’・・・・光位置検出器 21−・・・・・・・モノクロメータ−22・・・・・
・・・集光光学系装置 23.25・−・・・平面反射鏡 24.26争・・・・凹面反射鏡 特許出願人  株式会社 オ ハ ラ
FIG. 1 is a partially transparent plan view of an embodiment of the present invention;
FIG. 2 is a partially cutaway side view taken along line X-Y in FIG. 1. Third
and FIG. 4 are similar views of other embodiments of the invention. FIG. 5 is a side view of a conventional device. (Symbol) 2...Φ...Light source 3...Reference...Condenser lens 4...Small flat reflector 6...Work...・Slit 7.9...Objective lens 8.8'...Collimator section 10.10'...Aperture 11.11'...Telescope section 13.13 '...Retroreflector-16...
...Fist -■Block prism 17・Meeting...Sample 19.19'...Optical position detector 21-...Monochromator-22...
... Condensing optical system device 23.25 - ... Planar reflector 24.26 Conflict ... Concave reflector Patent applicant OHARA Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] (1)光線径路に従い、順次、光源部、コリメーター部
、示差部、望遠鏡部および光位置検出器を備えた示差屈
折計において、コリメーター部と望遠鏡部を箱枠体に固
設するとともに、コリメーター部と望遠鏡部との光路間
にレトロレフレクターを設けたことを特徴とする精密示
差屈折計。
(1) In a differential refractometer equipped with a light source section, a collimator section, a differential section, a telescope section, and an optical position detector, the collimator section and the telescope section are fixed to the box frame body in order according to the beam path, and A precision differential refractometer characterized by a retroreflector provided between the optical path of the collimator section and the telescope section.
(2)コリメーター部と望遠鏡部を並列配置して箱枠体
に固設したことを特徴とする特許請求の範囲第(1)項
記載の精密示差屈折計。
(2) A precision differential refractometer according to claim (1), characterized in that the collimator section and the telescope section are arranged in parallel and fixed to the box frame.
(3)コリメーター部および望遠鏡部が反射光学系であ
ることを特徴とする特許請求の範囲第(1)項および第
(2)項記載の精密示差屈折計。
(3) A precision differential refractometer according to claims (1) and (2), wherein the collimator section and the telescope section are reflective optical systems.
JP26737287A 1987-10-23 1987-10-23 Precise differential refractometer Pending JPH01110239A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26737287A JPH01110239A (en) 1987-10-23 1987-10-23 Precise differential refractometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26737287A JPH01110239A (en) 1987-10-23 1987-10-23 Precise differential refractometer

Publications (1)

Publication Number Publication Date
JPH01110239A true JPH01110239A (en) 1989-04-26

Family

ID=17443922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26737287A Pending JPH01110239A (en) 1987-10-23 1987-10-23 Precise differential refractometer

Country Status (1)

Country Link
JP (1) JPH01110239A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009540316A (en) * 2006-06-14 2009-11-19 バイオクロム リミテッド Analysis equipment
CN106841034A (en) * 2017-01-24 2017-06-13 上海胤飞自动化科技有限公司 Optical cores module, non-maintaining online refractometer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009540316A (en) * 2006-06-14 2009-11-19 バイオクロム リミテッド Analysis equipment
CN106841034A (en) * 2017-01-24 2017-06-13 上海胤飞自动化科技有限公司 Optical cores module, non-maintaining online refractometer

Similar Documents

Publication Publication Date Title
KR100225923B1 (en) Phase shifting diffraction interferometer
US5712705A (en) Arrangement for analysis of substances at the surface of an optical sensor
EP0094835A1 (en) Apparatus for investigation of a surface
US3966324A (en) Laser doppler anemometer
JPS62197711A (en) Optically image forming type non-contacting position measuring apparatus
JPS5979104A (en) Optical device
JPH01110239A (en) Precise differential refractometer
US3432239A (en) Optical instruments of the interference type
JPS6333659B2 (en)
US4576447A (en) Compact, single piece laser beam analyzer
US6762889B2 (en) Compact telephoto lens for grating scale position measuring system
Riedel Optics for tunable diode laser spectrometers
US4367648A (en) Dark field viewing apparatus
US2319889A (en) Refractometer
RU2186336C1 (en) Interferometer to measure form of surface of optical articles
SU1631373A1 (en) Refractometer for transparent plates
RU1825418C (en) Photometer
JPH0244204A (en) Optical fiber type interference film thickness meter
JPH0634335A (en) Shearing interfering method and radial shear element
SU1543308A1 (en) Device for measuring absolute coefficients of mirror reflection
JP3214063B2 (en) Hologram interferometer
SU1633272A1 (en) Interferometer
JPS605896B2 (en) Reflectance measuring device
SU1200136A1 (en) Arrangement for measuring spectral characteristics of star simulators
SU1413417A1 (en) Microinterferometer for measuring surface roughness