JPH01109706A - Toroidal magnet - Google Patents

Toroidal magnet

Info

Publication number
JPH01109706A
JPH01109706A JP62266992A JP26699287A JPH01109706A JP H01109706 A JPH01109706 A JP H01109706A JP 62266992 A JP62266992 A JP 62266992A JP 26699287 A JP26699287 A JP 26699287A JP H01109706 A JPH01109706 A JP H01109706A
Authority
JP
Japan
Prior art keywords
coil
toroidal
container
cooling
coil container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62266992A
Other languages
Japanese (ja)
Other versions
JP2739159B2 (en
Inventor
Nobuharu Miki
三木 信晴
Katsuyoshi Toyoda
豊田 勝義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Japan Atomic Energy Agency
Original Assignee
Japan Atomic Energy Research Institute
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Energy Research Institute, Mitsubishi Electric Corp filed Critical Japan Atomic Energy Research Institute
Priority to JP62266992A priority Critical patent/JP2739159B2/en
Publication of JPH01109706A publication Critical patent/JPH01109706A/en
Application granted granted Critical
Publication of JP2739159B2 publication Critical patent/JP2739159B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

PURPOSE:To enable a toroidal magnet to be cooled sufficiently even in a large experimental nuclear fusion reactor or power reactor, by providing a cooling path for cooling a coil reactor between the coil container and a toroidal coil. CONSTITUTION:A toroidal magnet 10 has a cooling path 11 which is formed as projections or recesses on the inner surface of a coil container 3 on the side of a toroidal coil 2. Thus, the coil container 3 can be initially cooled by passing refrigerant through the cooling path 11. Further, the need of providing a cooling tube 4 is obviated and, therefore, the external sides of the coil container can be utilized well as a space for arranging electromagnetic force support structural member between toroidal magnets 10. The coil container 3 can be cooled from the inside even if it is subjected to nuclear heat generation. In this manner, the toroidal coil can be prevented from being increased in temperature by nuclear heat generation and, hence, it can operate stably even in a large experimental nuclear fusion unit.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は1強制冷却超電2x体を巻回してなるトロイ
ダルコイルと、このトロイダルコイルの電磁力を支持す
るためにトロイダルコイルを収納したコイル容器とから
なるトロイダルマグネットに関するものである、 〔従来の技術〕 第v図は例えば”アイ イー イー イー トランザク
ション オフ?ダネテイクス(IEEE TRANSA
CTrON ONMAGNETIC8,VOLoMAG
 −/7 、/7Jt (/PI/ )”K示されたト
ロイダルマグネット(1)を示す一部断面側面図で、核
融合装置ではトロイダルマグネット(1)は複数個放射
状に配設されている。このトロイダルマグネット(1)
は、トロイダルコイル(コ)と。
[Detailed Description of the Invention] [Field of Industrial Application] This invention relates to a toroidal coil formed by winding two forcedly cooled superelectric bodies, and a coil housing the toroidal coil to support the electromagnetic force of the toroidal coil. [Prior art] Figure V, which relates to a toroidal magnet consisting of a container, is an example of an IEEE TRANSA system.
CTrON ONMAGNETIC8, VOLoMAG
-/7, /7Jt (/PI/)''K is a partially cross-sectional side view showing a toroidal magnet (1) shown in FIG. This toroidal magnet (1)
is a toroidal coil (co).

トロイダルコイル(コ)の電磁力を支持するためにトロ
イダルコイル(21を収納したコイル容B(31と、コ
イル容器(3>の側壁に設けられコイル容器(j)を冷
却する冷却管悴】とから構成される装置 第3図に示すようにトロイダルコイル(2)は電磁力に
対して強度のある強制冷却超庫纒導体(り(以後冷却導
体と省略する)を巻回して構成されている。冷却導体L
t)は、第6図に示すように複数本の超電導機(61が
冷媒通路(7)を形成して束ねられ、その外周に高強度
ステンレス鋼からなるシース(flが設けられ、そのシ
ース1ff)の表面に給縁体(り)を核種して構成され
ている、 上記のように構成された核融合炉用トロイダルマグネッ
ト(/lは、最高磁場約ioテスラ、高さ10m以上と
巨大な超電導マグネットであり、その発生電磁力が大き
′いため、を磁力に対して強度、のある冷却導体(jl
を巻回してなるトロイダルコイル(コ1で構成されてい
る、また、その電磁力を支持するためにステンレス鋼か
らなるコイル容器(31は肉厚のものとなり、その重量
が数百トンにも達する。
In order to support the electromagnetic force of the toroidal coil (k), there is a coil container B (31) that houses the toroidal coil (21), and a cooling pipe B (31) that is provided on the side wall of the coil container (3> and cools the coil container (j)). As shown in Figure 3, the toroidal coil (2) is constructed by winding a forcedly cooled super-conductor (hereinafter abbreviated as cooling conductor) that is strong against electromagnetic force. .Cooling conductor L
t), as shown in FIG. 6, a plurality of superconducting machines (61) are bundled to form a refrigerant passage (7), and a sheath (fl) made of high-strength stainless steel is provided on the outer periphery of the superconducting machine (fl), and the sheath 1ff A toroidal magnet for a fusion reactor constructed as described above (/l is approximately io tesla of maximum magnetic field, and is a huge magnet with a height of more than 10 m Since it is a superconducting magnet and the electromagnetic force it generates is large, it is necessary to use a cooling conductor (jl
To support the electromagnetic force, the toroidal coil (31) is made of a thick toroidal coil made of stainless steel, and its weight reaches several hundred tons. .

したがって、トロイダルマグネット(ハ全体を室温から
極低温まで冷却するのに、冷媒通路(7)を流れる超臨
界圧ヘリウムによりトロイダルコイル(2)を冷却する
以外に、コイル容器(31も冷却する必要があり、その
ために、コイル容器(31の外側面に冷却管(4’lが
溶接されており、この冷却管悴)にも冷媒を流してトロ
イダルマグネット(/1全体を室温から極低温Kまで冷
却している。
Therefore, in order to cool the entire toroidal magnet (c) from room temperature to an extremely low temperature, it is necessary to cool the coil container (31) in addition to cooling the toroidal coil (2) with supercritical pressure helium flowing through the refrigerant passage (7). Therefore, a cooling pipe (4'l is welded to the outer surface of the coil container (31), and the cooling pipe is also flowed to cool the entire toroidal magnet (/1) from room temperature to an extremely low temperature. are doing.

〔発明が解決しようとする間魂点] 上記9トロイダルマグネットは核融合炉用小形実験装置
であるため1以上のように構成されているが、大形核融
合実験炉、動力炉では放射状に複数個配設されたトロイ
ダルマグネット(1)間の巨大な電1研力を支持するた
めの゛心研力支持構造物をコイル容器(31の外111
11面に取り付けなけ士1ばならず。
[The point to be solved by the invention] The above nine toroidal magnets are small experimental devices for fusion reactors, so they are configured as one or more. However, in large fusion experimental reactors and power reactors, multiple A core grinding force support structure for supporting the huge electrical grinding force between the individually arranged toroidal magnets (1) is installed in the coil container (outside 111 of 31).
It must be installed on 11 sides.

そのため冷却管悴1なコイル容器(3]の外側面に十分
に設けることができず、あるいは冷却管(≠1のために
電磁力支持構造物の取り付はスペースが制限されるとい
う問題点がめった。
Therefore, there is a problem that it is not possible to provide enough cooling pipes on the outer surface of the coil container (3), or the space for installing the electromagnetic force support structure is limited because the cooling pipes (≠1). Rarely.

また、核融合を実際に起こさせる実験炉、動力炉におい
ては、プラズマが核融合するときに発生する中性子のう
ちコイル容器(31にまで達したものはコイル容器(3
1で吸収されて核発熱となり、コイル容器(3)の全体
温度を上昇させるので、コイル容器(31の外側面の冷
却管陣)ではコイル容器(3)内部の発熱を十分に冷却
することができず、トロイダルコイル(2)の温度も上
昇し、超電導破尿に到するおそれがあるという問題点も
めった。
In addition, in experimental reactors and power reactors that actually cause nuclear fusion, among the neutrons generated when plasma undergoes nuclear fusion, those that reach the coil vessel (31) are
1, it becomes nuclear heat generation and raises the overall temperature of the coil container (3), so the coil container (cooling pipe array on the outer surface of 31) cannot sufficiently cool the heat generated inside the coil container (3). However, there was also the problem that the temperature of the toroidal coil (2) would also rise, leading to the risk of superconducting urinary rupture.

この発明は、かかる問題点を解決するためになされたも
ので、大形核融合実験炉、動力炉においても十分な冷却
性能を有するトロイダルマグネットを得ることを目的と
する、 〔問題点を解決するための手段] この発明に係るトロイダルマグネットは、トロイダルコ
イルとコイル容器との間に、コイル容器を冷却する冷却
通路を形成したものである。
This invention was made to solve these problems, and aims to obtain a toroidal magnet that has sufficient cooling performance even in large experimental nuclear fusion reactors and power reactors. [Means for]] The toroidal magnet according to the present invention has a cooling passage formed between a toroidal coil and a coil container to cool the coil container.

〔作 用〕[For production]

この発明のトロイダルマグネットにおいては。 In the toroidal magnet of this invention.

冷却通路に冷媒を通過させることによりコイル容器が冷
却されるので、コイル容器の外側面には電磁力支持構造
物を取シ付るためのスペースが確保されるとともK、ト
ロイダルコイルの温度上昇を防ぐことができる、 〔実施例〕 以下、この発明の実施例を図について説明する。
Since the coil container is cooled by passing the refrigerant through the cooling passage, space is secured on the outer surface of the coil container to attach the electromagnetic force support structure, and the temperature rise of the toroidal coil is also reduced. [Example] Hereinafter, an example of the present invention will be described with reference to the drawings.

第1図はこの発明の第1の実施例を示すトロイダルマグ
ネットの断面図でめり、第1図ないし第を図と同一また
は相当部分は同一符号を付し、その説明は省略する。
FIG. 1 is a sectional view of a toroidal magnet showing a first embodiment of the present invention, and the same or corresponding parts as in FIGS.

図において、トロイダルマグネット(lo)は、トロイ
ダルコイル(コ)側のコイル容器(3)の内面に凹凸状
の冷却通路(11)が形成されている。したがって、冷
却通路(l1)に冷媒を流すことにより。
In the figure, the toroidal magnet (lo) has an uneven cooling passage (11) formed on the inner surface of the coil container (3) on the toroidal coil (co) side. Therefore, by flowing the refrigerant into the cooling passage (l1).

コイル容器(3)の初期冷却が可能となり、また従来必
要とした冷却管(4t)が不必要となりコイル容器(3
)の外側面はトロイダルコイルッh (io)間の電磁
力支持構造材設置スペースとして十分に利用することが
できる、さらK、コイル容器(3)の核発熱に対しても
コイル容器(31の内側からコイル容器(31は冷却さ
れるので、トロイダルコイル(21の温度上昇は防止さ
れる。
Initial cooling of the coil container (3) is now possible, and the conventionally required cooling pipe (4t) is no longer required.
The outer surface of the coil container (31) can be fully used as a space for installing the electromagnetic support structure between the toroidal coils (io). Since the coil container (31) is cooled from the inside, a rise in temperature of the toroidal coil (21) is prevented.

なお、第2図はこの発明の第2の実施例を示すもので、
このトロイダルマグネット(12)はコイル容器(3)
内に冷却管(13)を埋め込み、熱伝導率の艮い金属体
(ハ・で固着したものである。、また、第3図はこの発
明の第3の実施例を示すもので。
Note that FIG. 2 shows a second embodiment of this invention.
This toroidal magnet (12) is a coil container (3)
A cooling pipe (13) is embedded therein and is fixed with a metal body (C) having high thermal conductivity. Fig. 3 shows a third embodiment of the present invention.

このトロイダルマグネット(lりはトロイダルコイル(
コ)とコイル容器(3)との間に間隙を形成し、この間
隙に一定間隔をおいてスペーサ(/6)を挿入して冷却
通路(/7)を設けたものである。
This toroidal magnet (the toroidal coil)
A gap is formed between the coil container (3) and the coil container (3), and spacers (/6) are inserted into this gap at regular intervals to provide cooling passages (/7).

〔発明の効果〕〔Effect of the invention〕

以上説明したように、この発明のトロイダルマグネット
は、トロイダルコイルとコイル容器との間に、コイル容
器を冷却する冷却通路を形成したので、コイル容器外側
面を電磁力支持構造材の取□り付はヌペーヌとして十分
に利用することができる。また、コイル容器での核発熱
によるトロイダルコイルの温度上昇を抑えることができ
、大形核融合実験装置でも安定した運転ができる。
As explained above, in the toroidal magnet of the present invention, a cooling passage for cooling the coil container is formed between the toroidal coil and the coil container. can be fully utilized as nupaine. In addition, it is possible to suppress the temperature rise of the toroidal coil due to nuclear heat generation in the coil container, and stable operation can be achieved even in large-scale nuclear fusion experimental equipment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の第1の実施例を示すトロイダルマグ
ネットの横断面図、第2図はこの発明の第2の実施例を
示すトロイダルマグネットの横断面図、第3図はこの発
明の第3の実施例を示すトロイダルマグネットの横断面
図、第μ図は従来のトロイダルマグネットの一部断面側
面図、第!図は第参図のV−VSに沿う断面図、第を図
は第1図の要部拡大断面図である。 (21・・トロイダルコイル、 (J)・・コイル容器
。 (10) 、 (/2 ) 、 (/り・Φトロイダル
マグネット。 (/1)、(/7)・・冷却通路、(/J)・−冷却管
。 なお、各図中、同一符号は同−又は相当部分を示す。
FIG. 1 is a cross-sectional view of a toroidal magnet showing a first embodiment of the invention, FIG. 2 is a cross-sectional view of a toroidal magnet showing a second embodiment of the invention, and FIG. 3 is a cross-sectional view of a toroidal magnet showing a second embodiment of the invention. Fig. μ is a cross-sectional view of a toroidal magnet showing the third embodiment, and Fig. μ is a partially sectional side view of a conventional toroidal magnet. The figure is a cross-sectional view taken along the line V-VS in Figure 1, and the second figure is an enlarged cross-sectional view of the main part of Figure 1. (21...Toroidal coil, (J)...Coil container. (10), (/2), (/ri・Φ toroidal magnet. (/1), (/7)...Cooling passage, (/J) - Cooling pipe. In each figure, the same reference numerals indicate the same or equivalent parts.

Claims (4)

【特許請求の範囲】[Claims] (1)強制冷却超電導導体を巻回してなるトロイダルコ
イルと、このトロイダルコイルの周囲に設けられトロイ
ダルコイルの電磁力を支持するコイル容器との間に、前
記コイル容器を冷却する冷却通路を形成したことを特徴
とするトロイダルマグネット。
(1) A cooling passage for cooling the coil container is formed between a toroidal coil formed by winding a forcedly cooled superconducting conductor and a coil container provided around the toroidal coil and supporting the electromagnetic force of the toroidal coil. A toroidal magnet characterized by:
(2)トロイダルコイル側のコイル容器内面を凹凸状に
形成した特許請求の範囲第1項記載のトロイダルマグネ
ット。
(2) The toroidal magnet according to claim 1, wherein the inner surface of the coil container on the toroidal coil side is formed into an uneven shape.
(3)トロイダルコイル側のコイル容器内面に冷却管を
埋め込み、コイル容器に熱伝導率の良い金属で固着した
特許請求の範囲第1項記載のトロイダルマグネット。
(3) The toroidal magnet according to claim 1, wherein a cooling pipe is embedded in the inner surface of the coil container on the toroidal coil side, and is fixed to the coil container with a metal having good thermal conductivity.
(4)トロイダルコイルとコイル容器との間に間隙を形
成し、この間隙に間隔をおいてスペーサを挿入した特許
請求の範囲第1項記載のトロイダルマグネット。
(4) The toroidal magnet according to claim 1, wherein a gap is formed between the toroidal coil and the coil container, and spacers are inserted into the gap at intervals.
JP62266992A 1987-10-22 1987-10-22 Toroidal magnet Expired - Lifetime JP2739159B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62266992A JP2739159B2 (en) 1987-10-22 1987-10-22 Toroidal magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62266992A JP2739159B2 (en) 1987-10-22 1987-10-22 Toroidal magnet

Publications (2)

Publication Number Publication Date
JPH01109706A true JPH01109706A (en) 1989-04-26
JP2739159B2 JP2739159B2 (en) 1998-04-08

Family

ID=17438557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62266992A Expired - Lifetime JP2739159B2 (en) 1987-10-22 1987-10-22 Toroidal magnet

Country Status (1)

Country Link
JP (1) JP2739159B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5768007A (en) * 1980-10-15 1982-04-26 Toshiba Corp Superconductive magnet unit
JPS5827305A (en) * 1981-08-12 1983-02-18 Hitachi Ltd Superconductive coil
JPS6156851A (en) * 1984-08-28 1986-03-22 Yamazaki Mazak Corp Pallet clamping mechanism in tilt table

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5768007A (en) * 1980-10-15 1982-04-26 Toshiba Corp Superconductive magnet unit
JPS5827305A (en) * 1981-08-12 1983-02-18 Hitachi Ltd Superconductive coil
JPS6156851A (en) * 1984-08-28 1986-03-22 Yamazaki Mazak Corp Pallet clamping mechanism in tilt table

Also Published As

Publication number Publication date
JP2739159B2 (en) 1998-04-08

Similar Documents

Publication Publication Date Title
US4590428A (en) Electromagnet for NMR tomography
JP5534713B2 (en) Superconducting magnet
KR102197522B1 (en) Active cooling of structures immersed in plasma
US9754686B2 (en) Plasma confinement system and methods for use
CN102903473B (en) superconducting magnet system
US11948696B2 (en) Neutron generator using superconducting coils for electrostatic heating and magnetic confinement
JP2018534759A (en) Support structure for HTS magnet
JPH09120912A (en) Open structure conductive cooling magnetic resonance imagingmagnet
JP2816256B2 (en) Coil body
JPS60123756A (en) Magnet device
JPH01109706A (en) Toroidal magnet
Zlobin et al. Superconducting magnets for accelerators
JP2008028146A (en) Thermal shield for superconducting magnet, superconducting magnet device, and magnetic resonance imaging apparatus
Iiyoshi et al. Design, construction and the first plasma experiments in the Large Helical Device
Vianna et al. Conceptual design of a C-shaped 6.4 T superconducting dipole magnet
US9959941B2 (en) System for supporting structures immersed in plasma
Jo et al. High temperature superconducting synchronous motor
JPS6119089B2 (en)
Zheng et al. Hybrid cooling scheme combining the novel supercritical helium forced flow method with heat conduction for superconducting dipole magnets in proton therapy facilities
JP4503405B2 (en) Superconducting magnet apparatus and magnetic resonance imaging apparatus using the same
US20220367095A1 (en) Superconducting magnet system for cyclotron and cyclotron comprising the same
JPH0570921B2 (en)
JPH11326568A (en) Plasma stabilization device
JPS59101704A (en) Superconductive conductor and method of producing same
Melton et al. Toroidal magnetic field system for a 2-MA reversed-field pinch experiment