JPH01109497A - System for inputting analog signal of insulating type - Google Patents

System for inputting analog signal of insulating type

Info

Publication number
JPH01109497A
JPH01109497A JP26634187A JP26634187A JPH01109497A JP H01109497 A JPH01109497 A JP H01109497A JP 26634187 A JP26634187 A JP 26634187A JP 26634187 A JP26634187 A JP 26634187A JP H01109497 A JPH01109497 A JP H01109497A
Authority
JP
Japan
Prior art keywords
input
output
amplifier
hall element
magnetic flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26634187A
Other languages
Japanese (ja)
Inventor
Hideo Uehara
上原 英雄
Yasuo Minae
薬袋 康雄
Masao Yano
矢野 正夫
Kiyoaki Sera
世羅 清昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP26634187A priority Critical patent/JPH01109497A/en
Publication of JPH01109497A publication Critical patent/JPH01109497A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To send data to a secondary side without any influence to an input signal by utilizing a magnetic core as an insulating circuit and using a direct current sensor which can measure a current even while an input and output are not connected. CONSTITUTION:An analog measuring signal for current delivery flows to a primary coil 1 and a magnetic flux is generated. In proportion to this magnetic flux, a voltage is generated in a Hall element 2. Then, this voltage is amplified up to a desired value by an amplifier 4 and outputted. On the other hand, in order to execute the correction of accuracy, a reference power source of a reference coil 5 is turned on and off and the output of the Hall element 2 is detected. At such a time, an input is turned off by a switch 6 and a detected value and a theoretical value are compared by a microcomputer 10. Then, the amplifier 4 is adjusted by a gain off-set adjusting circuit 9. Thus, the input of a remote supervision control device, etc., can be transmitted cyclically at 1/10 second around for respective points. Then, when a correction processing is executed at <=1/100sec, there is no influence to an external part.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、遠方監視制御装置および計測制御装置等のア
ナログ計測信号の入力絶縁に係り、特にサージ対策や高
電圧対策の必要な被制御所側の電流渡しく通常4〜20
mA)に好適な絶縁形アナログ信号入力方式に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to input insulation of analog measurement signals of remote monitoring and control equipment, measurement control equipment, etc., and is particularly applicable to controlled facilities that require measures against surges and high voltages. The current passing on the side is usually 4~20
This invention relates to an isolated analog signal input method suitable for (mA).

〔従来の技術〕[Conventional technology]

遠方監視制御装置や計測制御装置等特に子局装置t!(
被制御所)は、山間部などの雷多発地域や発電所などの
高電圧環境下に設置されることが多く。
Especially slave station devices such as remote monitoring control devices and measurement control devices. (
Controlled stations) are often installed in areas prone to lightning such as mountainous areas or in high voltage environments such as power plants.

伝送路にアレスタ(避雷器)を設けるのはもちろんのこ
と、ディジタル、アナログなどの信号入出    ゛力
端子にも絶縁耐力が要求される。   “従来、信号入
出力端子の絶縁方式には、例えば「テレコントロールシ
ステム」 (昭和53年電気書院発行)の113頁に示
されるように、ディジタル信号はリレーもしくはフォト
カプラといった素子が使用されている。またアナログ信
号の絶縁は、絶縁アンプもしくは第2図に示すようなフ
ライングキャパシタ方式により行っていた。フライング
キャパシタ方式とは、2トランスファ接点とコンデンサ
により作られ、端子側と内部回路側を交互に接続し、そ
の間のコンデンサの充fl電圧の受渡しを行うものであ
る。
In addition to installing arresters on transmission lines, dielectric strength is also required for digital, analog, and other signal input/output terminals. “Conventionally, elements such as relays or photocouplers have been used to insulate signal input/output terminals for digital signals, as shown on page 113 of ``Tele Control System'' (published by Denkishoin in 1978). . Furthermore, isolation of analog signals has been performed using an isolation amplifier or a flying capacitor system as shown in FIG. The flying capacitor method is made of two transfer contacts and a capacitor, and the terminal side and the internal circuit side are connected alternately, and the charged voltage of the capacitor is transferred between them.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術は、各々次のような問題点かあった。 Each of the above conventional techniques has the following problems.

絶縁アンプ方式では、チャネル間絶縁をとる場合、各絶
縁アンプごと独立に電源を与える必要があり、基板専有
面積、価格とも上昇する。また最近は、絶縁形の電源を
内蔵した絶縁アンプも存在するが、精度がIC単位の精
度に依存するのでバラツキが多く1価格的にも高価とな
る。
In the isolated amplifier method, when providing isolation between channels, it is necessary to supply power to each isolated amplifier independently, which increases the board area and cost. Recently, there are also isolated amplifiers with built-in isolated power supplies, but since the accuracy depends on the accuracy of each IC, there is a lot of variation and the price is high.

一方、フライングキャパシタ方式では、2トランスファ
接点により電圧(コンデンサに蓄積した電位)の受渡し
を行うが、この際、接点(通常水銀リレー)という機械
的素子を使用するため、信頼性に問題があった。また1
度コンデンサに蓄積されるという過程を経るので、精度
的にも応答速度的にも問題がある。
On the other hand, in the flying capacitor method, voltage (potential accumulated in the capacitor) is transferred using two transfer contacts, but this involves problems with reliability because a mechanical element called a contact (usually a mercury relay) is used. . Also 1
Since the signal goes through the process of being stored in a capacitor, there are problems in terms of accuracy and response speed.

本発明の目的は、アナログ信号の入力値を精度を落とす
ことなく、かつ回路規模や価格をおさえることのできる
アナログ絶縁方式を提供することにある。
An object of the present invention is to provide an analog isolation method that can reduce the circuit scale and cost without reducing the accuracy of analog signal input values.

〔問題点を解決す8ための手段〕 上記目的は、絶縁回路として、磁芯を利用して入力と出
力が非接続(絶縁状態)のまま電流を測定できる直流電
流センサを使用することにより実現できる。但し、この
種の電流センサは直線性に優れているが、従来大電流用
(アンペアオーダ)であるので4〜20mAに対しては
ドリフトが大きくなる。そこで更に、特性改善を行うた
めに基準、電源を有するコイルを磁芯に巻き、較正用マ
イクロコンピュータを組込むことにより特性のよい絶縁
回路となる。 − 〔作用〕 す−なわち、1次側(入力)と2次側(出力)は磁束で
受渡しを行っており、絶縁膜で分離されているので、は
ぼ完壁な絶縁を行うことができる。
[Means for solving problem 8] The above purpose is achieved by using a DC current sensor as an insulating circuit that can measure current with the input and output disconnected (insulated state) using a magnetic core. can. However, although this type of current sensor has excellent linearity, since it is conventionally used for large currents (on the order of amperes), the drift becomes large for 4 to 20 mA. Therefore, in order to further improve the characteristics, an insulated circuit with good characteristics can be obtained by winding a coil having a reference and a power source around the magnetic core and incorporating a calibration microcomputer. - [Function] - In other words, the primary side (input) and secondary side (output) exchange by magnetic flux and are separated by an insulating film, so almost perfect insulation cannot be achieved. can.

また、基準電源を持った該基準コイルに対する理論出力
値と実際の出力を、マイクロコンピュータで定期的に比
較し、ゲイン・オフセットの自動調整ができる。
Further, the theoretical output value and the actual output for the reference coil having the reference power source are periodically compared by a microcomputer, and the gain and offset can be automatically adjusted.

〔実施例〕〔Example〕

以下1本発明の一実施例を第1図により説明する。ff
i流受渡しく通常4〜20mA)のアナログ計測信号は
、1次コイル1を流れ磁束を発生する。
An embodiment of the present invention will be described below with reference to FIG. ff
An analog measurement signal (typically 4 to 20 mA) flows through the primary coil 1 and generates magnetic flux.

この磁束に比例してホール素子2に電圧が生じ。A voltage is generated in the Hall element 2 in proportion to this magnetic flux.

エムを所望の値までアンプ4で増幅させ出力する。Em is amplified to a desired value by amplifier 4 and output.

一方、精度の補正を行う為に基準コイル5の基準電源8
を0N−0,FFさせ、ホール素子2の出力を検出する
。このとき入力はスイッチ6によりOFFしておく0次
に、検出した値と理論値をマイクロコンピュータ10で
比較し、ゲイン・オフセット調整回路9によりアンプ4
を調整する。なお、遠方監視制御装置などの入力は、各
点とも1710秒程度マサイクリックに伝送すればよく
、1/100秒以下(実際はμSeCオーダ)で処理を
行えば外部に対して影響はない。また数式で精度補正に
ついて説明すると。
On the other hand, in order to correct the accuracy, the reference power source 8 of the reference coil 5
is set to 0N-0 and FF, and the output of the Hall element 2 is detected. At this time, the input is turned off by the switch 6.Next, the detected value and the theoretical value are compared by the microcomputer 10, and the gain/offset adjustment circuit 9 is used to control the amplifier 4.
Adjust. Inputs from a remote monitoring and control device etc. need only be transmitted macyclically for about 1710 seconds at each point, and if processing is performed within 1/100 seconds (actually on the μSeC order), there will be no effect on the outside. Also, let's explain accuracy correction using a mathematical formula.

V、=ΔV V、。=20X 1O−3X A + ΔVとなり、■
。、V2゜を′18定丁れは、オフセット誤差、ゲイン
が分かり、これに応じてアンプ4のゲイン・オフセット
調整を行えば良い。
V,=ΔV V,. =20X 1O-3X A + ΔV, and ■
. , V2° is fixed at '18, the offset error and gain are known, and the gain and offset of the amplifier 4 can be adjusted accordingly.

本実施例によれば、コイルの巻数を変えることで様々な
電流に対応できる。また、入力と関係なく、基準電源に
よりいくらでも精度を上げることができる。
According to this embodiment, various currents can be handled by changing the number of turns of the coil. Furthermore, regardless of the input, the accuracy can be increased as much as possible by using the reference power source.

本実施例の他にも、ホール素子TIE流センサの代わり
に、クラマートランス(2つの2次コイルを持つ)形直
流電流センサやサーボ式ホール素子電流センサ(磁束を
零に保つように2次コイルの電流を制御する)があるの
は言うまでもない。またゲイン・オフセット誤差を検出
する方法として、1次コイルを2等分して、巻数n回と
2n回の場合を比較しても良い、すなわち、次の式の様
になる。
In addition to this embodiment, instead of the Hall element TIE current sensor, a Cramer transformer (with two secondary coils) type DC current sensor or a servo Hall element current sensor (with a secondary coil to keep the magnetic flux at zero) can be used. It goes without saying that there is a device (controlling the current). Further, as a method of detecting the gain offset error, the primary coil may be divided into two and the cases where the number of turns is n and 2n may be compared, that is, as shown in the following equation.

V、=AI十Δ■−■ v8:巻I!n回時出力V、=
2AI+ΔV−■ v2二巻数2n回時出力これで■×
2−■をすれば実測値からΔVが分かり、基準コイルに
よりもう1点はかればAもわかる。
V, = AI ten Δ■−■ v8: Volume I! Output V when n times =
2AI+ΔV-■ Output when v2 2 turns is 2n times ■×
If you do 2-■, you can find out ΔV from the actual measurement value, and if you measure another point using the reference coil, you can also find out A.

【発明の効果〕【Effect of the invention〕

以上説明したように、本発明によれば次のような効果が
ある。
As explained above, the present invention has the following effects.

1、入力信号に何も影響しないでデータを2次側に送る
ことができる。
1. Data can be sent to the secondary side without any effect on the input signal.

2、絶縁耐力は、1次コイルと2次コイルの間の絶縁物
を増やすだけで容易に大きくできる。
2. Dielectric strength can be easily increased by simply increasing the insulation between the primary and secondary coils.

3、常に(サイクリックに)オフセット、ゲインを調整
しているので精度の高い絶縁回路となる。
3. The offset and gain are constantly (cyclically) adjusted, resulting in a highly accurate isolation circuit.

4、DC−DCコンバータをチャネル毎に持つ必要がな
く、コンパクトかつ安価な構成が可能となる。
4. There is no need to provide a DC-DC converter for each channel, allowing for a compact and inexpensive configuration.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す構成図であり、第2図
は従来のアナログ絶縁例(フライングキャパシタ方式)
を示す回路図である。 1・・・1次コイル、2・・・ホール素子、3・・・磁
芯、4・・・アンプ、5・・・基準コイル、6・・・半
導体リレー。 7・・・リレースイッチ、8・・・基準電源。 9・・・ゲイン・オフセット調整回路、10・・・マイ
クロコンピュータ。
Fig. 1 is a configuration diagram showing one embodiment of the present invention, and Fig. 2 is a conventional analog insulation example (flying capacitor method).
FIG. DESCRIPTION OF SYMBOLS 1...Primary coil, 2...Hall element, 3...Magnetic core, 4...Amplifier, 5...Reference coil, 6...Semiconductor relay. 7...Relay switch, 8...Reference power supply. 9... Gain/offset adjustment circuit, 10... Microcomputer.

Claims (1)

【特許請求の範囲】 1、遠方監視制御装置や計測制御装置におけるアナログ
の計測信号の入力絶縁手段として、直流電流センサを用
いたことを特徴とする絶縁形アナログ信号入力方式。 2、上記直流電流センサの磁芯に、基準電源を備えたコ
イルを巻きつけ、出力を較正するように構成したことを
特徴とする特許請求の範囲第1項記載の絶縁形アナログ
信号入力方式。
[Scope of Claims] 1. An isolated analog signal input method characterized in that a DC current sensor is used as input insulation means for analog measurement signals in a remote monitoring control device or a measurement control device. 2. The isolated analog signal input method according to claim 1, wherein a coil equipped with a reference power source is wound around the magnetic core of the DC current sensor to calibrate the output.
JP26634187A 1987-10-23 1987-10-23 System for inputting analog signal of insulating type Pending JPH01109497A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26634187A JPH01109497A (en) 1987-10-23 1987-10-23 System for inputting analog signal of insulating type

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26634187A JPH01109497A (en) 1987-10-23 1987-10-23 System for inputting analog signal of insulating type

Publications (1)

Publication Number Publication Date
JPH01109497A true JPH01109497A (en) 1989-04-26

Family

ID=17429588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26634187A Pending JPH01109497A (en) 1987-10-23 1987-10-23 System for inputting analog signal of insulating type

Country Status (1)

Country Link
JP (1) JPH01109497A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008082959A (en) * 2006-09-28 2008-04-10 Toyota Motor Corp Ecu function inspecting apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008082959A (en) * 2006-09-28 2008-04-10 Toyota Motor Corp Ecu function inspecting apparatus
JP4661750B2 (en) * 2006-09-28 2011-03-30 トヨタ自動車株式会社 ECU function inspection device

Similar Documents

Publication Publication Date Title
US6984989B2 (en) Current sensor and overload current protective device therewith
US7489122B2 (en) Method and device for measuring voltage
US5345169A (en) Current measuring device
US6529013B2 (en) Three-phase voltage sensor with active crosstalk cancellation
WO2003032461A1 (en) Overload current protection apparatus
JPH01109497A (en) System for inputting analog signal of insulating type
US7129688B2 (en) Method for on-line calibration of low accuracy voltage sensor through communication bus
US4050065A (en) Dual slope analog to digital converter with delay compensation
US6897758B1 (en) Method for reproducing direct currents and a direct current transformer for carrying out said method
RU2329514C1 (en) Alternating current measurening tool
JP3221128B2 (en) Current detector
US3384883A (en) Capacitive potentiometer rebalancing system
SU907533A1 (en) Magnetoelectronic voltage converter
SU1725139A1 (en) Current sensor
JPS6230562B2 (en)
HU190346B (en) Electric current measuring circuit arrangement
RU2035046C1 (en) Rectifier that measures voltage level
RU1812513C (en) Measuring transducer of alternating current
RU2084017C1 (en) Device for information input
SU1029000A1 (en) Differential-transformer transducer of linear displacements
JP5293384B2 (en) Current input device and current input / output device
JPS6069906A (en) Isolator
SU457038A1 (en) AC bridge with close inductive coupling
JPH0584047B2 (en)
KR20230133225A (en) Calibration and synchronization of ground current sensing amplifier with wireless power transmitter controller