JPH01108767A - Contact type image sensor - Google Patents

Contact type image sensor

Info

Publication number
JPH01108767A
JPH01108767A JP62266100A JP26610087A JPH01108767A JP H01108767 A JPH01108767 A JP H01108767A JP 62266100 A JP62266100 A JP 62266100A JP 26610087 A JP26610087 A JP 26610087A JP H01108767 A JPH01108767 A JP H01108767A
Authority
JP
Japan
Prior art keywords
light
image sensor
laser
film
window
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62266100A
Other languages
Japanese (ja)
Inventor
Shunpei Yamazaki
舜平 山崎
Takeshi Fukada
武 深田
Mitsunori Sakama
坂間 光範
Hisato Shinohara
篠原 久人
Nobumitsu Amachi
伸充 天知
Naoya Sakamoto
直哉 坂本
Takashi Inushima
犬島 喬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP62266100A priority Critical patent/JPH01108767A/en
Priority to US07/259,522 priority patent/US4959533A/en
Priority to EP19880309915 priority patent/EP0313381A3/en
Publication of JPH01108767A publication Critical patent/JPH01108767A/en
Priority to US07/554,342 priority patent/US5091638A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)

Abstract

PURPOSE:To improve the efficiency wherein a reflected light from a manuscript arrives at an image sensor element, by arranging an uneven structure to scatter a manuscript reading light, on a substrate or a light transmitting conducting film of a window to transmit the manuscript reading light, which is adjacent to the inside or the outside of the image sensor element and formed on a conducting film. CONSTITUTION:On a transparent glass substrate 2, an SnO2 film, as a light transmitting conducting film part 3, is formed. As a first laser processing, the film 3 is separated, and a groove 13 is formed by using excimer laser light. Thereon an NIN type semicon ductor film is formed as a photoelectric conversion semiconductor part 4. On the upper surface of the semiconductor part, a molybdenum electrode 5 is formed. As a second laser processing, a groove 14 is dug as far as the glass substrate, by irradiat ing laser light in almost similar manner to the groove 13. Then, on an element, a path window 8 for manuscript reading light is formed by laser processing. At this time, the frequency of laser irradiation is about 1.5 times that of the second laser processing. Therefore, the laser processed groove reaches about midway of the light transmitting conducting film 3, and a recessed part 16 is formed at the same time. By this recessed part 18, the light is scattered, and arrives at elements 16, 17 on both sides of the window, with high efficiency.

Description

【発明の詳細な説明】 (イ)技術分野 本発明はイメージスキャナー、ファクシミリ等に使用さ
れる密着型イメージセンサの構造に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (a) Technical Field The present invention relates to the structure of a contact type image sensor used in image scanners, facsimiles, and the like.

(ロ)従来技術 密着型イメージセンサには、構造として概して次の2つ
に分類される、1つはセンサ0ωと原稿(1)の間に、
等倍結像レンズθDをっかうもの、このタイプのものは
例えば第2図のように、センサG(Dとレンズ00を結
ぶ軸に対して、ななめから読み取り光(7)を入射させ
、原稿の反射光をセンサ面Omに、1対1に結像させて
、読みとる。この方法をもちいると、レンズODを使う
ことでイメージセンサ装置が大きくなり、コストがかか
るとい、う難点をもつ。
(b) Conventional technology Close-contact image sensors are generally classified into the following two structures.One is between the sensor 0ω and the original (1);
This type of device uses a 1-magnification imaging lens θD, for example, as shown in FIG. The reflected light is imaged one-to-one on the sensor surface Om and read. Using this method has the disadvantage that the use of the lens OD increases the size of the image sensor device and increases cost.

2つめのタイプはセンサθωと原稿(1)の間にレンズ
を用いない完全密着型イメージセンサである。
The second type is a complete contact type image sensor that does not use a lens between the sensor θω and the document (1).

このタイプのものは、第3図に示すように、従来はフォ
トリソグラフィーの技術を用いて素子00)内に光入射
用窓(8)を設けて透明保護膜に密着している原稿(1
)のパターンを読みとるものである。この構造のイメー
ジセンサは光学系が不要でありスペースをとらずかつ部
品点数が少な(製造コストを低くすることができるとい
う特徴を持っている。
As shown in FIG. 3, this type of device conventionally uses photolithography technology to provide a light entrance window (8) inside the element (00), and the original (1) is in close contact with the transparent protective film.
) is used to read patterns. An image sensor with this structure does not require an optical system, does not take up space, and has a small number of parts (manufacturing cost can be reduced).

しかしこのタイプのイメージセンサは原稿読み取り光(
7)が通過窓(8)の中以上に広がらないため原稿の反
射光(9)が素子に効率よく到達しにくいという問題が
発生した。
However, this type of image sensor uses the original reading light (
7) does not spread beyond the inside of the passing window (8), causing a problem in that it is difficult for the reflected light (9) from the original to reach the element efficiently.

特にイメージセンサの解像度を増すために1mm当たり
の素子の数が今後ますます増加していくためこの通過窓
(8)の巾がよりせまくなり、反射光(9)の到達効率
はますますわるくなってしまうという問題が発生してい
た。
In particular, as the number of elements per 1 mm increases in order to increase the resolution of image sensors, the width of this passing window (8) will become narrower, and the efficiency with which reflected light (9) will reach will become worse. There was a problem where the

(ハ)発明の構成 本発明は前述の問題を解決するもので、そのため本発明
では透明基板上に透光性導電膜、光電変換機能を有する
半導体膜と遮光性を有する導電膜とを持つ密着型イメー
ジセンサにおいて前記イメージセンサ素子の内部又は外
部に隣接して導電膜に設けられた原稿読み取り光通過窓
の基板又は透光性導電膜に原稿読み取り光を散乱させる
ための凹凸が設けられたことを特徴とする密着型イメー
ジセンサであります。
(C) Structure of the Invention The present invention solves the above-mentioned problems. Therefore, in the present invention, a close contact film having a transparent conductive film, a semiconductor film having a photoelectric conversion function, and a conductive film having a light-shielding property on a transparent substrate is provided. In the type image sensor, irregularities for scattering the original reading light are provided on the substrate of the original reading light passing window or the transparent conductive film provided on the conductive film adjacent to the inside or outside of the image sensor element. This is a close-contact image sensor with the following characteristics.

すなわち光通過窓(8)の基板又は透光性導電膜部に凹
凸形状を形成しその凹凸部によって原稿読み取り光(7
)を散乱させて原稿よりの反射光(9)のイメージセン
サ素子への到達効率を高めるものであります。
In other words, an uneven shape is formed on the substrate or the transparent conductive film portion of the light passing window (8), and the uneven portion allows the document reading light (7
) to increase the efficiency with which the reflected light (9) from the original reaches the image sensor element.

また本発明素子の作成にはレーザ加工を用いることがで
き、このレーザ光を用いることにより、少なくとも遮光
性導電膜部及び光電変換半導体部を除去し原稿読み取り
光を通過させる窓を形成する。
Further, laser processing can be used to create the device of the present invention, and by using this laser light, at least the light-shielding conductive film portion and the photoelectric conversion semiconductor portion are removed to form a window through which original reading light passes.

この際にレーザ光の出力又はレーザ光の照射回数等を任
意に変化させることで除去部分の深さを調整できるもの
であります。
At this time, the depth of the removed area can be adjusted by arbitrarily changing the output of the laser beam or the number of times the laser beam is irradiated.

またレーザ光を用いる加工のため、第4図(A)〜(C
)に示すようにイメージセンサ素子0ωに対して任意の
位置に読み取り光通過窓(8)を設けることができると
いう自由度を持てるようになった為イメージセンサ装置
の設計に余裕を持てるようになった。
In addition, since the processing uses laser light, Figures 4 (A) to (C)
) As shown in ), it is now possible to provide the reading light passing window (8) at any position with respect to the image sensor element 0ω, which allows more flexibility in the design of the image sensor device. Ta.

以下に実施例により本発明を説明する。The present invention will be explained below with reference to Examples.

〔実施例1〕 第1図(A)から(D)に本発明のイメージセンサの作
製方法を示す。
[Example 1] FIGS. 1A to 1D show a method for manufacturing an image sensor of the present invention.

基板として透明ガラス基板(2)を用いその上に透光性
導電膜部(3)としてSnO□膜を0.5〜0.6μ−
の厚さに公知のCVD法により成膜する。
A transparent glass substrate (2) is used as the substrate, and a SnO□ film of 0.5 to 0.6 μ-
A film is formed by a known CVD method to a thickness of .

まず第1のレーザ加工としてKrFエキシマレーザ光を
使用してS n O!膜(3)を巾125μm、間隔5
01111、長さ100tI11の大きさに分離し溝側
を形成する。
First, as the first laser processing, KrF excimer laser light is used to process S n O! Membrane (3) has a width of 125 μm and an interval of 5
01111, and the length is 100tI11, and the groove side is formed.

この上面に充電変換半導体部(4)として、NIN型の
アモルファスシリコン半導体を公知のプラズマCVD法
にて約0.7μ鴎の厚さに成膜する。
On this upper surface, a NIN type amorphous silicon semiconductor is formed to a thickness of about 0.7 .mu.m as a charge conversion semiconductor section (4) by a known plasma CVD method.

その成膜条件を以下に示す。The film forming conditions are shown below.

N型層  原料ガス  PH3/5iHi O,5χ 
5SCCMSiH4100χ 11005CC 圧力    0.1Torr 高周波電力 13.56MHz   20W基板温度 
 250°C ■型層  原料ガス  SiHm   100χ 11
005CCその他はN型層と同条件 このようにして形成された半導体部の上面に公知のスパ
ッタリング法によりモリブデン電極(5)を約0.2μ
l形成する。
N-type layer Raw material gas PH3/5iHi O,5χ
5SCCMSiH4100χ 11005CC Pressure 0.1Torr High frequency power 13.56MHz 20W Substrate temperature
250°C ■Type layer Raw material gas SiHm 100χ 11
005CCOther conditions were the same as for the N-type layer.A molybdenum electrode (5) of approximately 0.2μ was deposited on the upper surface of the semiconductor portion thus formed by a known sputtering method.
l form.

次に第2のレーザ加工工程として、第1のレーザ加工溝
側とほぼ同位置に同様のレーザ光を照射し巾10μ請の
溝04)を硝子基板まで設ける。
Next, as a second laser processing step, a similar laser beam is irradiated to approximately the same position as the first laser processing groove side to form a groove 04) having a width of 10 μm up to the glass substrate.

次に本実施例においてはイメージセンサ素子上に原稿読
み取り光用通過窓(8)をレーザ加工により設ける。
Next, in this embodiment, a passage window (8) for document reading light is provided on the image sensor element by laser processing.

この時のレーザ光の照射回数は第2のレーザ加工工程で
照射した回数の1.5倍とした。そのためレーザ加工溝
はNIN型半導体(4)の下地である透光性導電膜(3
)の途中まで達することになる。そのため凹部08)が
同時に形成される。
The number of times of laser light irradiation at this time was 1.5 times the number of times of irradiation in the second laser processing step. Therefore, the laser-processed groove is formed using a transparent conductive film (3) that is the base of the NIN type semiconductor (4).
). Therefore, the recess 08) is formed at the same time.

この通過窓(8)は巾50μ鴎で直線状となっているが
特にこの形状に限定されることなく第4図(A)に示す
ように、丸等の形状でもよい、しかしながら、本実施例
の場合はもちいるレーザ光のビーム形状が巾10μm、
長さ100mmと超偏平の形状をしているので直線状の
加工のほうが生産性はよかった。
Although this passing window (8) has a width of 50 μm and is linear, it is not limited to this shape, and may have a circular shape as shown in FIG. 4(A). However, in this embodiment In the case of , the beam shape of the laser beam used is 10 μm wide,
Since it has an ultra-flat shape with a length of 100 mm, productivity would have been better if it was processed in a straight line.

また通過窓(8)位置はイメージセンサ素子上である必
要はな(隣接している位置であればよい。すなわち第4
図(A)〜(C)に示されているように通過窓(8)を
通過した光(7)が原稿(1)によって反射しその反射
光(9)がイメージセンサ素子に到達する位置であれば
よい。
Furthermore, the position of the passing window (8) does not need to be on the image sensor element (it only needs to be adjacent to it; that is, the fourth
As shown in Figures (A) to (C), the light (7) passing through the passage window (8) is reflected by the original (1) and the reflected light (9) reaches the image sensor element. Good to have.

また本実施例の場合、通過窓(8)を形成するためにレ
ーザ加工溝はSnO,膜(3)上で止まっている必要は
なく基板(2)上まで溝が設けられていてもよい。
Further, in the case of this embodiment, in order to form the passage window (8), the laser-processed groove does not need to stop on the SnO film (3), and may be provided up to the substrate (2).

最後に多層配線とa−3t側面O0の遮光のための遮光
性エポキシ樹脂(6)をスクリーン印刷法で印刷する。
Finally, a light-shielding epoxy resin (6) for light-shielding the multilayer wiring and the a-3t side surface O0 is printed by screen printing.

その際溝(8)は完全に遮光されないような印刷パター
ンを用いる。これによってエポキシ樹脂側から入射した
光は窓(8)SnO,、ガラスを通して原稿(1)に入
射してその反射光は窓の両側の素子θつと06)によっ
て吸収され原稿よりの反射光に対応して明暗の電気的出
力をすることができる。
In this case, a printed pattern is used in which the grooves (8) are not completely shielded from light. As a result, light incident from the epoxy resin side enters the original (1) through the window (8) SnO and glass, and the reflected light is absorbed by the elements θ and 06) on both sides of the window, corresponding to the reflected light from the original. It can provide bright and dark electrical output.

特にSnO,に設けられた凹部08)により、光は散乱
され、より高い効率で窓の両側の素子06)、07)に
到達することになる。
In particular, due to the recesses 08) provided in the SnO, the light is scattered and reaches the elements 06), 07) on both sides of the window with higher efficiency.

〔実施例2〕 本実施例では第5図(A)に示された構造の素子に対応
する。
[Example 2] This example corresponds to an element having the structure shown in FIG. 5(A).

本構造の素子を作成するにあたり第2のレーザ工程まで
は実施例1と全(同じ工程を用いた。
In producing an element with this structure, all the same steps as in Example 1 were used up to the second laser step.

次の通過窓(8)をあけるレーザ加工においてはSnO
□上の半導体部(4)までを除去し窓を設けた。
In the laser processing to open the next passing window (8), SnO
□Up to the upper semiconductor part (4) was removed to provide a window.

次に公知のレーザ又は光CVD法を用いて光をモリブデ
ン電極側より照射し、通過窓(8)に対応する位置の基
板に凸部09)を5ift膜により設けた。
Next, light was irradiated from the molybdenum electrode side using a known laser or photo-CVD method, and a convex portion 09) was provided with a 5ift film on the substrate at a position corresponding to the passage window (8).

この凸部はSin、膜にかぎらず光を透過する材料であ
れば使用可能である。
This convex portion is not limited to Sin or a film, but any material that transmits light can be used.

〔実施例3〕 本実施例は第5図(B)に示された構造に対応するもの
であります。
[Example 3] This example corresponds to the structure shown in Figure 5 (B).

この場合、実施例1に示された作成方法の第2のレーザ
加工工程までは同じである。
In this case, the manufacturing method shown in Example 1 is the same up to the second laser processing step.

ただしこの第2のレーザ加工溝側がガラス基板(2)ま
で達しガラス基板(2)が掘れて凹部0印を形成してい
る。
However, this second laser-processed groove side reaches the glass substrate (2) and the glass substrate (2) is dug to form a recess 0 mark.

そして本実施例としてはこのレーザ加工溝■を光通過窓
(8)として使用するものであります。
In this embodiment, this laser-processed groove ■ is used as a light passage window (8).

(ニ)効果 本発明構成により原稿よりの反射光がより効率よくイメ
ージセンサ素子に到達でき高解像度のイメージセンサを
十分実用化できるようになった。
(d) Effects With the configuration of the present invention, reflected light from the original can reach the image sensor element more efficiently, making it possible to put a high-resolution image sensor into practical use.

また本発明のイメージセンサは原稿は必ず基板と接触す
るため素子に物理的な力が加わることがないという特徴
を有している。
Further, the image sensor of the present invention has a feature that no physical force is applied to the element because the original always comes into contact with the substrate.

またレーザ加工を用いた場合、原稿読み取り光通過窓の
位置を任意に可変できる自由度が発生する。
Furthermore, when laser processing is used, there is a degree of freedom in which the position of the document reading light passage window can be arbitrarily varied.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法の工程図を示す。 第2図第3図は従来装置の概略図を示す。 第4図第5図は本発明方法の応用例を示す。 1・・・原稿 2・・・基板 3.5・電極部 4・・・半導体部 8・・・通過窓 FIG. 1 shows a process diagram of the method of the invention. FIG. 2 and FIG. 3 show schematic diagrams of conventional devices. FIG. 4 and FIG. 5 show examples of application of the method of the invention. 1... Manuscript 2... Board 3.5・Electrode part 4...Semiconductor section 8... Passing window

Claims (1)

【特許請求の範囲】 1、透明基板上に透光性導電膜、光電変換機能を有する
半導体膜と遮光性を有する導電膜とを持つ密着型イメー
ジセンサにおいて前記イメージセンサ素子の内部又は外
部に隣接して導電膜に設けられた原稿読み取り光通過窓
の基板又は透光性導電膜に原稿読み取り光を散乱させる
ための凹凸が設けられたことを特徴とする密着型イメー
ジセンサ。 2、特許請求の範囲第1項において前記基板又は透光性
導電膜の原稿読み取り光照射側の通過窓部に凹部を設け
たことを特徴とする密着型イメージセンサ。 3、特許請求の範囲第1項において前記基板の原稿側の
面の通過窓部に凸部を設けたことを特徴とする密着型イ
メージセンサ。
[Scope of Claims] 1. In a contact image sensor having a transparent conductive film, a semiconductor film having a photoelectric conversion function, and a conductive film having a light-shielding property on a transparent substrate, adjacent to the inside or outside of the image sensor element. A contact image sensor characterized in that a substrate of an original reading light passing window provided on a conductive film or a transparent conductive film is provided with irregularities for scattering original reading light. 2. A contact image sensor according to claim 1, characterized in that a concave portion is provided in the passage window portion of the substrate or the transparent conductive film on the document reading light irradiation side. 3. A contact type image sensor according to claim 1, characterized in that a convex portion is provided in the passage window portion of the document side surface of the substrate.
JP62266100A 1987-10-21 1987-10-21 Contact type image sensor Pending JPH01108767A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP62266100A JPH01108767A (en) 1987-10-21 1987-10-21 Contact type image sensor
US07/259,522 US4959533A (en) 1987-10-21 1988-10-18 Photosensitive semiconductor contact image sensor
EP19880309915 EP0313381A3 (en) 1987-10-21 1988-10-21 Image sensor
US07/554,342 US5091638A (en) 1987-10-21 1990-07-19 Contact image sensor having light-receiving windows

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62266100A JPH01108767A (en) 1987-10-21 1987-10-21 Contact type image sensor

Publications (1)

Publication Number Publication Date
JPH01108767A true JPH01108767A (en) 1989-04-26

Family

ID=17426316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62266100A Pending JPH01108767A (en) 1987-10-21 1987-10-21 Contact type image sensor

Country Status (1)

Country Link
JP (1) JPH01108767A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58105668A (en) * 1981-12-18 1983-06-23 Fujitsu Ltd Line sensor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58105668A (en) * 1981-12-18 1983-06-23 Fujitsu Ltd Line sensor

Similar Documents

Publication Publication Date Title
US11062109B2 (en) Display apparatus with fingerprint identification and fabrication method thereof
US5032718A (en) Photo sensor array and reader with hexagonal fiber bundles
US4959533A (en) Photosensitive semiconductor contact image sensor
US4233506A (en) Photo-sensor
JPH01108767A (en) Contact type image sensor
JPH01108765A (en) Manufacture of contact type image sensor
JPS5846182B2 (en) Photoelectric conversion device
JP2910683B2 (en) Fingerprint image input device and method of manufacturing the same
JPH01108766A (en) Contact type image sensor
JP2573342B2 (en) Light receiving element
JPS6317554A (en) Photoconductive device
JPH0360155A (en) Perfectly close contact type image sensor
JPH02298072A (en) Completely contact type image sensor
JPH0747874Y2 (en) Contact image sensor
JPS62142353A (en) Manufacture of direct reading type image sensor
JP2003161646A (en) Photoelectric encoder
JPH088416A (en) Close contact image sensor
JPS62185367A (en) Image reader
JPH06236980A (en) Photosensor
JPH10173862A (en) Close contact image sensor
JPH05252342A (en) Contact type image sensor
JPS61161868A (en) Contact-type image sensor
JPH04346480A (en) Photoelectric conversion element
JPH0461546A (en) Image sensor
JPH01184964A (en) Image sensor constructed of light-emitting element and photodetecting element