JPH01108351A - Manufacture of mold for continuous casting - Google Patents

Manufacture of mold for continuous casting

Info

Publication number
JPH01108351A
JPH01108351A JP26607287A JP26607287A JPH01108351A JP H01108351 A JPH01108351 A JP H01108351A JP 26607287 A JP26607287 A JP 26607287A JP 26607287 A JP26607287 A JP 26607287A JP H01108351 A JPH01108351 A JP H01108351A
Authority
JP
Japan
Prior art keywords
annealing
mold
temperature
heat treatment
cold drawing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26607287A
Other languages
Japanese (ja)
Other versions
JPH0314900B2 (en
Inventor
Motohisa Miyato
宮藤 元久
Takeo Yuji
湯地 建夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP26607287A priority Critical patent/JPH01108351A/en
Publication of JPH01108351A publication Critical patent/JPH01108351A/en
Publication of JPH0314900B2 publication Critical patent/JPH0314900B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture a mold excellent in wear resistance and heat resistance by subjecting a Cu-alloy ingot having a specific composition containing Fe and P to piercing working, cold drawing, and annealing under respectively specified conditions and then applying cold drawing, and annealing to the above. CONSTITUTION:An ingot of Cu alloy consisting of, by weight, 0.05-0.15% Fe, 0.02-0.05% P, and the balance Cu with inevitable impurities is heated to >=700 deg.C to undergo hot piercing working. The resulting tube stock is subjected to cold drawing at 35-45% reduction in area, and the resulting worked part is passed through a primary heat-treatment stage consisting of annealing at 650-700 deg.C for 30min-1hr to undergo uniform recrystallization of cold structure. Successively, the tube stock is passed through a secondary heat-treatment stage consisting of annealing at 500-600 deg.C for 2-4hr, by which iron phosphide is precipitated. Subsequently, the tube stock is subjected to cold drawing and drawing working into a mold shape at 30-45% total reduction in area. Then, annealing is applied to the above at 250-400 deg.C for 30min-4hr to remove the local stress of the product. By this method, the long-life mold for continuous casting excellent in wear resistance and thermal deformation resistance can be obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は鋼の連続鋳造用鋳型鋳型の製造に好適の連続鋳
造用鋳型の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a continuous casting mold suitable for manufacturing a mold for continuous casting of steel.

[従来の技術] 従来、鋼の連続鋳造用鋳型材料としては、熱伝導性が良
好であると共に、生産が容易で低コストであるという特
長を有する燐脱酸銅が使用されてきた。ところで、近時
、鋳造機能向上の要求から、鋳造速度の高速化及び鋳造
サイクルの短縮化等の技術改善が操業上実施されている
が、これにより、鋳型は一層苛酷な条件に曝されること
になった。
[Prior Art] Conventionally, phosphorus-deoxidized copper has been used as a mold material for continuous casting of steel, which has the characteristics of good thermal conductivity, easy production, and low cost. By the way, in recent years, due to the demand for improved casting functions, technological improvements such as faster casting speeds and shorter casting cycles have been implemented in operations, but as a result, molds are exposed to even more severe conditions. Became.

[発明が解決しようとする問題点] しかしながら、従来の燐脱酸銅は高温耐力が小さく、軟
化温度が低いので、鋼の連続鋳造中に、鋳型内壁の温度
が約250℃の高温に上昇した場合に、鋳型が軟化した
り、内壁と外壁との間に生じる熱応力に耐えられなくな
って変形及び摩耗が生じたりする。これにより、鋳型の
寿命が短くなる。
[Problems to be solved by the invention] However, since conventional phosphorus-deoxidized copper has a low high-temperature yield strength and a low softening temperature, the temperature of the inner wall of the mold rose to a high temperature of about 250°C during continuous steel casting. In some cases, the mold becomes soft or cannot withstand the thermal stress generated between the inner and outer walls, resulting in deformation and wear. This shortens the life of the mold.

そこで、耐摩耗性及び耐熱変形性が優れた鋼の連続鋳造
用鋳型の開発が要望されている。
Therefore, there is a need for the development of a continuous casting mold made of steel that has excellent wear resistance and heat deformation resistance.

本発明はかかる問題点に鑑みてなされたものであって、
・耐摩耗性及び耐熱性が優れた鋳型を製造することがで
きる連続鋳造用鋳型の製造方法を提供することを目的と
する。
The present invention has been made in view of such problems, and includes:
- The purpose of the present invention is to provide a method for manufacturing a continuous casting mold that can manufacture a mold with excellent wear resistance and heat resistance.

[問題点を解決するための手段] 本発明に係る連続鋳造用鋳型の製造方法は、06o5乃
至0,15重1%のFe及び0.02乃至0,05重量
%のPを含有し、残部がCu及び不可避的不純物である
銅合金の鋳塊を、700℃以上の温度に加熱してピアシ
ング加工する工程と、得られた素管を35乃至45%の
減面率で冷間抽伸加工する工程と、650乃至700℃
の温度で30分乃至1時間焼鈍する第1の熱処理工程と
、500乃至600℃の温度で2乃至4時間焼鈍する第
2の熱処理工程と、30乃至45%の総減面率で冷間抽
伸及び鋳型形状への抽伸加工を実施する工程と、250
乃至400℃の温度で30分乃至4時間焼鈍する第3の
熱処理工程とを有することを特徴とする [作用] 本発明においては、Fe及びPを所定の組成で含有する
銅合金鋳塊を、先ず、700℃以上の温度に加熱して熱
間ピアシング加工する。次いで、得られな素管を35乃
至45%の減面率で冷間抽伸加工した後、連続的に第1
及び第2の2段熱処理を実施する。第1の熱処理工程に
おいては、650乃至700℃の温度で30分乃至1時
間焼鈍することにより、ピアシング加工組織を再結晶さ
せる。一方、第2の熱処理工程においては、500乃至
600℃の温度で2乃至4時間焼鈍することにより、燐
化鉄(Fe2 P)を析出させて導電率及び強度を向上
させる。そして、30乃至45%の総滅面率で冷間抽伸
及び鋳型形状への抽伸加工を実施した後、第3の熱処理
を実施する。この第3の熱処理工程においては、250
乃至400℃の温度で30分乃至4時間焼鈍することに
より、冷間抽伸加工により生じた局部応力を除去する。
[Means for Solving the Problems] The method for manufacturing a continuous casting mold according to the present invention contains 06o5 to 0.15% by weight of Fe and 0.02 to 0.05% by weight of P, and the remainder A step of heating a copper alloy ingot, which contains Cu and inevitable impurities, to a temperature of 700°C or higher and performing piercing processing, and cold drawing the obtained raw pipe with an area reduction rate of 35 to 45%. process and 650 to 700℃
A first heat treatment step of annealing at a temperature of 30 minutes to 1 hour, a second heat treatment step of annealing at a temperature of 500 to 600 degrees Celsius for 2 to 4 hours, and cold drawing with a total area reduction of 30 to 45%. and a step of performing drawing processing into the mold shape, and 250
[Function] In the present invention, a copper alloy ingot containing Fe and P in a predetermined composition, First, hot piercing is performed by heating to a temperature of 700° C. or higher. Next, the obtained raw pipe is subjected to cold drawing processing at an area reduction rate of 35 to 45%, and then the first pipe is continuously drawn.
and a second two-stage heat treatment. In the first heat treatment step, the piercing texture is recrystallized by annealing at a temperature of 650 to 700° C. for 30 minutes to 1 hour. On the other hand, in the second heat treatment step, iron phosphide (Fe2P) is precipitated by annealing at a temperature of 500 to 600° C. for 2 to 4 hours to improve conductivity and strength. Then, after performing cold drawing and drawing into a mold shape with a total surface reduction rate of 30 to 45%, a third heat treatment is performed. In this third heat treatment step, 250
By annealing at a temperature of 30 minutes to 4 hours at a temperature of 400° C. to 400° C., local stress caused by cold drawing is removed.

このようにして製造された耐熱銅合金製鋳型は、常温及
び約300°Cの高温における機械的性質が従来の燐脱
酸銅製鋳型よりも格段に優れている。
The heat-resistant copper alloy mold thus manufactured has mechanical properties that are significantly superior to conventional phosphorus-deoxidized copper molds at room temperature and at high temperatures of about 300°C.

[実施例] 以下、本発明の実施例について具体的に説明する。[Example] Examples of the present invention will be specifically described below.

本発明方法にて製造せんとする連続鋳造用鋳型は、0.
05乃至0.15重量%のFeと0.02乃至0605
重1%のPとを含有し、残部がCu及び不可避的不純物
である耐熱銅合金で構成されている。
The continuous casting mold to be manufactured by the method of the present invention has a 0.0.
0.05 to 0.15 wt% Fe and 0.02 to 0.605
It contains 1% P by weight, and the remainder is Cu and inevitable impurities, which are heat-resistant copper alloys.

先ず、この耐熱銅合金の成分含有理由及び組成限定理由
について説明する。
First, the reason for the inclusion of components and the reason for limiting the composition of this heat-resistant copper alloy will be explained.

含有成分のFeおよびPは、夫々単独では耐摩耗性及び
耐熱性の向上並びに常温及び高温における強度の向上効
果は少なく、FeとPとが共存し、Fe2Pの燐化鉄が
形成されることによって、耐摩耗性、耐熱性及び強度の
向上効果が得られる。
The contained components Fe and P have little effect on improving wear resistance and heat resistance and strength at room temperature and high temperature when each is used alone, but when Fe and P coexist and iron phosphide of Fe2P is formed, , the effect of improving wear resistance, heat resistance, and strength can be obtained.

Fe含有量が0.05重量%未満の場合は、上記効果は
少ない。また、Feが0.15重量%を超えて含有され
ると、Pが0.02乃至0.05重量%含有されていて
も、Feは銅合金母材中に固溶するため、導電率が低下
すると共に、後述の熱間ピアシング工程における押出し
中に割れが発生する。従って、Fe含有量は0.05乃
至0.15重量%とする。
When the Fe content is less than 0.05% by weight, the above effects are small. Furthermore, if Fe is contained in an amount exceeding 0.15% by weight, even if P is contained in a range of 0.02 to 0.05% by weight, Fe is dissolved in the copper alloy base material, resulting in a decrease in electrical conductivity. Along with this decrease, cracks occur during extrusion in the hot piercing process described below. Therefore, the Fe content is set to 0.05 to 0.15% by weight.

P含有量が帆02重量%未満の場合は、0.05乃至0
.15重1%のFeと化合して形成されるFe2Pの量
が少ないため、上述の機械的強度の向」二効果が少ない
。一方、Pが0.05重量%を超えて含有されると、鋳
塊自体の粒界にCu+Cu3 P (融点714℃)の
共晶が生じ、700乃至900℃の温度における熱間ピ
アシング加工時に、粒界に割れが発生すると共に、70
0℃より低い温度においては変形抵抗が大きくなり、加
工が不可能となる。従って、P含有量は0.02乃至0
105重量%とする。
If the P content is less than 2% by weight, it is 0.05 to 0.
.. Since the amount of Fe2P formed by combining with Fe of 15 weight and 1% is small, the above-mentioned effect on mechanical strength is small. On the other hand, when P is contained in an amount exceeding 0.05% by weight, a eutectic of Cu+Cu3P (melting point 714°C) occurs at the grain boundaries of the ingot itself, and during hot piercing at temperatures of 700 to 900°C, Along with cracks occurring at grain boundaries, 70
At temperatures lower than 0° C., deformation resistance increases and processing becomes impossible. Therefore, the P content is between 0.02 and 0.
105% by weight.

次に、上述の組成を有する銅合金材料の加工条件及び熱
処理条件について詳述する。
Next, processing conditions and heat treatment conditions for the copper alloy material having the above-mentioned composition will be described in detail.

この組成を有する銅合金はCu−Fe−P系の析出強化
型のものであり、基本的には、熱間加工後の低加工率の
冷間抽伸と、時効及び局部応力除去のための焼鈍の工程
とで製造される。つまり、燐脱酸銅と同一の熱間加工方
式により製造可能であれば、従来の設備をそのまま使用
し、低コストで耐熱性及び耐摩耗性が優れた鋳型を製造
することができる。しかしながら、本願発明者等が製造
実験を繰り返したところ、中間熱処理において、−ff
i銅合金材と同様に500℃の温度で2時間という条件
で焼鈍したのでは、ピアシング材のその後の冷間加工率
が低いため、上述の組成の銅合金が再結晶せず異常組織
が発生して粒界か弱くなることが判明した。このように
粒界か弱いと、その後の冷間抽伸工程で円周方向に割れ
が生じるため、製品化が困難である。
The copper alloy with this composition is a precipitation-strengthened Cu-Fe-P type, and basically consists of cold drawing at a low working rate after hot working, and annealing for aging and local stress relief. It is manufactured through the process of In other words, if it can be manufactured using the same hot working method as phosphorus-deoxidized copper, a mold with excellent heat resistance and wear resistance can be manufactured at low cost using conventional equipment as is. However, when the inventors repeated manufacturing experiments, -ff
i If annealing was performed at a temperature of 500°C for 2 hours as with the copper alloy material, the subsequent cold working rate of the piercing material would be low, so the copper alloy with the above composition would not recrystallize and an abnormal structure would occur. It was found that the grain boundaries became weaker. If the grain boundaries are weak like this, cracks will occur in the circumferential direction during the subsequent cold drawing process, making it difficult to commercialize the product.

そこで、本願発明者等がCu−Fe−P系合金の製造上
の問題点である熱間ピアシング後の冷間抽伸工程におけ
る割れの発生を防止するために、その製造条件について
種々実験研究を重ねた結果、以下に示すように最適の加
工及び熱処理条件を見出した。この条件で前述の組成の
銅合金を使用して鋳型を製造することによって、燐脱酸
銅製鋳型の製造と同様に熱間ピアシング法を適用して耐
熱性及び耐摩耗性が優れた連続鋳造用管壁鋳型を容易に
製造することができる 以下、この銅合金材料の加工工程及び熱処理工程につい
て説明する。
Therefore, in order to prevent the occurrence of cracks in the cold drawing process after hot piercing, which is a problem in the production of Cu-Fe-P alloys, the inventors of the present application have conducted various experimental studies on the production conditions. As a result, we found the optimal processing and heat treatment conditions as shown below. By manufacturing a mold using a copper alloy with the above-mentioned composition under these conditions, we can apply the hot piercing method, similar to the manufacturing of phosphorus-deoxidized copper molds, to achieve continuous casting with excellent heat resistance and wear resistance. The processing steps and heat treatment steps for this copper alloy material will be described below, allowing easy manufacture of the tube wall mold.

先ず、上述の組成を有する銅合金の鋳塊を700℃以上
の温度に加熱し、ピアシング法により熱間加工して素管
を得る。
First, an ingot of a copper alloy having the above-mentioned composition is heated to a temperature of 700° C. or higher, and hot worked by a piercing method to obtain a raw pipe.

この素管を減面率が35乃至45%の低加工率で冷間抽
伸した後、連続2段の熱処理を実施する。第1の熱処理
工程においては、この素管を650乃至700℃の温度
で30分乃至1時間焼鈍する。これはピアシング材の低
加工率の冷間組織を均一に再結晶させ、次工程の冷間抽
伸加工において割れが発生することを防止するためであ
る。
After cold drawing this raw tube at a low processing rate with an area reduction rate of 35 to 45%, two successive stages of heat treatment are performed. In the first heat treatment step, this raw tube is annealed at a temperature of 650 to 700° C. for 30 minutes to 1 hour. This is to uniformly recrystallize the low working rate cold structure of the piercing material and to prevent cracks from occurring in the next cold drawing process.

この焼鈍温度が650℃未゛満の場合には、銅合金が再
結晶せず、このため伸びが小さく、加工性が向上しない
、その結果、次工程の冷間抽伸加工において割れが発生
する。焼鈍温度が700℃を超える場合には、二次再結
晶が起って結晶粒が大きくなるために、粒界か弱くなり
、硬さ及び強度が低下する。従って、第1の熱処理工程
の焼鈍温度は650乃至700℃とする。
If the annealing temperature is less than 650°C, the copper alloy will not recrystallize, resulting in low elongation and no improvement in workability.As a result, cracks will occur in the next cold drawing process. When the annealing temperature exceeds 700° C., secondary recrystallization occurs and crystal grains become larger, weakening grain boundaries and lowering hardness and strength. Therefore, the annealing temperature in the first heat treatment step is 650 to 700°C.

焼鈍時間は、上記熱処理の効果を得るためには30分以
上が必要である。一方、省エネルギーの観点から長時間
熱処理することは無駄であるので、焼鈍時間は1時間以
内にする。
The annealing time is required to be 30 minutes or more in order to obtain the effect of the heat treatment. On the other hand, from the viewpoint of energy saving, it is wasteful to carry out heat treatment for a long time, so the annealing time is set to within one hour.

第2の熱処理工程においては、素管を500乃至600
℃の温度で2乃至4時間焼鈍する。これは、燐化鉄(F
e2P)を析出させるためであり、この燐化鉄の析出に
より導電率が向上し、強度も僅かではあるが向上する。
In the second heat treatment process, the raw tube is heated to 500 to 600
Anneal at a temperature of 2 to 4 hours. This is iron phosphide (F
This is to precipitate e2P), and the precipitation of iron phosphide improves the electrical conductivity and improves the strength, albeit slightly.

しかし、焼鈍時間が500℃未満の場合には2乃至4時
間焼鈍処理しても十分な析出効果が得られない、また、
熱処理温度が600℃を超えると、析出は生じるものの
その析出量が少ないため導電率の向上効果が小さい。従
って、第2の熱処理工程の焼鈍温度は500乃至600
℃とする。
However, if the annealing time is less than 500°C, a sufficient precipitation effect cannot be obtained even if annealing is performed for 2 to 4 hours.
When the heat treatment temperature exceeds 600° C., although precipitation occurs, the amount of precipitation is small and the effect of improving electrical conductivity is small. Therefore, the annealing temperature in the second heat treatment step is 500 to 600.
℃.

焼鈍時間が2時間未満である場合は、500乃至600
℃の温度で焼鈍しても析出が不十分であり、逆に、焼鈍
時間が4時間を超えると、省エネルギーの観点から不経
済である。従って、第2の熱処理工程の焼鈍時間は2乃
至4時間とする。
When annealing time is less than 2 hours, 500 to 600
Even if annealing is performed at a temperature of .degree. C., precipitation is insufficient, and conversely, if the annealing time exceeds 4 hours, it is uneconomical from the viewpoint of energy saving. Therefore, the annealing time of the second heat treatment step is 2 to 4 hours.

次に、この熱処理後の素管を冷間抽伸加工した後、更に
角型鋳型形状への抽伸加工を実施する。
Next, after this heat-treated raw pipe is cold drawn, it is further drawn into a square mold shape.

この加工における総加工率(総減面率)は30乃至45
%である。
The total processing rate (total area reduction rate) in this process is 30 to 45
%.

その後、250乃至400℃の温度で30分乃至4時間
焼鈍する。これは、冷間抽伸加工により生じた局部応力
を除去するためである。この第3の熱処理工程の焼鈍温
度が250℃未満の場合には、この局部応力除去の効果
は少なく、また、400℃を超える温度で焼鈍すると銅
合金の硬さが低下する。
Thereafter, it is annealed at a temperature of 250 to 400°C for 30 minutes to 4 hours. This is to remove local stress caused by cold drawing. If the annealing temperature in this third heat treatment step is less than 250°C, the effect of local stress relief will be small, and if annealed at a temperature exceeding 400°C, the hardness of the copper alloy will decrease.

従って、焼鈍温度は250乃至400℃とする。一方、
焼鈍時間が30分未満の場合は上述した効果が少く、ま
た、4時間を超える焼鈍は省エネルギーの観点から無駄
である。従って、焼鈍時間は30分乃至4時間とする。
Therefore, the annealing temperature is set at 250 to 400°C. on the other hand,
When the annealing time is less than 30 minutes, the above-mentioned effect is small, and annealing for more than 4 hours is wasteful from the viewpoint of energy saving. Therefore, the annealing time is 30 minutes to 4 hours.

次に、本発明方法により、実際に鋼の連続鋳造用管壁鋳
型を製造した結果について説明する。
Next, the results of actually manufacturing a pipe wall mold for continuous casting of steel using the method of the present invention will be explained.

下記第1表に示す組成の合金N081乃至3を容量が6
トンのコアレス炉に装入し、木炭被覆して大気中で溶解
し、外径が205mm、長さが1000mmの鋳塊を造
塊した。なお、合金N113は燐脱酸銅であり、本発明
にて規定した組成範囲から外れるものである。
Alloys N081 to 3 with the composition shown in Table 1 below have a capacity of 6
The ingot was charged into a 1-ton coreless furnace, coated with charcoal, and melted in the atmosphere to form an ingot with an outer diameter of 205 mm and a length of 1000 mm. Note that alloy N113 is phosphorus-deoxidized copper and falls outside the composition range defined in the present invention.

第1表 この鋳塊を長さが740mmになるように切断し、85
0℃に加熱した後、ピアシング法により熱間加工し、外
径が204■、内径が165mmの素管を得な9次いで
、この素管を650乃至680℃の温度から水中に急冷
した後、この素管から、厚さが19mm、幅が150m
m、長さが200+*mの試験片を切出した。製法は下
記の通り管壁モールドの製造工程に準じて行った。
Table 1 This ingot was cut to a length of 740 mm, and
After heating to 0°C, hot working is carried out by the piercing method to obtain a raw tube with an outer diameter of 204 mm and an inner diameter of 165 mm.9 Next, after rapidly cooling this raw tube in water from a temperature of 650 to 680 °C, From this raw pipe, the thickness is 19 mm and the width is 150 m.
A test piece with a length of 200+*m was cut out. The manufacturing method was carried out in accordance with the manufacturing process for tube wall molds as described below.

ピアシング加工後の素管を40%の加工率で冷間圧延し
た後、下記第2表に示すように、650乃至750℃の
温度で30分間焼鈍して第1の熱処理(1回目の中間熱
処理)を実施した。次いで、500乃至575℃の温度
で4時間焼鈍して第2の熱処理(2回目の中間熱処理)
を実施した。更に、硫酸により酸化スケールを除去し、
35%の加工率で冷間圧延した後、350℃の温度で2
時間焼鈍して局部応力を除去した。但し、比較例3の燐
脱酸銅については、中間焼鈍条件が400℃の温度で3
0分とし、最終の局部応力除去のための焼鈍条件は20
0℃の温度で2時間としな。
The raw pipe after piercing is cold rolled at a processing rate of 40%, and then annealed at a temperature of 650 to 750°C for 30 minutes to perform the first heat treatment (first intermediate heat treatment), as shown in Table 2 below. ) was carried out. Next, the second heat treatment (second intermediate heat treatment) is performed by annealing at a temperature of 500 to 575°C for 4 hours.
was carried out. Furthermore, oxidized scale is removed with sulfuric acid,
After cold rolling at a processing rate of 35%, 2
Local stress was removed by time annealing. However, for the phosphorus-deoxidized copper of Comparative Example 3, the intermediate annealing conditions were 3 at a temperature of 400°C.
0 minutes, and the annealing conditions for final local stress relief are 20 minutes.
2 hours at 0°C.

なお、比較例1のように、第1の熱処理において500
℃で焼鈍したものはピアシング加工後に割れが発生した
。従って、以後の工程は実施していない。
Note that, as in Comparative Example 1, in the first heat treatment, 500
For those annealed at ℃, cracks occurred after piercing. Therefore, the subsequent steps were not carried out.

これらの試料を用いて、常温での特性及び300℃の高
温における機械的性質を試験した結果を前述の第2表に
併せて示す。
Using these samples, the properties at room temperature and mechanical properties at a high temperature of 300°C were tested, and the results are also shown in Table 2 above.

この試験方法は以下のとおりである。The test method is as follows.

(1)引張強さ及び耐力は圧延方向に平行に切出した5
關厚のJIS13号B試験片により試験した。
(1) Tensile strength and yield strength are measured by cutting 5 parallel to the rolling direction.
The test was performed using a JIS No. 13 B test piece of Sekiatsu.

赤外線炉を使用して試験片を300℃の温度に加熱し、
15分間保持した後、引張試験した。
Heating the specimen to a temperature of 300°C using an infrared oven;
After holding for 15 minutes, a tensile test was performed.

(2硬さは、ビッカース硬度計により荷重5kgで測定
した。
(2. Hardness was measured using a Vickers hardness meter at a load of 5 kg.

(3)導電率は市販の導電率測定器により測定した。(3) Electrical conductivity was measured using a commercially available electric conductivity meter.

この導電率測定器による測定値とJ I 5HO505
のダブルブリッジ法による測定値との補正は別に用意し
た同種の2mm厚の条材により行った。
Measured values by this conductivity measuring device and J I 5HO505
Correction with the measured value by the double bridge method was performed using a separately prepared strip of the same type with a thickness of 2 mm.

第2表から明らかなように、本発明方法により製造され
た実施例鋳型においては、ピアシング加工後の冷間抽伸
割れが防止されており、また、比較例2及び3の鋳型に
比して、常温及び高温特性が優れている。
As is clear from Table 2, in the example molds manufactured by the method of the present invention, cold drawing cracks after piercing were prevented, and compared to the molds of Comparative Examples 2 and 3, Excellent room temperature and high temperature properties.

[発明の効果] 以上説明したように、本発明によれば、所定の組成の銅
合金製鋳型が従来の燐脱酸銅製鋳型の製造工程と同様の
ピアシング加工を含む工程により製造されるので、従来
方法にて使用した設備をそのまま使用して鋳型を製造す
ることができる。得られた鋳型は、導電率が燐脱酸銅製
鋳型と略々間等であるのに対し、常温及び約300℃の
高温における機械的性質は、燐脱酸銅よりも著しく優れ
ている。特に、本発明により得られた鋳型は、耐力が燐
脱酸銅の2.5倍と高いので、鋼の高速連続鋳造に際し
て大きな熱応力を受けても変形し難い。
[Effects of the Invention] As explained above, according to the present invention, a copper alloy mold having a predetermined composition is manufactured by a process including piercing similar to the manufacturing process of a conventional phosphorus-deoxidized copper mold. The mold can be manufactured using the same equipment used in the conventional method. The obtained mold has an electrical conductivity that is approximately between that of a phosphorus-deoxidized copper mold, but its mechanical properties at room temperature and a high temperature of about 300° C. are significantly superior to that of phosphorus-deoxidized copper. In particular, the mold obtained according to the present invention has a yield strength as high as 2.5 times that of phosphorus-deoxidized copper, so it is difficult to deform even when subjected to large thermal stress during high-speed continuous casting of steel.

従って、本発明によれば、鋳型の寿命が延長され、連続
鋳造時の鋳型の交換及び保守点検のための時間を短縮す
ることができる。
Therefore, according to the present invention, the life of the mold can be extended, and the time for mold replacement and maintenance inspection during continuous casting can be shortened.

Claims (1)

【特許請求の範囲】[Claims] 0.05乃至0.15重量%のFe及び0.02乃至0
.05重量%のPを含有し、残部がCu及び不可避的不
純物である銅合金の鋳塊を、700℃以上の温度に加熱
してピアシング加工する工程と、得られた素管を35乃
至45%の減面率で冷間抽伸加工する工程と、650乃
至700℃の温度で30分乃至1時間焼鈍する第1の熱
処理工程と、500乃至600℃の温度で2乃至4時間
焼鈍する第2の熱処理工程と、30乃至45%の総減面
率で冷間抽伸及び鋳型形状への抽伸加工を実施する工程
と、250乃至400℃の温度で30分乃至4時間焼鈍
する第3の熱処理工程とを有することを特徴とする連続
鋳造用鋳型の製造方法。
0.05 to 0.15 wt% Fe and 0.02 to 0
.. A process of heating a copper alloy ingot containing 0.5% by weight of P and the remainder being Cu and unavoidable impurities to a temperature of 700°C or higher and performing piercing processing, and piercing the resulting raw pipe by 35 to 45%. A first heat treatment step of annealing at a temperature of 650 to 700°C for 30 minutes to 1 hour, and a second heat treatment step of annealing at a temperature of 500 to 600°C for 2 to 4 hours. A heat treatment step, a step of performing cold drawing and drawing processing into a mold shape with a total area reduction rate of 30 to 45%, and a third heat treatment step of annealing at a temperature of 250 to 400 ° C. for 30 minutes to 4 hours. A method for manufacturing a continuous casting mold, comprising:
JP26607287A 1987-10-20 1987-10-20 Manufacture of mold for continuous casting Granted JPH01108351A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26607287A JPH01108351A (en) 1987-10-20 1987-10-20 Manufacture of mold for continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26607287A JPH01108351A (en) 1987-10-20 1987-10-20 Manufacture of mold for continuous casting

Publications (2)

Publication Number Publication Date
JPH01108351A true JPH01108351A (en) 1989-04-25
JPH0314900B2 JPH0314900B2 (en) 1991-02-27

Family

ID=17425968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26607287A Granted JPH01108351A (en) 1987-10-20 1987-10-20 Manufacture of mold for continuous casting

Country Status (1)

Country Link
JP (1) JPH01108351A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108405820A (en) * 2018-03-23 2018-08-17 江西鸥迪铜业有限公司 A kind of horizontal casting Rolling Production brass tube technique

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108405820A (en) * 2018-03-23 2018-08-17 江西鸥迪铜业有限公司 A kind of horizontal casting Rolling Production brass tube technique
CN108405820B (en) * 2018-03-23 2019-11-26 江西鸥迪铜业有限公司 A kind of horizontal casting Rolling Production brass tube technique

Also Published As

Publication number Publication date
JPH0314900B2 (en) 1991-02-27

Similar Documents

Publication Publication Date Title
JP5117604B1 (en) Cu-Ni-Si alloy and method for producing the same
US4042424A (en) Electrical conductors of aluminum-based alloys
WO2009082695A9 (en) Copper-nickel-silicon alloys
JP5439610B2 (en) High strength, high conductivity copper alloy and method for producing the same
JPH0790520A (en) Production of high-strength cu alloy sheet bar
JP4229307B2 (en) Aluminum alloy plate for aircraft stringers having excellent stress corrosion cracking resistance and method for producing the same
JP2004091871A (en) High strength copper alloy and its production method
JPH06220594A (en) Production of copper alloy for electric parts having good workability
JP2016199808A (en) Cu-Co-Si-BASED ALLOY AND PRODUCTION METHOD THEREFOR
EP4095275A1 (en) Copper alloy
US2670309A (en) Metal-working process and product
JPH0314896B2 (en)
JPH01108351A (en) Manufacture of mold for continuous casting
JP3763234B2 (en) Method for producing high-strength, high-conductivity, high-heat-resistant copper-based alloy
JPS6389649A (en) Manufacture of al-mg-zn alloy material having superior formability
JPH05132745A (en) Production of aluminum alloy excellent in formability
JPS61288036A (en) Copper alloy for lead frame and its production
CN108603273A (en) The method that Bar Wire Product is manufactured by heat resistance acieral
JPH02111850A (en) Manufacture of copper alloy for lead frame
JPH02111828A (en) Manufacture of copper alloy for lead frame
JPS63103055A (en) Manufacture of thin iron-copper alloy strip for lead frame
JP2023042797A (en) Tube with inner groove and manufacturing method thereof
JPH0124859B2 (en)
JP2892508B2 (en) High strength copper alloy with good hot workability
JPS6123856B2 (en)