JPH01108347A - Gear excellent in impact resistance - Google Patents

Gear excellent in impact resistance

Info

Publication number
JPH01108347A
JPH01108347A JP26526087A JP26526087A JPH01108347A JP H01108347 A JPH01108347 A JP H01108347A JP 26526087 A JP26526087 A JP 26526087A JP 26526087 A JP26526087 A JP 26526087A JP H01108347 A JPH01108347 A JP H01108347A
Authority
JP
Japan
Prior art keywords
less
gear
carburizing
steel
impact resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26526087A
Other languages
Japanese (ja)
Other versions
JPH07100840B2 (en
Inventor
Shunzo Umegaki
梅垣 俊造
Yoshio Okada
義夫 岡田
Kunio Namiki
並木 邦夫
Tomohito Iikubo
知人 飯久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Nissan Motor Co Ltd
Original Assignee
Daido Steel Co Ltd
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd, Nissan Motor Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP26526087A priority Critical patent/JPH07100840B2/en
Publication of JPH01108347A publication Critical patent/JPH01108347A/en
Publication of JPH07100840B2 publication Critical patent/JPH07100840B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Gears, Cams (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

PURPOSE:To obtain a gear excellent in impact resistance and having high reliability by subjecting a steel having a specific composition consisting of C, Si, Mn, P, S, Cr, Mo, Al, N, O, and Fe to tooth profile forming and then applying proper carburizing, hardening, and tempering to the above. CONSTITUTION:A steel having a composition which consists of, by weight, 0.10-0.30%, preferably 0.10-0.20%, C, <0.15%, preferably <0.10%, Si, 0.50-1.50%, preferably 0.50-0.80%, Mn, <0.015% P, <0.020%, preferably <0.005%, S, 0.50-1.50%, preferably 0.50-1.00%, Cr, 0.30-0.70% Mo, 0.010-0.050% Al, 0.005-0.025% N, <0.0015% O, and the balance essentially Fe and in which Mo/(10Si+100P+Mn+Cr) is regulated to >0.10, preferably 0.15, is used as a stock and subjected to tooth profile forming by means of cold forging. This gear body is subjected to carburizing, hardening, and tempering, by which effective hardening depth after the above treatment is regulated to 0.6-1.0mm in a region of >=550 Vickers hardness. Further, shot peening of 0.4-1.0A arc height is applied, if necessary.

Description

【発明の詳細な説明】[Detailed description of the invention]

【発明の目的】− (産業上の利用分野) 本発明は、自動車を始めとする機械類に利用され、特に
衝撃強度に優れた歯車に関する。 (従来の技術) 近年、機械類に用いられる歯車に対する高品質化が強く
望まれるようになった。特に自動車においては高出力化
、軽量化が進み、高強度化、高靭性化の要望がますます
高まって来ている。 このような状況のもとに、本発明者のひとりは先に、特
願昭58−128787として、Si低減による粒界酸
化の防止、P低減MO添加による粒界強度増、AJI、
N、Nb添加による結晶粒微細化、Ni添加による粒界
強度増、等の手段に基づく高強度高靭性歯車用鋼の提案
を行っている。 (発明が解決しようとする問題点) しかしながら、自動車用動力伝達歯車は、自動車の出力
向上や小型軽量化に伴って歯車自体も小型化されるなど
、さらに苛酷な状況で使用されるようになり、急速発進
・加速時、あるいは変速過程での衝撃荷重によって歯車
が破損する例がないとはいえず、さらに高靭性、高強度
の歯車の開発が求められていた。 (発明の目的) 本発明は上記問題点を解決するべくなされたものであっ
て、その目的とするところは、衝撃的な荷重がかかって
も破損することのない高靭性を備え、信頼性の高い歯車
を提供することにある。
OBJECTS OF THE INVENTION - (Industrial Application Field) The present invention relates to gears that are used in machinery such as automobiles and particularly have excellent impact strength. (Prior Art) In recent years, there has been a strong desire for higher quality gears used in machinery. In particular, automobiles are becoming more powerful and lighter, and demands for higher strength and toughness are increasing. Under these circumstances, one of the inventors of the present invention previously proposed in Japanese Patent Application No. 128787/1987 the prevention of grain boundary oxidation by reducing Si, the increase in grain boundary strength by adding MO to reduce P, AJI,
We are proposing high-strength, high-toughness steel for gears based on measures such as grain refinement by adding N and Nb and increasing grain boundary strength by adding Ni. (Problem to be solved by the invention) However, power transmission gears for automobiles are being used in even more severe conditions as the gears themselves are becoming smaller as automobiles become more compact and lightweight. However, there have been cases where gears have been damaged by impact loads during rapid start-up, acceleration, or gear shifting processes, and there has been a need to develop gears with even higher toughness and strength. (Object of the Invention) The present invention has been made to solve the above-mentioned problems, and its purpose is to provide high toughness that will not break even when subjected to an impact load, and to provide reliable Our goal is to provide high quality gear.

【発明の構成】[Structure of the invention]

(問題点を解決するための手段) 本発明者は、高靭性歯車の開発を目的として、合金成分
のみならず、歯車の製造方法や熱処理方法等についても
鋭意検討した結果、浸炭用鋼の靭性評価の指標として今
回新たに見出した鋼中のMo/ (10Si+100P
+Mn+Cr) で表わされる比を大きくした素材を用
いると共に、これに条件的に最適化した熱処理1表面加
工硬化、さらには冷間鍛造による歯形成形等を施すこと
によって衝撃強さの極めて優れた歯車を得ることができ
ることを見出すに至った。 本発明は、上記知見に基づくもので1本発明に係る歯車
は、重量%で、C:0.10〜0.30%、Si:0.
15%未満、Mn二〇、50〜1.50%%P:0.O
15%未満、SiO,020%未満、Cr:0.50〜
1.50%、M o : 0 、30〜0.70%、A
文=0.010〜0.050%、N:0.005〜0.
025%、O:0.0015%未満、残部叉質的にFe
からなり、かつ Mo/(10Si+100P+Mn+Cr)が0、lO
より大きい鋼を素材とし、これにビッカース硬さ550
以上となる有効硬化層深さが0.6〜1.0mmとなる
浸炭焼入れ・焼もどしを施し、さらに必要に応じてアー
クハイトが0.4〜1.0Aとなるショットピーニング
ヲ施してなるものであることを特徴としている。 また、本発明におけるさらに望ましい歯車は、重量%で
、C:0.10〜0.20%、Sl:0.10%未満、
Mn:0.50〜0.80%、P:0.015%未満、
S:0.005%未満、Cr:0.50〜1.00%、
Mo:0.30〜0.70%、A文:0.010〜0.
050%、N:0.005〜0.025%、0:0.0
015%未満、残部実質的にFeからなり、かつMo/
 (10Si+100P+Mn+Cr)が0.15より
大きい鋼を素材として、冷間鍛造による歯形成形および
ビッカース硬さ550以上となる有効硬化層深さが0.
6〜1.0mmとなる浸炭焼入れ・焼もどしを施し、ざ
らに必要に応じてアークハイトが0.4〜1、0Aとな
るショットピーニングを施してなるものであることを特
徴としている。 (作用) 次に、本発明における各構成要件の作用効果と共にそれ
ら数値の限定理由について述べる。 Mo/ (10Si+100P+Mn+Cr):0.1
0より大 本発明者は、合金成分の検討過程で得た種々のデータを
綿密に検討した結果、はだ焼鋼の靭性は上記パラメータ
で整理でき、衝撃値と上記パラメータとは良好な相関を
示すことを見出した。 すなわち、第1図は種々の成分組成の鋼を浸炭焼入れ(
91O℃で浸炭、830℃で保持後焼入れ〕 、焼もど
しく160℃空冷)した場合の10mmRCノツチシャ
ルピー衝撃値をM o /(lO5i+100P+Mn
+cr) で表わされる比で整理したもので、良好な相
関を示すことが判る。実用歯車において、急発進などの
衝撃的な荷重をも考慮した場合、歯車用鋼としては2K
gf−m7cm”程度の衝撃値が必要とされており、そ
のためにはM o / (10S i +100 P+
Mn+Cr) テ表わされる比が0.10より大きくな
ければならないが、さらに安全性を見込むならば、例え
ば冷間鍛造により歯形を成形するような場合は0.15
より大きくすることがより望ましいと言える。 C:O,lO〜0.30% Cは、歯車の乙部強度を維持するために0.10%以上
を必要とする。しかしC量が高すぎると乙部強度が高く
なりすぎ靭性が低下するため0.30%以下に限定され
る。なお、冷間鍛造により成形する場合には鍛造性をも
考慮して0.20%以下とする。 Si:0.15%未満 Stは酸化物形成傾向が大きく、粒界酸化を助長するた
め低い程望ましいが0.15%未満であれば許容できる
。なお、冷間鍛造を実施する場合には鍛造性の点から0
.10%未満に限定される。 M n : 0 、50〜1 、50%Mnは焼入れ性
を向上させるのに有効な成分であり、歯車の心部強度維
持のため0.50%以上を必要とする。一方、多すぎる
と乙部強度が高くなりすぎて靭性を低下させるほか、酸
化物形成傾向が大きく粒界酸化を助長するので1.50
%を上限とするが、冷fIJim造により歯形を成形す
る場合には鍛造性を確保するためO,aO%以下とする
必要がある。 P:0.015%未満 Pは浸炭時、加熱中にオーステナイト粒界に偏析して浸
炭層の靭性を劣化させるため、低い程望ましいが、o、
ois%未満であれば実用上許容できる。 S i 0 、020%未満 SはMnSなどの介在物を形成し、衝撃破壊の起点とな
るので含有量は低い程望ましいが、0.020%未満で
あれば実質的な問題はない。 ただし、冷間鍛造を施す場合には、鍛造性が劣化するた
め0.005%未満とする。 Cr:0.50〜1.50% CrはMnと同様焼入れ性を向上させ、歯車の乙部強度
を維持させるため0.50%以上を添加するが、多くし
すぎると乙部の強度が高くなりすぎ靭性を劣化させるの
で1.50%をその上限とする。なお冷間鍛造を実施す
る場合には鍛造性の点から1.00%以下に限定される
。 Mo:0.30〜O。70% Moは焼入れ性を向上させるばかりでなく、侵炭層の靭
性を高め歯車の耐衝撃性向上に寄与する元素であるが、
このような効果を発揮させる幀は少なくとも0.30%
は必要であるが、0.70%を超えて添加しても効果は
、もはやそれ以上増大しない。 Al:0.010〜0.050% N:0.005〜0.025% これら元素は、微細なAJIN粒子を形成し、オーステ
ナイト結品粒を微細化するf@きかあり、靭性を向上さ
せる。 しかし、Al、N4J−のいずれかが0.010%、0
.005%にそれぞれ満たない場合には上記効果が発揮
できない、また、それぞれ0.050%、0.025%
を超えて添加しても効果はそれ以上増加されることはな
い。 0:0.0015%未満 Oは酸化物を形成し、疲労破壊の起点となるため、低い
方が望ましいが、0.0015%未満であれば実質的な
問題はない。 有効硬化層深さ:0.6〜1.0田m 一般に歯車は1表面層のみを硬化させて、耐摩耗性、耐
疲労性を与えるとともに、6部には靭延性を付与するた
め、浸炭焼入れ・焼もどしを施して使用される。 本発明者は、この処理による有効硬化層(ビッカース硬
さ550以上)深さを0.6〜1.0mmの範囲にコン
トロールすることによって、表面硬化処理による効果が
最も有効に(@き、かつ製品としての性能のばらつきが
防止できることを見出した。すなわち、有効硬化層深さ
が0.6mm以下では耐摩耗性、疲れ強さが確保できず
、逆に1.0mmを超えると耐衝撃性が劣化する。 なお、このコントロールは、カーボンポテンシャルの調
整、浸炭・拡散時間の調整等によって行うことができる
。 アークハイト=0.4〜1.0A 耐衝撃性のみならず疲れ強さをも高める場合にショット
ピーニングが有効であるが、アークハイトが0.4A未
満ではその効果がなく、1.0Aを超えた場合にはむし
ろ靭性を低下させるため上記範囲に限定した。なお、ア
ークハイトはショットピーニングによる素材表面の変形
高さを言い、アルメンストリップにより測定され、この
コントロールは、ショット粒、投射速度、投射時間、カ
バレッジ等の調整により行うことができる。 冷間鍛造 冷間鍛造により歯形に沿ったファイバーフローを形成さ
せることにより、疲れ強さ、衝撃強さをともに向上させ
得ることを見出した。 なお、冷間鍛造を施す場合には、鍛造性をも考慮して、
C,Si、Mn、S、Crの各成分範囲がより低く限定
される。 (実施例〕 第1表に示す合金成分を有する鋼を溶製し、90mm径
の棒鋼に圧延、焼ならしした後、機械加工によって、あ
るいは冷間鍛造と機械加工によって、ピッチ円直径ニア
0mm、モジュール:2.5.歯数=28.圧力角:2
0°の歯車に加工し、次いで、浸炭焼入れ・焼もどしを
行い、さらに、一部の歯車にはショットピーニングを施
し歯車試験片とした。 この歯車試験片を第2図に示すノーンマー1と、モーメ
ントアーム2とを備えかつ固定歯車3aおよび回転歯車
3bを備えた歯車衝撃試験機(ハンマー重i:138K
g、ふり子長さ=1.2m。 最大衝撃荷重:4000Kg、最大ハンマー速度:3.
4m/5ec)および動力循環式歯車試験機(回転数:
3500r、p、m、歯車:モジュール2.5.歯数:
28と32との組合せ)にかけて、歯車衝撃破断荷重お
よび歯車疲れ限度をそれぞれ測定した。 なお、浸炭焼入れは、カーボンポテンシャルを0.8〜
0.9とし、910℃×3時間浸炭、2.5時間拡散、
830℃X30分保持後油冷、次いで、160℃×2時
間の焼もどし後空冷の条件を標準とし、主に浸炭、拡散
時間を変えることによって有効硬化層深さを調整した。 また、ショットピーニングは、インペラータイプの加工
機を用い、ショット粒:5B−6F、投射速度:40〜
80m/sec、投射時間:2分、カバレッジ二300
%を標準とし、主にショット粒、投射速度を変化させる
ことによってアークハイトを調整した。アークハイトは
市販のアルメンストリップAを用いて測定した。 これらの結果を第2表に示す。 この表に示す結果から明らかなように、本発明例1〜3
の歯車は素材鋼の合金組成が適正で、有効硬化層深さの
適切な熱処理が施されているため、衝撃破断荷重、疲れ
限度ともに良好な値でバランスがとれているのに対し、
鋼中のM o /(10Si+100P+Mn+Cr)
で表される比が低い比較鋼F、G、Iを素材として用い
た比較例4,5,7、特にMoが低くSi、0含有量も
高い比較例7では衝撃破断荷重、疲れ限度共に低い結果
となっている。また、0含有量が高くA!2.、N、l
の低い比較鋼Hを用いた比較例6では結晶粒の微細化が
十分でなく、衝撃破断荷重が低い結果となった。 さらに成分的には適切な鋼を用いた場合でも、浸炭焼入
れ条件の選択を誤ると衝撃破断荷重と疲れ限度のバラン
スが崩れた歯車となることが比較例8,9より明らかで
ある。 適正な条件でショットピーニングが加えられた本発明例
10〜12では、特に疲れ限度が改善されるが、比較例
14で見るとおり過度のショットピーニングはかえって
衝撃破断荷重を低下させる。 組成的にもより望ましい範囲の素材鋼り、Eを用いて冷
間鍛造を加えた本発明例15.16の歯車では、極めて
優れた衝撃破断荷重と疲れ限度を示し、さらにこれにシ
ョットピーニングを施すことにより衝撃破断荷重は若干
低下するものの、疲れ限度がさらに改善されることが本
発明例17゜18から明らかである。
(Means for Solving the Problems) With the aim of developing high-toughness gears, the inventors of the present invention have conducted intensive studies on not only alloy components but also gear manufacturing methods, heat treatment methods, etc., and have found that the toughness of carburizing steel Mo/(10Si+100P) newly discovered in steel as an evaluation index.
By using a material with a large ratio expressed by +Mn+Cr), applying heat treatment (1) surface work hardening with optimized conditions, and tooth forming by cold forging, we are able to create gears with extremely high impact strength. I've come to find out what I can do. The present invention is based on the above knowledge, and the gear according to the present invention has C: 0.10 to 0.30%, Si: 0.
Less than 15%, Mn 20, 50-1.50%%P: 0. O
Less than 15%, SiO, less than 020%, Cr: 0.50~
1.50%, Mo: 0, 30-0.70%, A
Sentence = 0.010-0.050%, N: 0.005-0.
025%, O: less than 0.0015%, remainder qualitatively Fe
and Mo/(10Si+100P+Mn+Cr) is 0, lO
Made of larger steel, with a Vickers hardness of 550
Carburizing and quenching to achieve an effective hardened layer depth of 0.6 to 1.0 mm, as well as shot peening to achieve an arc height of 0.4 to 1.0 A, if necessary. It is characterized by being Further, a more desirable gear in the present invention has C: 0.10 to 0.20%, Sl: less than 0.10%, in weight%.
Mn: 0.50 to 0.80%, P: less than 0.015%,
S: less than 0.005%, Cr: 0.50-1.00%,
Mo: 0.30-0.70%, A text: 0.010-0.
050%, N: 0.005-0.025%, 0:0.0
less than 015%, the remainder substantially consisting of Fe, and Mo/
(10Si+100P+Mn+Cr) is made of steel with a value larger than 0.15, and the effective hardened layer depth is 0.0000.
It is characterized by being carburized, quenched and tempered to a thickness of 6 to 1.0 mm, and shot peened to an arc height of 0.4 to 1.0A, if necessary. (Function) Next, the function and effect of each component in the present invention and the reasons for limiting the numerical values will be described. Mo/ (10Si+100P+Mn+Cr): 0.1
Greater than 0 As a result of careful study of various data obtained in the process of examining alloy components, the present inventor found that the toughness of case hardened steel can be summarized by the above parameters, and that there is a good correlation between the impact value and the above parameters. I found out that it shows. In other words, Figure 1 shows steels with various compositions being carburized and quenched (
The 10mm RC notch Charpy impact value when carburized at 91O℃, held at 830℃ and then quenched], tempered and air-cooled at 160℃ is calculated as M o / (lO5i + 100P + Mn
+cr) It can be seen that a good correlation is shown. In practical gears, when considering impact loads such as sudden starts, 2K steel is suitable for gears.
An impact value of about 7cm gf-m is required, and for that purpose M o / (10S i +100P+
Mn+Cr) The ratio expressed must be greater than 0.10, but if you want to ensure greater safety, for example, when forming the tooth profile by cold forging, the ratio should be 0.15.
It can be said that it is more desirable to make it larger. C: O, IO ~ 0.30% C requires 0.10% or more in order to maintain the strength of the outer part of the gear. However, if the C content is too high, the strength of the bottom part will become too high and the toughness will decrease, so it is limited to 0.30% or less. In addition, when forming by cold forging, the content is set to 0.20% or less in consideration of forgeability. Si: less than 0.15% St has a strong tendency to form oxides and promotes grain boundary oxidation, so it is desirable to have a lower content, but it is acceptable if it is less than 0.15%. In addition, when performing cold forging, from the point of view of forgeability,
.. Limited to less than 10%. Mn: 0, 50-1, 50% Mn is an effective component for improving hardenability, and 0.50% or more is required to maintain the core strength of the gear. On the other hand, if the amount is too high, the strength of the outer part becomes too high and the toughness decreases, and the tendency to form oxides increases and promotes grain boundary oxidation, so 1.50
%, but when forming a tooth profile by cold fIJim forming, it is necessary to keep it below O, aO% in order to ensure forgeability. P: Less than 0.015% P segregates at austenite grain boundaries during carburizing and heating and deteriorates the toughness of the carburized layer, so the lower the content, the better;
If it is less than ois%, it is practically acceptable. S i 0 , less than 0.020% S forms inclusions such as MnS and serves as a starting point for impact fracture, so the lower the content, the better, but if it is less than 0.020%, there is no substantial problem. However, when performing cold forging, the forgeability deteriorates, so the content should be less than 0.005%. Cr: 0.50-1.50% Like Mn, Cr improves hardenability and is added in an amount of 0.50% or more to maintain the strength of the outer part of the gear, but if it is added too much, the strength of the outer part becomes too high. Since it deteriorates toughness, the upper limit is set at 1.50%. Note that when cold forging is performed, the content is limited to 1.00% or less from the viewpoint of forgeability. Mo: 0.30~O. 70% Mo is an element that not only improves hardenability but also increases the toughness of the carburized layer and contributes to improving the impact resistance of gears.
At least 0.30% of the area exhibits this effect.
is necessary, but the effect no longer increases even if added in excess of 0.70%. Al: 0.010 to 0.050% N: 0.005 to 0.025% These elements form fine AJIN grains, have a function of refining austenite grains, and improve toughness. However, either Al or N4J- is 0.010%, 0
.. If the content is less than 0.005%, the above effects cannot be achieved, and if the content is less than 0.050% or 0.025%, respectively.
Addition of more than 10% does not increase the effect any further. 0: Less than 0.0015% O forms oxides and becomes a starting point for fatigue fracture, so a lower content is preferable, but if it is less than 0.0015%, there is no substantial problem. Effective hardening layer depth: 0.6 to 1.0 m Generally, only one surface layer of a gear is hardened to provide wear resistance and fatigue resistance, and the sixth part is carburized to provide toughness and ductility. It is used after being quenched and tempered. The present inventor has determined that the effect of the surface hardening treatment can be maximized by controlling the depth of the effective hardening layer (Vickers hardness of 550 or more) within the range of 0.6 to 1.0 mm. We have found that variations in performance as a product can be prevented.In other words, if the effective hardened layer depth is less than 0.6 mm, wear resistance and fatigue strength cannot be ensured, and conversely, if it exceeds 1.0 mm, impact resistance will decrease. This control can be performed by adjusting the carbon potential, carburizing/diffusion time, etc. Arc height = 0.4 to 1.0 A When increasing not only impact resistance but also fatigue strength. However, shot peening is effective when the arc height is less than 0.4A, and when it exceeds 1.0A, the toughness is rather reduced, so shot peening was limited to the above range. This refers to the height of deformation on the material surface caused by the deformation of the material surface, and is measured by an Almen strip, and this control can be performed by adjusting the shot grain, blasting speed, blasting time, coverage, etc. We have found that both fatigue strength and impact strength can be improved by forming fiber flow. When performing cold forging, we also take into account forgeability.
The range of each component of C, Si, Mn, S, and Cr is limited to a lower range. (Example) Steel having the alloy components shown in Table 1 is melted, rolled into a 90 mm diameter steel bar, normalized, and then machined or cold forged and machined to create a pitch circle diameter near 0 mm. , module: 2.5. Number of teeth = 28. Pressure angle: 2
The gears were processed into 0° gears, then carburized and quenched and tempered, and some of the gears were shot peened to obtain gear test pieces. This gear test piece was tested in a gear impact tester (hammer weight i: 138K) equipped with a hammer 1 and a moment arm 2 as shown in FIG.
g, pendulum length = 1.2 m. Maximum impact load: 4000Kg, maximum hammer speed: 3.
4m/5ec) and power circulation gear testing machine (rotation speed:
3500r, p, m, gear: module 2.5. Number of teeth:
28 and 32), the gear impact breaking load and gear fatigue limit were measured. In addition, carburizing and quenching reduces the carbon potential to 0.8~
0.9, carburized at 910°C for 3 hours, and diffused for 2.5 hours.
The standard conditions were oil cooling after holding at 830°C for 30 minutes, then air cooling after tempering at 160°C for 2 hours, and the effective hardened layer depth was adjusted mainly by changing the carburization and diffusion times. In addition, shot peening is performed using an impeller type processing machine, shot grains: 5B-6F, projection speed: 40~
80m/sec, projection time: 2 minutes, coverage 2300
% as the standard, and the arc height was adjusted mainly by changing the shot grain and projection speed. The arc height was measured using a commercially available Almen Strip A. These results are shown in Table 2. As is clear from the results shown in this table, examples 1 to 3 of the present invention
The gears have the appropriate alloy composition of the steel material and are heat-treated with an appropriate depth of effective hardening layer, so the impact breaking load and fatigue limit are both well-balanced.
Mo in steel / (10Si+100P+Mn+Cr)
Comparative Examples 4, 5, and 7 using Comparative Steels F, G, and I, which have a low ratio represented by This is the result. In addition, the 0 content is high and A! 2. ,N,l
In Comparative Example 6 using Comparative Steel H with a low . Furthermore, it is clear from Comparative Examples 8 and 9 that even when steel with appropriate composition is used, incorrect selection of carburizing and quenching conditions results in gears with an imbalance between impact breaking load and fatigue limit. In Examples 10 to 12 of the present invention in which shot peening was applied under appropriate conditions, the fatigue limit was particularly improved, but as seen in Comparative Example 14, excessive shot peening actually lowered the impact breaking load. The gears of Examples 15 and 16 of the present invention, which were cold-forged using steel E in a compositionally more desirable range, exhibited extremely excellent impact breaking load and fatigue limit, and were further shot-peened. It is clear from Examples 17 and 18 of the present invention that, although the impact rupture load is slightly lowered by applying this, the fatigue limit is further improved.

【発明の効果】【Effect of the invention】

以ト説明したように、本発明に係わる歯車は、合金成分
的に最適化した素材鋼を用い、これに最も有効な浸炭焼
入れ、表面加工硬化処理、さらには冷間鍛造による歯形
成形を組合わせ適用することによって、極めて優れた耐
衝撃性と疲労強度を付与したもので、自動車を始めとす
る各種機械類に適用した場合、小型軽量化、性能向上、
信預性の増大などに果たす効果が大きい。
As explained above, the gear according to the present invention uses a material steel that is optimized in terms of alloy composition, and combines this with the most effective carburizing and quenching, surface work hardening treatment, and further tooth forming by cold forging. When applied to various types of machinery such as automobiles, it can be used to reduce size and weight, improve performance, and provide extremely high impact resistance and fatigue strength.
This has a great effect on increasing trustworthiness.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は鋼中のMo/ (10Si+100P+M n
 + Cr )と衝撃靭性との関係を示すグラフ、i2
図は本発明実施例における歯車の耐衝撃性評価に用いた
歯車衝撃試験機を示す概略図である。 特許出願人    日産自動車株式会社特許出願人  
  大同特殊鋼株式会社代理人弁理士   小  塩 
   香箱1図
Figure 1 shows Mo/(10Si+100P+M n
+Cr) and impact toughness, i2
The figure is a schematic diagram showing a gear impact tester used for evaluating the impact resistance of gears in Examples of the present invention. Patent applicant Nissan Motor Co., Ltd. Patent applicant
Daido Steel Co., Ltd. Representative Patent Attorney Shio O
Barrel box 1

Claims (1)

【特許請求の範囲】 (1)重量%で、C:0.10〜0.30%、Si:0
.15%未満、Mn:0.50〜 1.50%、P:0.015%未満、S: 0.020%未満、Cr:0.50〜1.50%、Mo
:0.30〜0.70%、Al: 0.010〜0.050%、N:0.005〜0.02
5%、0:0.0015%未満、残部実質的にFeから
なり、かつ Mo/(10Si+100P+Mn+Cr)が0.10
より大きい鋼を素材とし、浸炭焼入れ・焼もどし後の有
効硬化層深さがビッカース硬さ550以上の領域で0.
6〜1.0mmとなっていることを特徴とする耐衝撃性
に優れる歯車。 (2)重量%で、C:0.10〜0.30%、Si:0
.15%未満、Mn:0.50〜 1.50%、P:0.015%未満、S: 0.020%未満、Cr:0.50〜1.50%、Mo
:0.30〜0.70%、Al: 0.010〜0.050%、N:0.005〜0.02
5%、O:0.0015%未満、残部実質的にFeから
なり、かつ Mo/(10Si+100P+Mn+Cr)が0.10
より大きい鋼を素材とし、浸炭焼入れ・焼もどし後の有
効硬化層深さがビッカース硬さ550以上の領域で0.
6〜1.0mmとなっており、さらにアークハイトが0
.4〜1.0Aとなるショットピーニングを施してなる
ことを特徴とする耐衝撃性に優れる歯車。 (3)重量%で、C:0.10〜0.20%、Si:0
.10%未満、Mn:0.50〜 0.80%、P:0.015%未満、S: 0.005%未満、Cr:0.50〜1.00%、Mo
:0.30〜0.70%、Al: 0.010〜0.050%、N:0.005〜0.02
5%、O:0.0015%未満、残部実質的にFeから
なり、かつ Mo/(10Si+100P+Mn+Cr)が0.15
より大きい鋼を素材として冷間鍛造により歯形成形され
、浸炭焼入れ・焼もどし後の有効硬化層深さがビッカー
ス硬さ550以上の領域で0.6〜1.0mmとなって
いることを特徴とする耐衝撃性に優れる歯車。 (4)重量%で、C:0.10〜0.20%、Si:0
.10%未満、Mn:0.50〜 0.80%、P:0.015%未満、S: 0.005%未満、Cr:0.50〜1.00%、Mo
:0.30〜0.70%、Al: 0.010〜0.050%、N:0.005〜0.02
5%、O:0.0015%未満、残部実質的にFeから
なり、かつ Mo/(10Si+100P+Mn+Cr)が0.15
より大きい鋼を素材として冷間鍛造により歯型成形され
、浸炭焼入れ・焼もどし後の有効硬化層深さがビッカー
ス硬さ550以上の領域で0.6〜1.0mmとなって
おり、さらに、アークハイトが0.4〜1.0Aとなる
ショットピーニングを施してなることを特徴とする耐衝
撃性に優れる歯車。
[Claims] (1) In weight%, C: 0.10 to 0.30%, Si: 0
.. Less than 15%, Mn: 0.50-1.50%, P: less than 0.015%, S: less than 0.020%, Cr: 0.50-1.50%, Mo
: 0.30-0.70%, Al: 0.010-0.050%, N: 0.005-0.02
5%, 0: less than 0.0015%, the remainder substantially consists of Fe, and Mo/(10Si+100P+Mn+Cr) is 0.10
The material is made of larger steel, and the effective hardened layer depth after carburizing and quenching and tempering is 0.
A gear with excellent impact resistance, characterized by a diameter of 6 to 1.0 mm. (2) In weight%, C: 0.10-0.30%, Si: 0
.. Less than 15%, Mn: 0.50-1.50%, P: less than 0.015%, S: less than 0.020%, Cr: 0.50-1.50%, Mo
: 0.30-0.70%, Al: 0.010-0.050%, N: 0.005-0.02
5%, O: less than 0.0015%, the remainder substantially consists of Fe, and Mo/(10Si+100P+Mn+Cr) is 0.10
The material is made of larger steel, and the effective hardened layer depth after carburizing and quenching and tempering is 0.
6 to 1.0mm, and the arc height is 0.
.. A gear having excellent impact resistance, characterized by being shot peened to a value of 4 to 1.0A. (3) In weight%, C: 0.10-0.20%, Si: 0
.. Less than 10%, Mn: 0.50-0.80%, P: less than 0.015%, S: less than 0.005%, Cr: 0.50-1.00%, Mo
: 0.30-0.70%, Al: 0.010-0.050%, N: 0.005-0.02
5%, O: less than 0.0015%, the remainder substantially consists of Fe, and Mo/(10Si+100P+Mn+Cr) is 0.15
The teeth are formed by cold forging using a larger steel material, and the effective hardening layer depth after carburizing and tempering is 0.6 to 1.0 mm in the area of Vickers hardness of 550 or more. Gears with excellent impact resistance. (4) In weight%, C: 0.10-0.20%, Si: 0
.. Less than 10%, Mn: 0.50-0.80%, P: less than 0.015%, S: less than 0.005%, Cr: 0.50-1.00%, Mo
: 0.30-0.70%, Al: 0.010-0.050%, N: 0.005-0.02
5%, O: less than 0.0015%, the remainder substantially consists of Fe, and Mo/(10Si+100P+Mn+Cr) is 0.15
It is formed into a tooth shape by cold forging using larger steel as a material, and the effective hardening layer depth after carburizing and quenching and tempering is 0.6 to 1.0 mm in the area of Vickers hardness of 550 or more. A gear having excellent impact resistance, characterized by being shot peened to have an arc height of 0.4 to 1.0A.
JP26526087A 1987-10-22 1987-10-22 Gears with excellent impact resistance Expired - Lifetime JPH07100840B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26526087A JPH07100840B2 (en) 1987-10-22 1987-10-22 Gears with excellent impact resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26526087A JPH07100840B2 (en) 1987-10-22 1987-10-22 Gears with excellent impact resistance

Publications (2)

Publication Number Publication Date
JPH01108347A true JPH01108347A (en) 1989-04-25
JPH07100840B2 JPH07100840B2 (en) 1995-11-01

Family

ID=17414760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26526087A Expired - Lifetime JPH07100840B2 (en) 1987-10-22 1987-10-22 Gears with excellent impact resistance

Country Status (1)

Country Link
JP (1) JPH07100840B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008261037A (en) * 2007-04-13 2008-10-30 Sumitomo Metal Ind Ltd Carburized component or carbonitrided component made of steel and subjected to shot peening

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11332799B2 (en) 2016-09-09 2022-05-17 Jfe Steel Corporation Case hardening steel, method of producing the same, and method of producing gear parts

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008261037A (en) * 2007-04-13 2008-10-30 Sumitomo Metal Ind Ltd Carburized component or carbonitrided component made of steel and subjected to shot peening

Also Published As

Publication number Publication date
JPH07100840B2 (en) 1995-11-01

Similar Documents

Publication Publication Date Title
JP5614426B2 (en) Manufacturing method of machine parts
JP3308377B2 (en) Gear with excellent tooth surface strength and method of manufacturing the same
US9890446B2 (en) Steel for induction hardening roughly shaped material for induction hardening
JP3094856B2 (en) High strength, high toughness case hardening steel
JP2945714B2 (en) High surface pressure gear
JPH06172867A (en) Production of gear excellent in impact fatigue life
JPH0432537A (en) Member for high strength machine structural use excellent in bearing strength
JP3543557B2 (en) Carburized gear
JP2004238702A (en) Carburized component excellent in low-cycle impact fatigue resistance
JP3269374B2 (en) Carburized gear
JP3550886B2 (en) Manufacturing method of gear steel for induction hardening excellent in machinability and fatigue strength
JP5672740B2 (en) Manufacturing method of high fatigue strength case hardening steel
JPH0488148A (en) High strength gear steel capable of rapid carburization and high strength gear
JP6825605B2 (en) Carburizing member
JPH01108347A (en) Gear excellent in impact resistance
JPH1162943A (en) Soft nitrided as rolled or normalized crankshaft and manufacture thereof
JPH0953169A (en) Carburized and quenched parts for driving shaft coupling and its production
JPS62196322A (en) Manufacture of parts for mechanical structure
JPH08260039A (en) Production of carburized and case hardened steel
JP3236883B2 (en) Case hardening steel and method for manufacturing steel pipe using the same
JP2615126B2 (en) Gear steel
JP3240627B2 (en) Manufacturing method of constant velocity joint parts
JP5335523B2 (en) Gear shaft steel and gear shaft excellent in bending fatigue resistance and peeling resistance
JP3319684B2 (en) Steel material for carburized bevel gear, high toughness carburized bevel gear and method of manufacturing the same
JPH0559432A (en) Production of carburized gear excellent in fatigue strength

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term