JPH01108332A - Copper alloy for heat exchanger - Google Patents

Copper alloy for heat exchanger

Info

Publication number
JPH01108332A
JPH01108332A JP26607087A JP26607087A JPH01108332A JP H01108332 A JPH01108332 A JP H01108332A JP 26607087 A JP26607087 A JP 26607087A JP 26607087 A JP26607087 A JP 26607087A JP H01108332 A JPH01108332 A JP H01108332A
Authority
JP
Japan
Prior art keywords
copper alloy
alloy
resistance
copper
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26607087A
Other languages
Japanese (ja)
Inventor
Shigeru Kiyouhara
京原 繁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP26607087A priority Critical patent/JPH01108332A/en
Publication of JPH01108332A publication Critical patent/JPH01108332A/en
Pending legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)

Abstract

PURPOSE:To obtain a copper alloy having high resistance to the fatigue breaking caused by thermal stress by incorporating specific amounts of Al, Sn, Co, Mn and P to Cu as the title alloy. CONSTITUTION:The Cu alloy contg., by weight, 0.05-1.5% Al, 0.05-1.5% Sn, 0.02-0.5% Co, 0.005-0.5% Mn and 0.003-0.1% P is used as the material for the member of a can body, pipe, etc., of a heat exchanger. The Cu alloy material whose crystal grains are not coarsened when subjected to thermal influence by brazing, welding, etc., and having high fatigue resistance and further excellent corrosion resistance when subjected to repeated thermal stress can be obtd.

Description

【発明の詳細な説明】 し産業上の利用分野] 本発明は熱交換器用鋼合金に関し、更に詳述すれば、ろ
う付は等の熱により結晶粒が粗大化することがなく、熱
交換器に使用されたときに熱応力による疲労破壊に対し
て高い耐疲労性を有する熱交換器用銅合金に関する。
[Detailed Description of the Invention] Field of Industrial Application] The present invention relates to a steel alloy for heat exchangers, and more specifically, the present invention relates to a steel alloy for heat exchangers. The present invention relates to a copper alloy for heat exchangers that has high fatigue resistance against fatigue failure due to thermal stress when used in a heat exchanger.

[従来の技術] 湯沸器等の熱交換器の缶体及びパイプは内部に水が通流
するので、この熱交換器用銅合金には耐食性が要求され
ている。
[Prior Art] Since water flows inside the cans and pipes of heat exchangers such as water heaters, corrosion resistance is required of copper alloys for heat exchangers.

また、缶体及びパイプには溶接又はろう付けが施される
ので、溶接性及びろう付は性が良好であることが必要で
ある。更に、熱交換器として熱伝導性が良いことも必要
である。
Furthermore, since the can body and the pipe are welded or brazed, it is necessary that the weldability and brazing properties are good. Furthermore, as a heat exchanger, it is also necessary to have good thermal conductivity.

燐脱酸銅はこのような耐食性、溶接性、ろう付は性及び
熱伝導性のいずれも満足するものであり、このため、こ
の種の熱交換器の缶体及びパイプ用の材料として燐脱酸
銅が従来広く使用されている。
Phosphorus-deoxidized copper satisfies all of these corrosion resistance, weldability, brazing properties, and thermal conductivity, and for this reason, phosphorus-deoxidized copper is used as a material for the cans and pipes of this type of heat exchanger. Acid copper is widely used in the past.

[発明が解決しようとする問題点] しかしながら、従来の燐脱酸銅は、ろう付は部及び溶接
部に熱応力が繰返して負荷される場合には、この部分か
ら疲労破壊を起すことがある。
[Problems to be Solved by the Invention] However, in conventional phosphorus-deoxidized copper, if thermal stress is repeatedly applied to brazed and welded parts, fatigue failure may occur from these parts. .

例えば、湯沸器等の熱交換器においては、通常、缶体と
缶体との間にパイプを溶接し、更にこのパイプにフィン
を付けて熱効率を高めている。この場合に、缶体とパイ
プとを溶接した部分又はろう付けした部分に割れが入る
ことがある。
For example, in a heat exchanger such as a water heater, a pipe is usually welded between can bodies, and fins are further attached to the pipe to improve thermal efficiency. In this case, cracks may occur in the welded or brazed portions of the can and the pipe.

この原因は加熱の不均一により生じた温度差によってパ
イプに熱膨張差が生じて応力が発生することと、加熱の
繰返しによりこの応力も繰返して印加されるため疲労破
壊を起こすことによるものである。
The cause of this is that the temperature difference caused by uneven heating causes a difference in thermal expansion in the pipe, which generates stress, and that this stress is repeatedly applied due to repeated heating, causing fatigue failure. .

更に、溶接又はろう付は部が割れる原因として、この部
分が受ける応力が高いことと、溶接又はろう付は時の熱
により結晶粒が粗大化して疲労に対する抵抗力が低下す
ることが考えられる。
Furthermore, welding or brazing may cause cracks in parts because the stress that these parts receive is high, and in welding or brazing, crystal grains become coarse due to the heat during welding or brazing, which reduces fatigue resistance.

ところで、脱酸銅はこの結晶粒の粗大化が起り易い。こ
のため、熱応力による疲労破壊を防止する対策として、
パイプ部にベローズを入れて熱交換器の構造上の面から
熱応力が発生し難いものにしたり、また、管の肉厚を厚
くすることにより強度を保つようにしている。しかし、
このような対策では、構造が複雑になると共に、コスト
が高くなるという問題点がある。
Incidentally, in deoxidized copper, coarsening of crystal grains is likely to occur. Therefore, as a measure to prevent fatigue failure due to thermal stress,
Bellows are placed in the pipes to make the heat exchanger less susceptible to thermal stress due to its structure, and the pipes are made thicker to maintain strength. but,
Such measures have problems in that the structure becomes complicated and the cost increases.

従って、脱酸銅と同程度の優れた耐食性を有する一方、
ろう付は及び溶接等の熱応力による疲労破壊が抑制され
て優れた耐疲労性を有する熱交換器用銅合金が望まれて
いる。
Therefore, while having excellent corrosion resistance comparable to that of deoxidized copper,
There is a desire for a copper alloy for heat exchangers that has excellent fatigue resistance and suppresses fatigue fracture due to thermal stress during brazing, welding, and the like.

本発明はかかる問題点に鑑みてなされたものであって、
ろう付は及び溶接等による熱影響を受けても結晶粒の粗
大化が抑制され、繰返して熱応力を受けた場合に、高い
耐疲労性を有すると共に、耐食性が優れた熱交換器用銅
合金を提供することを目的とする。
The present invention has been made in view of such problems, and includes:
The coarsening of crystal grains is suppressed even when subjected to heat effects such as brazing and welding, and copper alloys for heat exchangers have high fatigue resistance and excellent corrosion resistance when subjected to repeated thermal stress. The purpose is to provide.

[問題点を解決するための手段] 本発明に係る熱交換器用銅合金は、0.05乃至1.5
重量%のAjl、0.05乃至1.5重量%のSn、0
.02乃至0.5重量%のCo、0゜005乃至0.5
重量%のMn、及び0.003乃至0.1重量%のPを
゛含有し、残部がCu及び不可避的不純物であることを
特徴とする。
[Means for solving the problems] The copper alloy for heat exchangers according to the present invention has a copper alloy of 0.05 to 1.5
wt% Ajl, 0.05-1.5 wt% Sn, 0
.. 02-0.5% by weight Co, 0°005-0.5
It is characterized by containing % by weight of Mn and 0.003 to 0.1% by weight of P, with the remainder being Cu and inevitable impurities.

以下、本発明に係る熱交換器用銅合金について詳細に説
明する。
Hereinafter, the copper alloy for heat exchangers according to the present invention will be explained in detail.

先ず、本発明に係る熱交換器用銅合金の成分添加理由及
び組成限定理由について説明する。
First, the reasons for adding the ingredients and the reasons for limiting the composition of the copper alloy for heat exchangers according to the present invention will be explained.

A、ff(アルミニウム)を添加するのは、銅合金の耐
熱性及び耐食性を向上させるためである。八βの組成範
囲を0.05乃至1.5重量%(以下、単に%で現わす
)に限定したのは、0.05%未満では耐熱性及び耐食
性の向上効果が殆ど期待できない一方、1.5%を超え
ると銅合金の熱伝導性及び加工性を低下させてしまうか
らである。このため、Aρ含有量は0.05乃至1.5
%とする。
The reason for adding A, ff (aluminum) is to improve the heat resistance and corrosion resistance of the copper alloy. The reason for limiting the composition range of 8β to 0.05 to 1.5% by weight (hereinafter expressed simply as %) is that if it is less than 0.05%, little improvement in heat resistance and corrosion resistance can be expected. This is because if it exceeds .5%, the thermal conductivity and workability of the copper alloy will be reduced. Therefore, the Aρ content is between 0.05 and 1.5.
%.

Sn(スズ)は銅合金の耐食性及び強度を向上させる成
分である。Snの組成範囲を0.05乃至1.5%に限
定したのは、0.05%未満では強度の向上を期待する
ことができず、1.5%を超えると、銅合金の熱伝導性
が低下してしまうからである。
Sn (tin) is a component that improves the corrosion resistance and strength of copper alloys. The reason for limiting the composition range of Sn to 0.05 to 1.5% is that if it is less than 0.05%, no improvement in strength can be expected, and if it exceeds 1.5%, the thermal conductivity of the copper alloy will decrease. This is because the amount decreases.

Co(コバルト)は銅合金の結晶粒粗大化の抑制に著し
い効果を示す元素である。銅合金がろう付けに際して8
00乃至900℃の温度域における熱影響を受けても、
Coの含有により銅合金の結晶粒の成長が抑制される。
Co (cobalt) is an element that exhibits a remarkable effect on suppressing coarsening of crystal grains in copper alloys. 8 when copper alloy is brazed
Even under the influence of heat in the temperature range of 00 to 900 degrees Celsius,
The inclusion of Co suppresses the growth of crystal grains in the copper alloy.

その結果、結晶組織が微細に保持されて耐疲労性が向上
する。Coの含有量が0.02%未満ではこのような効
果は少ない。また、Coを0.5%を超えて含有しても
、含有量の増加の割には耐疲労性の向上効果が少ない一
方、加工性及び熱伝導性が低下するという弊害がある。
As a result, the crystal structure is kept fine and fatigue resistance is improved. When the Co content is less than 0.02%, such effects are small. Further, even if Co is contained in an amount exceeding 0.5%, the effect of improving fatigue resistance is small in comparison with the increase in Co content, while there is a disadvantage that workability and thermal conductivity are reduced.

従って、CO含有量は0.02乃至0゜5%とする。Therefore, the CO content is set to 0.02 to 0.5%.

Mn(マンガン)は耐熱性を向上させると共に、大気溶
解処理における脱酸効果を高める作用を有する。Mnの
含有量が0.005%未満の場合はこれらの効果が少な
く、また、0.5%を超えて含有されると耐熱性は向上
する反面、熱伝導性が低下してしまう。このため、Mn
の含有量は0゜005乃至0.5%にする。
Mn (manganese) has the effect of improving heat resistance and increasing the deoxidizing effect in atmospheric dissolution treatment. If the content of Mn is less than 0.005%, these effects will be small, and if the content exceeds 0.5%, the heat resistance will improve, but the thermal conductivity will decrease. For this reason, Mn
The content of is set to 0°005 to 0.5%.

P(リン)は脱酸効果を高めると共に、強度を向上させ
る。また、Pは溶接性を助長させる効果も有する。Pの
含有量が0.003%未満の場合はこれらの効果が得ら
れず、0.1%を超えると応力腐食割れの感受性が高く
なる。従って、P含有量は0.003乃至0.1%とす
る。
P (phosphorus) enhances the deoxidizing effect and improves the strength. P also has the effect of promoting weldability. If the P content is less than 0.003%, these effects cannot be obtained, and if it exceeds 0.1%, the susceptibility to stress corrosion cracking increases. Therefore, the P content is set to 0.003 to 0.1%.

なお、本発明に係る熱交換器用銅合金には、上述の添加
成分の外に、Fe(鉄)、Cr(クロム)、Ti(チタ
ン)、Zr(ジルコニウム)、Zn(亜鉛)、Mg(マ
グネシウム)等の成分がスクラップ等から不純物として
混入する可能性がある。
In addition to the above-mentioned additive components, the copper alloy for heat exchangers according to the present invention also contains Fe (iron), Cr (chromium), Ti (titanium), Zr (zirconium), Zn (zinc), Mg (magnesium). ) may be mixed in as impurities from scraps, etc.

この場合に、Fe、Cr、Ti、Zr、Mgは0゜1%
まで、またZnは1.0%まで含有しても、本発明に係
る熱交換器用銅合金の所望の特性に悪影響を及ぼすこと
はない、このため、これらの成分を上記組成範囲で不純
物として含有することは本願発明の目的を達成する上で
何ら障害とならず、許容されるものである。
In this case, Fe, Cr, Ti, Zr, Mg are 0°1%
Even if Zn is contained up to 1.0%, it will not adversely affect the desired properties of the copper alloy for heat exchangers according to the present invention. Therefore, these components may be contained as impurities in the above composition range. This is not an obstacle to achieving the object of the present invention and is permissible.

[実施例] 次に、本発明に係る熱交換器用銅合金の実施例について
、本願の特許請求の範囲から外れる組成を有する比較例
と共に説明する。
[Example] Next, examples of the copper alloy for heat exchangers according to the present invention will be described together with comparative examples having compositions outside the scope of the claims of the present application.

下記第1表はこの実施例合金及び比較例合金の組成を示
す。
Table 1 below shows the compositions of the example alloys and comparative example alloys.

第1表 この第1表に示す組成を有する各銅合金原料を高周波溶
解炉に装入し、この原料を木炭被覆を行って大気中で溶
解した後、鋳鉄製のブックモールド(45am厚、30
龍幅、200順長)に鋳造した。この鋳塊の表裏両面を
2.5報ずつ固剤した後、850℃の温度で厚さが10
+nになるまで熱間圧延し、スケールを除去した後、厚
さが1.0關になるまで冷間圧延した。次いで、実施例
合金1乃至6及び比較例合金1の試料については、55
0℃の温度で、また比較例2の合金については400℃
の温度で30分間焼鈍して熱交換器用銅合金を得た0次
いで、ろう付けの熱影響を想定して、これらの銅合金を
850℃に5分間加熱することにより熱処理した。
Table 1 Each copper alloy raw material having the composition shown in Table 1 was charged into a high-frequency melting furnace, coated with charcoal and melted in the atmosphere, and then molded into a cast iron book mold (45 am thick, 30
It was cast to a length of 200 mm. After solidifying the front and back sides of this ingot 2.5 times, the thickness was reduced to 10 mm at a temperature of 850°C.
After hot rolling to a thickness of +n and removing scale, cold rolling was performed to a thickness of 1.0 mm. Next, for the samples of Example Alloys 1 to 6 and Comparative Example Alloy 1, 55
at a temperature of 0°C and for the alloy of Comparative Example 2 at 400°C.
Copper alloys for heat exchangers were obtained by annealing for 30 minutes at a temperature of 0.Next, these copper alloys were heat treated by heating to 850°C for 5 minutes, assuming the thermal influence of brazing.

次いで、熱処理後の銅合金に対し、引張試験、疲労試験
、腐食試験及び結晶粒径測定試験を実施した。その試駆
結果を下記第2表示す。
Next, the copper alloy after the heat treatment was subjected to a tensile test, a fatigue test, a corrosion test, and a grain size measurement test. The test drive results are shown in the second section below.

第2表 但し、※の単位はkgf/−である。Table 2 However, the unit of * is kgf/-.

また、各試験条件は下記のとおりである。Moreover, each test condition is as follows.

(1)引張試験は、圧延方向に平行に切り出しなJIS
13号B試験片を使用して実施した。
(1) For tensile testing, cut out parallel to the rolling direction according to JIS
The test was carried out using a No. 13 B test piece.

(2)疲労試験は、薄板疲労試験機を使用して、10■
翼幅の試験片に対し60Hzの周期で両振り繰返し応力
を負荷し、107回数時の応力値を求めた。
(2) The fatigue test was conducted using a thin plate fatigue tester for 10 seconds.
Bilateral repeated stress was applied to the blade span test piece at a frequency of 60 Hz, and the stress value after 107 cycles was determined.

(3)耐食性は、板厚が1ml、幅が401、長さが1
00龍の試料を使用して下記の腐食条件で試験した。
(3) Corrosion resistance is as follows: plate thickness is 1ml, width is 401, length is 1
Tests were conducted using samples of 00 Dragon under the following corrosion conditions.

腐食媒体;イオン交換水+80 ppm S O4” 
+50ppai Cl!−+30ppm HCO3−残
留塩素;1〜3 ppmm 温   度; 60℃ 流動水 ;0.5乃至1m/秒 期  間;1ケ月 その後、表面を10体積%の塩酸水溶液で酸洗して試験
前後の重量変化により腐食減量を求めて耐食性を評価し
た。
Corrosion medium: ion exchange water + 80 ppm SO4”
+50 ppai Cl! -+30ppm HCO3-Residual chlorine; 1 to 3 ppmm Temperature: 60°C Flowing water; 0.5 to 1 m/sec Period: 1 month After that, the surface was pickled with a 10% by volume hydrochloric acid aqueous solution and the weight before and after the test was determined. Corrosion resistance was evaluated by determining the corrosion weight loss based on the change.

(4)結晶粒径は光学頴微鏡により測定した。(4) Crystal grain size was measured using an optical microscope.

この第2表から明らかなように、本発明の実施例合金1
乃至6は比較例合金2の脱酸銅に比して高い耐疲労性を
有する。また、ろう付けを想定した熱処理の後において
も、各実施例合金1乃至6は微細な結晶粒を有しており
、熱交換器として使用された場合、繰返し負荷される熱
応力に対して高い耐疲労性を有するものである。更に、
実施例合金1乃至6においては、比較例合金]に比して
Co含有による結晶粒粗大化の抑制効果が認められる。
As is clear from this Table 2, Example alloy 1 of the present invention
Alloys 6 to 6 have higher fatigue resistance than the deoxidized copper of Comparative Example Alloy 2. In addition, even after heat treatment assuming brazing, each example alloy 1 to 6 has fine crystal grains, and when used as a heat exchanger, it is highly resistant to repeated thermal stress. It has fatigue resistance. Furthermore,
In Example Alloys 1 to 6, the effect of suppressing crystal grain coarsening due to the Co content is observed compared to the Comparative Example Alloy.

[発明の効果コ 以上説明したように、本発明に係る熱交換器用銅合金は
ろう付は又は溶接に際して結晶粒が粗大化せず、繰返し
熱応力に対して高い耐熱疲労性を有すると共に、強度及
び耐食性が優れている。従って、この銅合金は熱交換器
用銅合金として極めて実益が高い。
[Effects of the Invention] As explained above, the copper alloy for heat exchangers according to the present invention does not coarsen the crystal grains during brazing or welding, has high thermal fatigue resistance against repeated thermal stress, and has high strength. and has excellent corrosion resistance. Therefore, this copper alloy is extremely useful as a copper alloy for heat exchangers.

Claims (1)

【特許請求の範囲】[Claims] 0.05乃至1.5重量%のAl、0.05乃至1.5
重量%のSn、0.02乃至0.5重量%のCo、0.
005乃至0.5重量%のMn及び0.003乃至0.
1重量%のPを含有し、残部がCu及び不可避的不純物
であることを特徴とする熱交換器用銅合金。
0.05-1.5% by weight Al, 0.05-1.5
wt.% Sn, 0.02-0.5 wt.% Co, 0.02-0.5 wt.% Co.
0.005 to 0.5% by weight of Mn and 0.003 to 0.00% by weight.
A copper alloy for heat exchangers, characterized in that it contains 1% by weight of P, with the balance being Cu and inevitable impurities.
JP26607087A 1987-10-20 1987-10-20 Copper alloy for heat exchanger Pending JPH01108332A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26607087A JPH01108332A (en) 1987-10-20 1987-10-20 Copper alloy for heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26607087A JPH01108332A (en) 1987-10-20 1987-10-20 Copper alloy for heat exchanger

Publications (1)

Publication Number Publication Date
JPH01108332A true JPH01108332A (en) 1989-04-25

Family

ID=17425943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26607087A Pending JPH01108332A (en) 1987-10-20 1987-10-20 Copper alloy for heat exchanger

Country Status (1)

Country Link
JP (1) JPH01108332A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004079026A1 (en) * 2003-03-03 2004-09-16 Sambo Copper Alloy Co.,Ltd. Heat-resisting copper alloy materials

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61542A (en) * 1984-06-12 1986-01-06 Nippon Mining Co Ltd Copper alloy for radiator plate
JPS6293331A (en) * 1985-10-17 1987-04-28 Nippon Mining Co Ltd Copper alloy for water or hot water supply pipe or tube of heat exchanger having superior corrosion resistance

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61542A (en) * 1984-06-12 1986-01-06 Nippon Mining Co Ltd Copper alloy for radiator plate
JPS6293331A (en) * 1985-10-17 1987-04-28 Nippon Mining Co Ltd Copper alloy for water or hot water supply pipe or tube of heat exchanger having superior corrosion resistance

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004079026A1 (en) * 2003-03-03 2004-09-16 Sambo Copper Alloy Co.,Ltd. Heat-resisting copper alloy materials

Similar Documents

Publication Publication Date Title
JP4554088B2 (en) Peel-resistant aluminum-magnesium alloy
AU717614B2 (en) Aluminium alloy for use as core material in brazing sheet
US20050211345A1 (en) High conductivity bare aluminum finstock and related process
EP1250468B8 (en) Process of producing aluminum fin alloy
US4113472A (en) High strength aluminum extrusion alloy
JPH0380862B2 (en)
CA2050315C (en) Ferritic stainless steel and process for making same
JPH01108332A (en) Copper alloy for heat exchanger
JP3230685B2 (en) Copper base alloy for heat exchanger
JP3274177B2 (en) Copper base alloy for heat exchanger and method for producing the same
JP3541458B2 (en) Ferritic stainless steel with excellent high-temperature salt damage characteristics
JP3274178B2 (en) Copper base alloy for heat exchanger and method for producing the same
JPH04272148A (en) Heat resistant copper alloy for heat exchanger excellent brazability
JP3243479B2 (en) Copper base alloy for heat exchanger
JP3274175B2 (en) Copper base alloy for heat exchanger and method for producing the same
JPH0210212B2 (en)
JPH04232222A (en) Aluminum alloy clad material having superior corrosion resistance
JP3274176B2 (en) Copper base alloy for heat exchanger and method for producing the same
JPS6082635A (en) Copper alloy having superior corrosion resistance
JP2024505096A (en) High-strength, sagging-resistant aluminum alloy for use as fin material and method for producing the same
JPS583942A (en) Ni alloy with superior embrittlement resistance at intermediate temperature
JP3209389B2 (en) Heat-resistant copper alloy sheet for heat exchanger having a small expansion coefficient after hard brazing heating and method for producing the same
JPH01298126A (en) Copper alloy for heat exchanger
JPS5834155A (en) Corrosion-resistant ni alloy with superior resistance to embrittlement at medium temperature
JPH0368098B2 (en)