JP3209389B2 - Heat-resistant copper alloy sheet for heat exchanger having a small expansion coefficient after hard brazing heating and method for producing the same - Google Patents

Heat-resistant copper alloy sheet for heat exchanger having a small expansion coefficient after hard brazing heating and method for producing the same

Info

Publication number
JP3209389B2
JP3209389B2 JP11002995A JP11002995A JP3209389B2 JP 3209389 B2 JP3209389 B2 JP 3209389B2 JP 11002995 A JP11002995 A JP 11002995A JP 11002995 A JP11002995 A JP 11002995A JP 3209389 B2 JP3209389 B2 JP 3209389B2
Authority
JP
Japan
Prior art keywords
weight
heating
copper alloy
brazing
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11002995A
Other languages
Japanese (ja)
Other versions
JPH08283887A (en
Inventor
元久 宮藤
浩史 荒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP11002995A priority Critical patent/JP3209389B2/en
Publication of JPH08283887A publication Critical patent/JPH08283887A/en
Application granted granted Critical
Publication of JP3209389B2 publication Critical patent/JP3209389B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は硬ろう付け加熱後におい
ても、強度及び疲労特性の低下が小さく、さらに硬ろう
付け加熱後の膨張率が小さい熱交換器用耐熱銅合金板
よびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat-resistant copper alloy sheet for a heat exchanger which has a small decrease in strength and fatigue properties even after hard brazing and has a small expansion coefficient after hard brazing. And its manufacturing method.

【0002】[0002]

【従来の技術】風呂釜又は湯沸し器等の熱交換器の缶体
及びパイプは、溶接又はろう付けにより組み立てられる
ので、それに使用する材料としては、溶接性及びろう付
け性が良好であることが必要とされ、更に、熱交換器の
構成部材であるため、熱伝導性がよいことも必要である
ことから、従来、りん脱酸銅が一般的に使用されてい
る。
2. Description of the Related Art Since cans and pipes of heat exchangers such as bath kettles or water heaters are assembled by welding or brazing, the materials used for the cans and pipes may have good weldability and brazing properties. In addition, phosphorus deoxidized copper is generally used, since it is necessary to have good thermal conductivity because it is a component of the heat exchanger.

【0003】しかし、脱酸銅の場合、ろう付け部および
溶接部において熱応力が繰り返し負荷されると、この部
分から疲労破壊を起こすことが知られている。これは、
ろう付け時の熱によってその部分の結晶粒が粗大化し、
疲労破壊に対する抵抗力が低下することによるものであ
る。熱応力による疲労破壊を防止するために、従来の熱
交換器においては、パイプ部にベローズを入れたりして
構造上の面から熱応力を発生し難くする手段も講じられ
てきたが、ベローズを設けると、熱交換器の構造が複雑
になるとともに製造コストが高くなるという欠点があ
る。
[0003] However, in the case of deoxidized copper, it is known that when thermal stress is repeatedly applied to a brazed portion and a welded portion, fatigue fracture occurs from this portion. this is,
Due to the heat at the time of brazing, the crystal grains in that part coarsen,
This is because the resistance to fatigue fracture decreases. In order to prevent fatigue failure due to thermal stress, in conventional heat exchangers, measures have been taken to make it difficult for thermal stress to be generated from the structural surface by inserting bellows in the pipe part. Provision of the heat exchanger has the disadvantage that the structure of the heat exchanger becomes complicated and the production cost increases.

【0004】したがって、脱酸銅と同程度の優れた耐食
性を有するとともに、ろう付けおよび溶接等の熱による
結晶粒の粗大化が防止され、熱応力による疲労破壊に対
して耐久性が高い熱交換器用銅合金が望まれていた。こ
のような状況のもと、本出願人は疲労破壊に対する耐久
性を高めた銅合金として、Fe:1.3乃至2.1重量
%、P:0.001乃至0.1重量%、Co:0.2乃
至1.0重量%、およびZn:0.01乃至1.0重量
%を有し、且つ前記Feの含有量および前記Coの含有
量の合計が2.5重量%以下であり、残部がCuおよび
不可避的不純物からなる銅合金を先に提案した(特開平
4ー272148号公報)。
[0004] Therefore, the heat exchanger has the same excellent corrosion resistance as deoxidized copper, prevents crystal grains from being coarsened by heat such as brazing and welding, and has high durability against fatigue fracture due to thermal stress. A dexterous copper alloy has been desired. Under such circumstances, the present applicant has proposed a copper alloy having improved durability against fatigue fracture as Fe: 1.3 to 2.1% by weight, P: 0.001 to 0.1% by weight, Co: 0.2 to 1.0% by weight, and Zn: 0.01 to 1.0% by weight, and the total of the Fe content and the Co content is 2.5% by weight or less; A copper alloy having the remainder consisting of Cu and unavoidable impurities has been previously proposed (JP-A-4-272148).

【0005】この銅合金は、例えば図3に示す熱交換器
において、特に耐久性を要求される缶体中のフランジ部
1に使用されているが、その場合、フランジ部1と脱酸
銅からなるバーナーケース2とをボルト締めした状態で
パイプ3のろう付けが行われることが多く、この硬ろう
付け加熱(例えば、窒素中において830℃、10分間
の加熱)により、図4に示すように、上記銅合金からな
るフランジ部1が膨張し、冷却後、脱酸銅からなるバー
ナーケース2との間に寸法差に基づくたわみ5が生ずる
という不具合が発生している。なお、図3において、4
はフィンである。
[0005] This copper alloy is used, for example, in the heat exchanger shown in FIG. 3 for the flange portion 1 in the can body which requires particularly high durability. In this case, the copper alloy is formed from the flange portion 1 and deoxidized copper. The brazing of the pipe 3 is often performed in a state where the burner case 2 is tightened with bolts, and this hard brazing heating (for example, heating at 830 ° C. for 10 minutes in nitrogen) as shown in FIG. In addition, there is a problem that the flange portion 1 made of the copper alloy expands and, after cooling, a flexure 5 is generated between the burner case 2 made of deoxidized copper and the burner case 2 based on a dimensional difference. In FIG. 3, 4
Is a fin.

【0006】[0006]

【発明が解決しようとする課題】本発明は、従来の銅合
金の上記問題点に鑑みてなされたもので、上記従来の銅
合金と同一成分組成の銅合金において、硬ろう付け時お
よび溶接時等の熱による結晶粒の粗大化抑制、及び熱応
力の繰り返しに起因する疲労破壊に対する高い耐久性と
いう優れた特性を従来同様に備えるとともに、硬ろう付
け加熱後の膨張を脱酸銅と同等の低い水準に抑えた熱交
換器用耐熱銅合金板を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems of the conventional copper alloy, and has been developed by using a copper alloy having the same composition as the conventional copper alloy during hard brazing and welding. In addition to having the same excellent characteristics as before, such as suppression of coarsening of crystal grains due to heat and high durability against fatigue fracture caused by repetition of thermal stress, expansion after hard brazing heating is equivalent to that of deoxidized copper. It is an object of the present invention to provide a heat-resistant copper alloy sheet for a heat exchanger that has a low level.

【0007】[0007]

【課題を解決するための手段】上記銅合金に対してはこ
れまで冷間圧延の途中で析出焼鈍(575℃×2Hr+
500℃×4Hr、その後炉中で徐冷)を施し、その徐
冷過程でFeを意図的に析出させ、熱交換器缶体に要求
される熱伝導性・導電率を向上させていたが、本発明者
らのその後の研究により、このように処理された銅合金
が硬ろう付け加熱を受けると、FeやFe2PなどのF
e析出物が硬ろう付け加熱の過程で固溶し、これにより
銅合金の膨張が脱酸銅に比べて大きくなり、さらに冷却
過程は空冷(急速空冷)のため一旦固溶したFeは再び
析出を辿ることができず、その結果、硬ろう付け加熱後
は元に戻らず加熱前の長さよりも大きくなってしまうこ
とが分かった。
Means for Solving the Problems The above copper alloy has been subjected to precipitation annealing (575 ° C. × 2Hr +) during cold rolling.
(500 ° C. × 4 hours, then slowly cooled in a furnace), and in the slow cooling process, Fe was intentionally precipitated to improve the heat conductivity and conductivity required for the heat exchanger can. F of the subsequent studies of the present inventors, the thus treated copper alloy is subjected to a brazing heat, such as Fe and Fe 2 P
e The precipitates form a solid solution during the process of hard brazing and heating, so that the expansion of the copper alloy becomes larger than that of deoxidized copper, and the cooling process is air-cooled (rapid air-cooling). , And as a result, it was found that the length after the hard brazing was not restored to the original length and was larger than the length before the heating.

【0008】本発明者らは、この知見に基づき種々の実
験・調査を行い、硬ろう付け加熱前に予めFe析出物を
母相中に固溶させておくことにより、硬ろう付け加熱過
程における固溶とそれに伴う膨張を抑え、硬ろう付け加
熱後の伸びを抑えることができ、しかも、上記銅合金の
前記特性が損なわれないことを見い出し、以下の発明を
完成した。
The present inventors conducted various experiments and investigations on the basis of this finding, and by preliminarily dissolving Fe precipitates in the parent phase before heating by hard brazing, the hard brazing heating process was carried out. It has been found that the solid solution and the expansion accompanying it can be suppressed, the elongation after heating by hard brazing can be suppressed, and the above-mentioned properties of the copper alloy are not impaired, and the following invention has been completed.

【0009】[0009]

【0010】本発明に関わる硬ろう付け加熱後の膨張率
が小さい熱交換器用耐熱銅合金板は、Fe:1.3乃至
2.1重量%、P:0.001乃至0.1重量%、C
o:0.2乃至1.0重量%、およびZn:0.01乃
至1.0重量%を有し、且つ前記Feの含有量および前
記Coの含有量の合計が2.5重量%以下であり、残部
がCuおよび不可避的不純物からなる銅合金板であっ
て、ろう付け加熱前の導電率が20乃至50%IACS
であり、さらに結晶粒径が1乃至50μmであることを
特徴とする。
The heat-resistant copper alloy sheet for a heat exchanger according to the present invention, which has a small coefficient of expansion after heating by hard brazing, contains Fe: 1.3 to 2.1% by weight, P: 0.001 to 0.1% by weight, C
o: 0.2 to 1.0% by weight, and Zn: 0.01 to 1.0% by weight, and the total of the Fe content and the Co content is 2.5% by weight or less. Yes, the balance is a copper alloy plate composed of Cu and unavoidable impurities, and has a conductivity of 20 to 50% IACS before brazing and heating.
And a crystal grain size of 1 to 50 μm.

【0011】さらに、本発明に関わる硬ろう付け加熱後
の膨張率が小さい熱交換器用耐熱銅合金板の製造方法
は、Fe:1.3乃至2.1重量%、P:0.001乃
至0.1重量%、Co:0.2乃至1.0重量%、およ
びZn:0.01乃至1.0重量%を有し、且つ前記F
eの含有量および前記Coの含有量の合計が2.5重量
%以下であり、残部がCuおよび不可避的不純物からな
る銅合金鋳塊を熱間加工後、急冷した後、冷間加工を行
い、その後500乃至830℃の温度で10秒以上加熱
し、5℃/sec以上の冷却速度で冷却して、次式で
定義される硬ろう付け加熱後の膨張率R(%)が0.0
5%以下である熱交換器用耐熱銅合金板を製造すること
を特徴とする。 R=(L1−L0)÷L0×100 ・・・・ ここで、L1:ろう付け後の長さ、 L0:ろう付け前の長さ
Further, the method for producing a heat-resistant copper alloy sheet for a heat exchanger according to the present invention, which has a small coefficient of expansion after heating by hard brazing, comprises: 1.3 to 2.1% by weight of Fe, and 0.001 to 0% of P. 0.1% by weight, Co: 0.2 to 1.0% by weight, and Zn: 0.01 to 1.0% by weight,
The total of the content of e and the content of Co is not more than 2.5% by weight, and the remainder is Cu alloy and an ingot of Cu and inevitable impurities. , then heated over 10 seconds at a temperature of 500 to 830 ° C., and cooled at 5 ° C. / sec or more cooling rate, the following equation
An expansion coefficient R (%) after the defined hard brazing heating is 0.0
It is characterized by producing a heat-resistant copper alloy plate for a heat exchanger having a content of 5% or less . R = (L1−L0) ÷ L0 × 100 where L1: length after brazing, L0: length before brazing.

【0012】なお、この製造方法については上記組成以
外のCu−Fe−Ti、Cu−Ni−Tiなどの析出硬
化型合金にも適用することができる。
This manufacturing method can be applied to precipitation hardening type alloys such as Cu-Fe-Ti and Cu-Ni-Ti other than the above composition.

【0013】[0013]

【作用】はじめに、本発明に係わる熱交換器用耐熱銅合
金板の成分添加理由、組成限定理由、及び性質限定理由
について説明する。
First, a heat-resistant copper alloy for a heat exchanger according to the present invention.
The reasons for adding the components of the metal plate, the reasons for limiting the composition, and the reasons for limiting the properties will be described.

【0014】Fe Feは銅合金の強度向上に寄与する元素である。Fe含
有量が1.3重量%未満の場合は、硬ろう付け後の強度
が不十分である。また、Feの含有量が2.1重量%を
超えると、Cu中への固溶が飽和状態となり、巨大化し
たFeの結晶粒が晶出し内部欠陥が発生しやすくなっ
て、健全な製品の製造が困難になる。従って、Fe含有
量は1.3乃至2.1重量%、より好ましくは1.6乃
至2.0重量%とする。
Fe Fe is an element that contributes to improving the strength of the copper alloy. When the Fe content is less than 1.3% by weight, the strength after hard brazing is insufficient. On the other hand, if the Fe content exceeds 2.1% by weight, the solid solution in Cu becomes saturated, and the crystal grains of Fe that have become huge tend to crystallize and internal defects are likely to occur. Manufacturing becomes difficult. Therefore, the Fe content is set to 1.3 to 2.1% by weight, more preferably 1.6 to 2.0% by weight.

【0015】Co Coは結晶粒の粗大化の抑制に必須の元素である。ま
た、800乃至900℃の温度でのろう付け行程におい
ても、二次再結晶粒の成長を抑制して組織を微細に保持
し、耐熱疲労性を向上させる作用を有する。Co含有量
が0.2重量%未満の場合は、このような効果を十分に
得ることができない。また、Co含有量が1.0重量%
を超える場合は、含有量の増加に見合うCoの添加効果
の向上が得られず、無駄である。従って、Co含有量は
O.2乃至1.0重量%、より好ましくは0.3乃至
0.7重量%とする。なお、上述したFe及びCoの含
有量が2.5重量%を超えると、Feの巨大晶出物に起
因する内部欠陥が発生しやすくなる。従って、Fe及び
Coの合計の含有量は2.5重量%以下であることが必
要である。
Co Co is an element essential for suppressing the coarsening of crystal grains. Further, even in the brazing process at a temperature of 800 to 900 ° C., it has the effect of suppressing the growth of secondary recrystallized grains, keeping the structure fine, and improving the thermal fatigue resistance. If the Co content is less than 0.2% by weight, such effects cannot be sufficiently obtained. Further, the Co content is 1.0% by weight.
If the amount exceeds, the effect of adding Co corresponding to the increase in the content cannot be improved, which is wasteful. Therefore, the Co content is O.O. 2 to 1.0% by weight, more preferably 0.3 to 0.7% by weight. When the content of Fe and Co described above exceeds 2.5% by weight, internal defects due to the large crystallized Fe are likely to occur. Therefore, the total content of Fe and Co needs to be 2.5% by weight or less.

【0016】P Pは銅合金溶湯中における脱酸効果を有している。P含
有量が0.001重量%未満の場合は、溶湯中における
脱酸効果を得ることができない。また、P含有量が0.
1重量%を超えると、熱間加工性の劣化及び導電率の低
下を招来する。従ってP含有量は0.001乃至0.1
重量%とする。
PP has a deoxidizing effect in the molten copper alloy. If the P content is less than 0.001% by weight, the deoxidizing effect in the molten metal cannot be obtained. Further, when the P content is 0.1.
If it exceeds 1% by weight, the hot workability is degraded and the conductivity is lowered. Therefore, the P content is 0.001 to 0.1.
% By weight.

【0017】Zn ZnはSnめっき又ははんだめっき等のめっき層のめっ
き密着性を向上させると共に、はんだ濡れ性を向上させ
る効果がある。Zn含有量が0.01重量%未満の場合
は、このような効果が不十分である。また、Zn含有量
が1.0重量%を超えると、ろう付け性及び導電性が低
下する。このため、Zn含有量は0.01乃至1.0重
量%とする。
Zn Zn has the effect of improving the plating adhesion of a plating layer such as Sn plating or solder plating and also improving the solder wettability. When the Zn content is less than 0.01% by weight, such an effect is insufficient. On the other hand, when the Zn content exceeds 1.0% by weight, the brazing property and the conductivity are reduced. Therefore, the Zn content is set to 0.01 to 1.0% by weight.

【0018】なお、銅合金中には不可避的不純物とし
て、B、Cr、Ti、Zr、Mg、Ni及びSn等の元
素がスクラップ材等から混入することが考えられる。こ
れらの元素の総含有量が0、2重量%以下の場合は、本
発明合金の物性に悪影響を及ぼす虞れはないので、この
程度の含有は許容される。
Incidentally, it is conceivable that elements such as B, Cr, Ti, Zr, Mg, Ni and Sn are inevitably mixed into the copper alloy from the scrap material or the like. If the total content of these elements is 0 or 2% by weight or less, there is no possibility that the physical properties of the alloy of the present invention will be adversely affected.

【0019】膨張率 硬ろう付け後の膨張率は、缶体の寸法及び強度等に関わ
る特性である。熱交換器缶体の場合、熱疲労に対する抵
抗力を向上させるため、缶体を補強する等の工夫がなさ
れているが、ろう付け後膨張して寸法が異なると缶体形
状が変化し、補強効果が著しく低下する。上記式で定
義される膨張率が0.05%を超える場合は後工程で缶
体寸法の修正が困難であるため、膨張率は0.05%以
下とする。
Expansion coefficient The expansion coefficient after hard brazing is a characteristic relating to the dimensions and strength of the can body. In the case of a heat exchanger can, various measures have been taken to reinforce the can, such as reinforcing the can in order to improve the resistance to thermal fatigue. The effect is significantly reduced. If the expansion rate defined by the above equation exceeds 0.05%, it is difficult to correct the dimensions of the can body in a later step, so the expansion rate is set to 0.05% or less.

【0020】結晶粒径 結晶粒径は、熱交換器缶体の強度及び耐熱疲労特性に関
わる。結晶粒径が小さい程耐熱性は向上し、硬ろう付け
加熱後も機械的性質の低下は小さく、また、熱応力の繰
り返しによる疲労破壊に対して耐久性が高い。しかしな
がら、結晶粒径が1μm未満の場合、成形加工性が低下
して成形時に割れが生じるようになり、一方、結晶粒径
が50μmを超えるような場合は、硬ろう付け加熱後の
機械的性質及び耐熱疲労特性が低下する。従って、結晶
粒径は1乃至50μmとする。
Crystal Grain The crystal grain size is related to the strength and thermal fatigue resistance of the heat exchanger can. The smaller the crystal grain size, the higher the heat resistance, the smaller the decrease in mechanical properties even after hard brazing heating, and the higher the durability against fatigue fracture due to repeated thermal stress. However, when the crystal grain size is less than 1 μm, the moldability deteriorates and cracks occur during molding. On the other hand, when the crystal grain size exceeds 50 μm, the mechanical properties after hard brazing are heated. In addition, the thermal fatigue characteristics are reduced. Therefore, the crystal grain size is 1 to 50 μm.

【0021】導電率 この銅合金板の膨張率は含有元素であるFeの固溶量に
関係し、膨張率を抑えるためにはろう付け加熱前に予め
Fe析出物を母相中に固溶させる必要がある。一方、F
eの固溶量は導電率に表れ、Feの固溶量が多いほど導
電率が下がるという関係にある。従って、この銅合金板
では、ろう付け加熱前の導電率でろう付け加熱後の膨張
率を評価することもでき、また、ろう付け加熱後の膨張
率を抑えるためにはろう付け加熱前の導電率を抑えてお
く必要がある。
Conductivity The coefficient of expansion of the copper alloy sheet is related to the amount of solid solution of Fe which is a contained element. In order to suppress the coefficient of expansion, an Fe precipitate is dissolved in a parent phase in advance before heating by brazing. There is a need. On the other hand, F
The solid solution amount of e appears in the conductivity, and the higher the solid solution amount of Fe, the lower the conductivity. Therefore, in this copper alloy sheet , the expansion coefficient after brazing and heating can be evaluated based on the electrical conductivity before brazing and heating. It is necessary to keep the conductivity before heating.

【0022】図1は、後述する実施例の欄の表1に記載
した銅合金の冷間圧延材を、同欄に記載した手順に従い
種々の導電率(ろう付け加熱前)に調整し、そのろう付
け加熱後の膨張率を同欄に記載した方法により求め、ろ
う付け加熱前の導電率とろう付け加熱後の膨張率の関係
をグラフ化したものである。図1より、膨張率を0.0
5%以下とするためには、ろう付け加熱前の銅合金の導
電率を50%IACS以下にするとよいことが分かる。
しかしながら、熱交換器缶体としては熱伝導性・導電率
に優れることが望まれており、導電率20%IACS以
上は必要である。従って、ろう付け前において導電率は
20乃至50%IACSとする。
FIG. 1 shows that a cold-rolled material of a copper alloy described in Table 1 in the Examples section described below was adjusted to various electric conductivity (before brazing and heating) according to the procedure described in the same section. The expansion coefficient after brazing and heating is determined by the method described in the same column, and the relationship between the conductivity before brazing and the expansion coefficient after brazing is graphed. As shown in FIG.
It can be seen that in order to make the copper alloy 5% or less, the conductivity of the copper alloy before the brazing heating should be made 50% IACS or less.
However, it is desired that the heat exchanger can be excellent in thermal conductivity and electrical conductivity, and it is necessary that the electrical conductivity be 20% IACS or more. Therefore, the conductivity is 20-50% IACS before brazing.

【0023】次に、本発明に係わる熱交換器用耐熱銅
金板の製造方法についてその処理条件の限定理由につい
て説明する。
Next, the heat exchanger heat copper case according to the present invention
The reason for limiting the processing conditions for the method of manufacturing a metal plate will be described.

【0024】本発明方法において、冷間加工材に対し、
500乃至830℃の温度で10秒以上の加熱を行うの
は、Fe析出物を母相中に固溶させるためである。も
し、従来のようにFeが析出した状態だと硬ろう付け時
の加熱により、500℃付近から固溶しはじめ、従って
銅合金板の膨張は脱酸銅に比べて大きくなり、さらに硬
ろう付け時の冷却過程は空冷(急速空冷)のため、一旦
固溶したFeは固溶したままの状態で冷却され再び析出
を辿ることができず、その結果初期長さよりも大きくな
ってしまう。
In the method of the present invention, for the cold-worked material,
The heating at a temperature of 500 to 830 ° C. for 10 seconds or more is performed so that the Fe precipitates form a solid solution in the mother phase. If Fe is precipitated as in the prior art, it starts to form a solid solution at around 500 ° C. due to heating during hard brazing,
The expansion of the copper alloy sheet is greater than that of deoxidized copper, and the cooling process during hard brazing is air cooling (rapid air cooling), so once dissolved Fe is cooled in a solid solution state and precipitates again. They cannot be traced, resulting in a length greater than the initial length.

【0025】加熱温度が500℃未満の場合はFe析出
物はマトリックス中に固溶しないため膨張率は大きくな
り、一方、830℃を超えると再結晶粒が粗大化し、材
料強度が低下する。従って、加熱温度は500乃至83
0℃とする。特に550〜650℃の温度範囲で加熱す
るとろう付け後の強度低下が小さくなると同時に、Fe
の固溶により膨張率が小さくなるので好ましい。また、
加熱時間が10秒未満の場合は、上記温度範囲で加熱し
てもFeの固溶が不十分であるため、加熱時間は10秒
以上とする。
When the heating temperature is lower than 500 ° C., the Fe precipitate does not form a solid solution in the matrix, so that the expansion rate increases. On the other hand, when the heating temperature exceeds 830 ° C., the recrystallized grains become coarse and the material strength decreases. Therefore, the heating temperature is 500 to 83
0 ° C. In particular, heating in the temperature range of 550 to 650 ° C. reduces the strength reduction after brazing,
Is preferable because the solid solution reduces the expansion coefficient. Also,
When the heating time is less than 10 seconds, the solid solution of Fe is insufficient even when heating in the above temperature range, so the heating time is 10 seconds or more.

【0026】さらに冷却速度を5℃/sec以上とした
のは、冷却速度が5℃/sec未満だと、冷却中にFe
2P及びFe等が析出するためである。なお、冷却中に
生じたこれらの析出物は銅合金の耐熱性および機械的性
質の強化には寄与しない。したがって、冷却速度は5℃
/sec以上とする。
The reason why the cooling rate is set to 5 ° C./sec or more is that if the cooling rate is less than 5 ° C./sec,
This is because 2 P and Fe are precipitated. Note that these precipitates generated during cooling do not contribute to the enhancement of the heat resistance and mechanical properties of the copper alloy. Therefore, the cooling rate is 5 ° C
/ Sec or more.

【0027】[0027]

【実施例】次に、本発明の実施例に係る硬ろう付け加熱
後の膨張率が小さい熱交換器用耐熱銅合金板を製造し、
その特性を試験した結果について、本願特許請求の範囲
から外れる比較例と比較して説明する。
EXAMPLE Next, a heat-resistant copper alloy sheet for a heat exchanger having a small expansion coefficient after hard brazing according to an example of the present invention was manufactured.
The results of testing the characteristics will be described in comparison with comparative examples that are outside the scope of the claims of the present application.

【0028】先ず、下記表1に示す成分および組成(単
位は重量%)を有する銅合金および脱酸銅(Cu−0.
02重量%P)をクリプトル炉を使用し、大気中で木炭
被覆下にて溶製した後、鋳造して厚さが50mm、幅が
75mm、長さが180mmの鋳塊を得た。
First, a copper alloy and a deoxidized copper (Cu-0.
02 wt% P) was melted under a charcoal coating in the atmosphere using a kryptor furnace, and then cast to obtain an ingot having a thickness of 50 mm, a width of 75 mm and a length of 180 mm.

【0029】[0029]

【表1】 [Table 1]

【0030】そして、この鋳塊の表面および裏面を5m
mずつ面削した後、カンタル炉を用い、940℃で1時
間保持した後、15mmの厚さになるまで熱間圧延を行
い、これらの圧延材を水中に投入して急冷した。次に、
これらの熱間圧延材の表面の酸化スケールを除去した
後、この熱間圧延材を冷間圧延し、厚さが0.8mmの
冷間圧延材を得た。
The front and back surfaces of the ingot are 5 m
After m-face milling, the steel sheet was held at 940 ° C. for 1 hour using a Kanthal furnace, and then hot-rolled to a thickness of 15 mm, and these rolled materials were put into water and quenched. next,
After removing the oxide scale on the surface of these hot-rolled materials, the hot-rolled materials were cold-rolled to obtain cold-rolled materials having a thickness of 0.8 mm.

【0031】表1の組成をもつ冷間圧延材を525乃至
800℃に調整した塩浴炉に浸漬し、30秒間保持した
後、100℃以下まで約10℃/secの速度で水中冷
却し、これらを実施例1〜5の試験材とした。それらの
特性を表2に示す。
A cold-rolled material having the composition shown in Table 1 was immersed in a salt bath furnace adjusted to 525 to 800 ° C., held for 30 seconds, and cooled in water at a rate of about 10 ° C./sec to 100 ° C. or less. These were used as test materials of Examples 1 to 5. Table 2 shows their characteristics.

【0032】また、表1の組成をもつ冷間圧延材を40
0乃至850℃に調整した塩浴炉に浸漬し、30秒間保
持した後、100℃以下まで約10℃/sec又は2℃
/secの速度で冷却し、これらを比較例1〜3の試験
材とし、表1の組成をもつ冷間圧延材を塩浴炉により5
75℃×2Hr+500℃×4Hrの析出焼鈍を行い、
100℃以下まで2℃/secの速度で冷却し、これを
比較例4(従来例に相当)の試験材とし、さらに、脱酸
銅(-1/4H相当、500℃で上り前焼鈍を行った後、1
0%の冷間圧延)の冷間圧延材は比較例5の試験材とし
た。それらの特性を表3に示す。
Further, a cold-rolled material having the composition shown in Table 1
After immersing in a salt bath furnace adjusted to 0 to 850 ° C and holding for 30 seconds, the temperature is reduced to 100 ° C or less by about 10 ° C / sec or 2 ° C.
/ Sec, and these were used as test materials of Comparative Examples 1 to 3, and a cold-rolled material having a composition shown in Table 1 was cooled in a salt bath furnace for 5 minutes.
Precipitation annealing of 75 ° C x 2Hr + 500 ° C x 4Hr,
It was cooled at a rate of 2 ° C./sec to 100 ° C. or less, and this was used as a test material of Comparative Example 4 (corresponding to a conventional example). After one
(0% cold rolling) was used as the test material of Comparative Example 5. Table 3 shows their characteristics.

【0033】[0033]

【表2】 [Table 2]

【0034】[0034]

【表3】 [Table 3]

【0035】続いて、このように製造した実施例1〜
5、及び比較例1〜5の各試験材に対して、実際の硬ろ
う付け加熱条件を想定して、窒素中830℃の温度で1
0分間加熱を行い、加熱後の特性を調べた(膨張率のみ
は下記試験方法の加熱条件による)。その結果を表4及
び表5に示す。
Subsequently, Examples 1 to 5 manufactured as described above were used.
5 and each of the test materials of Comparative Examples 1 to 5 at a temperature of 830 ° C. in nitrogen, assuming actual hard brazing heating conditions.
Heating was performed for 0 minutes, and the characteristics after heating were examined (only the expansion coefficient depends on the heating conditions of the following test method). The results are shown in Tables 4 and 5.

【0036】[0036]

【表4】 [Table 4]

【0037】[0037]

【表5】 [Table 5]

【0038】但し、表2〜表5において、各特性は以下
に示す試験方法により測定した。 (1)引張試験においては、各試験材から圧延方向に平
行に切り出したJIS5号試験片を使用して、引張強
さ、耐力および伸びを測定した。 (2)各試験材の硬さは、ビッカース硬度計を使用し
て、荷重2kgの条件で測定した。 (3)導電率は幅10mm、長さが300mmの試験片
を使用して、これらの試験片の電気抵抗をダブルブリッ
ジにより測定し、平均断面積法により算出した。 (4)結晶粒径は光学顕微鏡により測定した。
However, in Tables 2 to 5, each characteristic was measured by the following test methods. (1) In the tensile test, a JIS No. 5 test piece cut out from each test material in parallel with the rolling direction was used to measure tensile strength, proof stress, and elongation. (2) The hardness of each test material was measured using a Vickers hardness meter under a load of 2 kg. (3) The conductivity was measured using a test piece having a width of 10 mm and a length of 300 mm using a double bridge, and calculating the average cross-sectional area method. (4) The crystal grain size was measured with an optical microscope.

【0039】(5)膨張率の測定については、厚さ0.
8mm、幅8mm、長さ20mmの試験材にて、膨張長
さ測定機を用い、硬ろう付け加熱温度に相当する850
℃まで10℃/分で昇温した後、冷却(空冷却、約63
℃/分)し、その後の長さ変化(膨張率)を測定した。 (6)疲労試験においては、薄板疲労試験機を使用し、
各試験材から切り出した幅が10mmの試験片に対し
て、周期が60Hz、応力振幅は2.5mm、平均応力
が15kgf/mm2の条件で両振り繰り返し応力を負
荷した。そしてこの繰り返し応力により試験片が破断す
るまでの回数を測定した。
(5) Regarding the measurement of the coefficient of expansion, the thickness was set to 0.
Using a test material having a length of 8 mm, a width of 8 mm, and a length of 20 mm, using an expansion length measuring device, 850 corresponding to the heating temperature for hard brazing.
After cooling to 10 ° C at 10 ° C / min, cool (air cooling, about 63
° C / min), and the length change (expansion coefficient) was measured. (6) In the fatigue test, use a thin plate fatigue tester,
A repetitive oscillating stress was applied to a test piece having a width of 10 mm cut out from each test material under the conditions of a cycle of 60 Hz, a stress amplitude of 2.5 mm, and an average stress of 15 kgf / mm 2 . Then, the number of times until the test piece was broken by the repeated stress was measured.

【0040】実施例1〜5は、硬ろう付け想定加熱前に
各々525、550、600、650、800℃の温度
で30秒間加熱を行い、続いて100℃以下まで約10
℃/secの速度で水中冷却して製造した試験材であ
る。これに対し、比較例1及び2は各々400、850
℃の加熱を行った試験材、比較例3は加熱後の冷却速度
を2℃/secとした試験材であり、いずれも本発明の
特許請求の範囲から外れるものである。また、比較例4
は従来の製造方法に相当する方法で得られた試験片、比
較例5は従来の脱酸銅(-1/4H相当)の試験片である。
In Examples 1 to 5, heating was performed at a temperature of 525, 550, 600, 650, and 800 ° C. for 30 seconds, respectively, before heating was performed assuming hard brazing.
It is a test material produced by cooling in water at a rate of ° C / sec. In contrast, Comparative Examples 1 and 2 were 400 and 850, respectively.
The test material heated at ℃ and the comparative example 3 was a test material having a cooling rate after heating of 2 ° C./sec, all of which fall outside the scope of the claims of the present invention. Comparative Example 4
Is a test piece obtained by a method corresponding to a conventional production method, and Comparative Example 5 is a test piece of conventional deoxidized copper (corresponding to -1 / 4H).

【0041】表2〜表5から明らかなように、実施例1
〜5は硬ろう付け想定加熱後の膨張率は比較例5(脱酸
銅)に近い値を有し、従来の製造方法に相当する比較例
4に比べ小さくなっている。これは硬ろう付け想定加熱
前において、Feが母相へ固溶しているためで、加熱前
の導電率は本発明で規定する20乃至50%IACSの
範囲内にある。さらに、結晶粒径は比較例5(脱酸銅)
に比べて小さく、そのため機械的性質及び疲労特性に優
れ、特に耐力は9.5倍を有している。
As is clear from Tables 2 to 5, Example 1
5 have a value close to that of Comparative Example 5 (deoxidized copper) after the hard brazing assumed heating, which is smaller than that of Comparative Example 4 corresponding to the conventional manufacturing method. This is because Fe is dissolved in the mother phase before heating for hard brazing, and the conductivity before heating is within the range of 20 to 50% IACS specified in the present invention. Further, the crystal grain size was determined in Comparative Example 5 (deoxidized copper).
, So that it has excellent mechanical properties and fatigue properties, and particularly has a proof strength of 9.5 times.

【0042】これに対し、比較例1は加熱温度が400
℃と低いため、Feは母相中に十分に固溶できず、その
ため導電率が55%IACSと高く、硬ろう付け想定加
熱後の膨張率が0.07%と大きくなっている。比較例
2は加熱温度が850℃と高いため、結晶粒が80μm
と粗大化し、そのためろう付け後の機械的性質及び疲労
特性が劣っている。比較例3は加熱後の冷却速度が2℃
/secと小さいため、Feが析出し、加熱前の導電率
は60%IACSと本発明で規定する範囲よりも高く、
従ってろう付け想定加熱後の膨張率が0.08%と大き
くなっている。
On the other hand, in Comparative Example 1, the heating temperature was 400
Due to the low temperature of ° C., Fe could not form a solid solution in the parent phase, so that the electrical conductivity was as high as 55% IACS, and the expansion rate after hard brazing assumed heating was as large as 0.07%. In Comparative Example 2, since the heating temperature was as high as 850 ° C., the crystal grains were 80 μm.
Therefore, the mechanical properties and fatigue properties after brazing are inferior. In Comparative Example 3, the cooling rate after heating was 2 ° C.
/ Sec, Fe is precipitated, and the conductivity before heating is 60% IACS, which is higher than the range specified in the present invention.
Therefore, the expansion coefficient after the heating for the brazing assumption is as large as 0.08%.

【0043】従来の製造方法に相当する比較例4は意図
的にFeを析出させているため、加熱前の導電率は70
%IACSと高く、そのため、ろう付け想定加熱後の膨
張率は0.09%と大きくなっている。比較例5(脱酸
銅)は硬ろう付け加熱により結晶粒径は200μmに粗
大化し、硬ろう付け想定加熱後の機械的性質及び疲労特
性が劣っている。
In Comparative Example 4 corresponding to the conventional production method, Fe was intentionally precipitated, so that the conductivity before heating was 70%.
% IACS, which is high, and therefore, the expansion coefficient after heating for the brazing assumption is as large as 0.09%. In Comparative Example 5 (deoxidized copper), the crystal grain size was coarsened to 200 μm by hard brazing, and the mechanical properties and fatigue properties after hard brazing assumed heating were inferior.

【0044】また、図2は試験片(実施例1、比較例
1、4、5)の膨張長さの測定結果を示すものであり、
aは実体温度の変化を示し、b、c、d、eはそれぞれ
実施例1、比較例1、4、5の膨張長さ(伸び率を併
記)の変化を示す。ここに示すように、比較例1及び4
では、母相中に析出していたFeが500℃付近から固
溶しはじめ、そのため膨張が比較例5(脱酸銅)に比べ
て大きくなり、さらに、冷却過程では冷却速度が大きい
ため一旦固溶したFeは再び析出せず、その結果、冷却
後は元に戻らず加熱前の長さよりかなり大きくなってい
る。一方、実施例1は、加熱前にFeを固溶させている
ため、冷却後は比較例5(脱酸銅)と遜色ない低い膨張
率(=冷却後の伸び率)となっている。
FIG. 2 shows the measurement results of the expansion length of the test pieces (Example 1, Comparative Examples 1, 4, and 5).
“a” indicates a change in the body temperature, and “b”, “c”, “d”, and “e” indicate changes in the expansion lengths (and elongation percentages) of Example 1 and Comparative Examples 1, 4, and 5, respectively. As shown here, Comparative Examples 1 and 4
In this case, Fe precipitated in the parent phase began to form a solid solution at around 500 ° C., and the expansion was larger than that of Comparative Example 5 (deoxidized copper). The dissolved Fe does not precipitate again, and as a result, does not return to its original state after cooling, and is considerably larger than the length before heating. On the other hand, in Example 1, since Fe was dissolved before heating, the coefficient of expansion (= elongation after cooling) after cooling was as low as that of Comparative Example 5 (deoxidized copper).

【0045】[0045]

【発明の効果】本発明に係る熱交換器用耐熱銅合金板
(請求項1)は、硬ろう付け時および溶接時等の熱によ
る結晶粒の粗大化が抑制され、硬ろう付け後の機械的性
質及び疲労特性に優れ、また、硬ろう付け前の導電率を
限定したことで、硬ろう付け後の膨張率が小さく、例え
ば、熱交換機缶体のフランジ部として脱酸銅からなるバ
ーナーケースと組み付けて使用するときなど、硬ろう付
け加熱後に生ずるたわみが抑えられ、たとえ生じても後
工程で容易に修正できるようになる。
The heat-resistant copper for a heat exchanger according to the present inventionAlloy plate
(Claim 1) is characterized by heat during hard brazing and welding.
Grain growth is suppressed and mechanical properties after hard brazing
Excellent quality and fatigue properties,Conductivity before hard brazing
By limiting, the expansion rate after hard brazing is small,example
For example, as a flange of the heat exchanger can, a bag made of deoxidized copper
Hard brazing, for example, when used in combination with
Deflection after heating is suppressed, and even if
It can be easily corrected in the process.

【0046】本発明の熱交換機用耐熱銅合金板の製造方
法(請求項2)によれば、従来の製造方法による材料に
比べて硬ろう付け後の機械的性質及び疲労特性を劣化さ
せることなく、硬ろう付け後の膨張率の小さい熱交換器
用耐熱銅合金を得ることができる。従って、本発明は熱
交換器の信頼性向上に極めて有用である。
According to the method for producing a heat-resistant copper alloy sheet for a heat exchanger of the present invention ( claim 2 ), the mechanical properties and the fatigue properties after hard brazing are not deteriorated as compared with the material produced by the conventional production method. Thus, a heat-resistant copper alloy for a heat exchanger having a small expansion coefficient after hard brazing can be obtained. Therefore, the present invention is extremely useful for improving the reliability of the heat exchanger.

【図面の簡単な説明】[Brief description of the drawings]

【図1】試験材の硬ろう付け加熱前の導電率と硬ろう付
け加熱後の膨張率の関係を示す図である。
FIG. 1 is a graph showing the relationship between the conductivity of a test material before hard brazing and heating and the expansion coefficient after hard brazing and heating.

【図2】硬ろう付け加熱を施したときの試験材の膨張履
歴を示したものである。
FIG. 2 shows an expansion history of a test material when hard brazing is performed.

【図3】熱交換器の構造を示す概略図であり、(a)は
その正面図、(b)は側面図である。
FIGS. 3A and 3B are schematic diagrams showing the structure of a heat exchanger, wherein FIG. 3A is a front view and FIG. 3B is a side view.

【図4】従来の製造方法による銅合金と(フランジ部)
と脱酸銅(バーナーケース部)を用いた硬ろう付け後の
熱交換器内部の構造(たわみが発生した場合)を示す側
面図である。
FIG. 4 shows a copper alloy and a (flange portion) according to a conventional manufacturing method.
FIG. 4 is a side view showing the internal structure of the heat exchanger after hard brazing using a deoxidized copper (burner case portion) (when bending occurs).

【符号の説明】[Explanation of symbols]

1 フランジ部 2 バーナーケース部 5 たわみ部 1 Flange part 2 Burner case part 5 Flexure part

フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C22C 1/00 - 49/14 C22F 1/00 - 3/02 F28F 21/08 Continuation of the front page (58) Field surveyed (Int. Cl. 7 , DB name) C22C 1/00-49/14 C22F 1/00-3/02 F28F 21/08

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 Fe:1.3乃至2.1重量%、P:
0.001乃至0.1重量%、Co:0.2乃至1.0
重量%、およびZn:0.01乃至1.0重量%を有
し、且つ前記Feの含有量および前記Coの含有量の合
計が2.5重量%以下であり、残部がCuおよび不可避
的不純物からなる銅合金板であって、ろう付け加熱前の
導電率が20乃至50%IACSであり、さらに結晶粒
径が1乃至50μmであることを特徴とする硬ろう付け
加熱後の膨張率が小さい熱交換器用耐熱銅合金板。
1. Fe: 1.3 to 2.1% by weight, P:
0.001 to 0.1% by weight, Co: 0.2 to 1.0
% By weight, and Zn: 0.01 to 1.0% by weight, and the total of the Fe content and the Co content is 2.5% by weight or less, with the balance being Cu and unavoidable impurities. A copper alloy plate comprising, before brazing heating, a conductivity of 20 to 50% IACS and a crystal grain size of 1 to 50 μm, after hard brazing heating. Heat-resistant copper alloy plate for heat exchanger with small expansion coefficient.
【請求項2】 Fe:1.3乃至2.1重量%、P:
0.001乃至0.1重量%、Co:0.2乃至1.0
重量%、およびZn:0.01乃至1.0重量%を有
し、且つ前記Feの含有量および前記Coの含有量の合
計が2.5重量%以下であり、残部がCuおよび不可避
的不純物からなる銅合金鋳塊を熱間加工後、急冷した
後、冷間加工を行い、その後500乃至830℃の温度
で10秒以上加熱し、5℃/sec以上の冷却速度で冷
却することを特徴とする、次式で定義される硬ろう付
け加熱後の膨張率R(%)が0.05%以下である熱交
換器用耐熱銅合金板の製造方法。R=(L1−L0)÷L0×100 ・・・・ ここで、L1:ろう付け後の長さ、 L0:ろう付け前の長さ
2. Fe: 1.3 to 2.1% by weight, P:
0.001 to 0.1% by weight, Co: 0.2 to 1.0
% By weight, and Zn: 0.01 to 1.0% by weight, and the total of the Fe content and the Co content is 2.5% by weight or less, with the balance being Cu and unavoidable impurities. After hot working, quenching, and then cold working, then heating at 500 to 830 ° C for 10 seconds or more, and cooling at a cooling rate of 5 ° C / sec or more. A method for producing a heat-resistant copper alloy sheet for a heat exchanger, having an expansion coefficient R (%) after hard brazing and heating defined by the following formula of 0.05% or less. R = (L1−L0) ÷ L0 × 100 where L1: length after brazing, L0: length before brazing.
JP11002995A 1995-04-10 1995-04-10 Heat-resistant copper alloy sheet for heat exchanger having a small expansion coefficient after hard brazing heating and method for producing the same Expired - Fee Related JP3209389B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11002995A JP3209389B2 (en) 1995-04-10 1995-04-10 Heat-resistant copper alloy sheet for heat exchanger having a small expansion coefficient after hard brazing heating and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11002995A JP3209389B2 (en) 1995-04-10 1995-04-10 Heat-resistant copper alloy sheet for heat exchanger having a small expansion coefficient after hard brazing heating and method for producing the same

Publications (2)

Publication Number Publication Date
JPH08283887A JPH08283887A (en) 1996-10-29
JP3209389B2 true JP3209389B2 (en) 2001-09-17

Family

ID=14525313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11002995A Expired - Fee Related JP3209389B2 (en) 1995-04-10 1995-04-10 Heat-resistant copper alloy sheet for heat exchanger having a small expansion coefficient after hard brazing heating and method for producing the same

Country Status (1)

Country Link
JP (1) JP3209389B2 (en)

Also Published As

Publication number Publication date
JPH08283887A (en) 1996-10-29

Similar Documents

Publication Publication Date Title
US4261739A (en) Ferritic steel alloy with improved high temperature properties
US20140356647A1 (en) Aluminum alloy clad material for forming
JP7238161B2 (en) Ferritic stainless steel plate
CN108026623B (en) Ferritic stainless steel
US20030042290A1 (en) Method for producing AlMn strips or sheets
US3556776A (en) Stainless steel
JP2536673B2 (en) Heat treatment method for titanium alloy material for cold working
CN111630196A (en) Aluminum alloy fin material for heat exchanger excellent in strength, conductivity, corrosion resistance and brazeability, and heat exchanger
JP3357226B2 (en) Fe-Cr alloy with excellent ridging resistance and surface properties
WO2019044545A1 (en) Brazing sheet for heat exchanger fin and manufacturing method thereof
JPH10130754A (en) Heat resistant copper base alloy
JP3209389B2 (en) Heat-resistant copper alloy sheet for heat exchanger having a small expansion coefficient after hard brazing heating and method for producing the same
JPH0765131B2 (en) Heat-resistant copper alloy for heat exchangers with excellent hard brazing properties
JP3683443B2 (en) Aluminum alloy composite material for heat exchanger and manufacturing method thereof
JPH01195263A (en) Manufacture of al-alloy fin material for heat exchanger
JPH11241136A (en) High corrosion resistant aluminum alloy, clad material thereof, and its production
JP3274178B2 (en) Copper base alloy for heat exchanger and method for producing the same
JP3274177B2 (en) Copper base alloy for heat exchanger and method for producing the same
JP3274175B2 (en) Copper base alloy for heat exchanger and method for producing the same
JPS6022061B2 (en) Manufacturing method of aluminum alloy thin plate for drawer fin
JP3230685B2 (en) Copper base alloy for heat exchanger
JPH0210212B2 (en)
JP3243479B2 (en) Copper base alloy for heat exchanger
JPH0250934A (en) Brazing sheet made of aluminum for heat exchanger member
TWI722377B (en) Fertilizer stainless steel

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees