JPH01108016A - Composite cylinder - Google Patents

Composite cylinder

Info

Publication number
JPH01108016A
JPH01108016A JP62265958A JP26595887A JPH01108016A JP H01108016 A JPH01108016 A JP H01108016A JP 62265958 A JP62265958 A JP 62265958A JP 26595887 A JP26595887 A JP 26595887A JP H01108016 A JPH01108016 A JP H01108016A
Authority
JP
Japan
Prior art keywords
alloy layer
sintered alloy
cylindrical body
sintered
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62265958A
Other languages
Japanese (ja)
Inventor
Toshio Okitsu
沖津 俊夫
Giichi Sano
佐野 義一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP62265958A priority Critical patent/JPH01108016A/en
Publication of JPH01108016A publication Critical patent/JPH01108016A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/46Means for plasticising or homogenising the moulding material or forcing it into the mould
    • B29C45/58Details
    • B29C45/62Barrels or cylinders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/46Means for plasticising or homogenising the moulding material or forcing it into the mould
    • B29C45/58Details
    • B29C45/62Barrels or cylinders
    • B29C2045/623Cylinders and inner linings having different thermal expansion coefficients

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

PURPOSE:To load a compressive stress on the sintered alloy layer of an inner surface to improve resistances to abrasion and cracking, by a method wherein recesses and projections are formed on jointing boundaries between a cylindrical body and the sintered alloy layer to joint them while the amounts of shrinkage of the cylindrical body and the sintered allow layer from 800 deg.C to a normal temperature are specified. CONSTITUTION:The material of a metallic cylindrical body 1 is selected so as to have a linear expansion coefficient larger than the same of a sintered alloy 2 while recesses and projections 3 are formed on the jointing boundary between both of the cylindrical body and a sintered alloy layer to joint and integrate them, therefore, a compressive stress is applied on the sintered alloy layer. Both ends of the alloy layer 2 are embedded into the cylindrical body 1 in a condition that they are enveloped by the cylindrical body, therefore, the compressive stress of the alloy layer 2 is enhanced. The temperature of the starting point of shrinkage is 800 deg.C. Under a temperature exceeding 800 deg.C, both of the metallic cylindrical body and the sintered alloy layer are soft and cause plastic deformation easily, therefore, remaining stress will never be generated between both of them. The amount of shrinkage of the sintered alloy layer deltaA is made smaller than the amount of shrinkage deltaB of the metallic cylindrical body in order to provide the sintered alloy layer with a compressive stress.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は内周面に焼結合金の層を備えた複合シリンダに
係わるものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a composite cylinder having a layer of sintered alloy on its inner peripheral surface.

〔従来の技術〕[Conventional technology]

昨今、樹脂成形の分野で、ガラス繊維の混合された樹脂
や、有毒ガスを発生する樹脂が成形されるようになって
きた。
Recently, in the field of resin molding, resins mixed with glass fibers and resins that generate toxic gases have come to be molded.

この結果、成形シリンダは極めて苛酷な摩耗とg蝕雰囲
気にさらされるようになり、従来のシリンダでは十分な
体摩耗性と耐食性を保証することができなくなった。
As a result, the molded cylinder is exposed to extremely severe wear and corrosion atmosphere, and conventional cylinders are no longer able to guarantee sufficient body wear resistance and corrosion resistance.

このために最近では、耐食性と耐摩耗性に優れた焼結合
金をシリンダの内面に一体的に焼結した結合シリンダが
試用されるようになった。
For this reason, recently, bonded cylinders in which a sintered alloy with excellent corrosion resistance and wear resistance is integrally sintered on the inner surface of the cylinder have been put into use.

この合金はWCやNbC等の硬質炭化物をNi、 Co
基合金で焼結させたものであるが、これらの合金は本来
脆弱であるために、使用時柱々にしてクランクが発生す
ることがあった。
This alloy combines hard carbides such as WC and NbC with Ni and Co.
These alloys are sintered with base alloys, but because these alloys are inherently brittle, they sometimes crack during use.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は、このような従来技術の経緯に鑑みてなされた
もので、その目的とする所は、上記したような脆弱な焼
結合金でも何らクランクの発生することのない新しい構
造の複合シリンダを提供せんとするものである。
The present invention was made in view of the background of the prior art, and its purpose is to create a composite cylinder with a new structure that does not cause any cranking even with the above-mentioned brittle sintered alloys. This is what we intend to provide.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者は、上記問題点を解決すべく鋭意研究を行った
結果、次のような知見を得た。
The present inventor conducted extensive research to solve the above problems, and as a result, obtained the following findings.

即ち、上記したような焼結合金は、たしかに引張りの応
力に対しては脆い欠点はあるが、圧縮応力に対しては極
めて強い特徴があることに着目し、内面の焼結合金層に
は、圧縮応力が作用するように、その構造を変えること
によって上記問題点が解決できることを見出した。
In other words, the sintered alloy described above does have the disadvantage of being brittle against tensile stress, but it is extremely strong against compressive stress. It has been found that the above problems can be solved by changing the structure so that compressive stress can be applied.

つまり、金属円筒体の内面に焼結合金の層を備えた複合
シリンダにおいて、円筒体と焼結合金層は接合境界部に
凹凸を形成させて接合すると共に、該円筒体と焼結合金
層の800°Cから常温までの収縮量が、 δ、≦δ。
In other words, in a composite cylinder in which a sintered alloy layer is provided on the inner surface of a metal cylinder, the cylinder and the sintered alloy layer are joined by forming irregularities at the joining boundary, and the cylinder and the sintered alloy layer are The amount of shrinkage from 800°C to room temperature is δ, ≦δ.

δA :焼結合金層の収縮量 δ、:金属円筒体の収l1iI量 になるようにすると、上記問題点が解決できることを見
出した。
It has been found that the above problem can be solved by setting δA: contraction amount of the sintered alloy layer δ,: shrinkage amount of the metal cylinder.

また更に、上記焼結合金層は、その両端面および外周面
を金属円筒体によって包囲されるように、この金属円筒
体に埋入して接合すると、更に好しい結果が得られるこ
とを見出した。
Furthermore, it has been found that more favorable results can be obtained when the sintered alloy layer is embedded and bonded into a metal cylindrical body so that both end faces and outer circumference of the sintered alloy layer are surrounded by the metal cylindrical body. .

本発明は、以上の新しい知見に基づいてなされたもので
ある。
The present invention has been made based on the above new findings.

本発明は、上記した構成から成るものであるが、収縮が
開始する起点の温度を800°Cと規定するのは、80
0 ”Cを越える温度では、金属円筒体(主に鉄鋼材料
)および焼結合金共に軟弱で容易に塑性変形するために
、応力は容易に開放されて、実質的には両者の間に残留
応力が生起されないためである。
The present invention has the above-described configuration, but the temperature at the starting point at which contraction starts is defined as 800°C.
At temperatures exceeding 0.0 ℃, both the metal cylinder (mainly steel materials) and the sintered alloy are soft and easily deform plastically, so the stress is easily released and there is essentially no residual stress between the two. This is because it does not occur.

両者の間に残留応力が生起されだすのは、この温度以下
である。
It is below this temperature that residual stress begins to occur between the two.

また、δ、≦δ、に規定するのは、焼結合金層に圧縮の
応力を与えるためには、金属円筒側の収縮の絶対量を大
きくすることが不可欠のためである。
The reason why δ is defined as ≦δ is that in order to apply compressive stress to the sintered alloy layer, it is essential to increase the absolute amount of contraction on the metal cylinder side.

収縮量をδい≦63にする最も容易で効果的な方法は線
膨張係数の差を利用する方法である。
The easiest and most effective way to make the amount of shrinkage δ≦63 is to use the difference in linear expansion coefficients.

つまり金属円筒体に鉄鋼材料を使用すると、その線膨張
係数は(12〜18 ) Xl0−’であるので、焼結
合金の材質は線膨張係数がこれより小さいものを選定す
ると上記条件が満足されることになる。
In other words, when a steel material is used for the metal cylinder, its coefficient of linear expansion is (12 to 18) That will happen.

一般にサーメット材料は膨張係数がほとんど10 Xl
0−’以下であるので金属円筒体が鉄鋼材料の場合は、
焼結合金として、はとんどのサーメット材料が使用でき
る。
Generally, cermet materials have an expansion coefficient of almost 10Xl
Since it is less than 0-', if the metal cylinder is made of steel material,
Most cermet materials can be used as the sintered alloy.

サーメット材料としては、とりわけWC,Tic。Cermet materials include WC, Tic, among others.

NbC,VC等の炭化物をFe、 Ni、 Goあるい
はこれらの合金で焼結した材料が有用である。
Materials in which carbides such as NbC and VC are sintered with Fe, Ni, Go, or alloys thereof are useful.

〔実施例〕〔Example〕

次に図面によって本発明を説明する。 Next, the present invention will be explained with reference to the drawings.

第1図(イ)、(ロ)は本発明シリンダの基本的構造の
説明図、第2図は収縮量の違いを説明するための説明図
である。
FIGS. 1A and 1B are explanatory diagrams of the basic structure of the cylinder of the present invention, and FIG. 2 is an explanatory diagram for explaining the difference in the amount of contraction.

第1図(イ)、(ロ)において、■は金属円筒体、2は
焼結合金層である。
In FIGS. 1(A) and 1(B), ■ is a metal cylinder, and 2 is a sintered alloy layer.

1の金属円筒体には、2の焼結合金よりも線膨張係数の
大きな材料が選定され、両者は接合境界部に3に示すよ
うな凹凸が形成されて接合一体化されているために、極
めて強固な接合が得られ、2の焼結合金層には圧縮の応
力が作用されることになる。
For the metal cylindrical body 1, a material with a larger linear expansion coefficient than the sintered alloy 2 was selected, and since the two are joined together with unevenness as shown in 3 at the joint boundary, An extremely strong bond is obtained, and compressive stress is applied to the second sintered alloy layer.

この圧縮応力は、(ロ)の場合、特に合金層2の両端面
が1の円筒体によって包みこまれるように円筒体に埋め
こまれているために強化される。
This compressive stress is especially strengthened in case (b) because both end faces of the alloy layer 2 are embedded in the cylindrical body so as to be wrapped in the cylindrical body 1.

第2図はこの圧縮の応力が負荷される状況を模式的に説
明した図である。
FIG. 2 is a diagram schematically explaining a situation in which this compressive stress is applied.

即ち、第2図Aは焼結合金層の伸び(あるいは収縮)i
lを示す特性曲線、Bは金属円筒体の伸び(あるいは収
縮)Iを示す特性曲線である。
That is, FIG. 2A shows the elongation (or contraction) i of the sintered alloy layer.
B is a characteristic curve showing the elongation (or contraction) I of the metal cylinder.

800″Cから常温に至るまでの収縮量は、それぞれδ
1.δ、であり、塑性変形を無視すれば常温ではδ8−
δヶの収縮量の差異が生ずることになる。
The amount of shrinkage from 800″C to room temperature is δ
1. δ, and if plastic deformation is ignored, δ8− at room temperature
This results in a difference in the amount of shrinkage of δ.

焼結合金層は、塑性変形が実質的に皆無あるいは僅少で
あるために、この収縮量の差異は実質的に圧縮応力に転
化されることになる。
Since the sintered alloy layer has substantially no or very little plastic deformation, this difference in the amount of shrinkage is substantially converted into compressive stress.

次に本発明の具体的な製造方法について述べる。Next, a specific manufacturing method of the present invention will be described.

本発明を最も効果的に達成させるためには、焼結合金層
とシリンダ基材を一体的に同時に焼結拡散接合させるH
 jP焼結法が最も有効である。
In order to achieve the present invention most effectively, the sintered alloy layer and the cylinder base material must be integrally and simultaneously sintered and diffusion bonded.
The jP sintering method is the most effective.

この方法は、金属円筒体の内部に、これより小径の金属
管をキャニング材として同心円状に挿入し、この空隙内
に焼結合金の原料粉末の混合物を充てんし、脱気後側端
部のリング状開口面封止する。次いでこれを旧P焼結す
る。
In this method, a metal tube with a smaller diameter is inserted concentrically into a metal cylinder as a canning material, and this gap is filled with a mixture of raw material powder for the sintered alloy. The ring-shaped opening is sealed. Next, this is subjected to old P sintering.

原料粉末はキャニング材を介して金属円筒体内面に押圧
され、緻密化されて一体的に焼結される。
The raw material powder is pressed against the inner surface of the metal cylinder through a canning material, densified, and sintered integrally.

冷却後、キャニング材を機械的に除去して、所定の寸法
に仕上げることによってシリンダは完成する。
After cooling, the cylinder is completed by mechanically removing the canning material and finishing it to predetermined dimensions.

次に具体的な実施例について述べる。Next, a specific example will be described.

〈実施例〉 金属円筒体: 材質;Ni −Crflil 寸法;外径75閣×内径30mmx長さ350鵬焼結合
金の成分組成: 炭化物;罰 25重量%、  NbC30重景%結合材
;Ni−20%Cr−3%B−3%Si円筒体の内面に
外径20mm厚さ21111の軟鋼のパイプをキャニン
グ材として挿入し、一方の開口端を軟鋼板で盲閉じした
後、もう一方の開口端より上記焼結合金の原料粉末を充
てんし、真空脱気した後、この開口端も封止した。
<Example> Metal cylindrical body: Material; Ni - Crflil Dimensions: Outer diameter 75 mm x Inner diameter 30 mm x Length 350 Composition of sintered alloy: Carbide; %Cr-3%B-3%Si A mild steel pipe with an outer diameter of 20 mm and a thickness of 21111 was inserted as a canning material into the inner surface of the cylindrical body, and after blindly closing one open end with a mild steel plate, the other open end was closed. After filling with the raw material powder of the sintered alloy and vacuum degassing, this open end was also sealed.

次に、これを温度980°C1圧力1100kgf/c
m”にてIIIP焼結した。
Next, the temperature is 980°C, the pressure is 1100kgf/c
IIIP sintering was performed at m''.

冷却後、軟鋼パイプを機械旋削により除去し、所定寸法
に機械加工した。
After cooling, the mild steel pipe was removed by mechanical turning and machined to predetermined dimensions.

これを実際のプラスチック射出成形のシリンダとして試
用したところ、従来の工具鋼製のシリンダよりも約10
倍の耐用が確認できた。また、クラックも全く認められ
なかった。
When we tried this as an actual plastic injection molding cylinder, we found that it was approximately 10 times more effective than a conventional tool steel cylinder.
We confirmed that it lasted twice as long. Moreover, no cracks were observed at all.

〔発明の効果〕〔Effect of the invention〕

本発明のシリンダは、以上詳記したように、内面の焼結
合金層に圧縮の応力を負荷することができる特徴を有す
るものであり、耐摩耗性と併せて、耐割れ性に関しても
きわめて優れた特性を発揮するものである。
As detailed above, the cylinder of the present invention has the characteristic of being able to apply compressive stress to the sintered alloy layer on the inner surface, and has extremely excellent cracking resistance as well as wear resistance. It exhibits the following characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(イ)、(ロ)は、本発明シリンダの基本的構造
の説明図、第2図は、収縮量の違いを説明するための説
明図である。 1・・・金属円筒体、2・・・焼結合金層、A・・・焼
結合金層の伸び(収縮)特性曲線、B・・・金属円筒体
の伸び(収縮)特性曲線。
FIGS. 1A and 1B are explanatory diagrams of the basic structure of the cylinder of the present invention, and FIG. 2 is an explanatory diagram for explaining the difference in the amount of contraction. DESCRIPTION OF SYMBOLS 1... Metal cylindrical body, 2... Sintered alloy layer, A... Elongation (contraction) characteristic curve of sintered alloy layer, B... Elongation (contraction) characteristic curve of metal cylindrical body.

Claims (1)

【特許請求の範囲】[Claims] (1)金属円筒体の内面に焼結合金層を備えた複合シリ
ンダにおいて、該円筒体と焼結合金層は、接合境界部に
凹凸を形成されて互に接合されると共に、該円筒体と焼
結合金層の800℃から常温までの収縮量が δ_A≦δ_B ただしδ_A:焼結合金層の収縮量 δ_B:金属円筒体の収縮量 にされてなることを特徴とする複合シリンダ(2)上記
焼結合金層が、両端面および外周面を金属円筒体によっ
て包囲されるように、該円筒体に埋入されて接合されて
なることを特徴とする特許請求の範囲第1項に記載の複
合シリンダ。
(1) In a composite cylinder including a sintered metal layer on the inner surface of a metal cylinder, the cylinder and the sintered metal layer are joined to each other by forming irregularities at the joining boundary, and the cylinder and the sintered metal layer are Composite cylinder (2) above, characterized in that the amount of shrinkage of the sintered alloy layer from 800°C to room temperature is δ_A≦δ_B, where δ_A: shrinkage amount of the sintered alloy layer δ_B: shrinkage amount of the metal cylinder The composite according to claim 1, wherein the sintered alloy layer is embedded in and joined to the metal cylinder so that both end faces and the outer peripheral surface are surrounded by the metal cylinder. Cylinder.
JP62265958A 1987-10-21 1987-10-21 Composite cylinder Pending JPH01108016A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62265958A JPH01108016A (en) 1987-10-21 1987-10-21 Composite cylinder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62265958A JPH01108016A (en) 1987-10-21 1987-10-21 Composite cylinder

Publications (1)

Publication Number Publication Date
JPH01108016A true JPH01108016A (en) 1989-04-25

Family

ID=17424421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62265958A Pending JPH01108016A (en) 1987-10-21 1987-10-21 Composite cylinder

Country Status (1)

Country Link
JP (1) JPH01108016A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101829781A (en) * 2010-05-26 2010-09-15 四川大学 Method for connecting hard alloy of inactive intermediate layer and steel
CN104494105A (en) * 2014-12-16 2015-04-08 江苏宏远新材料科技有限公司 Screw machine barrel of extruder

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101829781A (en) * 2010-05-26 2010-09-15 四川大学 Method for connecting hard alloy of inactive intermediate layer and steel
CN104494105A (en) * 2014-12-16 2015-04-08 江苏宏远新材料科技有限公司 Screw machine barrel of extruder

Similar Documents

Publication Publication Date Title
US4763828A (en) Method for bonding ceramics and metals
US5131583A (en) Method of manufacturing high pressure fluid supply pipe
EP0145108A1 (en) A method for producing a clad alloy article and an assembly for use therein
US4580714A (en) Hard solder alloy for bonding oxide ceramics to one another or to metals
JPH01108016A (en) Composite cylinder
EP0014071B1 (en) Powder metallurgical articles and method of forming same and of bonding the articles to ferrous base materials
JP2616937B2 (en) Composite roll
US20030106198A1 (en) Methods of making wear resistant tooling systems to be used in high temperature casting and molding
JPS6021306A (en) Manufacture of composite reinforced member
JPS6114114B2 (en)
JPS6184304A (en) Method for joining metallic member to ceramic member
JPH02175805A (en) Combined alloy cylinder and manufacture thereof
KR930009665B1 (en) Ceramics/metal composite and production thereof
JP3689970B2 (en) Manufacturing method of composite sintered joint
JPH02179801A (en) Manufacture of combined alloy cylinder
JP2942839B2 (en) Two-layer sintered seal ring and method of manufacturing the same
JP2843644B2 (en) Method for producing composite material at least partially composed of an intermetallic compound
JPS60181208A (en) Manufacture of multi-shaft cylinder for plastic molding machine
JPS61218869A (en) Construction and manufacture for cylinder with high resistance to abrasion and erosion
JP3293274B2 (en) Composite cylinder for plastic molding machine
JPH06136409A (en) Production of composite cylinder
JPH02194107A (en) Manufacture of combined alloy cylinder
JPH0243304A (en) Production of composite member
JP2004181521A (en) Composite roll made of sintered hard alloy
JPH0411512B2 (en)