JP3293274B2 - Composite cylinder for plastic molding machine - Google Patents
Composite cylinder for plastic molding machineInfo
- Publication number
- JP3293274B2 JP3293274B2 JP25394393A JP25394393A JP3293274B2 JP 3293274 B2 JP3293274 B2 JP 3293274B2 JP 25394393 A JP25394393 A JP 25394393A JP 25394393 A JP25394393 A JP 25394393A JP 3293274 B2 JP3293274 B2 JP 3293274B2
- Authority
- JP
- Japan
- Prior art keywords
- weight
- cylinder
- base material
- less
- alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000002131 composite material Substances 0.000 title claims description 32
- 238000010137 moulding (plastic) Methods 0.000 title claims description 5
- 239000000463 material Substances 0.000 claims description 45
- 239000000956 alloy Substances 0.000 claims description 34
- 229910045601 alloy Inorganic materials 0.000 claims description 27
- 239000000843 powder Substances 0.000 claims description 27
- 239000002184 metal Substances 0.000 claims description 13
- 229910052751 metal Inorganic materials 0.000 claims description 13
- 229910000831 Steel Inorganic materials 0.000 claims description 12
- 239000010959 steel Substances 0.000 claims description 12
- 229910001563 bainite Inorganic materials 0.000 claims description 8
- 239000012535 impurity Substances 0.000 claims description 6
- 229910052759 nickel Inorganic materials 0.000 claims description 5
- 238000005245 sintering Methods 0.000 claims description 4
- 229910052748 manganese Inorganic materials 0.000 claims description 3
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 claims description 2
- 229910052804 chromium Inorganic materials 0.000 claims description 2
- 229910052742 iron Inorganic materials 0.000 claims 1
- 238000005260 corrosion Methods 0.000 description 25
- 230000007797 corrosion Effects 0.000 description 25
- 238000001513 hot isostatic pressing Methods 0.000 description 17
- 238000010438 heat treatment Methods 0.000 description 16
- 238000000465 moulding Methods 0.000 description 11
- 238000000034 method Methods 0.000 description 10
- 230000000694 effects Effects 0.000 description 8
- 238000001816 cooling Methods 0.000 description 7
- 238000000137 annealing Methods 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 230000009466 transformation Effects 0.000 description 6
- 229910052731 fluorine Inorganic materials 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 229910000851 Alloy steel Inorganic materials 0.000 description 3
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 3
- 229910001182 Mo alloy Inorganic materials 0.000 description 3
- 238000005299 abrasion Methods 0.000 description 3
- 238000009750 centrifugal casting Methods 0.000 description 3
- 239000011737 fluorine Substances 0.000 description 3
- 229910000765 intermetallic Inorganic materials 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 238000003466 welding Methods 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000011049 filling Methods 0.000 description 2
- 229910052738 indium Inorganic materials 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000011282 treatment Methods 0.000 description 2
- 229910000967 As alloy Inorganic materials 0.000 description 1
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 1
- 229910018487 Ni—Cr Inorganic materials 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 229910001562 pearlite Inorganic materials 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000005496 tempering Methods 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C45/00—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
- B29C45/17—Component parts, details or accessories; Auxiliary operations
- B29C45/46—Means for plasticising or homogenising the moulding material or forcing it into the mould
- B29C45/58—Details
- B29C45/62—Barrels or cylinders
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Extrusion Moulding Of Plastics Or The Like (AREA)
- Powder Metallurgy (AREA)
- Injection Moulding Of Plastics Or The Like (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、プラスチック成形機等
に用いる耐摩耗性、耐食性に優れた複合シリンダに関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a composite cylinder having excellent wear resistance and corrosion resistance used for a plastic molding machine and the like.
【0002】[0002]
【従来の技術】プラスチック等の射出成形或いは押出成
形に使用される成形機用のシリンダには、加熱成形中の
樹脂又は樹脂に加えた添加剤等による腐食或いは摩耗を
防止するため、例えば特開昭53−85712号公報に
示されるように、鋼材からなる中空円筒上のシリンダ母
材の内面に、耐摩耗性と耐食性とを有する合金材料を遠
心鋳造法によりライニングする構成のものが用いられて
いる。2. Description of the Related Art Cylinders for molding machines used for injection molding or extrusion molding of plastics and the like are provided with, for example, Japanese Patent Laid-Open Publication No. As disclosed in JP-A-53-85712, a structure in which an alloy material having wear resistance and corrosion resistance is lined on the inner surface of a cylinder base material on a hollow cylinder made of steel by centrifugal casting is used. I have.
【0003】しかし上述の成形機用複合シリンダを遠心
鋳造法により作製する場合には、溶着反応時に、ライニ
ング層を形成する合金材料へシリンダ母材を形成する鋼
材のFeが侵入する。このFeの侵入はライニング層と
シリンダ母材との溶着を遂行するために必要であるが、
Feはライニング層の硬さを低下させ、また耐食性を劣
化させてしまうという問題がある。However, when the above-described composite cylinder for a molding machine is manufactured by a centrifugal casting method, at the time of the welding reaction, Fe of the steel material forming the cylinder base material enters the alloy material forming the lining layer. This penetration of Fe is necessary to perform welding between the lining layer and the cylinder base material,
Fe has a problem of lowering the hardness of the lining layer and deteriorating the corrosion resistance.
【0004】またライニング層を形成する合金材料とし
て、母材からのFeの侵入を防ぎ、ライニング層の硬さ
と耐食性を確保するため、特開平4−187746号公
報に示されるように、合金材料をHIP(熱間等方圧加
圧)プロセスによりシリンダ母材の内面上で加圧焼結し
たものが用いられている。As disclosed in Japanese Patent Application Laid-Open No. 4-187746, as an alloy material for forming the lining layer, as disclosed in Japanese Patent Application Laid-Open No. 4-187746, in order to prevent intrusion of Fe from the base material and to secure hardness and corrosion resistance of the lining layer. Pressurized and sintered on the inner surface of a cylinder base material by a HIP (Hot Isostatic Pressing) process is used.
【0005】しかし近年、プラスチックは用途が多種多
様化し、様々な添加剤を混合するようになってきている
ため、成形機用複合シリンダの内側ライニング層の耐摩
耗性及び耐食性をさらに向上させる要求が高まってきて
いる。特に、フッ素系樹脂成形用にはシリンダの耐食性
が一層要求されている。このため合金成分を多量に配合
したり、耐摩耗成分を多量に添加したりする必要がある
が、遠心鋳造法では、偏析や分散性等の問題のため、必
ずしも上記の要求を満足させることができない。またH
IPプロセスによりシリンダ母材の内面上で加圧焼結し
たものでも、上記要求を満足させることができない場合
が生じてきた。[0005] However, in recent years, plastics have been diversified in their uses and various additives have been mixed. Therefore, there is a demand for further improving the wear resistance and corrosion resistance of the inner lining layer of the composite cylinder for a molding machine. Is growing. In particular, the corrosion resistance of the cylinder is more demanded for fluorine resin molding. For this reason, it is necessary to mix a large amount of alloy components or to add a large amount of wear-resistant components. However, in the centrifugal casting method, due to problems such as segregation and dispersibility, it is not always possible to satisfy the above requirements. Can not. Also H
In some cases, the above-mentioned requirements cannot be satisfied even by pressure sintering on the inner surface of the cylinder base material by the IP process.
【0006】これらの問題を解決するために、前記特開
平4−187746号公報では、ライニング層を形成す
る合金材料に、硬質粒子であるWCを5〜60重量%添
加して、耐摩耗性を向上させている。しかし耐摩耗性向
上のためにWCを多量に添加すると、ライニング層の強
度の低下が著しく大きくなるという問題点がある。In order to solve these problems, Japanese Unexamined Patent Publication (Kokai) No. Hei 4-187746 discloses that a hard particle WC is added to an alloy material for forming a lining layer in an amount of 5 to 60% by weight to improve wear resistance. Have improved. However, if a large amount of WC is added to improve wear resistance, there is a problem that the strength of the lining layer is significantly reduced.
【0007】[0007]
【発明が解決しようとする課題】本発明の目的は、ライ
ニング層がシリンダ母材から侵入するFeを有すること
なく被覆されており、フッ素系樹脂成形にも、著しく優
れた耐食性を有すると共に耐摩耗性も保有し、同時に優
れた強度を有する組成にすることができる複合シリンダ
を提供することである。SUMMARY OF THE INVENTION It is an object of the present invention to provide a lining layer which is coated without having Fe invading from a cylinder base material, and has excellent corrosion resistance and abrasion resistance in a fluorine resin molding. It is an object of the present invention to provide a composite cylinder which retains the properties and at the same time can have a composition having excellent strength.
【0008】[0008]
【課題を解決するための手段】上記課題に鑑み鋭意研究
の結果、本発明者は、ライニング層を形成する合金材料
の組成を最適化するとともに、その合金材料をHIP
(熱間等方圧加圧)プロセスによりシリンダ母材の内面
上で加圧焼結することにより、ライニング層にFeが侵
入せず、かつライニング層は優れた耐摩耗性及び耐食
性、かつ強度を有することを発見し、本発明に想到し
た。Means for Solving the Problems In view of the above problems, as a result of intensive studies, the present inventors have optimized the composition of the alloy material forming the lining layer and used the HIP
By sintering the inner surface of the cylinder base material under pressure by the (hot isostatic pressing) process, Fe does not enter the lining layer, and the lining layer has excellent wear resistance, corrosion resistance, and strength. And found the present invention.
【0009】すなわち、本発明のライニング層とシリン
ダ母材層とからなる複合シリンダは、ライニング層は、
Cr 10〜30重量%、Si 0.5重量%以下、M
n1.0重量%以下、Mo 6.0〜20重量%、C
0.1重量%以下、Fe5.0重量%以下、W 2.0
〜10重量%、残部実質的にNi及び不可避的不純物か
らなる合金のアトマイズ粉末100重量部当り、WB粉
末を4〜50重量部を分散させた粉末を焼結し、HIP
プロセスによりシリンダ母材内面上に加圧焼結してなる
ことを特徴とする。That is, in the composite cylinder comprising the lining layer and the cylinder base material layer of the present invention, the lining layer comprises:
Cr 10 to 30% by weight, Si 0.5% by weight or less, M
n 1.0% by weight or less, Mo 6.0 to 20% by weight, C
0.1% by weight or less, Fe 5.0% by weight or less, W 2.0
A powder obtained by dispersing 4 to 50 parts by weight of a WB powder per 100 parts by weight of an atomized powder of an alloy consisting essentially of Ni and unavoidable impurities is sintered by HIP.
It is characterized by being sintered under pressure on the inner surface of the cylinder base material by a process.
【0010】[0010]
【作用】以下に各元素の含有量(重量比)の特定理由を
述べる。The reasons for specifying the content (weight ratio) of each element will be described below.
【0011】Cr 10〜30% 本合金の属するNi−Cr−Mo合金において、特にC
rは成形樹脂から発生する酸化性ガスや酸化雰囲気なら
びにアルカリ性溶液やガスに対する耐食性維持に不可欠
の元素である。10%未満では、その作用が不足し、3
0%を越えると本合金に必要な所定の機械的強さ、特に
靭性不足をきたす。Cr 10-30% In the Ni-Cr-Mo alloy to which the present alloy belongs,
r is an element indispensable for maintaining corrosion resistance to an oxidizing gas or an oxidizing atmosphere generated from a molding resin, an alkaline solution or a gas. If it is less than 10%, its effect is insufficient and 3
If it exceeds 0%, the required mechanical strength, particularly toughness, required for the alloy will be insufficient.
【0012】Si 0.5%以下 Cと同様、0.5%を越えると粒界に金属間化合物を形
成し、粒界腐蝕を起しやすくなり、かつ、マトリックス
にSiの固溶度が増加するため、使用中にスクリュやチ
ェックリングのかじりによる凝着と熱影響によりクラッ
クが入り易くなり、問題を生じる。Si 0.5% or less Like C, if it exceeds 0.5%, an intermetallic compound is formed at the grain boundary, and the grain boundary corrosion is easily caused, and the solid solubility of Si in the matrix increases. Therefore, during use, cracks are liable to be formed due to adhesion and heat influence due to galling of the screw or the check ring, causing a problem.
【0013】Mn 1.0%以下 Mnは脱酸剤として作用するが、その効果から含有量は
1.0%以下とする。Mn 1.0% or less Mn acts as a deoxidizing agent, but its content is limited to 1.0% or less due to its effect.
【0014】Mo 6.0〜20% MoはCrと同類の耐食性に有効であるが、特に、フッ
素樹脂成形等で発生するF,Cl2 ,SO2 など還元性
ガスや溶液に著しく耐食効果を示す合金である。6.0
%未満では、その効果が不足し、20%を越えると、N
i−Mo系の金属間化合物を粒界等に析出し、脆化をき
たし、問題である。Mo 6.0-20% Mo is effective in the same kind of corrosion resistance as Cr, but in particular, has a remarkable corrosion resistance to reducing gases and solutions such as F, Cl 2 and SO 2 generated by molding of fluororesin. It is an alloy shown. 6.0
%, The effect is insufficient, and if it exceeds 20%, N
This is a problem because i-Mo intermetallic compounds are precipitated at grain boundaries and the like, causing embrittlement.
【0015】C 0.1%以下 本合金が属する、主に耐食性維持に作用するNi−Cr
−Mo系合金において、Cが0.1%を越えると粒界に
炭化物を形成し、粒界腐蝕を起しやすくなり、かつ、マ
トリックスにCの固溶度が増加するため、本合金に、必
要な所定の機械的性質とくに靭性が不足し、前記と同
様、熱影響によるクラックが入り易くなり、問題を生じ
る。C: 0.1% or less Ni-Cr to which this alloy belongs, which mainly acts to maintain corrosion resistance
-In a Mo-based alloy, if C exceeds 0.1%, carbides are formed at the grain boundaries, and grain boundary corrosion is likely to occur, and the solid solubility of C in the matrix increases. Necessary predetermined mechanical properties, particularly toughness, are insufficient, and cracks due to thermal effects are liable to occur as described above, which causes a problem.
【0016】Fe 5.0%以下 Feの少量含有により、Ni−Cr−Mo合金の安定化
と機械的強度の維持に有効であるが、5.0%を越える
と、フッ素樹脂成形などで発生するフッ素ガス等に侵蝕
され、耐食性が低下し好ましくない。Fe 5.0% or less Fe is effective in stabilizing the Ni—Cr—Mo alloy and maintaining its mechanical strength by containing a small amount of Fe. It is not preferable because it is eroded by the fluorinated gas and the like, and the corrosion resistance is lowered.
【0017】W 2.0〜10% Ni−Cr−Mo系合金において、WはNi−Cr−M
o合金に固溶することにより、その相の安定化と耐食性
向上への補助作用を与えると共に、その合金の硬さの上
昇にも寄与する。2.0%以下ではその作用が不十分で
あり、10%を越えると、Wとの金属間化合物を形成し
やすくなり、脆化が起こり問題である。W 2.0-10% In a Ni-Cr-Mo alloy, W is Ni-Cr-M
By forming a solid solution in the o-alloy, it contributes to the stabilization of the phase and the assisting action to the improvement of corrosion resistance, and also contributes to an increase in hardness of the alloy. If the content is less than 2.0%, the effect is insufficient, and if it exceeds 10%, an intermetallic compound with W is easily formed, which causes a problem that embrittlement occurs.
【0018】Ni 残量 Niは本耐食性合金の主効果を示す元素であり、本合金
の基礎合金として残重量%とする。Ni remaining amount Ni is an element exhibiting a main effect of the present corrosion resistant alloy, and is defined as the remaining weight% as a base alloy of the present alloy.
【0019】WB粉末4〜50重量部 本発明において、上述の合金粉末に、さらにWBの粉末
を均一に分散させて、硬さと耐摩耗性を向上させる。W
B粉末を添加・分散させない焼結合金では、成形機用シ
リンダとしての硬さが低く過ぎて、摩耗やスクリュなら
びにチェックリングとの凝着・かじりを発生しやすい問
題がある。WBの硬さはHV 3700kg/mm2 で
あり、WCのHV 1800kg/mm2 に比べて著し
く高くなる。このため、耐摩耗性ならびに硬さの上昇に
は、前記特開平4−187746号公報のWC添加の場
合より一層顕著である。なおWB粉末の代わりとして、
周期律表のIVa族、Va族あるいはVIa族に属する
W以外の硼化物の粉末も用いることができる。4 to 50 parts by weight of WB powder In the present invention, WB powder is further uniformly dispersed in the above-mentioned alloy powder to improve hardness and wear resistance. W
A sintered alloy in which B powder is not added or dispersed has a problem in that the hardness of the cylinder for a molding machine is too low, and wear, adhesion with a screw and a check ring, and galling tend to occur. Hardness of the WB is HV 3700kg / mm 2, significantly higher than the HV 1800 kg / mm 2 in WC. For this reason, the increase in wear resistance and hardness is more remarkable than in the case of WC addition in JP-A-4-187746. As an alternative to WB powder,
Powders of borides other than W belonging to Group IVa, Va or VIa of the periodic table can also be used.
【0020】またWB等上記硼化物の粉末の粒径は5〜
100μmであるのが好ましい。5μm未満であると均
一に分散せず、100μmを超えるとライニング層の強
度が低下するため好ましくない。The boride powder such as WB has a particle size of 5 to 5.
Preferably it is 100 μm. If it is less than 5 μm, it will not be uniformly dispersed, and if it exceeds 100 μm, the strength of the lining layer will decrease, which is not preferable.
【0021】図1はシリンダ母材内にライニング層形成
用の芯金を挿入した状態を示す概略断面図であり、合金
粉末充填前の状態を示す。図1に示すように、ホッパー
用開口部41を有し、高強度鋼材等からなるシリンダ母
材1の内側に、複合シリンダのシリンダ部を形成するた
めの芯金2を挿入することにより、シリンダ母材1と芯
金2との間に環状の中空部3を形成する。芯金2の両端
及びシリンダ母材1の両端をともに、蓋4,5を溶接等
で接合することによりシールする。この場合、ライニン
グ用の合金粉末は開口部41より入れることになるが、
場合によっては、蓋4,5の一方を合金粉末充填後にシ
ールするようにしても良い。合金粉末の充填はシリンダ
母材に振動を適当に与えることにより行うのが好まし
い。最後にホッパー用開口部41も、蓋8によりシール
する。なお芯金2及び蓋4,5は軟鋼等により作製す
る。また芯金2は図のように中空である必要はなく、中
実であっても良い。FIG. 1 is a schematic cross-sectional view showing a state where a core metal for forming a lining layer is inserted into a cylinder base material, and shows a state before alloy powder is filled. As shown in FIG. 1, a cylinder 2 having a hopper opening 41 and a core metal 2 for forming a cylinder portion of a composite cylinder is inserted inside a cylinder base material 1 made of a high-strength steel material or the like. An annular hollow portion 3 is formed between the base material 1 and the core 2. Both ends of the metal core 2 and both ends of the cylinder base material 1 are sealed by joining the lids 4 and 5 by welding or the like. In this case, the alloy powder for lining is to be put through the opening 41,
In some cases, one of the lids 4 and 5 may be sealed after filling the alloy powder. The filling of the alloy powder is preferably performed by appropriately applying vibration to the cylinder base material. Finally, the hopper opening 41 is also sealed with the lid 8. The core 2 and the lids 4 and 5 are made of mild steel or the like. The core 2 does not need to be hollow as shown in the figure, but may be solid.
【0022】図2は、合金粉末3aが充填された状態を
示す概略断面図である。合金粉末を密封充填したシリン
ダを、図3に示すような構造のHIP装置7内に装填
し、HIP処理を行うが、通常のHIP処理条件は温度
1000〜1150℃、圧力1000〜1500atm
であり、アルゴン等の不活性ガス雰囲気中で1〜5時間
行う。なお図3における白抜矢印は、接合体6に加わる
圧力の方向を概略的に示している。FIG. 2 is a schematic sectional view showing a state where alloy powder 3a is filled. The cylinder filled with the alloy powder in a sealed manner is loaded into a HIP device 7 having a structure as shown in FIG. 3 and HIP processing is performed. Normal HIP processing conditions are a temperature of 1000 to 1150 ° C. and a pressure of 1000 to 1500 atm.
And in an inert gas atmosphere such as argon for 1 to 5 hours. Note that the white arrow in FIG. 3 schematically indicates the direction of the pressure applied to the joined body 6.
【0023】HIP処理を行った後の接合体6は、切削
加工等により蓋4,5を除去する。次いで芯金2を除去
し、シリンダ内面の仕上げを行う。以上により作製され
る複合シリンダは、ライニング層がHIPプロセスによ
り焼結形成されるため、Feがシリンダ母材から余分に
侵入することがなく、優れた硬さ及び耐食性を有する。After the HIP treatment, the lids 4 and 5 are removed from the joined body 6 by cutting or the like. Next, the core metal 2 is removed and the inner surface of the cylinder is finished. Since the lining layer is formed by sintering by the HIP process in the composite cylinder manufactured as described above, Fe does not excessively enter the cylinder base material, and has excellent hardness and corrosion resistance.
【0024】上述した本発明の複合シリンダには適切な
熱処理を施し、シリンダ母材を強度上有利な金属組織の
構成にすることにより、シリンダ母材の強度を向上さ
せ、ライニング層の耐クラック性を向上させうる。この
ため、面積率でその金属組織の20%以上をベイナイト
にし、残部をソルバイトにより形成するのが好ましい。
ベイナイトが20%未満であると、十分な強度が得られ
ず好ましくない。The above-described composite cylinder of the present invention is subjected to an appropriate heat treatment so that the cylinder base material has a metal structure that is advantageous in strength, thereby improving the strength of the cylinder base material and improving the crack resistance of the lining layer. Can be improved. For this reason, it is preferable that at least 20% of the metal structure be bainite in the area ratio and the remainder be formed by sorbite.
If the bainite is less than 20%, sufficient strength cannot be obtained, which is not preferable.
【0025】このような熱処理を施す場合に最適なシリ
ンダ母材として、亜共析または共析の合金鋼を用いるこ
とが好ましい。合金鋼として、Cr−Mo鋼を用いる場
合、化学成分の含有量はC 0.3〜0.5重量%、S
i 0.15〜0.35重量%、Mn 0.3〜1.5
重量%、P 0.03重量%以下、S 0.03重量%
以下、Cr 0.7〜1.5重量%、Mo 0.1〜
0.5重量%とするのが強度上好ましい。日本工業規格
(JIS G 4105)に規定されるSCM440,
SCM445相当のCr−Mo鋼が強度上特に好まし
い。It is preferable to use hypoeutectoid or eutectoid alloy steel as an optimal cylinder base material when performing such a heat treatment. When Cr-Mo steel is used as the alloy steel, the content of the chemical component is C 0.3 to 0.5% by weight,
i 0.15 to 0.35% by weight, Mn 0.3 to 1.5
Wt%, P 0.03 wt% or less, S 0.03 wt%
Hereinafter, 0.7-1.5% by weight of Cr, 0.1-% of Mo
0.5 wt% is preferable in terms of strength. SCM440 defined in Japanese Industrial Standard (JIS G 4105),
Cr-Mo steel equivalent to SCM445 is particularly preferred in terms of strength.
【0026】合金鋼として、Ni−Cr−Mo鋼を用い
る場合、化学成分の含有量はC 0.3〜0.5重量
%、Si 0.15〜0.35重量%、Mn 0.3〜
1.5重量%、P 0.03重量%以下、S 0.03
重量%以下、Ni 3.0重量%以下、Cr 0.7〜
1.5重量%、Mo 0.1〜0.5重量%とするのが
強度上好ましい。日本工業規格(JIS G 410
3)に規定されるSNCM439相当のNi−Cr−M
o鋼が強度上特に好ましい。When Ni—Cr—Mo steel is used as the alloy steel, the content of the chemical components is 0.3 to 0.5% by weight of C, 0.15 to 0.35% by weight of Si, and 0.3 to 0.3% by weight of Mn.
1.5% by weight, P 0.03% by weight or less, S 0.03%
Wt% or less, Ni 3.0 wt% or less, Cr 0.7 to
The strength is preferably 1.5% by weight and the Mo content is preferably 0.1 to 0.5% by weight. Japanese Industrial Standards (JIS G410
Ni-Cr-M equivalent to SNCM439 specified in 3)
o Steel is particularly preferred in terms of strength.
【0027】本発明では、母材を上述の金属組織の構成
とするため、複合シリンダに熱処理を施すが、この熱処
理方法を図4の熱処理パターンにより説明する。ここで
図4の横軸は時間、縦軸は温度を示し、熱処理パターン
上のAは焼入加熱工程、Bは冷却工程、Cは保持工程、
Dは焼戻し加熱工程を示している。本発明においては、
Aに示す850〜950℃加熱工程の後、Bに示す冷却
工程においてベイナイト変態を起こす温度領域まで冷却
するが、この時の冷却速度は40〜100℃/分であ
る。冷却速度が40℃/分未満であるとトルースタイト
を生じ、100℃/分を超えるとライニング層の内面に
割れが生じやすくなる。In the present invention, a heat treatment is applied to the composite cylinder in order to make the base metal have the above-described metal structure. This heat treatment method will be described with reference to a heat treatment pattern shown in FIG. Here, the horizontal axis of FIG. 4 represents time, the vertical axis represents temperature, A on the heat treatment pattern is a quenching heating step, B is a cooling step, C is a holding step,
D indicates a tempering heating step. In the present invention,
After the 850 to 950 ° C. heating step shown in A, in the cooling step shown in B, cooling is performed to a temperature range where bainite transformation occurs, and the cooling rate at this time is 40 to 100 ° C./min. When the cooling rate is less than 40 ° C./min, troostite is generated, and when the cooling rate is more than 100 ° C./min, cracks easily occur on the inner surface of the lining layer.
【0028】次いでCに示す300〜550℃の保持工
程によりベイナイト変態を起こさせる。ベイナイト変態
を起こさせる領域が300℃未満であると、低温でのシ
リンダ母材の変態膨張によりライニング層の内面に割れ
が生じやすくなり、550℃を超えるとパーライト変態
が生じて母材に強度が付与されない。保持工程Cにおけ
る保持時間は10分以上である。保持時間が10分未満
であると、シリンダ母材のベイナイト量が20%未満と
なり、十分な強度が得られなくなる。Next, bainite transformation is caused by a holding step at 300 to 550 ° C. shown in C. If the area where bainite transformation occurs is less than 300 ° C., the inner surface of the lining layer is liable to crack due to transformation expansion of the cylinder base material at a low temperature, and if it exceeds 550 ° C., pearlite transformation occurs and the base material has strength. Not granted. The holding time in the holding step C is 10 minutes or more. If the holding time is less than 10 minutes, the bainite amount of the cylinder base material will be less than 20%, and sufficient strength cannot be obtained.
【0029】次いでEに示す550〜650℃の温度で
アニールを行う。アニール温度が550℃未満であると
残留応力除去というアニールの目的を果たせず、650
℃を超えると金属組織に影響を及ぼし母材の強度が低下
する。アニール時間は1〜5時間である。アニール時間
が1時間未満であると十分に残留応力を除去できず、5
時間を超えてもその効果に著しい変化はない。Next, annealing is performed at a temperature of 550 to 650 ° C. indicated by E. If the annealing temperature is lower than 550 ° C., the purpose of annealing, ie, removal of residual stress, cannot be achieved, and 650 ° C.
If the temperature exceeds ℃, the metal structure will be affected and the strength of the base material will be reduced. The annealing time is 1 to 5 hours. If the annealing time is less than 1 hour, the residual stress cannot be sufficiently removed,
There is no significant change in the effect over time.
【0030】最後にFに示すように室温まで冷却する。
以上により作製される本発明の複合シリンダは、シリン
ダ母材の強度が著しく向上するためライニング層にかか
る歪が小さくなり、ライニング層はさらに優れた疲労強
度、特に耐クラック性を有するようになる。Finally, as shown in F, it is cooled to room temperature.
In the composite cylinder of the present invention produced as described above, the strain on the lining layer is reduced because the strength of the cylinder base material is significantly improved, and the lining layer has more excellent fatigue strength, especially crack resistance.
【0031】[0031]
実施例1 図2に示す構造の接合体を上述の方法により作製した。
ライニング層を形成する合金材料として、Cr 16重
量%、Si 0.4重量%、Mn 0.9重量%、Mo
16重量%、C 0.06重量%、Fe 4.0重量
%、W 4.0重量%、残部実質的にNi及び不可避的
不純物からなる合金のアトマイズ粉末100重量部当
り、粒径5〜30μmのWB粉末20重量部を均一に分
散させた。シリンダ母材にはSCM440を用いた。次
いで、粉末が密封された上記接合体を図3に示すような
構造のHIP装置内に充填し、HIP処理を施した。こ
の時のHIP処理条件は、温度1100℃、圧力100
0atmであり、Ar不活性ガス雰囲気中で4時間行う
ことにより複合シリンダを得た。Example 1 A joined body having the structure shown in FIG. 2 was produced by the above-described method.
As alloy materials for forming the lining layer, Cr 16% by weight, Si 0.4% by weight, Mn 0.9% by weight, Mo
Particle size is 5 to 30 μm per 100 parts by weight of an atomized powder of an alloy consisting of 16% by weight, 0.06% by weight of C, 4.0% by weight of Fe, 4.0% by weight of W and the balance substantially consisting of Ni and unavoidable impurities. Of WB powder was uniformly dispersed. SCM440 was used as the cylinder base material. Next, the above-mentioned joined body sealed with the powder was filled in an HIP device having a structure as shown in FIG. 3, and subjected to HIP processing. The HIP processing conditions at this time are as follows: temperature 1100 ° C., pressure 100
The operation was performed at 0 atm in an Ar inert gas atmosphere for 4 hours to obtain a composite cylinder.
【0032】実施例2 実施例1と同様に接合体を作製した。ライニング層を形
成する合金材料として、実施例と同様、Cr 22重量
%、Si 0.3重量%、Mn 0.5重量%、Mo
11重量%、C 0.04重量%、Fe 3.0重量
%、W 3.0重量%、残部実質的にNi及び不可避的
不純物からなる合金のアトマイズ粉末100重量部当
り、粒径5〜30μmのWB粉末30重量部を均一に分
散させた。ここで用いたシリンダ母材はSNCM439
である。次いで、粉末が密封された上記接合体に前記実
施例1と同様のHIP処理を施し、複合シリンダを得
た。Example 2 A joined body was produced in the same manner as in Example 1. As the alloy material for forming the lining layer, as in the example, 22% by weight of Cr, 0.3% by weight of Si, 0.5% by weight of Mn, and Mo
Particle diameter 5 to 30 μm per 100 parts by weight of an atomized powder of an alloy composed of 11% by weight, 0.04% by weight of C, 3.0% by weight of Fe, 3.0% by weight of W, and the balance substantially consisting of Ni and unavoidable impurities. Of WB powder was uniformly dispersed. The cylinder base material used here is SNCM439
It is. Next, the above-mentioned joined body in which the powder was sealed was subjected to the same HIP treatment as in Example 1 to obtain a composite cylinder.
【0033】実施例3 実施例1,2と同様に得た複合シリンダに熱処理を施し
た。この時の熱処理条件は、加熱温度900℃(図4に
示すA)、冷却速度50℃/分(図4に示すB)、ベイ
ナト変態を起こす温度450℃及び保持時間20分(図
4に示すC)、加熱速度5℃/分(図4に示すD)、ア
ニール温度600℃及び保持時間5時間(図4に示す
E)とした。以上により形成された複合シリンダの母材
の金属組織は、面積率で約60%のベイナイトと約40
%のソルバイとからなっていた。Example 3 A composite cylinder obtained in the same manner as in Examples 1 and 2 was subjected to a heat treatment. The heat treatment conditions at this time were a heating temperature of 900 ° C. (A shown in FIG. 4), a cooling rate of 50 ° C./min (B shown in FIG. 4), a temperature of 450 ° C. causing bainato transformation, and a holding time of 20 minutes (shown in FIG. 4). C), the heating rate was 5 ° C./min (D shown in FIG. 4), the annealing temperature was 600 ° C., and the holding time was 5 hours (E shown in FIG. 4). The metal structure of the base material of the composite cylinder formed as described above has bainite of about 60% in area ratio and about 40% in area ratio.
% Of Solvay.
【0034】上述した本実施例の複合シリンダについ
て、ライニング層の耐摩耗性、耐食性、シリンダ母材の
強度を測定した。耐摩耗性については、成形機用シリン
ダから大きさ10mm×15mm×10mmの試料を採
取し、#400の研磨紙に荷重2.0kgで押圧し、4
80mの距離を摺動させた後に、ライニング材の摩耗量
を調べた。この結果を、比較例の従来の窒化鋼製シリン
ダの結果を10とした時の相対値により表わし、耐摩耗
性を評価した。With respect to the above-described composite cylinder of this embodiment, the wear resistance, corrosion resistance, and strength of the cylinder base material of the lining layer were measured. Regarding the abrasion resistance, a sample having a size of 10 mm × 15 mm × 10 mm was sampled from a molding machine cylinder and pressed against a # 400 abrasive paper with a load of 2.0 kg.
After sliding a distance of 80 m, the amount of wear of the lining material was examined. The results were expressed as relative values when the result of the conventional nitrided steel cylinder of Comparative Example was set to 10, and the wear resistance was evaluated.
【0035】耐食性については、成形機用シリンダから
大きさ4mm×1.5mm×10mmの試料を採取し、
50℃の10%HCl水溶液中に24時間浸漬した後
に、ライニング材の腐食減量率を調べた。この結果を、
比較例として従来の窒化鋼製シリンダの結果を10とし
た時の相対値により表わし、耐食性を評価した。シリン
ダ母材の強度については、母材から引張試験試料を採取
し、母材強度として最も重要な0.2%耐力を計測し
た。これらの結果をまとめて表1に示す。Regarding the corrosion resistance, a sample having a size of 4 mm × 1.5 mm × 10 mm was sampled from a molding machine cylinder.
After immersion in a 10% HCl aqueous solution at 50 ° C. for 24 hours, the corrosion loss rate of the lining material was examined. This result
As a comparative example, the result of a conventional nitrided steel cylinder was expressed as a relative value when the value was 10, and the corrosion resistance was evaluated. Regarding the strength of the cylinder base material, a tensile test sample was taken from the base material, and the 0.2% proof stress, which is the most important as the base material strength, was measured. The results are summarized in Table 1.
【0036】[0036]
【表1】 [Table 1]
【0037】表1から明らかなように、実施例1,2の
複合シリンダにおいて、ライニング層は従来の窒化鋼製
シリンダに比べて優れた耐摩耗性及び耐食性を有してい
る。実施例3の複合シリンダにおいては、適切な熱処理
が施されているため、シリンダ母材の強度が著しく向上
している。このため、ライニング層にかかる歪が小さく
なり、ライニング層の疲労強度及び耐クラック性が向上
する。As is apparent from Table 1, in the composite cylinders of Examples 1 and 2, the lining layer has better wear resistance and corrosion resistance than the conventional nitrided steel cylinder. In the composite cylinder of the third embodiment, since the appropriate heat treatment is performed, the strength of the cylinder base material is significantly improved. For this reason, the strain applied to the lining layer is reduced, and the fatigue strength and crack resistance of the lining layer are improved.
【0038】なお本実施例においては、単軸の複合シリ
ンダを例にとって述べたが、複数軸の複合シリンダにす
ることも可能であり、この場合も良好な結果を発揮する
ことは勿論である。また本実施例においては、複合シリ
ンダの芯金を中空構造のものを用いたが、中実構造のも
のを用いても良好な効果を発揮することは勿論である。In this embodiment, a single-axis composite cylinder has been described as an example. However, a multi-axis composite cylinder can be used, and in this case, of course, good results can be obtained. Further, in this embodiment, the core metal of the composite cylinder has a hollow structure. However, it is needless to say that a good effect can be obtained even if a solid structure is used.
【0039】[0039]
【発明の効果】本発明の複合シリンダは、フッ素系樹脂
成形用に要求される著しく高い耐食性を保有させると共
に耐摩耗性をも兼備させるために、最適な成分組成の合
金によりライニング層を形成し、かつその合金がHIP
プロセスによりシリンダ母材に加圧焼結された構成にな
っている。このため、ライニング層がシリンダ母材から
侵入するFeを含むことなく被覆され、優れた耐摩耗性
及び耐食性を有している。また適切な熱処理により、シ
リンダ母材の強度が著しく向上するため、ライニング層
にかかる歪が小さくなり、ライニング層の疲労強度及び
耐クラック性が向上している。According to the composite cylinder of the present invention, a lining layer is formed of an alloy having an optimum component composition in order to maintain the extremely high corrosion resistance required for the molding of a fluorine-based resin and also have the abrasion resistance. And its alloy is HIP
It is configured to be pressure sintered to the cylinder base material by the process. For this reason, the lining layer is covered without containing Fe invading from the cylinder base material, and has excellent wear resistance and corrosion resistance. In addition, since the strength of the cylinder base material is significantly improved by appropriate heat treatment, the strain applied to the lining layer is reduced, and the fatigue strength and crack resistance of the lining layer are improved.
【図1】シリンダ母材内に芯金を挿入した状態を示す概
略断面図である。FIG. 1 is a schematic sectional view showing a state where a core metal is inserted into a cylinder base material.
【図2】シリンダ内にライニング用合金粉末を充填した
状態を示す概略断面図である。FIG. 2 is a schematic sectional view showing a state where a lining alloy powder is filled in a cylinder.
【図3】本発明の複合シリンダを製造するためのHIP
装置を示す概略断面図である。FIG. 3 shows a HIP for manufacturing the composite cylinder of the present invention.
It is a schematic sectional drawing which shows an apparatus.
【図4】本発明の一実施例による複合シリンダの熱処理
パターン図である。FIG. 4 is a heat treatment pattern diagram of a composite cylinder according to an embodiment of the present invention.
1 シリンダ母材、2 芯金、3 中空部、3a
合金粉末、4,5,8 蓋、6 接合体、7
HIP装置、31,32 端部、41 ホッパー
用開口部。1 Cylinder base material, 2 core metal, 3 hollow part, 3a
Alloy powder, 4, 5, 8 Lid, 6 Joint, 7
HIP device, 31, 32 end, 41 Hopper opening.
───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) B29C 45/00 - 45/84 B22F 7/00 - 7/08 C22C 19/00 - 19/07 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 7 , DB name) B29C 45/00-45/84 B22F 7 /00-7/08 C22C 19/00-19/07
Claims (4)
複合シリンダにおいて、ライニング層はCr 10〜3
0重量%、Si 0.5重量%以下、Mn1.0重量%
以下、Mo 6.0〜20重量%、C 0.1重量%以
下、Fe5.0重量%以下、W 2.0〜10重量%、
残部実質的にNi及び不可避的不純物からなる合金のア
トマイズ粉末100重量部当り、WB粉末4〜50重量
部を均一に分散させた粉末を焼結してなることを特徴と
するプラスチック成形機用複合シリンダ。1. A composite cylinder comprising a lining layer and a cylinder base material, wherein the lining layer comprises Cr 10 to 3
0 wt%, Si 0.5 wt% or less, Mn 1.0 wt%
Hereinafter, Mo 6.0 to 20% by weight, C 0.1% by weight or less, Fe 5.0% by weight or less, W 2.0 to 10% by weight,
A composite for a plastic molding machine characterized by sintering a powder obtained by uniformly dispersing 4 to 50 parts by weight of a WB powder per 100 parts by weight of an atomized powder of an alloy substantially consisting of Ni and unavoidable impurities. Cylinder.
て、シリンダ母材の金属組織は面積率でベイナイト20
%以上、残部ソルバイトからなることを特徴とするプラ
スチック成形機用複合シリンダ。2. The composite cylinder according to claim 1, wherein the metal structure of the cylinder base material is bainite 20 in area ratio.
A composite cylinder for a plastic molding machine, characterized by comprising at least% of the remaining sorbite.
て、シリンダ母材はC0.3〜0.5重量%、Si
0.15〜0.35重量%、Mn 0.3〜1.5重量
%、P 0.03重量%以下、S 0.03重量%以
下、Cr 0.7〜1.5重量%、Mo 0.1〜0.
5重量%、残部実質的にFe及び不可避的不純物からな
るCr−Mo鋼であることを特徴とするプラスチック成
形機用複合シリンダ。3. The composite cylinder according to claim 2, wherein the base material of the cylinder is C 0.3 to 0.5% by weight,
0.15 to 0.35% by weight, Mn 0.3 to 1.5% by weight, P 0.03% by weight or less, S 0.03% by weight or less, Cr 0.7 to 1.5% by weight, Mo 0 .
A composite cylinder for a plastic molding machine, characterized in that the composite cylinder is a Cr-Mo steel containing 5% by weight and the balance substantially consisting of Fe and unavoidable impurities.
て、シリンダ母材はC0.3〜0.5重量%、Si
0.15〜0.35重量%、Mn 0.3〜1.5重量
%、P 0.03重量%以下、S 0.03重量%以
下、Ni 3.0重量%以下、Cr 0.7〜1.5重
量%、Mo 0.1〜0.5重量%、残部実質的にFe
及び不可避的不純物からなるNi−Cr−Mo鋼である
ことを特徴とするプラスチック成形機用複合シリンダ。4. The composite cylinder according to claim 2, wherein the base material of the cylinder is C-0.3% by weight, Si
0.15 to 0.35 wt%, Mn 0.3 to 1.5 wt%, P 0.03 wt% or less, S 0.03 wt% or less, Ni 3.0 wt% or less, Cr 0.7 to 1.5% by weight, Mo 0.1-0.5% by weight, balance substantially Fe
And a Ni-Cr-Mo steel comprising unavoidable impurities.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25394393A JP3293274B2 (en) | 1993-10-12 | 1993-10-12 | Composite cylinder for plastic molding machine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25394393A JP3293274B2 (en) | 1993-10-12 | 1993-10-12 | Composite cylinder for plastic molding machine |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07108577A JPH07108577A (en) | 1995-04-25 |
JP3293274B2 true JP3293274B2 (en) | 2002-06-17 |
Family
ID=17258154
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP25394393A Expired - Lifetime JP3293274B2 (en) | 1993-10-12 | 1993-10-12 | Composite cylinder for plastic molding machine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3293274B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10317357B4 (en) * | 2003-04-15 | 2006-10-26 | 3+Extruder Gmbh | extruder |
JP5253962B2 (en) * | 2008-10-23 | 2013-07-31 | 住友重機械工業株式会社 | Method for producing wear-resistant lining layer and composite cylinder |
-
1993
- 1993-10-12 JP JP25394393A patent/JP3293274B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH07108577A (en) | 1995-04-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1054170B1 (en) | High strength screw | |
AU720127B2 (en) | Powder metallurgy, cobalt-based articles having high resistance to wear and corrosion in semi-solid metals | |
JP3293274B2 (en) | Composite cylinder for plastic molding machine | |
JP3301441B2 (en) | Composite cylinder for high-temperature and high-pressure molding | |
JP3017794B2 (en) | Composite cylinder with lining layer made of corrosion resistant and wear resistant sintered alloy | |
JPH04185414A (en) | Composite cylinder with lining layer composed of corrosion-resistant and wear-resistant sintered alloy | |
JPH0615708A (en) | High-temperature corrosion-resistant bimetal cylinder for injection molding machine | |
JPH06182409A (en) | Combined sleeve roll and its production | |
WO2016052660A1 (en) | Composite cylinder for molding machine and process for producing same | |
JP2001047235A (en) | Hollow member for plastic molding machine and manufacture therefor | |
JPH06122137A (en) | Composite cylinder for plastic molding machine | |
JP3531752B2 (en) | Molding machine cylinder and method of manufacturing the same | |
Boyer | Processing of Titanium and Titanium Alloys | |
JP3301442B2 (en) | Composite cylinder for high-temperature and high-pressure molding | |
JP3285055B2 (en) | Molding machine cylinder and method of manufacturing the same | |
JPH04371820A (en) | Injection or extrusion molding machine | |
JPH06122138A (en) | Composite cylinder for plastic molding machine | |
JPH0336881B2 (en) | ||
JPS60169654A (en) | Plurally layered cylinder liner | |
JPH04185415A (en) | Composite cylinder with lining layer composed of corrosion-resistant and wear-resistant alloy | |
JPH06145887A (en) | Composite high-speed steel sleeve roll and its production | |
JPH0429817A (en) | Cylinder for molding machine and manufacture thereof | |
JP2004216413A (en) | Sleeve for die-casting | |
JP4223111B2 (en) | Particle-dispersed titanium matrix composite with excellent hot workability, method for producing the same, and hot work method | |
JPH0775808A (en) | Wear resistant composite roll for rolling shape steel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090405 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090405 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100405 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110405 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120405 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120405 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130405 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130405 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140405 Year of fee payment: 12 |
|
EXPY | Cancellation because of completion of term |