JP4223111B2 - Particle-dispersed titanium matrix composite with excellent hot workability, method for producing the same, and hot work method - Google Patents

Particle-dispersed titanium matrix composite with excellent hot workability, method for producing the same, and hot work method Download PDF

Info

Publication number
JP4223111B2
JP4223111B2 JP35301798A JP35301798A JP4223111B2 JP 4223111 B2 JP4223111 B2 JP 4223111B2 JP 35301798 A JP35301798 A JP 35301798A JP 35301798 A JP35301798 A JP 35301798A JP 4223111 B2 JP4223111 B2 JP 4223111B2
Authority
JP
Japan
Prior art keywords
titanium
particle
dispersed
composite material
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP35301798A
Other languages
Japanese (ja)
Other versions
JP2000178671A (en
Inventor
龍太 小野寺
達夫 横手
俊宏 矢野
隆史 足立
安夫 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Titanium Technologies Co Ltd
Original Assignee
Osaka Titanium Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Titanium Technologies Co Ltd filed Critical Osaka Titanium Technologies Co Ltd
Priority to JP35301798A priority Critical patent/JP4223111B2/en
Publication of JP2000178671A publication Critical patent/JP2000178671A/en
Application granted granted Critical
Publication of JP4223111B2 publication Critical patent/JP4223111B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Forging (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Powder Metallurgy (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、チタン合金中にセラミック粒子が分散した粒子分散型チタン基複合材、並びにその製造方法及び熱間加工方法に関し、更に詳しくは、熱間加工性に優れた粒子分散型チタン基複合材、並びにその製造方法及び熱間加工方法に関する。
【0002】
【従来の技術】
チタン基複合材は軽量、高強度であるが、なかでもチタン合金中にセラミック粒子を分散させた粒子分散型チタン基複合材は、耐摩耗性にも優れるという特徴を有し、自動車産業、機械産業等の分野で実用化が期待されている。例えば、炭化物粒子を分散させたものは、摺動摩耗に対する高い対抗性が要求される自動車動弁部品(エンジンバルブ、リテーナ)などへの適用が考えられている。
【0003】
しかし、粒子分散型チタン基複合材は本質的に難加工性である。それにもかかわらず、粒子分散型チタン基複合材を各種形状に成形する二次加工の検討、特に既設の加工設備で各種形状に塑性加工して量産化する技術の検討についてはあまり行われていない。粒子分散型チタン基複合材の塑性加工性の改善は、その実用化に不可欠なコスト低減を可能にするだけでなく、その塑性加工により組織制御や分散粒子の再配列がなされ、その特性が改善される点からも有意義である。
【0004】
【発明が解決しようとする課題】
粒子分散型チタン基複合材のうち、炭化物粒子を分散させたものは、In-situ 晶出反応又はIn-situ 析出反応を利用して粒子を分散させているので、粒子/マトリックス間の化学的及び物理的整合性が高く、熱間加工性は900℃以上ではTi−6Al−4Vと同等で良好とされている。しかし、900℃以上の熱間加工ではコストが嵩む。一方、825℃付近でTi3 AlCが析出し、析出硬化を起こすので、低温では熱間加工性に劣る。実際の熱間加工においても、材料表面の温度が低下し、割れが発生するという問題がある。
【0005】
チタン合金の熱間での伸線加工性を高めるために、純チタン又はチタン合金のインゴット又はビレットを炭素鋼からなるパイプ内に封入して伸線加工する技術が、特開平2−236261号公報に記載されている。この技術によると、パイプ内の材料の冷却や表面酸化が抑えられ、且つ加工中の表面負荷をパイプが負うことになるため、チタン合金の伸線加工性が改善されるとされている。しかし、粒子分散型チタン基複合材の場合は、パイプの厚みを大きくしても、比較的低温での熱間加工割れは防止できない。加えて、熱間加工温度が高いと鉄による汚染が生じ、共晶温度(1085℃)以上では共晶反応が起こって脆いフェロチタンが生じる。また、炭素鋼は7.9g/cm3 と高密度で重く、チタン基複合材の重量を増加させる。
【0006】
本発明の目的は、800℃以下の温度で熱間加工が可能で、且つ汚染や重量増加等の二次的な弊害を抑制できる粒子分散型チタン基複合材、並びにその製造方法及び熱間加工方法を提供することにある。
【0007】
【課題を解決するための手段】
熱間加工での材料破壊は殆どの場合、材料表面から起こる。従って、材料表面の改質により表面からの破壊を抑えることにより、熱間加工性は改善されるものと考えられる。このような背景をもとに、本発明者らはTi−6Al−4V−9Crからなるマトリックス中にTiC粒子を分散させた粒子分散型チタン基複合材の熱間圧縮試験を行い、その複合材の熱間加工特性とその破壊の機構について調査した。その結果、以下のことが判明した。
【0008】
加工温度700〜800℃の熱間圧縮試験では、TiC粒子分散型チタン基複合材の熱間加工性は、汎用材であるTi−6Al−4V合金の熱間加工性に較べて明らかに劣る。複合材における破壊は材料表面近傍におけるボイドの発生、成長及び連結により起こり、そのボイドは主としてTiC粒子の割れから発生する。
【0009】
図1はTiC粒子分散型チタン基複合材における破壊のイメージ図である。熱間圧縮で伸びの大きい表面(円柱材を軸方向に圧縮する場合はその外周面)にマトリックス1の局所的に大きな伸びが発生する〔図1(a)〕。マトリックス1中の分散粒子2はセラミックスで伸びないから、分散粒子2に応力が集中し、分散粒子2が割れることにより、分散粒子2にボイド3が発生する〔図1(b)〕。更に伸びが続くと、ボイド3が成長し、連結することにより、最終的には割れ4が発生する〔図1(c,d)〕。
【0010】
この割れを防止するためには、材料表面における局所的な引っ張り応力の集中を回避して、ボイドの発生を防止するのが有効である。その方法としては、マトリクスとの変形抵抗の差が小さく、延性も十分にある純チタンを材料表面に被覆して、その表面を改質するのが有効である。即ち、材料表面に純チタンを被覆すると、表面付近に局所的な応力集中が生じた場合も、被覆材が応力を伝達することにより、応力が均一化され、局所的な伸びが抑制され、複合材の割れが防止される。ここで、マトリックスと被覆材の変形抵抗差が大きいと、被覆材の降伏応力が小さいので、応力の伝達が不十分となる。また、被覆材の延性が不足すると、被覆材も複合材も共に割れる。被覆材が炭素鋼の場合に複合材の割れを防止できないのは、被覆材の降伏応力が不十分なためである。
【0011】
純チタンは汚染や共晶反応のおそれがなく、密度も約4.5g/cm3 と小さく軽量であることからも、表面改質材として好ましい。
【0012】
このような調査結果をもとに、Ti−6Al−4V−9Crからなるマトリックス中にTiC粒子を体積比10%で分散させた粒子分散型チタン基複合材の表面に純チタンを被覆した供試材の熱間加工性を被覆なしの場合と比較した。供試材は、直径15mm×高さ15mmの複合材を厚さ1.3mmの純チタン管内に封入し、HIP処理及び溶体化処理によりその純チタンを複合材表面に拡散接合することで作製した。また、熱間加工性は、温度750℃、圧縮力20〜70%で軸方向の圧縮加工を行ったときの加工限界(割れを生じない最大圧縮率)により評価した。
【0013】
図2はこの比較試験結果を示す。純チタンを被覆しない複合材の加工限界は約40%で、汎用チタン合金(Ti−6Al−4V)の加工限界に較べて明らかに低い。この被覆なしの複合材にHIP処理及び溶体化処理を行っても、加工限界は殆ど上昇しない。しかし、純チタンの被覆を行った場合は、その加工限界が40%から70%以上に上昇し、汎用チタン合金(Ti−6Al−4V)の加工限界と較べて何ら遜色ない結果が得られる。
【0014】
図3は加工温度750℃で、60%の圧縮を行ったときの試験片の外観を被覆なしと被覆ありの場合について示したものである。被覆なしの同図(a)では、表面伸びが顕著な材料外周面が激しく割れているが、被覆あり同図(b)では、表面伸びが顕著な材料外周面においても割れは効果的に防止されている。
【0015】
本発明はかかる知見に基づいてなされたものであり、その粒子分散型チタン基複合材は、チタン合金中にセラミック粒子が分散した粒子分散型チタン基複合材であって、その表面の一部又は全部に金属チタンを0.6〜5mmの厚みに被覆したものである。
【0016】
材料表面におけるチタン被覆位置については、当該被覆の目的が、熱間加工での材料表面の応力集中が顕著な部分で局部的な応力集中を緩和し、その伸びを均一化する点にあることからして、応力が大きい圧縮方向に平行な表面(円柱材の軸方向圧縮では外周面)、若しくは該表面及びその近傍(円柱材の軸方向圧縮では外周面及び端面の外周部)を少なくとも含むのが好ましい。材料表面の全体に被覆を行えば、これらを含むので何ら問題ない。
【0017】
被覆チタンの材質としては、チタン系金属のなかでも延性の良好な純チタンが特に好ましいが、チタン合金のなかでも延性が比較的良好なTi−0.15Pb、Ti−5Ta、Ti−0.3Mo−0.8Ni等の使用は可能である。
【0018】
金属チタンの被覆厚は0.6〜5mmである。被覆厚が薄すぎると、その被覆材が複合材の表面に追随して伸びるので、応力均一化の効果が不十分であり、割れを防止できないおそれがある。大きすぎる場合は加工時に被覆層が剥離しやすくなり、剥離部分で割れが発生するおそれがある。またコストも嵩む。
【0019】
粒子分散型チタン基複合材のマトリックスであるチタン合金は特に限定せず、具体的にはTi−6Al−4V(αβ合金)、Ti−15V−3Cr−3Sn−3Al(β合金)、Ti−4.5Al−3V−2Fe−2Mo(αβ合金)、Ti−6Al−4V−9Cr(β合金)等を挙げることができるが、熱処理性の点からβ合金が特に好ましい。
【0020】
マトリックス中に分散するセラミック粒子は特に限定せず、具体的には炭化物(TiC、NbC、W2 C、Cr3 2 、Cr7 3 、Cr236 、VC、SiC)、ホウ化物(TiB、NbB2 、CrB2 、CrB、VB、VB2 )等を挙げることかできるが、熱間加工時に反応しない点からTiC、TiBが特に好ましい。
【0021】
なお、セラミック粒子の大きさや含有比は公知のこの種複合材に準じればよく、例えば大きさについては割れ防止の点から小さいほうが良く、含有比については体積比で3〜25%が好ましい。含有比が小さいと耐磨耗性が低下し、逆に大きすぎる場合は粒子の割れによる強度低下等が問題になる。
【0022】
本発明の粒子分散型チタン基複合材の製造方法は次の2つである。1つは、粒子分散型チタン基複合材を金属チタン容器内に収容し、その金属チタン容器を加熱・加圧して容器内の粒子分散型チタン基複合材に拡散接合することことにより、粒子分散型チタン基複合材の表面に金属チタンが0.6〜5mmの厚みに被覆された表面改質複合材を製造する第1の方法である。
【0023】
今1つは、粒子分散型チタン基複合材を焼結法で製造するときの原料粉末を金属チタン容器内に収容し、その金属チタン容器を加熱・加圧して容器内の原料粉末を焼結することにより、粒子分散型チタン基複合材の表面に金属チタンが0.6〜5mmの厚みに被覆された表面改質複合材を製造する第2の方法である。
【0024】
いずれの方法も、粒子分散型チタン基複合材の表面の一部又は全部に金属チタンが被覆された表面改質複合材を比較的簡単に且つ経済的に製造することができる。第2の方法では、金属チタンが被覆される母材の成形(焼結材の製造)と、その母材へのチタン被覆が同時に行われるので、経済性が特に優れる。
【0025】
第1の方法で金属チタン容器を加熱・加圧する方法としてはHIP処理を用いることができるが、他の熱間加工(圧延、押出し)も使用可能であり、HIP処理の後にこれらの熱間加工を行うことにより、被覆チタンの密着性を更に高めることもできる。金属チタン容器を使わない方法としては、メッキや溶射があり、クラッド板を製造する要領でチタン被覆による表面改質複合材を製造することもできる。
【0026】
第2の方法でも金属チタン容器を加熱・加圧する方法としてはHIP処理を用いることができる。他の熱間加工(圧延、押出し)も使用可能であり、HIP処理の後にこれらの熱間加工を行うことにより被覆チタンの密着性を更に高めることもできる。
【0027】
なお、第1の方法で容器内に収容される複合材としては溶製材、焼結材のいずれでもよい。
【0028】
本発明の粒子分散型チタン基複合材の熱間加工方法は、粒子分散型チタン基複合材の表面の一部又は全部に金属チタンが被覆された表面改質複合材を600〜800℃の温度で熱間加工するものである。
【0029】
加工温度が600℃未満の場合は、表面に金属チタンを被覆した複合材といえども延性・靱性に乏しく、僅かの変形でも割れが発生することがある。加工温度が800℃を超えるとコストが嵩み、加工温度を下げることの意味が薄れる。
【0030】
熱間加工方法の種類は特に問わない。具体的には熱間圧縮加工、熱間圧延、熱間押出し、熱間静水圧加圧(HIP)等を挙げることができる。
【0031】
【発明の実施の形態】
以下に本発明の実施形態を図面に基づいて説明する。図4は本発明の粒子分散型チタン基複合材の製造方法につき、その一例を示す模式図である。
【0032】
ここに示された方法では、先ず図4(a)に示すように、真空焼結−熱間押出しプロセスで、粒子分散型チタン基複合材の丸棒10を製造する。次いで図4(b)に示すように、丸棒10を所定長さの円柱体11,11・・に切断する。更に図4(c)に示すように、円柱体11を純チタンからなる円筒状の容器20内に封入し、その容器20をHIP(熱間静水圧加圧)処理して円柱体11の表面に拡散接合する。HIP後にマトリックスの均一化を目的として溶体化処理を行う。これにより、図4(d)に示すように、円柱形状の粒子分散型チタン基複合材を母材31とし、その母材31の表面全体に純チタン材32が被覆された表面改質複合材30が製造される。
【0033】
次に、本発明の実施例及び比較例を説明する。
【0034】
(実施例1)
図4の方法により、表面改質複合材を製造した。容器内に封入する母材としては、Ti−6Al−4V−9Crからなるマトリックス中にTiC粒子を分散させた粒子分散型チタン基複合材を用いた。その母材の寸法は外径15mm×高さ15mmである。母材におけるTiC粒子の体積率は10%である。母材の化学組成を表1に示す。この母材を封入する純チタン容器の厚みは2mmである。母材封入後の容器に対する加熱・加圧処理はHIP処理(1350℃×20min,300kgf/cm2 )+溶体化処理(1050℃×60min,WQ)とした。加熱・加圧処理によって製造された表面改質複合材の外径は17mm、表面改質層厚(容器厚さ)は1.8mmであった。製造された表面改質複合材に加工温度750℃、圧縮率60%の熱間圧縮加工を行ったが、割れの発生はなかった。熱間圧縮加工後の粒子分散型チタン基複合料を用いてエンジンのバルブヘッドを製作することができた。
【0035】
【表1】

Figure 0004223111
【0036】
(実施例2)
実施例1で製造された表面改質複合材の外周面を切削し、その外径を17mmから16.4mmに減らすことにより、表面改質層厚(容器厚さ)を約1.5mmに調整した。加工温度750℃、圧縮率60%の熱間圧縮加工を行ったが、割れの発生はなかった。
【0037】
(実施例3)
実施例1で製造された表面改質複合材の外周面を切削し、その外径を17mmから14.6mmに減らすことにより、表面改質層厚(容器厚さ)を約0.6mmに調整した。加工温度750℃、圧縮率60%の熱間圧縮加工を行ったが、割れの発生はなかった。
【0038】
(実施例4)
実施例1において加工温度を800℃に上げたが、割れの発生はなかった。
【0039】
(実施例5)
実施例1において加工温度を700℃に下げたが、割れの発生はなかった。
【0040】
(実施例6)
実施例1において、純チタン容器として厚さが5mmのものを使用した。製造された表面改質複合材の表面改質層厚(容器厚さ)が約5mmになったこと以外、実施例1と同じである。加工温度750℃、圧縮率60%の熱間圧縮加工を行ったが、割れの発生はなかった。
【0041】
(実施例7)
容器内に封入する母材として、Ti−6Al−4Vからなるマトリックス中にTiB粒子を分散させた粒子分散型チタン基複合材を用いた。TiB粒子の体積率は約10%である。それ以外は実施例1と同じである。加工温度750℃、圧縮率60%の熱間圧縮加工を行ったが、割れの発生はなかった。
【0042】
(実施例8)
容器内に封入する母材として、Ti−6Al−4Vからなるマトリックス中にSiC繊維を分散させた粒子分散型チタン基複合材を用いた。SiC繊維の体積率は約10%である。それ以外は実施例1と同じである。加工温度750℃、圧縮率60%の熱間圧縮加工を行ったが、割れの発生はなかった。
【0043】
(実施例9)
チタン球状粉末(−150μm)60%、チタン破砕粉末(−45μm)21%、Al−40V母合金粉末(−45μm)、及びCr3 2 球状粉末(−75μm)からなる混合粉末をボールミルで1時間攪拌し、CIP成形して丸棒とした。これを純チタン缶に充填し、真空封止した。缶の大きさは外径50mm、長さ200mmであった。これを1300℃で5時間保持して焼結することにより、純チタン容器内に封入されたTiC粒子分散型チタン基複合材を製造した。容器内に封入された母材の化学組成及びTiCの体積率は実施例1と同じであった。これを930℃で2時間保持し、熱間押出しで外径17mm、長さ2000mmに加工した。長さ15mm毎に切断して製造された表面改質複合材の改質層厚は1.8mmであった。この表面改質複合材に加工温度750℃、圧縮率60%で熱間加工を行ったが、割れはなかった。
【0044】
(比較例1)
純チタンによる表面改質を行わなかった。それ以外は実施例1と同じである。加工温度750℃、圧縮率60%の熱間圧縮加工を行ったところ、表面、特に外周面が割れた。
【0045】
(比較例2)
実施例1で製造された表面改質複合材の外周面を切削し、その外径を17mmから14.4mmに減らすことにより、表面改質層厚(容器厚さ)を約0.5mmに調整した。加工温度750℃、圧縮率60%の熱間圧縮加工を行ったところ、外周面に微細な割れが発生した。
【0046】
(比較例3)
実施例1において、純チタン容器として厚さが6mmのものを使用した。製造された表面改質複合材の表面改質層厚(容器厚さ)が約6mmになったこと以外、実施例1と同じである。加工温度750℃、圧縮率60%の熱間圧縮加工を行ったたところ、表面改質層が剥がれ、その後、表面割れが発生した。
【0047】
(比較例4)
実施例1において加工温度を580℃まで下げたところ、割れが発生した。
【0048】
【発明の効果】
以上に説明した通り、本発明の粒子分散型チタン基複合材は、チタン合金からなるマトリックス中にセラミック粒子を分散させた難加工材であるにもかかわらず、800℃以下の低温でマトリックス合金に匹敵する優れた熱間加工性を有する。これにより、既設の加工設備を用いて各種形状に低コストで塑性加工することができ、その塑性加工品の量産化に寄与する。また、汚染や重量増加等の二次的な弊害を抑制できる。
【0049】
また、本発明の粒子分散型チタン基複合材の製造方法は、熱間加工性に優れた上記複合材を経済的に製造することができる。
【0050】
また、本発明の粒子分散型チタン基複合材の熱間加工方法は、上記複合材を低温で経済的に、しかも割れなく塑性加工することかできる。
【図面の簡単な説明】
【図1】TiC粒子分散型チタン基複合材における破壊のイメージ図である。
【図2】チタン被覆による表面改質の熱間加工性に及ぼす影響を示す図表である。
【図3】圧縮試験後の試験片の外観図で、(a)はチタン被覆なし、(b)はチタン被覆ありの場合をそれぞれ示す。
【図4】本発明の粒子分散型チタン基複合材の製造方法につき、その一例を示す模式図である。
【符号の説明】
1 マトリックス合金
2 分散粒子
3 ボイド
4 割れ
10 粒子分散型チタン基複合材からなる丸棒
11 丸棒から切り出した円柱体
20 純チタンからなる容器
30 表面改質複合材
31 粒子分散型チタン基複合材からなる母材
32 表面改質層(被覆チタン)[0001]
BACKGROUND OF THE INVENTION
TECHNICAL FIELD The present invention relates to a particle-dispersed titanium-based composite material in which ceramic particles are dispersed in a titanium alloy, a method for producing the same, and a hot working method, and more specifically, a particle-dispersed titanium-based composite material having excellent hot workability. And a manufacturing method and a hot working method thereof.
[0002]
[Prior art]
Titanium matrix composites are lightweight and high in strength. Above all, particle dispersion type titanium matrix composites in which ceramic particles are dispersed in a titanium alloy are characterized by excellent wear resistance. Practical application is expected in fields such as industry. For example, the dispersion of carbide particles is considered to be applied to automobile valve parts (engine valves, retainers) and the like that require high resistance to sliding wear.
[0003]
However, particle-dispersed titanium matrix composites are inherently difficult to process. Nevertheless, there are not many studies on secondary processing of forming particle-dispersed titanium matrix composites into various shapes, especially on technology for mass production by plastic processing into various shapes using existing processing equipment. . Improving the plastic workability of particle-dispersed titanium matrix composites not only makes it possible to reduce costs essential for its practical use, but also improves the properties of the plastic working by controlling the structure and rearranging dispersed particles. It is also meaningful from the point that is done.
[0004]
[Problems to be solved by the invention]
Among the particle-dispersed titanium matrix composites, those in which carbide particles are dispersed use the in-situ crystallization reaction or in-situ precipitation reaction to disperse the particles. In addition, the physical consistency is high, and the hot workability is equal to or better than Ti-6Al-4V at 900 ° C. or higher. However, the cost increases in hot working at 900 ° C. or higher. On the other hand, Ti 3 AlC precipitates at around 825 ° C. and causes precipitation hardening, so that it is inferior in hot workability at low temperatures. Even in actual hot working, there is a problem that the temperature of the material surface decreases and cracks occur.
[0005]
Japanese Patent Application Laid-Open No. 2-236261 discloses a technique of drawing pure titanium or an ingot or billet of titanium alloy in a pipe made of carbon steel in order to enhance the hot wire drawing workability of the titanium alloy. It is described in. According to this technique, cooling of the material in the pipe and surface oxidation are suppressed, and the pipe bears a surface load during processing, so that the wire drawing workability of the titanium alloy is improved. However, in the case of a particle-dispersed titanium-based composite material, hot working cracks at relatively low temperatures cannot be prevented even if the pipe thickness is increased. In addition, if the hot working temperature is high, iron contamination occurs, and eutectic reaction occurs above the eutectic temperature (1085 ° C.), resulting in brittle ferrotitanium. Carbon steel is heavy at a high density of 7.9 g / cm 3 and increases the weight of the titanium-based composite material.
[0006]
An object of the present invention is to provide a particle-dispersed titanium-based composite that can be hot-worked at a temperature of 800 ° C. or less and that can suppress secondary problems such as contamination and weight increase, a method for producing the same, and hot-working It is to provide a method.
[0007]
[Means for Solving the Problems]
In most cases, material breakage during hot working occurs from the material surface. Therefore, it is considered that the hot workability is improved by suppressing the destruction from the surface by modifying the material surface. Based on such a background, the present inventors conducted a hot compression test of a particle-dispersed titanium-based composite material in which TiC particles are dispersed in a matrix composed of Ti-6Al-4V-9Cr, and the composite material. The hot working characteristics of the steel and its failure mechanism were investigated. As a result, the following was found.
[0008]
In the hot compression test at a processing temperature of 700 to 800 ° C., the hot workability of the TiC particle-dispersed titanium-based composite material is clearly inferior to the hot workability of the general-purpose material Ti-6Al-4V alloy. Fracture in the composite material occurs due to the generation, growth and connection of voids in the vicinity of the material surface, and the voids are mainly generated from cracks in the TiC particles.
[0009]
FIG. 1 is a conceptual diagram of fracture in a TiC particle-dispersed titanium matrix composite. A large elongation of the matrix 1 is locally generated on the surface having a large elongation by hot compression (an outer peripheral surface when the cylindrical member is compressed in the axial direction) (FIG. 1A). Since the dispersed particles 2 in the matrix 1 are not elongated by ceramics, stress concentrates on the dispersed particles 2 and the dispersed particles 2 are cracked to generate voids 3 in the dispersed particles 2 (FIG. 1B). If the elongation continues further, the void 3 grows and is connected to eventually generate a crack 4 [FIG. 1 (c, d)].
[0010]
In order to prevent this cracking, it is effective to avoid the occurrence of voids by avoiding local concentration of tensile stress on the material surface. As the method, it is effective to coat the surface of the material with pure titanium having a small difference in deformation resistance from the matrix and having sufficient ductility to modify the surface. That is, when pure titanium is coated on the material surface, even if local stress concentration occurs near the surface, the coating material transmits the stress to make the stress uniform and suppress local elongation. Cracking of the material is prevented. Here, if the difference in deformation resistance between the matrix and the covering material is large, the yield stress of the covering material is small, so that the transmission of stress becomes insufficient. Moreover, when the ductility of the covering material is insufficient, both the covering material and the composite material are cracked. The reason why the composite material cannot be cracked when the coating material is carbon steel is because the yield stress of the coating material is insufficient.
[0011]
Pure titanium is preferable as a surface modifying material because it has no fear of contamination or eutectic reaction, has a small density of about 4.5 g / cm 3 and is lightweight.
[0012]
Based on these investigation results, the surface of a particle-dispersed titanium-based composite material in which TiC particles are dispersed at a volume ratio of 10% in a matrix made of Ti-6Al-4V-9Cr is coated with pure titanium. The hot workability of the material was compared with that without coating. The test material was produced by enclosing a composite material having a diameter of 15 mm and a height of 15 mm in a pure titanium tube having a thickness of 1.3 mm, and diffusion bonding the pure titanium to the composite material surface by HIP treatment and solution treatment. . Moreover, the hot workability was evaluated based on the processing limit (maximum compression ratio at which cracking does not occur) when axial compression processing was performed at a temperature of 750 ° C. and a compression force of 20 to 70%.
[0013]
FIG. 2 shows the results of this comparative test. The processing limit of a composite material not coated with pure titanium is about 40%, which is clearly lower than the processing limit of a general-purpose titanium alloy (Ti-6Al-4V). Even if this uncoated composite material is subjected to HIP treatment and solution treatment, the processing limit hardly increases. However, when the coating of pure titanium is performed, the processing limit increases from 40% to 70% or more, and a result comparable to the processing limit of the general-purpose titanium alloy (Ti-6Al-4V) is obtained.
[0014]
FIG. 3 shows the appearance of the test piece when it is compressed at 60% at a processing temperature of 750 ° C., with and without coating. In the same figure (a) without coating, the outer peripheral surface of the material with remarkable surface elongation is severely cracked, but in the same figure (b) with coating, cracking is effectively prevented even on the outer peripheral surface of the material with remarkable surface elongation. Has been.
[0015]
The present invention has been made based on such knowledge, and the particle-dispersed titanium-based composite material is a particle-dispersed titanium-based composite material in which ceramic particles are dispersed in a titanium alloy, and a part of the surface or All are coated with metal titanium to a thickness of 0.6 to 5 mm .
[0016]
As for the titanium coating position on the material surface, the purpose of the coating is to relax the local stress concentration at the part where the stress concentration on the material surface in hot working is remarkable and to make the elongation uniform. And at least a surface parallel to the compression direction in which the stress is large (the outer peripheral surface in the axial compression of the cylindrical member), or the vicinity thereof (the outer peripheral surface and the outer peripheral portion of the end surface in the axial compression of the cylindrical member). Is preferred. If the entire surface of the material is covered, these are included, so there is no problem.
[0017]
As a material of the covering titanium, pure titanium having good ductility is particularly preferable among titanium-based metals, but Ti-0.15Pb, Ti-5Ta, Ti-0.3Mo having relatively good ductility among titanium alloys are preferable. Use of -0.8Ni or the like is possible.
[0018]
Coating thickness of the metal titanium is 0.6~5Mm. If the coating thickness is too thin, the coating material extends following the surface of the composite material, so that the effect of uniformizing the stress is insufficient and cracking may not be prevented. If it is too large, the coating layer is easily peeled off during processing, and cracks may occur at the peeled portion. In addition, the cost increases.
[0019]
The titanium alloy that is the matrix of the particle-dispersed titanium-based composite material is not particularly limited. Specifically, Ti-6Al-4V (αβ alloy), Ti-15V-3Cr-3Sn-3Al (β alloy), Ti-4 .5Al-3V-2Fe-2Mo (αβ alloy), Ti-6Al-4V-9Cr (β alloy) and the like can be mentioned, and β alloy is particularly preferable from the viewpoint of heat treatment.
[0020]
The ceramic particles dispersed in the matrix are not particularly limited, and specifically, carbide (TiC, NbC, W 2 C, Cr 3 C 2 , Cr 7 C 3 , Cr 23 C 6 , VC, SiC), boride ( TiB, NbB 2 , CrB 2 , CrB, VB, VB 2 ) and the like can be mentioned, but TiC and TiB are particularly preferable because they do not react during hot working.
[0021]
The size and content ratio of the ceramic particles may be in accordance with this known composite material. For example, the size is preferably small from the viewpoint of preventing cracking, and the content ratio is preferably 3 to 25% by volume. When the content ratio is small, the wear resistance is lowered. On the other hand, when the content ratio is too large, a decrease in strength due to cracking of particles becomes a problem.
[0022]
There are the following two methods for producing the particle-dispersed titanium-based composite of the present invention. One is to disperse particles by placing the particle-dispersed titanium matrix composite in a metal titanium container, and heating and pressurizing the metal titanium container to diffusely bond to the particle-dispersed titanium matrix composite in the container. This is a first method for producing a surface-modified composite material in which metallic titanium is coated to a thickness of 0.6 to 5 mm on the surface of the type titanium-based composite material.
[0023]
The other is that the raw material powder used when the particle-dispersed titanium matrix composite is produced by the sintering method is contained in a metal titanium container, and the metal titanium container is heated and pressurized to sinter the raw material powder in the container. This is a second method for producing a surface-modified composite material in which metal titanium is coated to a thickness of 0.6 to 5 mm on the surface of the particle-dispersed titanium-based composite material.
[0024]
Any of the methods can relatively easily and economically produce a surface-modified composite material in which a part or all of the surface of the particle-dispersed titanium-based composite material is coated with metallic titanium. In the second method, since the base material coated with titanium metal (sintered material production) and titanium coating on the base material are performed at the same time, the economy is particularly excellent.
[0025]
HIP processing can be used as a method for heating and pressurizing the metal titanium container in the first method, but other hot processing (rolling, extrusion) can also be used, and these hot processing after HIP processing. By performing this, the adhesion of the coated titanium can be further enhanced. As a method not using a metal titanium container, there are plating and thermal spraying, and it is possible to manufacture a surface-modified composite material with titanium coating in the same way as manufacturing a clad plate.
[0026]
Even in the second method, HIP treatment can be used as a method of heating and pressurizing the metal titanium container. Other hot working (rolling, extrusion) can also be used, and the adhesiveness of the coated titanium can be further increased by performing these hot working after the HIP treatment.
[0027]
In addition, as a composite material accommodated in a container by the 1st method, any of a melting material and a sintered material may be sufficient.
[0028]
The method for hot-working a particle-dispersed titanium-based composite material according to the present invention is a method in which a surface-modified composite material in which a part or all of the surface of the particle-dispersed titanium-based composite material is coated with metallic titanium is at a temperature of 600 to 800 ° C. Hot working with
[0029]
When the processing temperature is less than 600 ° C., even a composite material whose surface is coated with titanium metal is poor in ductility and toughness, and cracking may occur even with slight deformation. When the processing temperature exceeds 800 ° C., the cost increases and the meaning of lowering the processing temperature is diminished.
[0030]
The type of hot working method is not particularly limited. Specific examples include hot compression processing, hot rolling, hot extrusion, and hot isostatic pressing (HIP).
[0031]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings. FIG. 4 is a schematic view showing an example of the method for producing the particle-dispersed titanium-based composite material of the present invention.
[0032]
In the method shown here, first, as shown in FIG. 4A, a round bar 10 of a particle-dispersed titanium-based composite material is manufactured by a vacuum sintering-hot extrusion process. Next, as shown in FIG. 4 (b), the round bar 10 is cut into cylindrical bodies 11, 11,. Further, as shown in FIG. 4 (c), the cylindrical body 11 is sealed in a cylindrical container 20 made of pure titanium, and the container 20 is subjected to HIP (hot isostatic pressing) treatment to obtain a surface of the cylindrical body 11. Diffusion bonding. Solution treatment is performed for the purpose of homogenizing the matrix after HIP. As a result, as shown in FIG. 4 (d), a surface-modified composite material in which a cylindrical particle-dispersed titanium-based composite material is used as a base material 31, and the entire surface of the base material 31 is covered with a pure titanium material 32. 30 is manufactured.
[0033]
Next, examples and comparative examples of the present invention will be described.
[0034]
(Example 1)
A surface-modified composite material was produced by the method shown in FIG. As a base material sealed in the container, a particle-dispersed titanium-based composite material in which TiC particles are dispersed in a matrix made of Ti-6Al-4V-9Cr was used. The dimensions of the base material are 15 mm outer diameter × 15 mm height. The volume ratio of TiC particles in the base material is 10%. Table 1 shows the chemical composition of the base material. The thickness of the pure titanium container that encloses the base material is 2 mm. The heating and pressurizing treatment for the container after the base material was sealed was HIP treatment (1350 ° C. × 20 min, 300 kgf / cm 2 ) + solution treatment (1050 ° C. × 60 min, WQ). The outer diameter of the surface-modified composite material produced by the heat and pressure treatment was 17 mm, and the surface-modified layer thickness (container thickness) was 1.8 mm. The manufactured surface-modified composite material was subjected to hot compression processing at a processing temperature of 750 ° C. and a compression rate of 60%, but no cracks were generated. The valve head of the engine could be manufactured using the particle-dispersed titanium-based composite material after hot compression processing.
[0035]
[Table 1]
Figure 0004223111
[0036]
(Example 2)
By cutting the outer peripheral surface of the surface-modified composite material produced in Example 1 and reducing its outer diameter from 17 mm to 16.4 mm, the surface-modified layer thickness (container thickness) is adjusted to about 1.5 mm. did. Although hot compression processing was performed at a processing temperature of 750 ° C. and a compression rate of 60%, no cracks were generated.
[0037]
Example 3
By cutting the outer peripheral surface of the surface-modified composite material produced in Example 1 and reducing the outer diameter from 17 mm to 14.6 mm, the surface-modified layer thickness (container thickness) is adjusted to about 0.6 mm. did. Although hot compression processing was performed at a processing temperature of 750 ° C. and a compression rate of 60%, no cracks were generated.
[0038]
(Example 4)
In Example 1, the processing temperature was raised to 800 ° C., but no cracks were generated.
[0039]
(Example 5)
In Example 1, the processing temperature was lowered to 700 ° C., but no cracks were generated.
[0040]
(Example 6)
In Example 1, a pure titanium container having a thickness of 5 mm was used. The same as Example 1 except that the surface modified layer thickness (container thickness) of the manufactured surface modified composite was about 5 mm. Although hot compression processing was performed at a processing temperature of 750 ° C. and a compression rate of 60%, no cracks were generated.
[0041]
(Example 7)
As a base material sealed in the container, a particle-dispersed titanium-based composite material in which TiB particles are dispersed in a matrix made of Ti-6Al-4V was used. The volume fraction of TiB particles is about 10%. The rest is the same as in Example 1. Although hot compression processing was performed at a processing temperature of 750 ° C. and a compression rate of 60%, no cracks were generated.
[0042]
(Example 8)
As a base material sealed in the container, a particle-dispersed titanium-based composite material in which SiC fibers are dispersed in a matrix made of Ti-6Al-4V was used. The volume fraction of SiC fiber is about 10%. The rest is the same as in Example 1. Although hot compression processing was performed at a processing temperature of 750 ° C. and a compression rate of 60%, no cracks were generated.
[0043]
Example 9
A mixed powder consisting of 60% titanium spherical powder (−150 μm), 21% titanium crushed powder (−45 μm), Al-40V master alloy powder (−45 μm), and Cr 3 C 2 spherical powder (−75 μm) was mixed with a ball mill. The mixture was stirred for a period of time and CIP molded to obtain a round bar. This was filled into a pure titanium can and vacuum sealed. The size of the can was an outer diameter of 50 mm and a length of 200 mm. This was held at 1300 ° C. for 5 hours and sintered to produce a TiC particle-dispersed titanium-based composite material sealed in a pure titanium container. The chemical composition of the base material enclosed in the container and the volume ratio of TiC were the same as in Example 1. This was held at 930 ° C. for 2 hours, and processed by hot extrusion to an outer diameter of 17 mm and a length of 2000 mm. The modified layer thickness of the surface-modified composite produced by cutting every 15 mm in length was 1.8 mm. This surface-modified composite material was hot-worked at a processing temperature of 750 ° C. and a compression rate of 60%, but there was no crack.
[0044]
(Comparative Example 1)
No surface modification with pure titanium was performed. The rest is the same as in Example 1. When hot compression processing was performed at a processing temperature of 750 ° C. and a compression rate of 60%, the surface, particularly the outer peripheral surface, was cracked.
[0045]
(Comparative Example 2)
By cutting the outer peripheral surface of the surface-modified composite material produced in Example 1 and reducing the outer diameter from 17 mm to 14.4 mm, the surface-modified layer thickness (container thickness) is adjusted to about 0.5 mm. did. When hot compression processing was performed at a processing temperature of 750 ° C. and a compression rate of 60%, fine cracks occurred on the outer peripheral surface.
[0046]
(Comparative Example 3)
In Example 1, a pure titanium container having a thickness of 6 mm was used. The same as Example 1, except that the surface modified layer thickness (container thickness) of the manufactured surface modified composite was about 6 mm. When hot compression processing was performed at a processing temperature of 750 ° C. and a compression rate of 60%, the surface modified layer was peeled off, and then surface cracks occurred.
[0047]
(Comparative Example 4)
When the processing temperature was lowered to 580 ° C. in Example 1, cracking occurred.
[0048]
【The invention's effect】
As described above, the particle-dispersed titanium-based composite of the present invention is a difficult-to-process material in which ceramic particles are dispersed in a matrix made of a titanium alloy, but the matrix alloy is formed at a low temperature of 800 ° C. or lower. It has excellent hot workability that is comparable. Thereby, it is possible to perform plastic processing into various shapes at low cost using existing processing equipment, and contribute to mass production of the plastic processed product. In addition, secondary problems such as contamination and weight increase can be suppressed.
[0049]
Moreover, the manufacturing method of the particle-dispersed titanium-based composite material of the present invention can economically manufacture the composite material having excellent hot workability.
[0050]
Moreover, the hot working method of the particle-dispersed titanium-based composite material of the present invention can plastically process the composite material at low temperature economically and without cracking.
[Brief description of the drawings]
FIG. 1 is an image diagram of fracture in a TiC particle-dispersed titanium matrix composite.
FIG. 2 is a chart showing the influence of surface modification by titanium coating on hot workability.
FIGS. 3A and 3B are external views of a test piece after a compression test, in which FIG. 3A shows the case without titanium coating, and FIG. 3B shows the case with titanium coating.
FIG. 4 is a schematic view showing an example of a method for producing a particle-dispersed titanium-based composite material of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Matrix alloy 2 Dispersed particle 3 Void 4 Crack 10 Round bar 11 made of particle-dispersed titanium matrix composite Column 20 cut out from round bar Container 30 made of pure titanium Surface modified composite 31 Particle dispersed titanium matrix composite Base material 32 comprising surface modification layer (coated titanium)

Claims (6)

チタン合金中にセラミック粒子が分散した粒子分散型チタン基複合材であって、その表面の一部又は全部に金属チタンが0.6〜5mmの厚みに被覆されていることを特徴とする熱間加工性に優れた粒子分散型チタン基複合材。A particle-dispersed titanium-based composite ceramic particles are dispersed in the titanium alloy, hot, characterized in that metallic titanium is coated to a thickness of 0.6~5mm to some or all of its surface A particle-dispersed titanium matrix composite with excellent processability. 前記金属チタンは、熱間加工での圧縮方向に平行な表面、若しくは該表面及びその近傍に少なくとも被覆されていることを特徴とする請求項1に記載の熱間加工性に優れた粒子分散型チタン基複合材。  The particle dispersion type excellent in hot workability according to claim 1, wherein the titanium metal is coated at least on a surface parallel to a compression direction in hot working, or on the surface and the vicinity thereof. Titanium matrix composite. 前記金属チタンは純チタンであることを特徴とする請求項1又は2に記載の熱間加工性に優れた粒子分散型チタン基複合材。  The particle-dispersed titanium-based composite material having excellent hot workability according to claim 1 or 2, wherein the metal titanium is pure titanium. 粒子分散型チタン基複合材を金属チタン容器内に収容し、その金属チタン容器を加熱・加圧して容器内の粒子分散型チタン基複合材に拡散接合することにより、粒子分散型チタン基複合材の表面に金属チタンが0.6〜5mmの厚みに被覆された表面改質複合材を製造することを特徴とする熱間加工性に優れた粒子分散型チタン基複合材の製造方法。A particle-dispersed titanium-based composite material is housed in a metal titanium container, and the metal-titanium container is heated and pressurized to be diffusion bonded to the particle-dispersed titanium-based composite material in the container. method for producing titanium metal on the surface of an excellent hot workability, characterized by producing coated surface modification composite thickness of 0.6~5mm particle-dispersed titanium-based composite material. 粒子分散型チタン基複合材を焼結法で製造するときの原料粉末を金属チタン容器内に収容し、その金属チタン容器を加熱・加圧して容器内の原料粉末を焼結することにより、粒子分散型チタン基複合材の表面に金属チタンが0.6〜5mmの厚みに被覆された表面改質複合材を製造することを特徴とする熱間加工性に優れた粒子分散型チタン基複合材の製造方法。The raw material powder used when the particle-dispersed titanium-based composite material is produced by the sintering method is contained in a metal titanium container, and the metal titanium container is heated and pressurized to sinter the raw material powder in the container. A particle-dispersed titanium-based composite material excellent in hot workability, characterized by producing a surface-modified composite material in which metal titanium is coated to a thickness of 0.6 to 5 mm on the surface of a dispersed titanium-based composite material Manufacturing method. 請求項1、2又は3に記載の熱間加工に優れた粒子分散型チタン基複合材を600〜800℃の温度で熱間加工することを特徴とする粒子分散型チタン基複合材の熱間加工方法。The particle-dispersed titanium matrix composite excellent in hot working according to claim 1, 2, or 3 is hot-worked at a temperature of 600 to 800 ° C. Processing method.
JP35301798A 1998-12-11 1998-12-11 Particle-dispersed titanium matrix composite with excellent hot workability, method for producing the same, and hot work method Expired - Fee Related JP4223111B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35301798A JP4223111B2 (en) 1998-12-11 1998-12-11 Particle-dispersed titanium matrix composite with excellent hot workability, method for producing the same, and hot work method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35301798A JP4223111B2 (en) 1998-12-11 1998-12-11 Particle-dispersed titanium matrix composite with excellent hot workability, method for producing the same, and hot work method

Publications (2)

Publication Number Publication Date
JP2000178671A JP2000178671A (en) 2000-06-27
JP4223111B2 true JP4223111B2 (en) 2009-02-12

Family

ID=18428009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35301798A Expired - Fee Related JP4223111B2 (en) 1998-12-11 1998-12-11 Particle-dispersed titanium matrix composite with excellent hot workability, method for producing the same, and hot work method

Country Status (1)

Country Link
JP (1) JP4223111B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201805441A (en) * 2016-04-01 2018-02-16 新日鐵住金股份有限公司 Titanium composite material and package
WO2017171056A1 (en) * 2016-04-01 2017-10-05 新日鐵住金株式会社 Titanium composite material and method for manufacturing same, and package
CN111304569B (en) * 2020-01-17 2021-07-16 中国航发北京航空材料研究院 Hot isostatic pressing method for eliminating depletion of high-temperature alloy elements

Also Published As

Publication number Publication date
JP2000178671A (en) 2000-06-27

Similar Documents

Publication Publication Date Title
Morsi titanium–titanium boride composites
KR100867290B1 (en) Titanium alloy composite material, method of producing the titanium alloy composite material, titanium clad material using the titanium alloy composite material, and method of producing the titanium clad material
US20100003536A1 (en) Metal matrix composite material
Ward-Close et al. A fibre coating process for advanced metal-matrix composites
US6599466B1 (en) Manufacture of lightweight metal matrix composites with controlled structure
EP3701054B1 (en) Titanium alloy
US4699849A (en) Metal matrix composites and method of manufacture
US4797155A (en) Method for making metal matrix composites
Heydari et al. Mechanical properties and microstructural evolution of AA5083/Al2O3 composites fabricated by warm accumulative roll bonding
CN107190178A (en) A kind of titanium matrix composite and preparation method thereof
US5799238A (en) Method of making multilayered titanium ceramic composites
WO2017018514A1 (en) Titanium composite material, and titanium material for hot rolling
JP3367269B2 (en) Aluminum alloy and method for producing the same
CN114131295B (en) Diffusion welding method adopting Ti-Nb alloy as intermediate layer
JP4193958B2 (en) Molten metal member having excellent corrosion resistance against molten metal and method for producing the same
Rominiyi et al. Spark plasma sintering of discontinuously reinforced titanium matrix composites: densification, microstructure and mechanical properties—a review
CN113699426A (en) Titanium-based composite material and preparation method thereof
CN1244149A (en) Ambient temperature method for increasing the green strength of parts and articles made by consolidating powder, particulate, sheet or foil materials
JP2007131886A (en) Method for producing fiber-reinforced metal superior in abrasion resistance
JP4223111B2 (en) Particle-dispersed titanium matrix composite with excellent hot workability, method for producing the same, and hot work method
CN111822708B (en) Preparation method of powder metallurgy Ti-W metal-metal heterostructure composite material
US20040118547A1 (en) Machineable metal-matrix composite and method for making the same
CA3190000A1 (en) Systems and methods for manufacturing landing gear components using titanium
JP4133078B2 (en) Method for producing fiber reinforced metal
CN113684391B (en) Preparation method of high-performance aluminum alloy and composite material thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051201

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20051201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080603

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081028

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081119

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees