JPH0411512B2 - - Google Patents

Info

Publication number
JPH0411512B2
JPH0411512B2 JP12433187A JP12433187A JPH0411512B2 JP H0411512 B2 JPH0411512 B2 JP H0411512B2 JP 12433187 A JP12433187 A JP 12433187A JP 12433187 A JP12433187 A JP 12433187A JP H0411512 B2 JPH0411512 B2 JP H0411512B2
Authority
JP
Japan
Prior art keywords
ceramics
sintered metal
metal
sintered
joining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12433187A
Other languages
Japanese (ja)
Other versions
JPS63288976A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP12433187A priority Critical patent/JPS63288976A/en
Publication of JPS63288976A publication Critical patent/JPS63288976A/en
Publication of JPH0411512B2 publication Critical patent/JPH0411512B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Ceramic Products (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は焼結金属とセラミクスとの接合体に関
する。 さらに詳細には焼結金属とセラミクスとが強固
に接合され、耐摩耗性および機械的強度に優れた
焼結金属とセラミクスとの複合体に関する。 従来の技術 近年、耐摩耗性および機械的強度に優れたセラ
ミクスを自動車用エンジンの摺動部品であるタペ
ツト、カム、ロツカアームさらにガスタービン用
高速ベアリング材、軸受材として利用する研究が
盛んに行われている。 セラミクスを摺動部等に使用することにより、
耐摩耗性のみならず運動部の軽量化ひいては効率
の向上をも期待することができるからである。 このように従来金属であつた機械部品をセラミ
クスに置き代える傾向が高まるに連れ、いくつか
の問題点が明らかになつた。 すなわち、セラミクス部品は成形後焼結されさ
らに切削等の加工を行つて製品化されるが、一般
にセラミクスは強度的、特に靱性において信頼性
が低いため設計および加工が難しくなるという欠
点があること。さらに、セラミクス部品を一体成
形物とすると加工の際、切削量が多くなり製品の
コストが非常に高くつくという問題があること等
である。 このため、摩耗面を有する部品において摩耗面
以外の部分に従来と同様にコストの低い焼結金属
部材を使用し、摺動部などの摩耗面にセラミクス
チツプを接合させた部品が開発されつつある。 2つの多孔質焼結体を接合するに当たつて焼結
体の空孔を封孔すること自体は既に公知である。
例えば、特開昭52−68052号公報には、鉄を主成
分とする2つの金属焼結体を互いに接合するため
に焼結体空孔内に酸化皮膜を形成し、接合面の酸
化膜を除去した後に黄銅系のロウ材でこれら2つ
の焼結体を互いに接合する方法が記載されてい
る。また、特開昭61−253168号公報には、2つの
鉄系焼結体の接合または鉄系焼結体と各種合金と
の接合に際してロウ材に対する濡れ性が乏しい材
料で表面空隙を充填しておく方法が提案されてい
る。 本出願人は、WC基超硬合金と鉄系焼結体とを
接合する際にCu−Mn−Feよりなる溶浸材の溶浸
拡散を利用する方法(特開昭59−35607号公報)
や、超硬合金と焼結鋼とを接合する際にCu−Ni
−Mnよりなるロウ材を用いる方法(特開昭59−
209473号公報)を既に開示している。 しかし、これらの先行技術は鉄系焼結体相互の
接合、鉄系焼結体と他の金属焼結体または超硬合
金との接合に関するもので、金属焼結体とセラミ
ツツスとの接合に関するものではなく、熱膨脹率
等の特性が著しく異なり、熱履歴やクラツクの発
生に問題がある金属焼結体とセラミクスとの接合
については記載も示唆もない。 発明が解決しようとする問題点 焼結金属−セラミクス接合体は、セラミクスの
優れた特性を低コストで実現することができ、ま
た従来はセラミクスが使用できなかつた形状のも
のも作製することができると期待されている。 セラミクス部材と焼結金属部材を接合して一体
化するためにはろう材等により接合する必要があ
るが、この際、焼結金属の空孔にろう材が流れ込
むために十分な接合ができないという問題があつ
た。 また、セラミクスと金属とは一般に熱膨張性が
著しく異なり、しかも互いに馴染み難いため、両
者の組み合わせが不適当な場合には、接合時に発
生する熱応力等でセラミクスが割れることがあつ
た。 従つて、実際の機械部品に適用できる性能を持
つセラミクス−焼結金属の接合体は、実用化され
てないのが現状である。 そこで本発明の目的は、焼結金属とセラミクス
とを強固に接合し、優れた耐摩耗性および機械的
強度を有するセラミクス−焼結金属接合体を提供
することにある。 問題点を解決するための手段 本発明は、接合面を被覆材により被覆すること
で接合面にある空孔を充填した焼結金属と接合面
をメタライズしたセラミクスとが融点が300℃以
下の低融点のろう材により接合されている焼結金
属とセラミクスとの接合体であつて、上記焼結金
属の接合面の空孔を充填する被覆材がMnを5〜
70重量%、Niを5〜70重量%、Cuを5〜70重量
%含み、Mn+Ni+Cuの合計が合金の総量の50重
量%以上であるMn−Ni−Cu系合金であり、上記
ろう材がPb−Sn系ろう材であり、接合体の接合
強度が8Kg/mm2以上であることを特徴とする焼結
金属とセラミクスとの接合体を提供する。 本発明で用いる焼結金属としては、被覆材に
Mn−Ni−Cu系合金を使用することからすれば、
Feを50重量%以上含むFe系合金またはCuを50重
量%以上含むCu系合金が好ましい。 本発明に用いられるセラミクスとしては、例え
ば、SiC、Al2O3、ZrO2、Si3N4、SiC等が挙げら
れる。 また本発明に用いられる焼結金属とセラミクス
との接合用ろう材としては、融点が300℃以下の
低融点ろう材を用いればよく、Pb−Sn系はんだ
合金が好適である。 本発明の接合体は、機械部品としての用途があ
り、従来焼結金属により形成されていた部品にお
いて、特に摺動部など耐摩耗性、耐熱性等が要求
される部分に組み込んで使用する。 例えば、エンジン部品であるカムシヤフト、タ
ペツト、ロツカーアーム、プレス機用部品である
パンチ部品、トロコイド型ポンプのトロコイド部
品等の用途に使用することができる。 作 用 本発明は、焼結金属とセラミクスとの接合体を
製造する際、予め焼結金属の接合部表面に表面の
空孔を充填するように被覆材による被覆層を形成
させ、セラミクスの接合面をメタライズ処理し、
接合用ろう材として低融点ろう材を使用すること
に主な特徴がある。 焼結金属の空孔を充填し、被覆層が形成させる
被覆材としてはMn−Ni−Cu系合金が好ましい。
これは、一般のろう材では焼結金属の空孔を充填
し、被覆層を形成させることが困難であるが、
Mn−Ni−Cu系合金は、焼結金属との濡れ性が好
ましく、さらに熱処理時には焼結金属と反応して
適当な粘性となり、空孔内に流れ込み易くなるた
め、空孔を良好に充填、被覆層を形成するからで
ある。 Mn−Ni−Cu系合金の組成は、Mnを5〜70重
量%、Niを5〜70重量%、Cuを5〜70重量%を
含みMn、Ni、Cuの合計が合金の総量の50重量%
以上であることが好ましい。これはMn−Ni−Cu
系合金の組成および合金総量中のMn、Ni、Cuの
合計量が上記の範囲をはずれると、合金が焼結金
属と反応せず、熱処理時の粘性が不適当なため空
孔内に十分浸透しなくなるため空孔を完全に充填
せず、また接合用ろう材との接着性も悪化するた
めである。 上記のようにMn−Ni−Cu系合金で、焼結金属
の接合面の空孔を予め充填するとセラミクスと焼
結金属部材を接合する際に、ろう材が焼結金属の
空孔内に侵入することがなく、しかも該被覆層と
接合用ろう材とが強固な接合部を形成するため焼
結金属とセラミクスとは十分な接合強度をもつて
固着する。 本発明に従うと、セラミクスの接合面は予めメ
タライズ処理されていることが好ましい。この処
理により、接合用のろう材との密着性が向上し、
接合強度が上がる。 また、本発明に従うと、接合には融点が300℃
以下の低融点ろう材を用いる。この理由は金属と
セラミクスの熱膨脹率は著しく異なるので接合時
の熱サイクルで応力が発生、残留し、接合強度が
低下したり、接合が困難な場合がある。しかし、
融点が300℃以下の低融点ろう材を用いるとそれ
らの問題は解決されるからである。すなわち、融
点が300℃以下の低融点ろう材を用いた場合の熱
応力は、接合強度と比較した場合、ほとんど問題
にならない程度の大きさとなる。 上記の接合用低融点ろう材としては、充填材で
あるMn−Ni−Cu系合金との濡れ特性・反応性が
特に優れているSn−Pb系のろう材が、信頼性、
コスト両面から好ましい。また、本発明の接合体
に用いる焼結金属は、充填、被覆材に用いるMn
−Ni−Cu系合金と良好に反応する、Fe系合金ま
たはCu系合金が好ましい。 本発明による強固に接合された焼結金属−セラ
ミクス接合体を耐摩耗性が要求される部品、例え
ば、エンジン部品であるカム、タペツト、ロツカ
ーアーム等に使用することで、従来の焼結金属の
みの部品に比べ耐摩耗性の向上および軽量化が実
現でき、さらにそのような部品を使用する機械の
耐久性も向上する。これらの用途では焼結金属と
セラミクスとの接合強度として8Kg/mm2以上が必
要である。 実施例 次に、実施例にて本発明を詳細に説明するが、
本発明はこれらに何等限定されない。 実施例 1 10×10×20mmの大きさのFeを主成分とする焼
結金属部材と、接合面をメタライズ処理したセラ
ミクス部材を用意して、第1表に示すような条件
で焼結金属−セラミクス接合体を作製し、それぞ
れの接合体から接合部を含む3×4×40mmの大き
さの試料を作つて、4点曲げ強度を測定した。ま
た、比較のため、焼結金属部材の接合面を被覆材
で処理しないこと以外は全く同様の条件で試料を
作製した。 第1図は第1表の3の条件で作製した本発明の
試料の接合部の断面図である。被覆材としては、
Mn−Ni−Cu系合金(Mn:20重量%、Ni:20重
量%、Cu:20重量%)を用い、接合用ろう材と
してSn−Pb系のはんだ合金を使用し、250℃で接
合した。両者は容易に接合した。 第1図に示した断面は、被覆材2で被覆された
焼結金属1とメタライズ層4を持つセラミクス5
とが、接合用ろう材3を介して接合された状態を
示し、焼結金属1の接合面の空孔は被覆材で充填
されている。 第1表に示した接合例2、7のように被覆材を
用いない場合は、本発明で用いる低融点のPb−
Sn系ろう材を用いても接合が不可能であり、ま
た、被覆材、接合用ろう材共に低融点のPb−Sn
系ろう材を用いた接合例1、6の場合は、接合に
良好にできるが接合強度が劣る。さらに、接合用
ろう材に高融点のものを用い、高温で接合を試み
た接合例4、5、8、10、2、14では被覆材に本
発明で用いるMn−Ni−Cu系合金を用いても熱応
力によりセラミクスが破損した。本発明の方法に
従つて、被覆材にMn−Ni−Cu系合金を用い、接
合に低融点のPb−Sn系ろう材を用いた接合例3、
9、11、13の場合は、いずれもセラミクスを破損
することなく良好に接合し、接合強度も優れてい
る。第1表の結果は、本発明による被覆材と接合
用ろう材との組合せの場合にのみ、焼結金属/セ
ラミクス接合体の接合強度として必要な8Kg/mm2
以上が達成できるということを示している。 以上詳述のように、本発明による焼結金属−セ
ラミクス接合体は、接合時に熱応力でセラミクス
の破損が起きず、両者が強固に接合されているこ
とが立証された。
INDUSTRIAL APPLICATION FIELD The present invention relates to a joined body of sintered metal and ceramics. More specifically, the present invention relates to a composite of sintered metal and ceramics in which the sintered metal and ceramics are firmly bonded and have excellent wear resistance and mechanical strength. Conventional Technology In recent years, much research has been conducted on the use of ceramics, which have excellent wear resistance and mechanical strength, for the sliding parts of automobile engines such as tappets, cams, and rocker arms, as well as high-speed bearing materials and bearing materials for gas turbines. ing. By using ceramics for sliding parts,
This is because it can be expected to not only improve wear resistance but also reduce the weight of the moving parts and improve efficiency. As the trend toward replacing traditionally metal mechanical parts with ceramics has increased, several problems have become apparent. In other words, ceramic parts are molded, sintered, and processed through cutting and other processing to produce products, but ceramics generally have low reliability in terms of strength, particularly toughness, making design and processing difficult. Furthermore, if the ceramic parts are integrally molded, there is a problem that the amount of cutting increases during processing, making the cost of the product extremely high. For this reason, parts with wear surfaces that use low-cost sintered metal members for parts other than the wear surfaces, as in the past, and ceramic chips bonded to the wear surfaces such as sliding parts are being developed. . It is already known to seal the pores of the sintered bodies when joining two porous sintered bodies.
For example, in JP-A-52-68052, an oxide film is formed in the pores of the sintered bodies to bond two metal sintered bodies mainly composed of iron, and the oxide film on the joint surface is A method is described in which, after removal, these two sintered bodies are joined together using a brass brazing material. Furthermore, Japanese Patent Application Laid-open No. 61-253168 discloses that when joining two iron-based sintered bodies or joining an iron-based sintered body and various alloys, surface voids are filled with a material that has poor wettability to the brazing material. A method has been proposed. The present applicant has proposed a method using infiltration diffusion of an infiltrant made of Cu-Mn-Fe when joining a WC-based cemented carbide and an iron-based sintered body (Japanese Patent Laid-Open No. 59-35607).
Cu-Ni is used when joining cemented carbide and sintered steel.
- Method using brazing material made of Mn (Unexamined Japanese Patent Publication No. 1983-
209473) has already been disclosed. However, these prior art techniques relate to joining iron-based sintered bodies to each other, joining iron-based sintered bodies to other metal sintered bodies or cemented carbide, and relate to joining metal sintered bodies to ceramics. Rather, there is no description or suggestion of joining a metal sintered body and ceramics, which have significantly different properties such as coefficient of thermal expansion and problems with thermal history and cracking. Problems to be Solved by the Invention The sintered metal-ceramics bonded body can realize the excellent properties of ceramics at low cost, and can also be manufactured in shapes that were previously not possible using ceramics. It is expected that In order to join and integrate a ceramic component and a sintered metal component, it is necessary to use a brazing material, etc., but in this case, the brazing material flows into the pores of the sintered metal, making it impossible to achieve a sufficient bond. There was a problem. Additionally, ceramics and metals generally have significantly different thermal expansion properties and are difficult to blend with each other, so if the combination of the two is inappropriate, the ceramics may crack due to thermal stress generated during bonding. Therefore, at present, a ceramic-sintered metal bonded body with performance that can be applied to actual mechanical parts has not been put into practical use. SUMMARY OF THE INVENTION An object of the present invention is to provide a ceramic-sintered metal joined body having excellent wear resistance and mechanical strength by firmly joining a sintered metal and ceramics. Means for Solving the Problems The present invention provides a method for combining a sintered metal that fills the pores in the joint surface with a ceramic material with a melting point of 300°C or less by covering the joint surface with a coating material. A bonded body of sintered metal and ceramics that are bonded together by a melting point brazing filler metal, wherein the coating material that fills the pores on the bonding surface of the sintered metal contains 5 to 50% Mn.
70% by weight, 5 to 70% by weight of Ni, 5 to 70% by weight of Cu, and the sum of Mn + Ni + Cu is 50% by weight or more of the total amount of the alloy, and the brazing filler metal is Pb. - Provides a bonded body of sintered metal and ceramics, which is an Sn-based brazing filler metal and has a bonding strength of 8 Kg/mm 2 or more. The sintered metal used in the present invention is used as a coating material.
Considering that Mn-Ni-Cu alloy is used,
An Fe-based alloy containing 50% by weight or more of Fe or a Cu-based alloy containing 50% by weight or more of Cu is preferable. Examples of the ceramics used in the present invention include SiC, Al 2 O 3 , ZrO 2 , Si 3 N 4 , and SiC. Further, as the brazing material for joining the sintered metal and ceramics used in the present invention, a low melting point brazing material having a melting point of 300° C. or less may be used, and a Pb-Sn based solder alloy is suitable. The joined body of the present invention is used as a mechanical part, and is used by being incorporated into a part conventionally made of sintered metal, especially in a sliding part where wear resistance, heat resistance, etc. are required. For example, it can be used for engine parts such as camshafts, tappets, and rocker arms, punch parts for press machines, and trochoid parts for trochoid pumps. Effect The present invention, when manufacturing a bonded body of sintered metal and ceramics, forms a coating layer of a coating material on the bonded surface of the sintered metal in advance so as to fill the pores on the surface. Metalize the surface,
The main feature is that a low melting point brazing material is used as the joining brazing material. A Mn-Ni-Cu alloy is preferable as the coating material that fills the pores of the sintered metal and forms the coating layer.
This is because it is difficult to fill the pores of the sintered metal and form a coating layer using a general brazing filler metal.
Mn-Ni-Cu alloys have good wettability with sintered metals, and furthermore, during heat treatment, they react with sintered metals and become viscous, making it easier to flow into the pores. This is because a covering layer is formed. The composition of the Mn-Ni-Cu alloy includes 5-70% by weight of Mn, 5-70% by weight of Ni, and 5-70% by weight of Cu, and the total of Mn, Ni, and Cu is 50% by weight of the total amount of the alloy. %
It is preferable that it is above. This is Mn−Ni−Cu
If the composition of the system alloy and the total amount of Mn, Ni, and Cu in the total amount of the alloy are out of the above range, the alloy will not react with the sintered metal, and the viscosity during heat treatment will be inappropriate, resulting in insufficient penetration into the pores. This is because the pores are not completely filled and the adhesion to the bonding brazing material deteriorates. As mentioned above, if the pores on the joint surface of the sintered metal are filled in advance with the Mn-Ni-Cu alloy, the filler metal will enter the pores of the sintered metal when joining the ceramic and sintered metal parts. Moreover, since the coating layer and the bonding brazing material form a strong joint, the sintered metal and ceramics are firmly bonded with sufficient joint strength. According to the present invention, the bonding surface of the ceramics is preferably metallized in advance. This treatment improves the adhesion with the brazing filler metal for joining,
Increases bond strength. Further, according to the present invention, the melting point is 300°C for bonding.
The following low melting point brazing filler metal is used. The reason for this is that the thermal expansion coefficients of metals and ceramics are significantly different, so stress is generated and remains during thermal cycles during bonding, which may reduce bonding strength or make bonding difficult. but,
This is because these problems can be solved by using a low melting point brazing filler metal with a melting point of 300°C or less. That is, when a low melting point brazing filler metal with a melting point of 300° C. or lower is used, the thermal stress is so large that it hardly poses a problem when compared with the bonding strength. As the above-mentioned low melting point brazing filler metal for joining, Sn-Pb brazing filler metal has particularly excellent wettability and reactivity with the Mn-Ni-Cu alloy filler, and has excellent reliability and
Preferable from both cost standpoints. In addition, the sintered metal used in the joined body of the present invention is Mn used for the filling and coating material.
- Fe-based alloys or Cu-based alloys that react well with Ni-Cu based alloys are preferred. By using the strongly bonded sintered metal-ceramic bonded body of the present invention in parts that require wear resistance, such as engine parts such as cams, tappets, rocker arms, etc. It is possible to achieve improved wear resistance and weight reduction compared to other parts, and also improve the durability of machines that use such parts. In these applications, the bonding strength between the sintered metal and the ceramics must be 8 kg/mm 2 or more. Examples Next, the present invention will be explained in detail with examples.
The present invention is not limited to these in any way. Example 1 A sintered metal member with a size of 10 x 10 x 20 mm whose main component is Fe and a ceramic member whose joint surface has been metallized was prepared, and the sintered metal member was prepared under the conditions shown in Table 1. Ceramic bonded bodies were prepared, and samples measuring 3 x 4 x 40 mm including the bonded portion were made from each bonded body and their four-point bending strength was measured. For comparison, samples were prepared under exactly the same conditions except that the joint surfaces of the sintered metal members were not treated with the coating material. FIG. 1 is a cross-sectional view of a joint portion of a sample of the present invention prepared under the conditions 3 in Table 1. As a covering material,
A Mn-Ni-Cu alloy (Mn: 20% by weight, Ni: 20% by weight, Cu: 20% by weight) was used, and a Sn-Pb-based solder alloy was used as the joining brazing material, and the joints were performed at 250°C. . Both were easily bonded. The cross section shown in FIG.
This shows a state in which they are joined via a joining brazing material 3, and the pores on the joint surface of the sintered metal 1 are filled with a coating material. When no coating material is used as in joining examples 2 and 7 shown in Table 1, the low melting point Pb-
Bonding is impossible even with Sn-based brazing filler metal, and both the coating material and the bonding filler metal are Pb-Sn, which has a low melting point.
In the case of joining examples 1 and 6 using brazing filler metals, good joining can be achieved, but the joining strength is poor. Furthermore, in joining examples 4, 5, 8, 10, 2, and 14, in which a high melting point brazing filler metal was used and joining was attempted at high temperatures, the Mn-Ni-Cu alloy used in the present invention was used as the coating material. However, the ceramics were damaged due to thermal stress. Joining example 3 in which a Mn-Ni-Cu alloy was used as the covering material and a Pb-Sn brazing material with a low melting point was used for joining, according to the method of the present invention.
In the cases of Nos. 9, 11, and 13, the ceramics were all bonded well without damaging them, and the bonding strength was also excellent. The results in Table 1 show that only in the case of the combination of the coating material and the joining brazing material according to the present invention, the required joining strength of the sintered metal/ceramics joint is 8 kg/mm 2
This shows that the above can be achieved. As described in detail above, it has been proven that in the sintered metal-ceramics bonded body according to the present invention, the ceramics do not break due to thermal stress during bonding, and both are firmly bonded.

【表】 実施例 2 Cuを主成分とする焼結金属を用いてコンプレ
ツサー本体を作製し、その内面全面にMn−Ni−
Cu系合金で空孔を充填、被覆層を形成させた後、
内張り材としてメタライズ処理したSiCセラミク
スをPb−Sn系ろう材を用いて接合した。 SiCセラミクスは良好に接合し、接合体は優れ
た性状を示し、100時間運転後も全く異常は見ら
れなかつた。 発明の効果 以上説明したように、本発明による焼結金属−
セラミクス接合体は、両者が強固に接合されてい
るため、従来は作製不可能であつたためにセラミ
クスを用いることができなかつた機械部品に、低
コストでセラミクスの優れた特性を付与し提供す
ることができる。 このため、本発明の焼結金属−セラミクス接合
体は、従来の自動車部品、機械加工部品、家庭用
電化製品の部品等において、耐摩耗性が要求され
る機械部品等を構成する部材として極めて有用な
ものである。
[Table] Example 2 A compressor body was made using sintered metal containing Cu as the main component, and Mn-Ni- was coated on the entire inner surface.
After filling the pores with Cu-based alloy and forming a coating layer,
Metallized SiC ceramics were bonded as the lining material using a Pb-Sn brazing filler metal. The SiC ceramics were well bonded, and the bonded product showed excellent properties, with no abnormalities observed even after 100 hours of operation. Effects of the Invention As explained above, the sintered metal according to the present invention
Ceramic bonded bodies are strongly bonded together, so they can be used to provide machine parts that could not be manufactured using ceramics, at low cost, with the excellent properties of ceramics. I can do it. Therefore, the sintered metal-ceramic bonded body of the present invention is extremely useful as a component of mechanical parts that require wear resistance, such as conventional automobile parts, machined parts, and parts of household electrical appliances. It is something.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の機械部品におけるセラミクス
と焼結金属の接合面の拡大図を示す。 〔主な参照番号〕、1……焼結金属、2……被
覆材(Mn−Ni−Cu系合金)、3……接合用ろう
材、4……メタライズ層、5……セラミクス。
FIG. 1 shows an enlarged view of the bonding surface between ceramics and sintered metal in a mechanical component of the present invention. [Main reference numbers], 1... Sintered metal, 2... Covering material (Mn-Ni-Cu alloy), 3... Joining brazing material, 4... Metallized layer, 5... Ceramics.

Claims (1)

【特許請求の範囲】 1 接合面を被覆材により被覆することで接合面
にある空孔を充填した焼結金属と接合面をメタラ
イズしたセラミクスとが融点が300℃以下の低融
点のろう材により接合されている焼結金属とセラ
ミクスとの接合体であつて、 上記焼結金属の接合面の空孔を充填する被覆材
がMnを5〜70重量%、Niを5〜70重量%、Cuを
5〜70重量%含み、Mn+Ni+Cuの合計が合金の
総量の50重量%以上であるMn−Ni−Cu系合金で
あり、上記ろう材がPb−Sn系ろう材であり、接
合体の接合強度が8Kg/mm2以上であることを特徴
とする焼結金属とセラミクスとの接合体。 2 焼結金属がFe系合金またはCu系合金である
特許請求の範囲第1項に記載の接合体。 3 セラミクスがSiC、Al2O3、ZrO2、Si3N4
よびSiCからなる群の中から選択される一種であ
る特許請求の範囲第1項または第2項に記載の接
合体。
[Claims] 1. Sintered metal that fills the pores on the joint surface by covering the joint surface with a coating material and ceramics that metallize the joint surface are combined with a brazing material with a low melting point of 300°C or less. It is a joined body of sintered metal and ceramics, and the coating material filling the pores on the joint surface of the sintered metal contains 5 to 70% by weight of Mn, 5 to 70% by weight of Ni, and Cu. It is a Mn-Ni-Cu alloy in which the total of Mn + Ni + Cu is 50% by weight or more of the total amount of the alloy, and the brazing filler metal is a Pb-Sn brazing filler metal, and the bonding strength of the joined body is A joined body of sintered metal and ceramics, characterized in that the weight is 8 Kg/mm 2 or more. 2. The joined body according to claim 1, wherein the sintered metal is an Fe-based alloy or a Cu-based alloy. 3. The joined body according to claim 1 or 2, wherein the ceramic is one selected from the group consisting of SiC, Al 2 O 3 , ZrO 2 , Si 3 N 4 and SiC.
JP12433187A 1987-05-21 1987-05-21 Joined body of sintered metal and ceramics Granted JPS63288976A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12433187A JPS63288976A (en) 1987-05-21 1987-05-21 Joined body of sintered metal and ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12433187A JPS63288976A (en) 1987-05-21 1987-05-21 Joined body of sintered metal and ceramics

Publications (2)

Publication Number Publication Date
JPS63288976A JPS63288976A (en) 1988-11-25
JPH0411512B2 true JPH0411512B2 (en) 1992-02-28

Family

ID=14882691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12433187A Granted JPS63288976A (en) 1987-05-21 1987-05-21 Joined body of sintered metal and ceramics

Country Status (1)

Country Link
JP (1) JPS63288976A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101890590B (en) * 2010-07-01 2012-07-25 哈尔滨工业大学 Composite soldering material for soldering titanium alloy and ceramic and method for soldering by using same
CN104064936A (en) * 2013-03-20 2014-09-24 德昌电机(深圳)有限公司 Commutator and manufacture method thereof
DE102014103722A1 (en) * 2013-03-20 2014-09-25 Johnson Electric S.A. A method of attaching a metal sheet to a graphite structure by means of a brazing and soldering method
EP2789597B1 (en) 2013-04-12 2017-11-15 Ansaldo Energia IP UK Limited Method for obtaining a configuration for joining a ceramic thermal insulating material to a metallic structure

Also Published As

Publication number Publication date
JPS63288976A (en) 1988-11-25

Similar Documents

Publication Publication Date Title
EP0211557B1 (en) Metal-ceramics jointed articles
US4723862A (en) Ceramic-metal joint structure
JPH0891951A (en) Aluminum-silicon nitride conjugate and its production
JPS606910B2 (en) metal-ceramics joint
US4580714A (en) Hard solder alloy for bonding oxide ceramics to one another or to metals
US6131797A (en) Method for joining ceramic to metal
JPH0411512B2 (en)
JP2003342700A (en) Sintered sliding material, sintered sliding member, and production method thereof
JPH0737346B2 (en) Joined body of ceramic body and metal body and joining method thereof
EP0826648A1 (en) Ceramic-metal jointed member
JP2004066324A (en) Brazing method between aluminum-based metal and different metal
KR100205795B1 (en) Valve lifter and its mamufacturing method of internal combustion engine
JPH024553B2 (en)
KR100246705B1 (en) Manufacturing method for sliding parts
JP3230124B2 (en) Internal-combustion engine tappet member having high joining strength with chip material
JP3230125B2 (en) Internal-combustion engine tappet member having high joining strength with chip material
JPS63277580A (en) Mechanical part constructed of bonded material of sintered metal and ceramic and production thereof
JP3254909B2 (en) Internal-combustion engine tappet member having high joining strength with chip material
JPH1162517A (en) Sliding component for internal combustion engine
JP3230126B2 (en) Internal-combustion engine tappet member having high joining strength with chip material
JP2932831B2 (en) Friction sliding member
JP3230127B2 (en) Internal-combustion engine tappet member having high joining strength with chip material
JP2827909B2 (en) Internal combustion engine tappet member with high bonding strength with tip material
JPH01153577A (en) Joined material of metal and ceramic and production thereof
JPH07116493B2 (en) Joining method for ferrous members