JPH01107073A - Cooling device - Google Patents

Cooling device

Info

Publication number
JPH01107073A
JPH01107073A JP26440187A JP26440187A JPH01107073A JP H01107073 A JPH01107073 A JP H01107073A JP 26440187 A JP26440187 A JP 26440187A JP 26440187 A JP26440187 A JP 26440187A JP H01107073 A JPH01107073 A JP H01107073A
Authority
JP
Japan
Prior art keywords
metal hydride
temperature
equilibrium pressure
hydrogen
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26440187A
Other languages
Japanese (ja)
Inventor
Isao Takeshita
功 竹下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP26440187A priority Critical patent/JPH01107073A/en
Publication of JPH01107073A publication Critical patent/JPH01107073A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

PURPOSE: To provide a cooling apparatus capable of obtaining low temperature in a short time by defining equilibrium pressure upon hydrogen occulusion of first metal hydride to be lower than equilibrium pressure at low output temperature of second metal hydride. CONSTITUTION: First metal hydride 3 and second metal hydride having different hydrogen equilibrium pressure at an arbitrary temperature are put in containers 1, 2, which containers are then communicated with each other through a pipe 5 having a valve 6 in the course thereof and are filled with hydrogen gas to construct an intermittently operated cooling apparatus. Herein, temperature and heat capacity of the low equilibrium pressure first metal hydride 3 before hydrogen occulusion reaction, and heat capacity of the container 1 are defined such that the equilibrium pressure of the first metal hydride 3 upon hydrogen occulusion to be lower than the equilibrium pressure of the second metal hydride at cold output temperature. Hereby, temperature rise due to heating is suppressed to be lower, and hence low temperature is ensured in a short time.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、熱エネルギーを用いてより低い温度を得る一
つの手段として、空気調和或いは冷蔵冷2・\−−− 凍等に応用しうるものである。
[Detailed Description of the Invention] Industrial Application Field The present invention can be applied to air conditioning, refrigeration, freezing, etc. as a means of obtaining lower temperatures using thermal energy. be.

特に本発明は急速な冷却を必要とする場合に有効な方法
で、冷凍冷蔵庫などにおける急速な冷却補助手段として
有用である。
In particular, the present invention is an effective method when rapid cooling is required, and is useful as a rapid cooling aid in refrigerators and freezers.

従来の技術 食品等を冷凍保存するに際し、急速に温度を低下させ凍
結することが、鮮度を維持する上で重要とされており、
通常の圧縮式冷凍機による冷凍システムでは、冷媒の蒸
発器に直接被冷凍物を接触させて被冷凍物の温度を低下
させる方法などが用いられているが、さらに急速に冷却
するためには、冷媒の蒸発温度をさらに下げる必要があ
る。しかし温度が下ると蒸発圧力も低下するため能力を
維持するためには圧縮機の能力のより大きいものが必要
となシ、通常の運転時には過大設備となり不経済である
Conventional technology When preserving foods by freezing, it is important to rapidly lower the temperature and freeze them in order to maintain freshness.
In a normal refrigeration system using a compression refrigerator, a method is used in which the temperature of the frozen object is lowered by bringing the object into direct contact with a refrigerant evaporator, but in order to cool it even more rapidly, It is necessary to further lower the evaporation temperature of the refrigerant. However, as the temperature decreases, the evaporation pressure also decreases, so in order to maintain the capacity, a compressor with a higher capacity is required, and during normal operation, the equipment becomes oversized and uneconomical.

そこで金属水素化物冷却装置のごとき間欠作動式の冷却
装置により、急速な冷却を必要とする時にのみこれを作
動させ、通常の運転時に水素ガスを逆流させて準備状態
としておくという方法が発3ページ 明されている。
Therefore, a method is to use an intermittent cooling system such as a metal hydride cooling system, which is activated only when rapid cooling is required, and is kept in a ready state by backflowing hydrogen gas during normal operation. It has been made clear.

これは一種の冷蓄熱と考えられ、金属水素化物と水素の
組み合せは、低温でも十分平衡圧の高い材料があるので
有用な方法である。
This is considered a type of cold heat storage, and the combination of metal hydrides and hydrogen is a useful method because there are materials that have a sufficiently high equilibrium pressure even at low temperatures.

まず金属水素化物を用いた間欠式冷却装置の原理を簡単
に説明する。
First, the principle of an intermittent cooling device using metal hydrides will be briefly explained.

間欠式ヒートポンプとは、第2図に示すごとく、2つの
容器、1.2にそれぞれ同一温度(温度は任意)におけ
る平衡圧の異る金属水素化物となる合金3.4を封入し
、両者を連通ずる配管5とその間に弁6を設け、真空排
気の後、水素ガスを封入したものである。
As shown in Figure 2, an intermittent heat pump consists of two containers (1.2) filled with metal hydride alloys (3.4) that have different equilibrium pressures at the same temperature (temperature is arbitrary). A communicating piping 5 and a valve 6 are provided between them, and after evacuation, hydrogen gas is sealed.

第3図は間欠式冷却装置を示すサイクル図である。FIG. 3 is a cycle diagram showing an intermittent cooling device.

横軸に給体温度Tの逆数、縦軸に圧力の対数をとったも
ので、それぞれの金属水素化物の温度圧力特性は、本図
上で、それぞれ−本の直線となる。
The horizontal axis is the reciprocal of the feed temperature T, and the vertical axis is the logarithm of the pressure, and the temperature-pressure characteristics of each metal hydride are represented by - lines on this diagram.

今平衡圧の低い金属水素化物の特性線をAD、高い方を
Beで表わしたとし、それぞれの材料をMHI 、MH
2と呼ぶことにする。第2図の容器1にMHl、容器2
にMH2が入っているものとする。
Let us now assume that the characteristic line of a metal hydride with a low equilibrium pressure is represented by AD, and the higher equilibrium pressure is represented by Be, and the respective materials are represented by MHI, MH
I'll call it 2. MHL in container 1 in Figure 2, container 2
Assume that MH2 is contained in .

まず、MHlを比較的水素化が進んだ状態に、MH2が
脱水素化が進んだ状態にあるとし、MHlを74度に、
MH2を72度に保つと、それぞれの平衡圧はPj+P
2となり、Pl〉T2となっておれば、第2図の弁6を
開くことにより、水素は容器1から容器2に移動し、M
Hlは脱水素化し、MH2は水素化する。
First, assume that MHL is in a relatively hydrogenated state and MH2 is in a relatively dehydrogenated state, and MHL is heated to 74 degrees.
If MH2 is kept at 72 degrees, each equilibrium pressure is Pj + P
2, and Pl>T2, by opening valve 6 in FIG. 2, hydrogen moves from container 1 to container 2, and M
Hl is dehydrogenated and MH2 is hydrogenated.

この際MH1は吸熱し、MH2は発熱するのでMHlを
加熱し、MH2を放熱させる必要がある。
At this time, MH1 absorbs heat and MH2 generates heat, so it is necessary to heat MHL and radiate heat from MH2.

ある一定時間後、水素は殆んどMHlからMH2に移る
ので、こ\で弁6を閉じ、MHlを74度に冷却すると
、その平衡圧はT4 に下る。次に弁6を開くと、MH
2は始めT2の温度にあり、圧力もT2にあるので、水
素は急速にMH2から放出され、M)11に吸着されて
ゆく。
After a certain period of time, most of the hydrogen is transferred from MHL to MH2, so when valve 6 is closed and MHL is cooled to 74 degrees, its equilibrium pressure drops to T4. Next, when valve 6 is opened, MH
Since 2 is initially at a temperature of T2 and the pressure is also at T2, hydrogen is rapidly released from MH2 and adsorbed by M)11.

この際MI(2では吸熱反応であるため、温度がT3ま
で下り、この温度で吸熱を続ける。すなわち冷却能力を
発生する。
At this time, since MI(2) is an endothermic reaction, the temperature drops to T3 and continues to absorb heat at this temperature. In other words, cooling capacity is generated.

6ベーノ 温度で3は圧力差p3−p4による水素の脱離速度およ
びMH2に対する熱の流れ込みの大きさできまる。
6 at Beno temperature is determined by the desorption rate of hydrogen due to the pressure difference p3-p4 and the magnitude of the heat flow into MH2.

又MH1は発熱するので、この熱を速かに取り除かない
とT4という温度を保つことはできず、温度が上昇する
ため、平衡圧P4  も上昇し、T3−T4が減少して
反応が遅くなり、冷却能力が減少する。
Also, since MH1 generates heat, it is impossible to maintain the temperature T4 unless this heat is quickly removed, and as the temperature rises, the equilibrium pressure P4 also rises, T3-T4 decreases, and the reaction slows down. , cooling capacity is reduced.

従ってMHlの放熱が十分性われれば、MH2の吸熱反
応は急速に進行し、始めのT2 温度よりかなり低いT
3 温度で冷却能力を発揮する。
Therefore, if the heat dissipation of MHL is sufficient, the endothermic reaction of MH2 will proceed rapidly, and the T2 temperature will be much lower than the initial T2 temperature.
3 Demonstrates cooling ability depending on the temperature.

これが間欠式ヒートポンプサイクルの原理による低温を
得る方法であり、MHlの温度上昇をおさえることがよ
り低い温度を急速に達成する要点である。
This is a method of obtaining a low temperature based on the principle of an intermittent heat pump cycle, and suppressing the temperature rise of MHL is the key to rapidly achieving a lower temperature.

間欠式サイクルは使用する材料が有限であるから、成る
時間で反応は終了するので、再び弁6を閉じ、MHlを
T1  に加熱すると圧力はPl  に上昇するので、
弁6を開くと、水素は再びMHlからMH2に移動し、
次の冷却の準備態勢ができあA−7 がる。
Since the materials used in the intermittent cycle are limited, the reaction will be completed in a certain amount of time, so when valve 6 is closed again and MHL is heated to T1, the pressure will rise to Pl.
When valve 6 is opened, hydrogen moves from MHL to MH2 again,
A-7 is now ready for the next cooling.

この原理を用いて冷蔵庫のような限られた空間を常に冷
却しようとした場合に、MH2を充填した容器を、その
空間内に固定して設けると、先にものべたごとく、再生
時に逆に発熱するため都合が悪い。
When trying to constantly cool a limited space such as a refrigerator using this principle, if a container filled with MH2 is fixed and installed in that space, it will become sticky and generate heat during regeneration. It is inconvenient to do so.

しかし、例えば急速にある物を冷却し、冷却し終ったも
のは別の低温の庫内に保存するといっだ使用方法では前
記金属水素化物を用いた間欠作動冷却装置は、適切に使
用された場合は、短時間に低い温度を得る手段として有
効である。
However, when used appropriately, the intermittent operation cooling device using metal hydrides can be is effective as a means of obtaining a low temperature in a short time.

発明が解決しようとする問題点 先にものべたごとく、間欠式金属水素化物冷却装置で急
速冷却を行う場合、得られる温度が通常のR12を用い
た冷凍サイクルより低温が得られる可能性は、例えば、
TiTi−0r−系合金で一50℃は十分得られるから
、問題は冷却速度が十分速いかということにある。
Problems to be Solved by the Invention As mentioned earlier, when performing rapid cooling with an intermittent metal hydride cooling device, there is a possibility that the temperature obtained will be lower than that of a normal refrigeration cycle using R12, for example. ,
Since a temperature of -50° C. can be sufficiently obtained with TiTi-0r-based alloys, the question is whether the cooling rate is sufficiently fast.

この反応系の反応速度が温度律速であることはよく知ら
れており、金属水素化物MH2から急速7ページ に水素を脱離させるためには、金属水素化物MH1に急
速に水素を吸着させる必要があることはいうまでもない
It is well known that the reaction rate of this reaction system is temperature-determined, and in order to rapidly desorb hydrogen from metal hydride MH2, it is necessary to rapidly adsorb hydrogen to metal hydride MH1. It goes without saying that there is.

金属水素化物MH1に水素が吸着される反応は発熱反応
であるため、この熱を急速に除去しないと、金属水素化
物MH1の温度が上昇し、平衡圧を押し上げるため、金
属水素化物MH2の平衡圧との差が小となり、反応速度
が低下する。
The reaction in which hydrogen is adsorbed on metal hydride MH1 is an exothermic reaction, so if this heat is not rapidly removed, the temperature of metal hydride MH1 will rise, pushing up the equilibrium pressure, which will lower the equilibrium pressure of metal hydride MH2. The difference between the

従って金属水素化物MH1の放熱をよくすることが1反
応速度を速め、急速に温度を下げるための重点課題であ
るが、金属水素化物は微粉化し、熱伝導かあまシよくな
いという欠点を持っておシ、大きな伝熱面上に薄い層上
に金属水素化物を置く必要があり、実施がむつかしい。
Therefore, improving the heat dissipation of metal hydride MH1 is an important issue in order to speed up the reaction rate and lower the temperature rapidly, but metal hydrides have the disadvantage of being finely powdered and having poor heat conductivity. However, it requires placing the metal hydride in a thin layer on a large heat transfer surface, which is difficult to implement.

問題点を解決するだめの手段 任意に定めた温度における水素平衡圧がそれぞれ異る2
種類の金属水素化物を、それぞれ容器に入れ、中間に弁
を有する配管でこれら容器を連通し、水素ガスを充填し
て間欠作動式冷却装置を形成し、この金属水素化物の組
み合せで、平衡圧の低い第1の金属水素化物MH1が積
極的放熱手段を持たない容器内で水素を吸蔵し、発熱し
た結果到達する温度における水素平衡圧が、冷却側に用
いられる平衡圧の高い第2の金属水素化物MH2に求め
られる冷出力温度における第2の金属水素化物Ml(2
の平衡圧より低くなるごとくに、第1の金属水素化物M
H1の水素吸蔵反応前の温度および、第1の金属水素化
物MH1およびその容器の熱容量を定める。
A solution to the problem is to have different hydrogen equilibrium pressures at arbitrarily determined temperatures2.
Different types of metal hydrides are placed in containers, these containers are connected through piping with a valve in the middle, and filled with hydrogen gas to form an intermittent operating cooling device. The hydrogen equilibrium pressure at the temperature reached as a result of the first metal hydride MH1 absorbing hydrogen in a container without active heat dissipation means and generating heat is higher than that of the second metal with a high equilibrium pressure used on the cooling side. The second metal hydride Ml(2
As the pressure of the first metal hydride M becomes lower than the equilibrium pressure of
The temperature before the hydrogen storage reaction of H1 and the heat capacity of the first metal hydride MH1 and its container are determined.

作用 間欠作動式冷却装置としての作用は既にのべてあシ、何
等変らない。
The function as an intermittent cooling device has already been established and will not change in any way.

本発明においては第1の金属水素化物MH1は、たとえ
積極的放熱手段を与えられていなくとも、温度上昇は以
下のごとくである。
In the present invention, even if the first metal hydride MH1 is not provided with active heat dissipation means, the temperature rise is as follows.

第1の金属水素化物MH1の吸着反応開始時の温度をT
4 、放熱が全く無い場合の到達温度T41とする。
The temperature at the start of the adsorption reaction of the first metal hydride MH1 is T
4. The temperature reached is T41 when there is no heat radiation.

第1の金属水素化物MH1およびその容器の熱容量合わ
せてC1とする。反応に際し発生する熱9ヘージ をQlとすれば、(T4/−T4)C,=Q。
The total heat capacity of the first metal hydride MH1 and its container is C1. If the heat 9hage generated during the reaction is Ql, then (T4/-T4)C,=Q.

かつ第1の金属水素化物MH1のF[+4/度における
平衡圧をP4′、第2金属水素化物MH2の求められる
冷却温度における平衡圧をP3とするとP4/<P3 が成立する。
Further, if the equilibrium pressure of the first metal hydride MH1 at F[+4/degrees] is P4', and the equilibrium pressure of the second metal hydride MH2 at the required cooling temperature is P3, then P4/<P3 holds true.

実施例 本発明の一実施例を以下に示す。第1の金属水素化物と
してTio、5zro、5Mno、8Cr1.oCuo
、2を用いる。第2の金属水素化物としてTier、、
2Mno、、Q用いる。第1図にこれら金属水素化物の
温度圧力線図と、これを用いたサイクルを示す。
EXAMPLE An example of the present invention is shown below. As the first metal hydride, Tio, 5zro, 5Mno, 8Cr1. oCuo
, 2 is used. Tier as the second metal hydride,
2Mno,,Q is used. FIG. 1 shows temperature-pressure diagrams of these metal hydrides and cycles using them.

第2の金属水素化物的430fに対し、第1の金属水素
化物を20ooy用い、これを25001の容器に収容
した。
20ooy of the first metal hydride was used for 430f of the second metal hydride, and this was housed in a 25001 container.

このシステムでの水素移動量は約2モルであり。The amount of hydrogen transferred in this system is approximately 2 moles.

第1の金属水素化物における発熱量は15 KO!Ll
であった。
The calorific value in the first metal hydride is 15 KO! Ll
Met.

反応開始時の温度T4はO’Cとした。The temperature T4 at the start of the reaction was O'C.

発熱による昇温幅をΔTとすると 1o ・・−1 ΔT×熱容量=15Kcalであり、熱容量は、約5o
oKcal/度であるから、昇温幅ΔTは30°C2従
って反応終了後温度+r 4/は30°Cであった。
If the temperature rise width due to heat generation is ΔT, then 1o...-1 ΔT x heat capacity = 15Kcal, and the heat capacity is approximately 5o
oKcal/degree, the temperature increase width ΔT was 30°C2, so the temperature +r4/ after the completion of the reaction was 30°C.

第1の金属水素化物の30’Cにおける水素平衡圧はo
s4kg/dであり、第2の金属水素化物の−50’C
における水素平衡圧は0.7kg / cAであった。
The hydrogen equilibrium pressure at 30'C of the first metal hydride is o
s4kg/d, and -50'C of the second metal hydride
The hydrogen equilibrium pressure at was 0.7 kg/cA.

この例の場合、第1の金属水素化物の量は2モルの水素
の吸脱着には十分すぎる量であるため、より安価な金属
粉を金属水素化物に混入させることも可能であり、重量
比にして1:1の比率で銅粉を混合しても問題はなかっ
た。
In this example, the amount of the first metal hydride is more than enough to adsorb and desorb 2 moles of hydrogen, so it is possible to mix cheaper metal powder into the metal hydride, and the weight ratio There was no problem even when copper powder was mixed at a ratio of 1:1.

一般に冷却サイクルの成績係数(冷却出力÷加熱入力)
を、できるだけ大にするためには、金属水素化物に対す
る容器の熱容量をできるかぎり小にすることが重要であ
り、又第1の金属水素化物、第2の金属水素化物、いづ
れも水素の吸脱着幅を広くすることが重要である。
In general, the coefficient of performance of a cooling cycle (cooling output ÷ heating input)
In order to make the heat capacity of the metal hydride as large as possible, it is important to minimize the heat capacity of the container for the metal hydride. It is important to have a wide range.

従って本発明のごとく第1の金属水素化物ないしは1、
これを収容する容器の熱容量を大きくする11 ノ・−
シ ことは、加熱に余分なエネルギーを要し、成績係数の点
では不利である。
Therefore, as in the present invention, the first metal hydride or 1,
Increasing the heat capacity of the container that houses it 11 ノ・-
This requires extra energy for heating, which is disadvantageous in terms of coefficient of performance.

しかし々から、本発明のごとくこの冷却サイクルを用い
て、できるだけ急速に冷却することが目的の場合は、こ
のように第1の金属水素化物およびその容器の熱容量を
大きくすることにより発熱による昇温を低くおさえ、急
速彦吸脱着反応を進めることは極めて有効であり、通常
のT4′ないしはT4 とT4′の間の温度に出発点を
持ち、反応による熱を、放熱器によって捨て、最初に選
んだ温度にできるだけ保とうという方法では、どうして
も速かな反応に追随することができず、放熱器の温度に
比べ、金属水素化物の粒子−つ一つはか々り温度が上昇
し、反応速度を著しく低下させる。
However, if the purpose is to cool as quickly as possible using this cooling cycle as in the present invention, increasing the heat capacity of the first metal hydride and its container will reduce the temperature increase due to heat generation. It is extremely effective to keep the temperature low and proceed with the rapid Hiko adsorption/desorption reaction, starting at the normal temperature of T4' or between T4 and T4', and discarding the heat from the reaction with a heat radiator. However, if you try to keep the temperature as low as possible, you will not be able to keep up with the rapid reaction, and the temperature of each metal hydride particle will rise sharply compared to the temperature of the radiator, slowing down the reaction rate. Significantly lower.

発明の効果 このように本発明による金属水素化物を用いた冷却装置
は、冷凍庫に付加する急速冷凍システムのごとく、ある
限られた量のものをできるだけ短時間に冷却する装置に
適用することにより、極めて有効である。
Effects of the Invention As described above, the cooling device using a metal hydride according to the present invention can be applied to a device that cools a limited amount of material in as short a time as possible, such as a quick freezing system added to a freezer. Extremely effective.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の温度圧力線図上のサイクル
図、第2図は間欠式ヒートポンプサイクルの構成図、第
3図は間欠式ヒートポンプサイクルの原理を示す温度圧
力線図上のサイクル図である。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 Ir)0   11)S) 40XI K) 10 0
−10−ffl −XI  −41J  −50第2f
!1 第3図 TIT+T273  →了
Figure 1 is a cycle diagram on a temperature-pressure diagram of an embodiment of the present invention, Figure 2 is a configuration diagram of an intermittent heat pump cycle, and Figure 3 is a diagram on a temperature-pressure diagram showing the principle of an intermittent heat pump cycle. It is a cycle diagram. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure Ir) 0 11) S) 40XI K) 10 0
-10-ffl -XI -41J -50 2nd f
! 1 Figure 3 TIT+T273 →Complete

Claims (1)

【特許請求の範囲】[Claims] 任意に定めた温度における水素平衡圧の異なる二種類の
金属水素化物をそれぞれ容器に入れ、中間に弁を有する
配管でこれら容器を連通し、水素ガスを充填して間欠作
動式冷却装置を形成し、平衡圧の低い第1の金属水素化
物が、積極的放熱手段を持たない容器内で水素を吸蔵し
、発熱した結果到達する温度における平衡圧が、平衡圧
の高い第2の金属水素化物に求められる冷出力温度にお
ける第2の金属水素化物の平衡圧より低くなるごとくに
、第1の金属水素化物の水素吸蔵反応前の温度および、
第1の金属水素化物およびその容器の熱容量を定めるこ
とを特徴とする冷却装置。
Two types of metal hydrides with different hydrogen equilibrium pressures at arbitrarily determined temperatures are placed in containers, and these containers are communicated through a pipe with a valve in the middle, and hydrogen gas is filled to form an intermittent-operating cooling device. , the first metal hydride with a low equilibrium pressure absorbs hydrogen in a container without active heat dissipation means, and as a result of generating heat, the equilibrium pressure at the temperature reached becomes that of the second metal hydride with a high equilibrium pressure. the temperature of the first metal hydride before the hydrogen storage reaction, and
A cooling device characterized in that it defines the heat capacity of a first metal hydride and its container.
JP26440187A 1987-10-20 1987-10-20 Cooling device Pending JPH01107073A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26440187A JPH01107073A (en) 1987-10-20 1987-10-20 Cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26440187A JPH01107073A (en) 1987-10-20 1987-10-20 Cooling device

Publications (1)

Publication Number Publication Date
JPH01107073A true JPH01107073A (en) 1989-04-24

Family

ID=17402648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26440187A Pending JPH01107073A (en) 1987-10-20 1987-10-20 Cooling device

Country Status (1)

Country Link
JP (1) JPH01107073A (en)

Similar Documents

Publication Publication Date Title
Meunier Solid sorption heat powered cycles for cooling and heat pumping applications
EP1843076B1 (en) Thermal insulator
US5048301A (en) Vacuum insulated sorbent driven refrigeration device
US5497630A (en) Method and apparatus for hydride heat pumps
WO1989000270A1 (en) Self-contained cooling apparatus
JPH01302077A (en) Heat exchange system
US3704600A (en) Cryogenic refrigerator
JP2004233039A (en) Cooling container equipped with adsorption cooling device
JPH01107073A (en) Cooling device
JP3126086B2 (en) Compression metal hydride heat pump
AU773256B2 (en) Preparation of refrigerant materials
JPH09324960A (en) Heat generating or heat absorbing method and apparatus using hydrogen storing alloy
US6843071B1 (en) Preparation of refrigerant materials
JPH01107074A (en) Cooling system
JPS6037395B2 (en) Portable heating or cooling device
JPH0774710B2 (en) Refrigerating and cooling system by combining Peltier element and hydrogen storage alloy
JP2568484B2 (en) Multi-effect heat pump device
JPS5929624B2 (en) heating or cooling equipment
JPH02306078A (en) Portable refrigerating storage using dry ice and portable refrigerating storage having carbonated drink producer
JPS6280452A (en) Refrigeration cycle
JPH01197301A (en) Hydrogen storage vessel
JPS6331714B2 (en)
JPH02259375A (en) Cooling apparatus using metal hydride
JPH0830632B2 (en) Intermittent heater
T V DESICCANT ASSISTED DEHUMIDIFICATION AND COOLING SYSTEM