JPH0355750B2 - - Google Patents

Info

Publication number
JPH0355750B2
JPH0355750B2 JP57216623A JP21662382A JPH0355750B2 JP H0355750 B2 JPH0355750 B2 JP H0355750B2 JP 57216623 A JP57216623 A JP 57216623A JP 21662382 A JP21662382 A JP 21662382A JP H0355750 B2 JPH0355750 B2 JP H0355750B2
Authority
JP
Japan
Prior art keywords
pressure
hydrogen
resistant metal
heat
refrigerator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57216623A
Other languages
Japanese (ja)
Other versions
JPS59107162A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP21662382A priority Critical patent/JPS59107162A/en
Publication of JPS59107162A publication Critical patent/JPS59107162A/en
Publication of JPH0355750B2 publication Critical patent/JPH0355750B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 産業上の利用分野 本発明は金属水素化物から水素が放出する時の
吸熱量に着目して、この吸熱作用による冷熱源を
利用した冷却装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention focuses on the amount of heat absorbed when hydrogen is released from a metal hydride, and relates to a cooling device that utilizes a cold heat source due to this heat absorption.

従来例の構成とその問題点 ある種の金属(主に合金)は水素を吸蔵し、金
属水素化物を作ることが知られている。この場
合、金属の単位重量当りより多くの水素を吸蔵
し、使用環境温度で可逆的にその水素を放出す
る。また金属水素化物より水素を放出する過程は
吸熱反応であることも公知である(たとえばU
S Patent3075361,Philips Research Reports
Supplements No.1(1976)など)。
Structure of conventional examples and their problems It is known that certain metals (mainly alloys) absorb hydrogen and form metal hydrides. In this case, more hydrogen is absorbed per unit weight of the metal, and the hydrogen is reversibly released at the operating temperature. It is also known that the process of releasing hydrogen from metal hydrides is an endothermic reaction (for example, U
S Patent3075361, Philips Research Reports
Supplements No. 1 (1976), etc.).

また水素解離圧力の異なる2種以上の金属水素
化物を用い、一方の金属水素化物から放出される
水素を他方の金属水素化物に吸蔵させる時に発生
する水素放出側の吸熱量を冷熱源として利用する
事も、特開昭51−22151公報などに示されている。
また従来、冷却装置の1例として冷蔵庫である
が、圧縮器等による騒音が高く、可動部の少な
い、しかも音の静かな冷蔵庫が要望されていた。
In addition, by using two or more metal hydrides with different hydrogen dissociation pressures, the amount of heat absorbed on the hydrogen release side generated when the hydrogen released from one metal hydride is stored in the other metal hydride is used as a cold heat source. This is also shown in Japanese Patent Application Laid-Open No. 51-22151.
Conventionally, a refrigerator is an example of a cooling device, but since the compressor and the like generate a lot of noise, there has been a demand for a quiet refrigerator with few moving parts.

発明の目的 本発明は上記従来技術に鑑み、静音冷蔵庫など
にも適用可能な冷却装置を提供するものである。
OBJECTS OF THE INVENTION In view of the above-mentioned prior art, the present invention provides a cooling device that can be applied to silent refrigerators and the like.

発明の構成 本発明は同じ温度で水解離圧力の異なる2種類
以上の金属水素化物を各々内蔵した熱交換器を有
する2個の耐圧性金属容器(MH1とMH2)を自
動弁を介して連結させて1組とし、この一対の耐
圧性金属容器を2組(MH1−MH2とMH3
MH4)以上設け、水素解離圧力の高い金属水素
化物が内蔵されている一方の耐圧性金属容器
(MH2とMH4側)が断熱庫壁に装着され、パツ
キングを通して、庫内外に挿入と引出し可能と
し、水素解離圧力の低い金属水素化物が内蔵され
ている他方の耐圧性金属容器(MH1とMH3側)
を加熱と冷却を交互に行なわしめて、前記庫内に
装着されている耐圧性金属容器(MH2とMH4
側)で発生する冷熱源を交互に利用し、庫内を連
続的に冷却するようにした冷却装置である。
Structure of the Invention The present invention provides two pressure-resistant metal containers (MH 1 and MH 2 ) each having a built-in heat exchanger containing two or more types of metal hydrides having the same temperature and different water dissociation pressures (MH 1 and MH 2 ) via an automatic valve. These two pressure-resistant metal containers are connected to form one set (MH 1 −MH 2 and MH 3
One pressure-resistant metal container (MH 2 and MH 4 side ), which contains a metal hydride with a high hydrogen dissociation pressure, is attached to the insulated chamber wall and can be inserted into and pulled out of the chamber through packing. The other pressure-resistant metal container (MH 1 and MH 3 side) contains a metal hydride with low hydrogen dissociation pressure.
The pressure-resistant metal containers (MH 2 and MH 4
This is a cooling device that continuously cools the inside of the refrigerator by alternately using the cold heat sources generated on the sides.

実施例の説明 金属水素化物による吸熱反応はつぎに示す通り 〔MH〕 金属水素化物+ΔH(熱量)H2放出(吸熱) ――――――→ ←―――――― H2吸蔵(発熱) 〔M〕 金属+1/2 H2 水素 であり、多くの金属水素化物が開発されている。
たとえば、FeTi,LaNi5,MmNi5(Mm:ミツシ
ユメタル),TiMn系など、一方逆過程(左側反
応)は発熱反応である。
Explanation of Examples The endothermic reaction by metal hydride is as shown below [MH] Metal hydride + ΔH (calorific value) H 2 release (endothermic) ――――――→ ←―――――― H 2 occlusion (exothermic) [M] Metal + 1/2 H 2 hydrogen, and many metal hydrides have been developed.
For example, in FeTi, LaNi 5 , MmNi 5 (Mm: Mitsushi Metal), TiMn systems, etc., the reverse process (left side reaction) is an exothermic reaction.

金属水素化物の特性の一例として、TiMn1.5
Hxについて説明する。第1図に水素吸蔵量(金
属原子と水素原子の比(H/M))と水素解離圧
力の関係を示す。第1図に示すように水素吸蔵量
(H/M)の比較的広い範囲でTiMn1.5−Hxの水
素解離圧力は事実上ほぼ一定値の均衡状態とな
り、この均衡圧力より高い水素圧力を印加すると
水素は水素成分の多い金属水素化物ができるまで
吸蔵される。また、容器内圧力を下げると水素は
温度が一定ならば均衡圧力にそつて放出し水素吸
蔵量が減少し枯渇状態近くなるとその均衡圧力は
急激に低下する。
As an example of the properties of metal hydrides, TiMn 1.5
Explain Hx. FIG. 1 shows the relationship between hydrogen storage capacity (ratio of metal atoms to hydrogen atoms (H/M)) and hydrogen dissociation pressure. As shown in Figure 1, over a relatively wide range of hydrogen storage capacity (H/M), the hydrogen dissociation pressure of TiMn 1.5 -Hx is virtually constant at an equilibrium state, and when a hydrogen pressure higher than this equilibrium pressure is applied, Hydrogen is occluded until a metal hydride with a high hydrogen content is formed. Furthermore, when the pressure inside the container is lowered, hydrogen is released along the equilibrium pressure if the temperature is constant, and the amount of hydrogen stored decreases, and as the hydrogen storage approaches a depleted state, the equilibrium pressure decreases rapidly.

この様に金属水素化物は平衡圧力を下げること
により水素放出過程となり、この時吸熱反応がお
こる。この吸熱量は金属水素化物の種類によつて
TiMn1.5−Hx異なるが、TiMn1.5−Hxでは約
7.0kcal/molH2の吸熱量がある。この吸熱量を
有効に利用し、連続冷却を可能とした冷却装置で
ある。
In this way, the metal hydride undergoes a hydrogen release process by lowering the equilibrium pressure, and an endothermic reaction occurs at this time. The amount of heat absorbed depends on the type of metal hydride.
TiMn 1.5 −Hx is different, but TiMn 1.5 −Hx is about
It has an endothermic amount of 7.0kcal/molH 2 . This cooling device effectively utilizes this amount of heat absorption to enable continuous cooling.

第2図に金属水素化物による冷却サイクルを模
式的に示す。同一温度で水素解離圧力の異なる金
属水素化物MH1,MH2の温度と圧力の特性か
ら、まず、低解離圧のMH1(A点)を加熱し、高
解離圧力MH2の吸蔵圧力(C点)より高くする
(B点)。B点とC点の圧力差よりMH1からMH2
に水素が移動し、C点より水素が吸蔵される。つ
いでMH1とMH2が冷えると両者の圧力が下がり
D点とA点の圧力差が形成し、MH2からMH1
水素が移動し、D点で水素の放出による吸熱作用
で冷却されるしくみである。ここでA点:40℃,
1.5気圧,B点:130℃,30気圧,C点:40℃,15
気圧,D点:0℃,4気圧である。
FIG. 2 schematically shows a cooling cycle using metal hydrides. From the temperature and pressure characteristics of metal hydrides MH 1 and MH 2 which have different hydrogen dissociation pressures at the same temperature, first, MH 1 with a low dissociation pressure (point A) is heated, and the storage pressure of MH 2 with a high dissociation pressure (C point) higher (point B). From the pressure difference between points B and C, MH 1 to MH 2
Hydrogen moves to and is occluded from point C. Next, when MH 1 and MH 2 cool, the pressure between them decreases and a pressure difference is formed between points D and A, hydrogen moves from MH 2 to MH 1 , and at point D it is cooled by the endothermic action due to the release of hydrogen. This is how it works. Here, point A: 40℃,
1.5 atm, point B: 130℃, 30 atm, point C: 40℃, 15
Atmospheric pressure, point D: 0°C, 4 atm.

第3図および第4図に冷却装置の構成を示す。
第3図において、熱交換器内蔵型耐圧性金属容器
1,2,3,4の中に一定量の金属水素化物
MH1,MH2,MH3,MH4を入れ、バルブ5,
6を介して、連結管7,8で結合しその中を水素
が移動できる構造とした。一対の組合せを1組と
し、一方の耐圧性金属容器2,4を断熱庫壁9に
装着する。この耐圧性金属容器はパツキング1
0,11で庫内側と庫外側との熱移動を防止する
様にH型構造(両端の外径のみ大きくした容器)
とし、他方の耐圧性金属容器1,3は加熱できる
様に電気ヒータ12,13などが各々取付けられ
ている。また、水素バルブより供給され、一方の
金属水素化物が吸蔵されるとすべて密閉状態とし
た。そして、水素を吸蔵しているMH1を加熱し、
水素を放出させてMH2に吸蔵させる時に、耐圧
性金属容器2は庫外側に出して放熱する(再生過
程)。この過程において、水素を吸蔵している
MH4より両者の圧力差で水素をMH3に吸蔵させ
る時に、耐圧性金属容器4は庫内側に挿入して庫
内の熱を吸収し、庫内の温度を下げる(冷却過
程)。
The configuration of the cooling device is shown in FIGS. 3 and 4.
In Figure 3, a certain amount of metal hydride is contained in pressure-resistant metal containers 1, 2, 3, and 4 with built-in heat exchangers.
Put in MH 1 , MH 2 , MH 3 , MH 4 , valve 5,
6 and connecting pipes 7 and 8, so that hydrogen can move through them. A pair of pressure-resistant metal containers 2 and 4 are set as one set, and one of the pressure-resistant metal containers 2 and 4 is attached to a heat-insulating storage wall 9. This pressure-resistant metal container is packing 1
H-shaped structure (container with only larger outer diameter at both ends) to prevent heat transfer between the inside and outside of the refrigerator at 0.11.
The other pressure-resistant metal containers 1 and 3 are each equipped with electric heaters 12 and 13 so that they can be heated. Further, hydrogen was supplied from the valve, and when one of the metal hydrides was occluded, it was all sealed. Then, MH 1 , which is storing hydrogen, is heated,
When hydrogen is released and stored in MH 2 , the pressure-resistant metal container 2 is exposed to the outside of the refrigerator to radiate heat (regeneration process). In this process, hydrogen is absorbed
When MH 3 absorbs hydrogen from MH 4 due to the pressure difference between the two, the pressure-resistant metal container 4 is inserted into the inside of the refrigerator to absorb the heat inside the refrigerator and lower the temperature inside the refrigerator (cooling process).

冷却効果を調べるために、まず、耐圧性金属容
器MH1とMH3に低圧材料としてCaNi5合金(水
素を吸蔵して金属水素化物となる)を各々1.2Kg
を入れ、他方の耐圧性金属容器MH2とMH4に高
圧材料としてTiMn1.5合金を各々1.0Kgを入れた。
そして駆動側が効率よく働くために高圧材料を低
圧材料より少なくした。冷却側のTiMn1.5−Hx
の吸蔵量は約7kcal/molH2であるから、理論的
にはTiMn1.5−Hxの利用出来る水素量は1.5W%
とすると、 1.5/2.0g×7kcal/molH2=5.25kcal/100g となる。したがつて、1Kg当りの冷却熱量として
52.5kcalが得られることになる。また、温度低下
による水素利用効率、熱損失などを考慮すると実
際に利用出来る熱量は約35kcal程度となる。
To investigate the cooling effect, first, 1.2 kg of CaNi 5 alloy (which absorbs hydrogen and becomes metal hydride) was placed as a low-pressure material in pressure-resistant metal containers MH 1 and MH 3 .
and 1.0 kg each of TiMn 1.5 alloy as a high-pressure material was placed in the other pressure-resistant metal containers MH 2 and MH 4 .
In order to make the drive side work more efficiently, the amount of high-pressure material used was less than that of low-pressure material. TiMn 1.5 −Hx on cooling side
Since the storage capacity of TiMn 1.5 -Hx is approximately 7kcal/ molH2 , theoretically the amount of hydrogen that can be used by TiMn 1.5 -Hx is 1.5W%.
Then, 1.5/2.0g×7kcal/molH 2 =5.25kcal/100g. Therefore, as the amount of cooling heat per 1 kg
You will get 52.5kcal. Furthermore, considering hydrogen utilization efficiency and heat loss due to temperature drop, the actual amount of heat that can be used is about 35 kcal.

今、TiMn1.5−Hxの熱容量、銅製の耐圧容器
の熱容量を計算すると、熱負荷量=比熱×重量×
温度差より0.11(比熱)×1Kg(重量)+0.09(比
熱)×0.5Kg(重量)=0.56kcal/℃となる。また
内容物を仮に水(1)と考えると1.0kcal/℃
の熱負荷量が必要であり、合計すると1℃冷却す
るのに1.56kcalの熱負荷量が必要となる。温度25
℃の庫内を3℃まで冷却することができる。内容
量の40の冷蔵庫を用いる時の連続時冷却負荷は
約13kcal/hであるから、2時間に1回のサイク
ルで庫内を約3℃に保持することができる。
Now, when calculating the heat capacity of TiMn 1.5 −Hx and the heat capacity of a copper pressure vessel, the heat load = specific heat x weight x
From the temperature difference, 0.11 (specific heat) x 1 Kg (weight) + 0.09 (specific heat) x 0.5 Kg (weight) = 0.56 kcal/℃. Also, assuming that the content is water (1), it is 1.0kcal/℃
In total, a heat load of 1.56 kcal is required to cool the room by 1°C. temperature 25
The inside of the refrigerator can be cooled down to 3°C. Since the continuous cooling load when using a refrigerator with an internal capacity of 40 is approximately 13 kcal/h, the inside of the refrigerator can be maintained at approximately 3° C. by cycling once every two hours.

この冷却機構を応用した冷蔵庫を試作し、その
実施例の1つを第4図と第5図に示す。第4図
は、断熱庫壁17に装着したH型容器14の庫内
側にバネ15を設け、モータ16で引張つてH型
容器を庫外に引出したり、バネの力で再度庫内に
もどしたりする機能を有し、庫内18を連続的に
冷却する構成である。また、第5図は断熱庫壁1
7に装着したH型容器14の庫外側容器の先端で
方向自在のコネクター19と大型回転体20の駆
動軸21が連結し、モータ16の回転により大型
回転体20が回転し、駆動軸21の移動によつて
H型容器14の水平移動を推進させて、庫内に挿
入したり、庫外に引出したりする機能を持つ、こ
の機能を交互に行なわしめて、庫内18を連続的
に冷却することができる。
A prototype refrigerator was manufactured using this cooling mechanism, and one example is shown in FIGS. 4 and 5. FIG. 4 shows that a spring 15 is installed on the inside of the H-shaped container 14 attached to the heat-insulating storage wall 17, and the H-shaped container is pulled out of the refrigerator by being pulled by a motor 16, and returned to the inside of the refrigerator by the force of the spring. It has a function to continuously cool the inside 18 of the refrigerator. In addition, Figure 5 shows the insulation storage wall 1.
At the tip of the outside container of the H-shaped container 14 attached to the storage container 7, the freely directional connector 19 and the drive shaft 21 of the large rotating body 20 are connected. The horizontal movement of the H-shaped container 14 is promoted by the movement, and the H-shaped container 14 has the function of being inserted into the refrigerator or pulled out of the refrigerator.This function is performed alternately to continuously cool the interior of the refrigerator 18. be able to.

金属水素化物としては、今、高圧側にTiMn1.5
−Hxを用い、低圧側にCaNi5−Hxを採用したが
他の金属水素化物を適当に選択してこの機能を発
揮することができる。
As for metal hydrides, TiMn 1.5 is currently used on the high pressure side.
-Hx was used, and CaNi 5 -Hx was adopted on the low pressure side, but other metal hydrides can be appropriately selected to exhibit this function.

また、H型容器には、熱の放散、吸収を容易に
するために、内側にフインを設けた熱交換器など
を採用し、パツキングを介して庫外への熱移動を
防止し、冷却能力の向上を図つている。各耐圧性
金属容器間を伸縮自在の配管で連結し、しかもH
型容器の移動と水素の流れを円滑にすることで比
較的小型化と信頼性の向上に大きな効果がある。
今回は、2時間で1回のサイクルで実施し、庫内
温度を約3℃まで冷却し、保持することが出来る
が、1時間で2回のサイクルも可能である。この
場合、金属水素化物の量は1/4に軽量化できる点
で冷却器本体の大幅な小型、軽量化につながる。
In addition, in order to facilitate the dissipation and absorption of heat, the H-shaped container is equipped with a heat exchanger with fins on the inside, which prevents heat transfer to the outside of the container through packing, and increases the cooling capacity. We are trying to improve the quality of our products. Each pressure-resistant metal container is connected with telescopic piping, and H
By smoothing the movement of the mold container and the flow of hydrogen, there is a significant effect in making it relatively compact and improving reliability.
This time, it is possible to perform one cycle in two hours to cool and maintain the temperature inside the refrigerator to about 3°C, but it is also possible to perform two cycles in one hour. In this case, the weight of the metal hydride can be reduced to 1/4, leading to a significant reduction in size and weight of the cooler itself.

水素移動の反転はタイマー、温度検知などで自
動的に動作することが出来る。
Reversal of hydrogen transfer can be operated automatically using a timer, temperature detection, etc.

発明の効果 以上の様に本願の冷却装置によれば、水素解離
圧力の異なる2種類以上の金属水素化物からなる
一方を断熱庫壁にH型容器をパツキングを介して
装着し、他方を加熱と冷却を交互にくりかえし
て、庫内側のH型容器によつて連続的に冷却する
ことができるので、可動部の少ない、静かな、冷
却装置が得られる。この装置は圧縮器の様な可動
部のない、静音型冷蔵庫への展開も図られる機能
を有する点で実用的価値は大きい。
Effects of the Invention As described above, according to the cooling device of the present application, one of two or more types of metal hydrides having different hydrogen dissociation pressures is mounted in an H-shaped container on the insulation chamber wall through packing, and the other is heated. Since the cooling can be repeated alternately and continuously cooled by the H-shaped container inside the refrigerator, a quiet cooling device with few moving parts can be obtained. This device has great practical value in that it has a function that can be applied to silent refrigerators that do not have moving parts such as compressors.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はTiMn1.5−Hxの水素貯蔵量と水素解
離圧力の関係図、第2図はMH1(CaNi5)とMH2
(TiMn1.5)の両金属水素化物による冷却サイク
ルを示した特性図、第3図は本発明の一実施例の
冷却装置の概念図、第4図および第5図は第3図
に示す冷却装置の応用例である冷蔵庫の構成図で
ある。 1〜4……熱交換器内蔵型耐圧性金属容器、
5,6……バルブ、7,8……連結管、9……断
熱庫壁、10,11……パツキング。
Figure 1 shows the relationship between the hydrogen storage amount and hydrogen dissociation pressure in TiMn 1.5 -Hx, and Figure 2 shows the relationship between MH 1 (CaNi 5 ) and MH 2
(TiMn 1.5 ) Characteristic diagram showing the cooling cycle using both metal hydrides, Figure 3 is a conceptual diagram of a cooling device according to an embodiment of the present invention, and Figures 4 and 5 are the cooling device shown in Figure 3. 1 is a configuration diagram of a refrigerator which is an application example of the refrigerator. 1 to 4...Pressure-resistant metal container with built-in heat exchanger,
5, 6... Valve, 7, 8... Connecting pipe, 9... Insulated storage wall, 10, 11... Packing.

Claims (1)

【特許請求の範囲】 1 同じ温度で水素解離圧力の異なる2種類以上
の金属水素化物を各々内蔵した熱交換器を有する
2個の耐圧性金属容器を自動弁を介して連結させ
て1組とし、この一対の耐圧性金属容器を2組
(MH1−MH2とMH3−MH4)以上設け、水素解
離圧力の高い金属水素化物が内蔵されている耐圧
性金属容器(MH2とMH4側)が断熱庫壁に装着
され、パツキングを通して庫内外に挿入と引出し
可能とし、水素解離圧力の低い金属水素化物が内
蔵されている耐圧性金属容器(MH1とMH3側)
を加熱と冷却を交互に行なわしめて、前記庫内に
装着されている耐圧性金属容器(MH2とMH4
側)で発生する冷熱源を交互に利用し、庫内を連
続的に冷却するようにしたことを特徴とする冷却
装置。 2 断熱庫壁に装着されている耐圧性金属容器が
H構造をとり、その両末端でパツキングを介して
断熱する構成としたことを特徴とする特許請求の
範囲第1項記載の冷却装置。
[Claims] 1. Two or more pressure-resistant metal containers each having a built-in heat exchanger containing two or more metal hydrides having the same temperature and different hydrogen dissociation pressures are connected via an automatic valve to form a set. , two or more pairs of pressure-resistant metal containers (MH 1 - MH 2 and MH 3 -MH 4 ) are provided, and pressure-resistant metal containers (MH 2 and MH 4 ) containing a metal hydride with high hydrogen dissociation pressure are provided. Pressure-resistant metal containers (MH 1 and MH 3 sides) that are attached to the insulated chamber wall and can be inserted into and withdrawn from the chamber through packing, and that contain metal hydrides with low hydrogen dissociation pressure.
The pressure-resistant metal containers (MH 2 and MH 4
A cooling device characterized in that the inside of the refrigerator is continuously cooled by alternately using the cold heat sources generated at the sides. 2. The cooling device according to claim 1, wherein the pressure-resistant metal container attached to the heat-insulating storage wall has an H structure and is insulated through packing at both ends thereof.
JP21662382A 1982-12-09 1982-12-09 Cooling device Granted JPS59107162A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21662382A JPS59107162A (en) 1982-12-09 1982-12-09 Cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21662382A JPS59107162A (en) 1982-12-09 1982-12-09 Cooling device

Publications (2)

Publication Number Publication Date
JPS59107162A JPS59107162A (en) 1984-06-21
JPH0355750B2 true JPH0355750B2 (en) 1991-08-26

Family

ID=16691330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21662382A Granted JPS59107162A (en) 1982-12-09 1982-12-09 Cooling device

Country Status (1)

Country Link
JP (1) JPS59107162A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5122151A (en) * 1974-08-16 1976-02-21 Matsushita Electric Ind Co Ltd
JPS5521267A (en) * 1978-07-31 1980-02-15 Matsushita Electric Works Ltd Forming method of synthetic resin sheet
JPS5792670A (en) * 1980-11-29 1982-06-09 Sekisui Chemical Co Ltd Heat pump apparatus
JPS57194116A (en) * 1981-05-25 1982-11-29 Matsushita Electric Ind Co Ltd Heater and cooler for automobile

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5122151A (en) * 1974-08-16 1976-02-21 Matsushita Electric Ind Co Ltd
JPS5521267A (en) * 1978-07-31 1980-02-15 Matsushita Electric Works Ltd Forming method of synthetic resin sheet
JPS5792670A (en) * 1980-11-29 1982-06-09 Sekisui Chemical Co Ltd Heat pump apparatus
JPS57194116A (en) * 1981-05-25 1982-11-29 Matsushita Electric Ind Co Ltd Heater and cooler for automobile

Also Published As

Publication number Publication date
JPS59107162A (en) 1984-06-21

Similar Documents

Publication Publication Date Title
US4566281A (en) Reaction heat storage method for hydride tanks
EP0168062B1 (en) Metal hydride heat pump assembly
US5497630A (en) Method and apparatus for hydride heat pumps
US3075361A (en) Method and apparatus for transferring heat
US4039023A (en) Method and apparatus for heat transfer, using metal hydrides
KR20110125206A (en) Adiabatic tank for metal hydride
KR101875633B1 (en) Solid state hydrogen storage device and solid state hydrogen storage system
Sun Thermodynamic analysis of the operation of two-stage metal-hydride heat pumps
Lucas et al. Mathematical modelling of hydrogen storage systems
EP1550830A1 (en) Heat pump system
JPH0355750B2 (en)
US4421718A (en) Alloy for occlusion of hydrogen
JPH0634230A (en) Cold generator
JPS6241138B2 (en)
JPH09324960A (en) Heat generating or heat absorbing method and apparatus using hydrogen storing alloy
JPS6114101A (en) Hydrogen purification apparatus
JPS621188B2 (en)
Matsumura et al. Heat pump characteristics of sodium carbonate dehydration/hydration system
JP2607677B2 (en) Generator hydrogen purity maintenance device by metal hydride
JPS6037395B2 (en) Portable heating or cooling device
JPH0214600B2 (en)
Nasako et al. The development of refrigeration systems using hydrogen-absorbing alloys
JPH073250Y2 (en) Hydrogen storage / desorption heat exchanger
JPH039386B2 (en)
JPH01210768A (en) Regenerating type heat pump