JPH01103992A - Production of diamond film - Google Patents

Production of diamond film

Info

Publication number
JPH01103992A
JPH01103992A JP26025287A JP26025287A JPH01103992A JP H01103992 A JPH01103992 A JP H01103992A JP 26025287 A JP26025287 A JP 26025287A JP 26025287 A JP26025287 A JP 26025287A JP H01103992 A JPH01103992 A JP H01103992A
Authority
JP
Japan
Prior art keywords
cemented carbide
diamond film
vacuum
gas
torr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26025287A
Other languages
Japanese (ja)
Other versions
JPH0776146B2 (en
Inventor
Toshimichi Ito
伊藤 利通
Satoshi Iio
聡 飯尾
Shoichi Watanabe
正一 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Petrochemical Co Ltd
Niterra Co Ltd
Original Assignee
Idemitsu Petrochemical Co Ltd
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Petrochemical Co Ltd, NGK Spark Plug Co Ltd filed Critical Idemitsu Petrochemical Co Ltd
Priority to JP62260252A priority Critical patent/JPH0776146B2/en
Publication of JPH01103992A publication Critical patent/JPH01103992A/en
Publication of JPH0776146B2 publication Critical patent/JPH0776146B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To improve the adhesiveness of a cemented carbide to a diamond film by previously subjecting the cemented carbide to heat treatment in a vacuum at the time of forming the film by bringing the cemented carbide into contact with an activated gaseous raw material. CONSTITUTION:The gaseous raw material contg. a carbon source gas is introduced from an introducing port 1 into a reaction vessel 2 and is cracked and activated by the microwaves or high frequencies led out by a waveguide 3. The carbon in the excitated state contained in said gas is deposited on a substrate 4 consisting of a super alloy having the surface previously cleaned by a heat treatment in a vacuum, by which the diamond film is formed thereon. The above-mentioned heat treatment is preferably executed at 10<-7>-10<-3>Torr degree of vacuum and 900-1,200 deg.C. Etching progresses to the inside of the cemented carbide and the loss of the intrinsic performance of the alloy and the degraded adhesiveness of the diamond are caused in some cases if the degree of vacuum is below 10<-7>Torr and the temp. exceeds 1,200 deg.C. The cemented carbide is oxidized if the degree of vacuum exceeds 10<-3>Torr and the sufficient cleaning effect is not obtainable in some cases if the temp. is below 900 deg.C.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明はダイヤモンド膜の製造方法に関し、さらに詳
しく言うと、たとえばバイト、エンドミル、ドリル、カ
ッター等の各種切削工具の保*Sとして有用なダイヤモ
ンド膜を、密着性良く超硬合金上に形成させることので
きるダイヤモンド膜の製造方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing a diamond film, and more specifically, the present invention relates to a method for manufacturing a diamond film, and more specifically, a diamond film useful as a protector for various cutting tools such as bits, end mills, drills, and cutters. The present invention relates to a method for producing a diamond film that can be formed on a cemented carbide with good adhesion.

[従来の技術およびその問題点] 近年、ダイヤモンドの合成技術は著しい発展を遂げ、た
とえば各種保護膜として、あるいは光学用材料、電子材
料、化学工業材料などにダイヤモンドが広く用いられる
に至っている。
[Prior art and its problems] In recent years, diamond synthesis technology has made remarkable progress, and diamond has come to be widely used, for example, as various protective films, optical materials, electronic materials, chemical industrial materials, and the like.

特に、バイト、エンドミル、カッター等の各種切削工具
の分野においては、a硬合金からなる切削工具の保wI
FgIIとしてダイヤモンド膜を用いることにより、耐
摩耗性に優れた切削工具が得られることから、超硬合金
上にダイヤモンド膜を形成してなる切削工具の需要が高
まりつつある。
In particular, in the field of various cutting tools such as bits, end mills, cutters, etc., the maintenance of cutting tools made of a hard alloy is
By using a diamond film as FgII, a cutting tool with excellent wear resistance can be obtained, so there is an increasing demand for a cutting tool formed by forming a diamond film on a cemented carbide.

そして、従来、超硬合金上にダイヤモンド膜を形成させ
る方法としては、たとえば、ダイヤモンド膜の形成に先
立って超硬合金にイオンエツチング処理を施すことによ
り超硬合金の表面を活性化してから、この超硬合金と活
性化した原料ガスとを接触させる方法(特開昭60−2
04695号公報参照、)、あるいはサーメットからな
る基板上にダイヤモンド膜の形成を行なうに先立ってサ
ーメットをたとえば酸溶液でエツチング処理して表面の
結合相を除去してから、このサーメットと活性化した原
料ガスとを接触させる方法(特開昭61−52363号
公報参照、)などが提案されている。
Conventionally, methods for forming a diamond film on cemented carbide include, for example, activating the surface of the cemented carbide by subjecting the cemented carbide to ion etching treatment prior to forming the diamond film. Method of bringing cemented carbide into contact with activated raw material gas (JP-A-60-2
04695), or before forming a diamond film on a substrate made of cermet, the cermet is etched with, for example, an acid solution to remove the bonding phase on the surface, and then the cermet and the activated raw material are etched. A method of bringing the material into contact with a gas (see Japanese Unexamined Patent Publication No. 61-52363) has been proposed.

しかしながら、これらの方法で得られるダイヤモンド膜
を形成してなる超硬合金を用いた切削工具においては、
依然として切刃の摩耗、チッピング(一部欠損)が見ら
れ、ダイヤモンド膜の密着性は未だ充分とは言いがたい
という問題がある。
However, in cutting tools using cemented carbide formed with a diamond film obtained by these methods,
The problem is that wear and chipping (partial damage) of the cutting edge are still observed, and the adhesion of the diamond film is still far from satisfactory.

この発明の目的は、前記問題点を解決し、超硬合金上に
強固に密着性したダイヤモンド膜を形成させることので
きるダイヤモンド膜の製造方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for manufacturing a diamond film that solves the above-mentioned problems and can form a strongly adhesive diamond film on a cemented carbide.

[問題点を解決するための手段] 前記問題点を解決するために、この発明者が鋭意検討を
重ねた結果、超硬合金上にダイヤモンド膜を堆積させる
ダイヤモンド膜の製造方法において、超硬合金を予め真
空中で熱処理すれば、この超硬合金上に強固に密着した
ダイヤモンド膜が得られることを見い出してこの発明に
到達した。すなわち、この発明の構成は、超硬合金上に
ダイヤモンド膜を形成させる方法において、超硬合金を
予め真空中で熱処理した後、炭素源ガスを含む原料ガス
を活性化して得られるガスを、前記超硬合金に接触させ
ることを特徴とするダイヤモンド膜の製造方法である。
[Means for Solving the Problems] In order to solve the above-mentioned problems, as a result of intensive studies, the inventor has developed a method for producing a diamond film in which a diamond film is deposited on a cemented carbide. The present invention was achieved by discovering that a diamond film firmly adhered to the cemented carbide can be obtained by heat-treating the cemented carbide in advance in a vacuum. That is, in the method of forming a diamond film on a cemented carbide, the configuration of the present invention is to heat-treat the cemented carbide in advance in a vacuum, and then activate a raw material gas containing a carbon source gas to This is a method for producing a diamond film characterized by bringing it into contact with a cemented carbide.

この発明の方法において、前記超硬合金はダイヤモンド
膜を形成させる基板として用いる。
In the method of this invention, the cemented carbide is used as a substrate on which a diamond film is formed.

使用に供される超硬合金には特に制限はなく、たとえば
WC−Go系合金、WC−Tie−Go系合金、VC−
Tie−TaC−Go系合金などの中から適宜に選択し
て用いることができる。
There are no particular restrictions on the cemented carbide that can be used, and examples include WC-Go alloy, WC-Tie-Go alloy, and VC-
It can be appropriately selected from among Tie-TaC-Go alloys and the like.

この発明の方法において重要な点は、ダイヤモンド膜の
形成に先立ち、前記超硬合金を予め真空中で熱処理して
超硬合金の表面を清浄にすることにある。
An important point in the method of the present invention is that, prior to forming the diamond film, the cemented carbide is previously heat treated in a vacuum to clean the surface of the cemented carbide.

この熱処理は、以下の条件下で行なうのがよい。This heat treatment is preferably performed under the following conditions.

すなわち、真空度は101torr −1O−3tor
r、好ましくは10−6〜10−’torrである。こ
の真空度が1O−7torr未満であると超硬合金の内
部にまでエツチングが進行して、超硬合金本来の性能が
損なわれるとともにこの超硬合金上に得られるダイヤモ
ンド膜の、超硬合金に対する密着性が低下することがあ
る。一方、10″3torrを超えると、超硬合金が酸
化されてしまうことがある。
That is, the degree of vacuum is 101 torr −1 O−3 tor
r, preferably 10-6 to 10-'torr. If the degree of vacuum is less than 10-7 torr, etching will progress to the inside of the cemented carbide, impairing the original performance of the cemented carbide, and reducing the diamond film obtained on the cemented carbide. Adhesion may decrease. On the other hand, if it exceeds 10''3 torr, the cemented carbide may be oxidized.

熱処理温度は900℃〜1200℃であり、好ましくは
1000℃〜1200℃である。この温度が900℃未
満であると、熱処理による充分な清浄効果が奏されない
ことがある。一方、1200℃を超えると、エツチング
が超硬合金の内部にまで進行して、超硬合金本来の性能
が損なわれるとともに得られるダイヤモンド膜の超硬合
金に対する密着性が低下することがある。
The heat treatment temperature is 900°C to 1200°C, preferably 1000°C to 1200°C. If this temperature is less than 900°C, the heat treatment may not produce a sufficient cleaning effect. On the other hand, if the temperature exceeds 1200° C., etching may progress to the inside of the cemented carbide, impairing the inherent performance of the cemented carbide and reducing the adhesion of the resulting diamond film to the cemented carbide.

熱処理時間は1通常、 10分間〜60分間である。The heat treatment time is usually 10 minutes to 60 minutes.

熱処理時間が10分間未満であると、充分な熱処理効果
が奏されないことがある。一方、60分間を超えると、
エツチングが超硬合金の内部にまで進行して、超硬合金
本来の性能が損なわれるとともにこの超硬合金上に得ら
れるダイヤモンド膜の密着性が低下することがある。
If the heat treatment time is less than 10 minutes, sufficient heat treatment effects may not be achieved. On the other hand, if it exceeds 60 minutes,
Etching may progress to the inside of the cemented carbide, impairing the inherent performance of the cemented carbide and reducing the adhesion of the diamond film obtained on the cemented carbide.

この発明の方法においては、前記熱処理を行なって表面
を清浄化した超硬合金に、炭素源ガスを含む原料ガスを
活性化して得られるガスを接触させる。
In the method of the present invention, the cemented carbide whose surface has been cleaned by the heat treatment is brought into contact with a gas obtained by activating a raw material gas containing a carbon source gas.

前記原料ガスは少くとも炭素源ガスを含有するものであ
り、炭素源ガスのほかに水素ガス、不活性ガスを含有し
ていてもよい。
The raw material gas contains at least a carbon source gas, and may contain hydrogen gas and an inert gas in addition to the carbon source gas.

前記炭素源ガスとしては、たとえばメタン、エタン、プ
ロパン、ブタン等のパラフィン系炭化水素;エチレン、
プロピレン、フチレン等のオレフィン系炭化水素;アセ
チレン、アリレン等のアセチレン系炭化水素;ブタジェ
ン等のジオレフィン系炭化水素;シクロプロパ、ン、シ
クロブタン、シクロペンタン、シクロヘキサン等の脂環
式炭化水素二ジクロブタジェン、ベンゼン、トルエン、
キシレン、ナフタレン等の芳香族炭化水素;ア七トン、
ジエチルケトン、ベンゾフェノン等のケトン類;メタノ
ール、エタノール等のアルコール類ニトリメチルアミン
、トリエチルアミンなどのアミン類:炭酸ガス、−酸化
炭素:さらに、単体ではないが、ガソリンなどの消防法
危険物第4類、第1類、ケロシン、テレピン油、しよう
のう油、松根油などの第2石油類1重油などの第3石油
類、ギヤー油、シリンダー油などの第4石油類も有効に
使用することもできる。また前記各種の炭素化合物を混
合して使用することもできる。
Examples of the carbon source gas include paraffinic hydrocarbons such as methane, ethane, propane, and butane; ethylene;
Olefinic hydrocarbons such as propylene and phthylene; Acetylene hydrocarbons such as acetylene and arylene; Diolefinic hydrocarbons such as butadiene; Alicyclic hydrocarbons such as cyclopropane, cyclobutane, cyclopentane, and cyclohexane, didichlorobutadiene , benzene, toluene,
Aromatic hydrocarbons such as xylene and naphthalene;
Ketones such as diethyl ketone and benzophenone; alcohols such as methanol and ethanol; amines such as nitrimethylamine and triethylamine; carbon dioxide gas and -carbon oxide; Class 1 petroleum, Class 2 petroleum such as kerosene, turpentine oil, ginger oil, and pine oil, Class 3 petroleum such as heavy oil, and Class 4 petroleum such as gear oil and cylinder oil can also be effectively used. . It is also possible to use a mixture of the various carbon compounds mentioned above.

これらの巾でも、好ましいのはメタン、エタン、プロパ
ン等のパラフィン系炭化水素、アセトン、ベンゾフェノ
ンなどのケトン類、トリメチルアミン、トリエチルアミ
ンなどのアミン類、炭酸ガス、−酸化炭素である。
Among these ranges, preferred are paraffinic hydrocarbons such as methane, ethane, and propane, ketones such as acetone and benzophenone, amines such as trimethylamine and triethylamine, carbon dioxide gas, and carbon oxide.

水素ガスは前記炭素源ガスの希釈ガスとして、また原料
ガスをプラズマ分解するときにはプラズマ発生用ガスと
して用いることができる。この水素ガスを用いる場合の
前記原料ガスにおける水素ガスの含有率は99.9モル
%以下、好ましくは0.1〜99.9モル%である。こ
の含有率が99.9モル%を超えると、ダイヤモンド膜
の形成速度が著しく遅くなったり、ダイヤモンドが析出
しなくなったりすることがある。
Hydrogen gas can be used as a diluent gas for the carbon source gas and as a plasma generation gas when plasma decomposing a raw material gas. When this hydrogen gas is used, the content of hydrogen gas in the raw material gas is 99.9 mol% or less, preferably 0.1 to 99.9 mol%. If this content exceeds 99.9 mol%, the formation rate of the diamond film may be significantly slowed or diamond may not precipitate.

不活性ガスは前記炭素源ガスまたは炭素源ガスと水素ガ
スとの混合ガスのキャリヤーガスとして用いることがで
きる。
The inert gas can be used as a carrier gas for the carbon source gas or a mixed gas of the carbon source gas and hydrogen gas.

この不活性ガスとしては、たとえば窒素ガス、アルゴン
ガス、ネオンガス、キセノンガスなどが挙げられる。
Examples of this inert gas include nitrogen gas, argon gas, neon gas, and xenon gas.

前記原料ガスの活性化手段としては、ダイヤモンドの合
成に従来より慣用されている各種の方法の中から任意の
方法を用いることができる。具体的には、たとえば直流
電圧を電極間に印加してプラズマ分解する方法、高周波
を電極間に印加してプラズマ分解する方法、マイクロを
電極間に印加してプラズマ分解する方法、あるいはプラ
ズマ分解をイオン室またはイオン銃で行なわせ、電界に
よりイオンを引出すイオンビーム法などの各種プラズマ
分解法、熱フィラメントよる加熱により熱分解する熱分
解法などが挙げられる。これらの中でも、好ましいのは
各種プラズマ分解法である。
As the means for activating the raw material gas, any method can be used from among the various methods conventionally used for diamond synthesis. Specifically, for example, there are methods for plasma decomposition by applying a DC voltage between the electrodes, methods for plasma decomposition by applying high frequency between the electrodes, methods for plasma decomposition by applying a micro wave between the electrodes, or methods for plasma decomposition by applying a microwave between the electrodes. Examples include various plasma decomposition methods such as an ion beam method in which ions are extracted using an ion chamber or an ion gun, and pyrolysis methods in which thermal decomposition is performed by heating with a hot filament. Among these, various plasma decomposition methods are preferred.

この発明の方法においては、通常、以下の条件下に反応
が進行して、予め前処理を行なった超硬合金からなる基
板上にダイヤモンド膜が形成される。
In the method of the present invention, the reaction usually proceeds under the following conditions, and a diamond film is formed on a substrate made of cemented carbide that has been pretreated.

すなわち、前記超硬合金からなる基板表面の温度は、前
記原料ガスの活性化手段により異なるので、−概に決め
ることはできないが、たとえばプラズマ分解による場合
には、通常、400〜1,200℃、好ましくは450
〜1,100℃である。この温度が400℃よりも低い
と、ダイヤモンド膜の形成速度が遅くなることがある。
That is, the temperature of the surface of the substrate made of the cemented carbide varies depending on the means of activating the raw material gas, so it cannot be determined generally, but for example, in the case of plasma decomposition, it is usually 400 to 1,200°C. , preferably 450
~1,100°C. If this temperature is lower than 400° C., the formation rate of the diamond film may be slowed down.

一方、 1,200℃を超えると、超硬合金上に堆積し
たダイヤモンド膜がエツチングにより削り取られてしま
い結果的にダイヤモンド膜の形成速度が遅くなることが
ある。
On the other hand, if the temperature exceeds 1,200°C, the diamond film deposited on the cemented carbide may be etched away, resulting in a slow diamond film formation rate.

反応圧力は10−3〜103 torr、好ましくは1
〜800 torrである0反応圧力が1O−3tor
rよりも低いと、ダイヤモンド膜の形成速度が遅くなる
ことがある。一方、10’ torrより高くしてもそ
れに相当する効果は奏されず、場合によってはダイヤモ
ンド膜の形成速度の低下を招くことがある。
The reaction pressure is 10-3 to 103 torr, preferably 1
The reaction pressure is ~800 torr and the reaction pressure is 1O-3 torr.
If it is lower than r, the formation rate of the diamond film may become slow. On the other hand, even if it is made higher than 10' torr, no corresponding effect will be achieved, and in some cases, the formation rate of the diamond film may be reduced.

反応時間は所望のダイヤモンド膜の膜厚およびダイヤモ
ンド膜の形成速度により適宜に設定することができる。
The reaction time can be appropriately set depending on the desired thickness of the diamond film and the formation rate of the diamond film.

さらに、前記原料ガスをプラズマ分解する場合のプラズ
マ出力は1通常、 0.1 kw以上である。プラズマ
出力が0.1 kw未満であると、プラズマが充分に発
生しないことがある。
Furthermore, the plasma output when plasma decomposing the raw material gas is usually 0.1 kW or more. If the plasma output is less than 0.1 kW, sufficient plasma may not be generated.

以上の条件下での反応は、たとえば第1図に示したよう
な反応装置を用いて行なうことができる。
The reaction under the above conditions can be carried out using, for example, a reaction apparatus as shown in FIG.

m1mは、この発明の方法に用いることのできる反応装
置の概念図である。
m1m is a conceptual diagram of a reaction apparatus that can be used in the method of this invention.

すなわち、炭素源ガスを含む原料ガスは原料ガス導入口
lから、反応容器2内へ導入される。この反応容器z内
へ導入された原料ガスは導波管3により導出されるマイ
クロ波あるいは高周波によりプラズマ分解されて活性化
し、この活性化したガスに含まれる励起状態の炭素が、
予め前処理を行なって表面を清浄化した超硬合金からな
る基板4上に堆積してダイヤモンド膜を形成する。
That is, the raw material gas containing the carbon source gas is introduced into the reaction vessel 2 from the raw material gas inlet 1. The raw material gas introduced into the reaction vessel z is plasma decomposed and activated by microwaves or high frequency waves guided by the waveguide 3, and the excited carbon contained in this activated gas is
A diamond film is formed by depositing on a substrate 4 made of cemented carbide whose surface has been cleaned by pretreatment.

この発明の方法により得ることのできるダイヤモンド膜
は、たとえばバイト、カッター、エンドミルなどの各種
切削工具の表面保護膜として特に好適に利用することが
できる。
The diamond film that can be obtained by the method of the present invention can be particularly suitably used as a surface protective film for various cutting tools such as bits, cutters, and end mills.

[実施例J 次いで、この発明の実施例および比較例を示し、この発
明についてさらに具体的に説明する。
[Example J] Next, Examples and Comparative Examples of the present invention will be shown to further specifically explain the present invention.

(実施例1) 超硬合金からなる切削チップ(JIS K 105PG
N422)を、圧力1O−6torr、温度1000℃
、処理時間30分間の条件下に熱処理して、この切削チ
ップの表面層を除去した。
(Example 1) Cutting tip made of cemented carbide (JIS K 105PG
N422) at a pressure of 10-6 torr and a temperature of 1000°C.
The surface layer of this cutting tip was removed by heat treatment under conditions of a treatment time of 30 minutes.

次いで、この切削チップを基板として反応室内に設置し
、基板温度900℃、反応室内の圧力50torrの条
件下に、周波数2.45GHzのマイクロ波電源の出力
を400Wに設定するとともに1反応室内への原料ガス
流量を一酸化炭素ガス10 scc麿、水素ガス90 
sccmに設定し、反応を1時間行なって、前記温度に
制御した基板上に平均膜厚6pmの堆積物を得た。
Next, this cutting chip was placed as a substrate in a reaction chamber, and under conditions of a substrate temperature of 900°C and a pressure of 50 torr in the reaction chamber, the output of a microwave power source with a frequency of 2.45 GHz was set to 400 W, and the power into one reaction chamber was set to 400 W. The raw material gas flow rate is 10 scc for carbon monoxide gas and 90 scc for hydrogen gas.
sccm and the reaction was carried out for 1 hour to obtain a deposit having an average thickness of 6 pm on the substrate controlled at the above temperature.

得られた堆積物について、ラマン分光分析を行なったと
ころ、ラマン散乱スペクトルの1333cm−1付近に
ダイヤモンドに起因するピークが見られ、不純物のない
ダイヤモンドであることを確認した。
When the obtained deposit was subjected to Raman spectroscopic analysis, a peak attributed to diamond was observed near 1333 cm-1 in the Raman scattering spectrum, confirming that it was diamond without impurities.

さらに、このダイヤモンド膜を形成してなる切削チップ
について、以下の条件下に切削試験を行なった。
Furthermore, a cutting test was conducted on the cutting tip formed with this diamond film under the following conditions.

被削材;A旦−8重量%Si合金。Work material: A-8% by weight Si alloy.

切削速度;800m/分、      “送り  ; 
0.1mm / rev。
Cutting speed: 800m/min, feed;
0.1mm/rev.

切込み; 0.25霧膳。Cut depth: 0.25 mist.

切削時間:10分間。Cutting time: 10 minutes.

試験後、被切削材溶着物を稀塩酸で除去し、切削チップ
の切刃の状態を走査型電子顕微鏡(日本電子(株)製、
 J 5M840 )で観察したところ。
After the test, the deposits on the material to be cut were removed with dilute hydrochloric acid, and the condition of the cutting edge of the cutting tip was examined using a scanning electron microscope (manufactured by JEOL Ltd.).
J5M840).

摩耗もチッピングも見られず、正常であることを確認し
た。
No wear or chipping was observed, confirming that it was normal.

(比較例1) 前記実施例1において、切削チップの熱処理を行なわな
かったほかは、前記実施例1と同様にしてダイヤモンド
膜の形成を行なって平均膜厚6#Lmのダイヤモンド膜
を得るとともに、前記実施例1と同様の条件で切削試験
を行なった。
(Comparative Example 1) A diamond film was formed in the same manner as in Example 1 except that the cutting tip was not heat-treated to obtain a diamond film with an average thickness of 6 #Lm, and A cutting test was conducted under the same conditions as in Example 1 above.

その結果、切削チップの刃先にはダイヤモンド膜の剥離
現象が見られ、この比較例で得られたダイヤモンド膜の
密着性が劣っていることを確認した。
As a result, peeling of the diamond film was observed on the cutting edge of the cutting tip, confirming that the adhesion of the diamond film obtained in this comparative example was poor.

[発明の効果] この発明によると、 (1)  従来の方法に比較して密着性に優れたダイヤ
モンド膜を超硬合金上に形成することができ。
[Effects of the Invention] According to the present invention, (1) A diamond film with superior adhesion compared to conventional methods can be formed on a cemented carbide.

(2)  このダイヤモンド膜を、たとえば切削工具の
保護膜に用いれば、耐摩耗性に優れるとともに剥離のな
い保護膜とすることができる。
(2) If this diamond film is used, for example, as a protective film for a cutting tool, it can be made into a protective film that has excellent wear resistance and does not peel off.

等の効果を有する工業的に有利なダイヤモンド膜の製造
方法を提供することができる。
It is possible to provide an industrially advantageous method for manufacturing a diamond film having the following effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の方法において使用する反応装置の一
例を示す概略図である。 特許出願人  出光石油化学株式会社 代 埋 人  ガ埋士 描村 面倒1t   ・1第1
図 ヨ
FIG. 1 is a schematic diagram showing an example of a reaction apparatus used in the method of the present invention. Patent applicant: Idemitsu Petrochemical Co., Ltd. Representative: Mr. Ukimura: 1t ・1st 1st
Figure yo

Claims (1)

【特許請求の範囲】[Claims] (1)超硬合金上にダイヤモンド膜を形成させる方法に
おいて、超硬合金を予め真空中で熱処理した後、炭素源
ガスを含む原料ガスを活性化して得られるガスを、前記
超硬合金に接触させることを特徴とするダイヤモンド膜
の製造方法。
(1) In a method for forming a diamond film on a cemented carbide, the cemented carbide is heat-treated in a vacuum in advance, and then a gas obtained by activating a raw material gas containing a carbon source gas is brought into contact with the cemented carbide. A method for producing a diamond film, characterized in that:
JP62260252A 1987-10-14 1987-10-14 Diamond film manufacturing method Expired - Fee Related JPH0776146B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62260252A JPH0776146B2 (en) 1987-10-14 1987-10-14 Diamond film manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62260252A JPH0776146B2 (en) 1987-10-14 1987-10-14 Diamond film manufacturing method

Publications (2)

Publication Number Publication Date
JPH01103992A true JPH01103992A (en) 1989-04-21
JPH0776146B2 JPH0776146B2 (en) 1995-08-16

Family

ID=17345465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62260252A Expired - Fee Related JPH0776146B2 (en) 1987-10-14 1987-10-14 Diamond film manufacturing method

Country Status (1)

Country Link
JP (1) JPH0776146B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01246361A (en) * 1988-03-28 1989-10-02 Toshiba Tungaloy Co Ltd Diamond-coated sintered alloy having excellent release resistance and its production
US5585176A (en) * 1993-11-30 1996-12-17 Kennametal Inc. Diamond coated tools and wear parts
US5716170A (en) * 1996-05-15 1998-02-10 Kennametal Inc. Diamond coated cutting member and method of making the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60186499A (en) * 1984-03-05 1985-09-21 Mitsubishi Metal Corp Method for depositing and forming artificial diamond

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60186499A (en) * 1984-03-05 1985-09-21 Mitsubishi Metal Corp Method for depositing and forming artificial diamond

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01246361A (en) * 1988-03-28 1989-10-02 Toshiba Tungaloy Co Ltd Diamond-coated sintered alloy having excellent release resistance and its production
JPH0621360B2 (en) * 1988-03-28 1994-03-23 東芝タンガロイ株式会社 Diamond-coated sintered bond excellent in peel resistance and method for producing the same
US5585176A (en) * 1993-11-30 1996-12-17 Kennametal Inc. Diamond coated tools and wear parts
US5648119A (en) * 1993-11-30 1997-07-15 Kennametal Inc. Process for making diamond coated tools and wear parts
US6287682B1 (en) 1993-11-30 2001-09-11 Kennametal Pc Inc. Diamond coated tools and process for making
US5716170A (en) * 1996-05-15 1998-02-10 Kennametal Inc. Diamond coated cutting member and method of making the same

Also Published As

Publication number Publication date
JPH0776146B2 (en) 1995-08-16

Similar Documents

Publication Publication Date Title
EP0327110B1 (en) Method for producing sintered hard metal with diamond film
EP0413834B1 (en) Diamond-covered member and process for producing the same
CA2290514C (en) A method of coating edges with diamond-like carbon
JPH01103992A (en) Production of diamond film
Grannen et al. A comparison study of diamond films grown on tungsten carbide cobalt tool inserts with CH4 and CF4 gas sources
JP2543132B2 (en) Cemented carbide with diamond thin film and method for producing the same
JPH02217398A (en) Covering method by thin film of diamonds
JP3871529B2 (en) Hard carbon film deposition method
JPH02188494A (en) Production of thin film of diamond or the like and device therefor
JPS63286575A (en) Production of rigid carbon film
JPH0254768A (en) Member with diamond film and its production
JPH02125874A (en) Manufacture of thin film of diamonds
JPH08252707A (en) Hard metal drill coated with diamond polycrystal film
JPH02250967A (en) Diamonds coated member and production thereof
JP2760837B2 (en) Diamond coated member and method of manufacturing the same
JP2645147B2 (en) Diamond coated cutting tool members and diamond coated wear resistant members
JPH02239191A (en) Multilayer diamond film and its production
JPS6257802A (en) Parts coated with hard carbon
JP2990218B2 (en) Diamond coating member production method
JPH01201476A (en) Production of sintered hard alloy with adhered diamond film
JPH02188495A (en) Production of thin film of diamond or the like
JP3025808B2 (en) Thin film preparation method
JPH0255297A (en) Method for synthesizing diamond
JPH01263277A (en) Production of member fitted with hard carbon film
JPH02240296A (en) Diamond coated member

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees