JPH01103984A - Method for refining compound semiconductor crystal - Google Patents

Method for refining compound semiconductor crystal

Info

Publication number
JPH01103984A
JPH01103984A JP26196687A JP26196687A JPH01103984A JP H01103984 A JPH01103984 A JP H01103984A JP 26196687 A JP26196687 A JP 26196687A JP 26196687 A JP26196687 A JP 26196687A JP H01103984 A JPH01103984 A JP H01103984A
Authority
JP
Japan
Prior art keywords
crystal
melt
inp
crucible
group iii
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26196687A
Other languages
Japanese (ja)
Other versions
JPH0699216B2 (en
Inventor
Masatomo Shibata
真佐知 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP26196687A priority Critical patent/JPH0699216B2/en
Publication of JPH01103984A publication Critical patent/JPH01103984A/en
Publication of JPH0699216B2 publication Critical patent/JPH0699216B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To produce a group III-V compd. semiconductor single crystal which is free from contamination by impurities at a low temp. by melting the group III element in the upper part of a crucible, melting the group III-V compd. in the lower part successively, floating the group III-V compd. crystal onto the upper part of a melt zone, and bringing a seed crystal into contact with the melt zone. CONSTITUTION:A polycrystal of the group III-V compd., for example, InP, is put into the crucible and the group III element, for example, In is put into the upper part thereof. Said upper part is sealed by a liquid sealant such as B2O3 and the crucible is heated to melt the In. The InP begins to melt successively from the boundary face of the In and the InP as the In melts. The melt in which a large quantity of the In is incorporated is thus formed. Since this melt has the density larger than the density of the ordinary melt, the melt moves toward the lower side of the InP polycrystal. The concn. of P in this melt zone increases gradually and the crystal of the InP begins to deposit. This crystal has the density smaller than the density of melt and, therefore, floats in the upper part of the melt zone. The refining of the crystal is executed in such a manner. The seed crystal is set at this time and is brought into contact with the melt zone, by which the InP single crystal is grown.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、化合物半導体特に■−V族化合物半導体の結
晶精製方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for refining the crystals of compound semiconductors, particularly 1-V group compound semiconductors.

〔従来の技術〕[Conventional technology]

半導体結晶の精製法、あるいは種結晶による単結晶の成
長法等に関してはすでに帯域溶融法その他各種の方法が
知られている。
Regarding methods for refining semiconductor crystals or growing single crystals using seed crystals, various methods including zone melting are already known.

第3図および第4図はその代表例として知られているゾ
ーン精製法と浮遊帯溶融法(FZ法)の原理図を示すも
のである。
FIGS. 3 and 4 are diagrams showing the principles of the zone refining method and the floating zone melting method (FZ method), which are known as typical examples thereof.

第3図はゾーン精製法を示すもので、1は例えば■−v
族化合物の結晶でボート2の中に収納され、その一部が
・加熱ヒータ3によって溶融する。
Figure 3 shows the zone purification method, where 1 is, for example, ■-v
The crystals of group compounds are stored in the boat 2, and a part of them is melted by the heater 3.

4が溶融ゾーンを示す。4 indicates the melting zone.

溶融が進むとボート2は圧力容器5の内部を矢印方向に
引戻されるので溶融ゾーン4は次第にボート2の後方に
移動してゆく。
As the melting progresses, the boat 2 is pulled back inside the pressure vessel 5 in the direction of the arrow, so the melting zone 4 gradually moves to the rear of the boat 2.

この動作を繰返すことにより、固相一液相の境界面にお
ける偏析現象に基づき結晶1の不純物は次第に後方に押
しやられて結晶の純化が行なわれることになる。
By repeating this operation, the impurities in the crystal 1 are gradually pushed backwards based on the segregation phenomenon at the interface between the solid phase and the liquid phase, thereby purifying the crystal.

第4図はFZ法を示す。第3図に対応する部分には同一
符号が用いられている。
FIG. 4 shows the FZ method. The same reference numerals are used for parts corresponding to those in FIG.

この方法は結晶1を垂直に保持し、溶融ゾーン4を垂直
方向に移動させて、第3図の場合と同様に不純物を一方
に集めて結晶の純化を行なうものである。この方法の特
徴としてボートやるつぼを使用しないのでこれら容器か
ら転移する不純物による汚染を生じないことがあげられ
る。
In this method, the crystal 1 is held vertically, the melting zone 4 is moved vertically, and impurities are collected to one side as in the case of FIG. 3, thereby purifying the crystal. A feature of this method is that it does not use boats or crucibles, so there is no contamination caused by impurities transferred from these containers.

[発明が解決しようとする問題点] 上述したように、半導体の結晶を精製する場合はゾーン
精製法やFZ法が用いられるが、結晶が例えばガリウム
・ヒ素(GaAs)やインジウム・リン(InP)、あ
るいはガリウム・リン(GaP)などのような■−v族
化合物の場合は、これら化合物の結晶は融点が非常に高
く、ゾーン精製法を用いる場合はボートなどの結晶収納
容器より生ずる不純物により汚染され易い傾向がある。
[Problems to be Solved by the Invention] As mentioned above, when refining semiconductor crystals, the zone refining method and the FZ method are used. , or in the case of ■-V group compounds such as gallium phosphide (GaP), the crystals of these compounds have very high melting points, and when zone refining methods are used, they can be contaminated by impurities from crystal storage vessels such as boats. There is a tendency to

これを防ぐにはFZ法を用いればよいが、この場合はV
族元素の蒸気圧が極めて高いため、通常のFZ法を用い
た場合は結晶からV族元素が解離して半導体が精製され
ない嫌いがある。
To prevent this, the FZ method can be used, but in this case, V
Since the vapor pressure of the group elements is extremely high, when the normal FZ method is used, the group V elements dissociate from the crystal and the semiconductor is not purified.

本発明の目的は、低温で結晶の精製を行ない容器等から
生ずる不純物による汚染を低減する化合物半導体結晶精
製方法を提供することにある。
An object of the present invention is to provide a compound semiconductor crystal purification method that purifies crystals at low temperatures and reduces contamination by impurities generated from containers and the like.

[問題点を解決するための手段] 本発明は、半導体結晶の一部を加熱して溶融帯域を形成
させ、この溶融帯域を前記結晶内の垂直方向に移動させ
ながら内部の不純物をその一端に集めて前記半導体結晶
を精製する化合物半導体結晶精製方法において、m−v
族化合物をるつぼに収納してその上部に■族元素を配し
、さらにその上部には液体封止剤を配して前記るつぼを
封止し、ついで加熱ヒータにより前記■族元素を溶融さ
せ、この■族元素の溶融により前記■−v族化合物を両
者の接する境界面より順次溶融して溶融ゾーンを形成さ
せ、この溶融ゾーンを前記■−v族化合物の下方へ移動
させると共に前記■−v族化合物の結晶を析出させて前
記溶融ゾーンの上方に浮上させるようにし、さらにこの
状態で前記るつぼに種結晶を配して前記溶融ゾーンと接
触させて前記■−v族化合物半導体の単結晶を成長させ
ることを特徴とし、低温で結晶を精製すると同時に周囲
よりの汚染を防止するようにして目的の達成を計ったも
のである。
[Means for Solving the Problems] The present invention heats a part of a semiconductor crystal to form a molten zone, and moves the molten zone vertically within the crystal to remove internal impurities from one end of the semiconductor crystal. In the compound semiconductor crystal purification method of collecting and refining the semiconductor crystal, m-v
A group compound is placed in a crucible, a group (I) element is placed on top of the crucible, a liquid sealant is placed on top of the crucible, the crucible is sealed, and the group (I) element is melted using a heater; By the melting of the group (1) element, the group (1)-v compound is sequentially melted from the interface where the two contact, forming a molten zone, and this molten zone is moved below the group (1)-v compound, and the compound (2)-v A crystal of the group compound semiconductor is precipitated and floated above the melting zone, and in this state, a seed crystal is placed in the crucible and brought into contact with the melting zone to form a single crystal of the group III-V compound semiconductor. It aims to achieve its purpose by purifying crystals at low temperatures and at the same time preventing contamination from the surrounding area.

[作 用] 本発明の化合物半導体結晶精製方法においては、るつ′
ぼの中に例えば■−v族化合物のInPの多結晶を入れ
その上部に例えば■族元素のInを入れてさらにその上
部に液体封止剤をして例えば酸化ボロン(B203)を
入れてるつぼの頭部を封止させ、ついで加熱ヒータによ
りるつぼを加熱して上記のInを溶融する。このときI
nPの融点はInより高いのでこの温度ではInPの多
結晶は溶解しないが、Inが溶融し始めるとこの融液と
接する部分から次第に溶融を開始するので溶融ゾーンが
形成されることになる。
[Function] In the compound semiconductor crystal purification method of the present invention,
For example, a polycrystal of InP, a group ■-V compound, is placed in a pot, and on top of it, for example, In, a group II element, is placed, and then a liquid sealant is applied to the top, and boron oxide (B203), for example, is placed in a pot. The head of the crucible is sealed, and then the crucible is heated with a heater to melt the In. At this time I
Since the melting point of nP is higher than that of In, polycrystalline InP does not melt at this temperature, but when In starts to melt, it gradually starts to melt from the part that comes into contact with the melt, thus forming a melting zone.

溶融が進むにつれてこの溶融ゾーンはInが多量に含ま
れたInPの融液となる。
As the melting progresses, this melting zone becomes an InP melt containing a large amount of In.

Inが多量に含まれたInPの融液は通常のInPの融
液に比べて密度が非常に大きいので、このInPの溶融
ゾーンは次第に上記InP多結晶の下方へ移動すること
になる。
Since the InP melt containing a large amount of In has a much higher density than a normal InP melt, the InP melt zone gradually moves below the InP polycrystal.

この場合、InPの溶融ゾーンにおけるPの濃度も次第
に高くなってくるが、Pの濃度が上昇するとInPの結
晶が析出を開始する。この結晶は融液より密度が小さい
ので結晶は融液ゾーンの上部に浮上することになる。こ
のようにして結晶の精製が行なわれる。
In this case, the concentration of P in the melting zone of InP also gradually increases, and as the concentration of P increases, crystals of InP begin to precipitate. Since this crystal has a lower density than the melt, the crystal floats to the top of the melt zone. In this way, the crystals are purified.

またこのとき、るつぼに種結晶をセットして上記の融液
ゾーンと接触させごことにより、InPの単結晶を成長
させることが可能となる。
At this time, by setting a seed crystal in the crucible and bringing it into contact with the melt zone, it becomes possible to grow a single crystal of InP.

[実施例] 以下、本発明の一実施例を図を用いながら説明する。[Example] Hereinafter, one embodiment of the present invention will be described with reference to the drawings.

第1図は本発明の化合物半導体単結晶精製方法の一実施
例に用いられる結晶精製装置の縦断面図を示すものであ
る。
FIG. 1 shows a longitudinal sectional view of a crystal refining apparatus used in an embodiment of the compound semiconductor single crystal refining method of the present invention.

図において6はるつぼで材質はP B N (Pyro
li−tie Boron N1tride )が用い
られ直径30mm、高さ50■である。7は■−v族化
合物多結晶でInPの多結晶が用いられる。8は■族元
素でInが用いられる。9は液体封止剤でB2O3であ
る。10は加熱ヒータ、11はグラファイト製サセプタ
である。
In the figure, 6 is a crucible and the material is P B N (Pyro
It has a diameter of 30 mm and a height of 50 mm. 7 is a polycrystalline compound of the ■-v group, and polycrystalline InP is used. 8 is a group Ⅰ element and In is used. 9 is a liquid sealant and is B2O3. 10 is a heater, and 11 is a graphite susceptor.

この実施例の場合は、InP多結晶7を1400g、I
n8を6N(ナイン)の290 g。
In this example, 1400 g of InP polycrystal 7, I
290 g of n8 6N (nine).

B2039を70gとし、圧力容器5にアルゴン(Ar
)ガスを封入して内圧を40 Kg/ am2とした。
B2039 is 70g, and the pressure vessel 5 is filled with argon (Ar).
) Gas was sealed to make the internal pressure 40 Kg/am2.

この状態で加熱ヒータ10によりるつぼ6の内部を約5
00℃に加熱し、In8およびB2039を溶解させた
。この場合1nP多結晶7は融点が1068℃であるか
ら通常はこの程度の温度では溶解しないのであるが、I
n8の融液と接する部分は次第に溶解してゆくことにな
る。このようにしてIn8とInP多結晶7の溶液とに
よって次第に溶融ゾーンが形成されることになる。
In this state, the inside of the crucible 6 is heated by the heater 10 for about 50 minutes.
It was heated to 00°C to dissolve In8 and B2039. In this case, the melting point of 1nP polycrystalline 7 is 1068°C, so normally it does not melt at this temperature, but I
The portion of n8 that comes into contact with the melt will gradually dissolve. In this way, a melting zone is gradually formed by the In8 and InP polycrystalline 7 solutions.

この溶融ゾーンの融液にはInが多量に含まれており、
したがってその密度も溶融前のInPに比較して極めて
大きく約2倍の値を有しており、InP多結晶7を溶解
しながら次第にその下方へ移動してゆく。
The melt in this melting zone contains a large amount of In,
Therefore, its density is extremely large and about twice as high as that of InP before melting, and as it melts the InP polycrystal 7, it gradually moves below it.

この場合溶融ゾーンにはPも溶融されるためその濃度が
次第に高くなる。Pの濃度が高くなるとInPの結晶が
析出を開始するが、InPの結晶の密度は融液の密度よ
り小さいので結晶は溶融ゾーンの上に浮上するとになる
In this case, since P is also melted in the melting zone, its concentration gradually increases. When the concentration of P increases, InP crystals start to precipitate, but since the density of the InP crystals is smaller than the density of the melt, the crystals float above the melting zone.

析出されたInPの結晶はストイキオメトリ−の組成を
有しており、上記の溶融−移動の動作を続けることによ
り、精製されたInPの結晶が得られることになる。
The precipitated InP crystals have a stoichiometric composition, and by continuing the above melting-transfer operation, purified InP crystals can be obtained.

第2図は精製中の状況を示すもので12が溶融ゾーン、
13がInPの結晶を示す。図において精製されたけ結
晶を取出す場合は、るつぼを加熱後18時間放置し、つ
いで24時間徐冷した後結晶の下方を約30a+i除去
してから取出す。
Figure 2 shows the situation during refining, where 12 is the melting zone;
13 indicates an InP crystal. In the case of taking out the purified bamboo crystals in the figure, the crucible is heated and then left for 18 hours, then slowly cooled for 24 hours, and about 30a+i of the lower part of the crystals are removed before being taken out.

このようにして得られたInPの結晶についてホール(
Hall)効果の測定によってホール移動度μとキャリ
ア濃度nとを室温で求め、精製の前後について比較する
と、精製前はホール移動度μm3100cm2/V −
S、キャリア濃度n−1×101B101Bテアツタカ
精製後ハμm3900cm  / V −S 、 n 
−2X 1015cm−3となり、μ。
Regarding the InP crystal obtained in this way, the hole (
Hall mobility μ and carrier concentration n were determined at room temperature by measuring the Hall effect and compared before and after purification. Before purification, the Hall mobility μm was 3100 cm2/V −
S, carrier concentration n-1 × 101B101B after purification Hμm3900cm/V-S, n
-2X 1015 cm-3, μ.

nともに向上していることが認められた。It was recognized that both n and n were improved.

また、上記の結晶精製の場合と同一条件にして溶融ゾー
ンの上部に結晶方位<111>の種結晶を入れて結晶の
成長を行った結果、高さ110■のInP単結晶のイン
ゴットを得ることができた。
In addition, under the same conditions as in the case of crystal refining described above, a seed crystal with crystal orientation <111> was placed in the upper part of the melting zone to grow the crystal, and as a result, an InP single crystal ingot with a height of 110 cm was obtained. was completed.

なお、本実施例の場合は、上部開放型のるつぼを用いた
がこれは密閉型のものでもよい。
In this example, an open-top crucible was used, but a closed crucible may also be used.

溶融ゾーン12を移動させる場合は第5図に示すように
ヒーター4を矢印方向に移動させてもよく、ヒータの形
状にも各種のものが考えられる。
When moving the melting zone 12, the heater 4 may be moved in the direction of the arrow as shown in FIG. 5, and various shapes of the heater can be considered.

また、るつぼは回転させることにより溶融ゾーンの形状
を均一とすることができ、斜めにして溶融ゾーンの移動
速度を調整することもできる。
Further, by rotating the crucible, the shape of the melting zone can be made uniform, and by tilting the crucible, the moving speed of the melting zone can be adjusted.

溶融ゾーンの移動速度はヒータ温度を調整すればよく、
ヒータには誘導加熱式のものを用いることができ、また
磁界を印加して組成の均一な結晶を得ることができる。
The moving speed of the melting zone can be adjusted by adjusting the heater temperature.
An induction heating type heater can be used, and a crystal with a uniform composition can be obtained by applying a magnetic field.

以上、本実施例に示すようにInを溶融することにより
、低温で結晶の精製および成長を行なうことが可能とな
り、次のような効果が得られる。
As described above, by melting In as shown in this embodiment, it becomes possible to refine and grow crystals at low temperatures, and the following effects can be obtained.

(1)  るつぼその他周囲から発生する汚染物質の混
入を防止することができる。
(1) It is possible to prevent the contamination of contaminants generated from the crucible and other surrounding areas.

(2)v族元素、例えばPの解離を減少させるとかでき
る。
(2) It is possible to reduce the dissociation of group V elements, such as P.

(3)  加熱ヒータの電力が少なくてすみ、装置全体
の簡略化が図れるので経済的に有利である。
(3) It is economically advantageous because less electric power is required for the heater and the entire device can be simplified.

[発明の効果] 本発明によれば、低温で結晶の精製を行ない容器等から
生ずる°不純物による汚染を低減する化合物半導体単結
晶精製方法を提供することができる。
[Effects of the Invention] According to the present invention, it is possible to provide a compound semiconductor single crystal purification method that purifies the crystal at a low temperature and reduces contamination by impurities generated from a container or the like.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の化合物半導体単結晶精製方法の一実施
例に用いられる結晶精製装置の縦断面図、第2図は第1
図において精製進行時を示す縦断面図、第3図、第4図
は従来の結晶精製装置を示す縦断面図、第5図は本発明
方法に用いられる結晶精製装置の他の実施例を示す縦断
面図である。 6:るつぼ、 7:I[[−V族化合物、 8:■族元素、 9:液体封止剤、 10:加熱ヒータ、 12:溶融ゾーン、 13:InP結晶。 蔦 1 口
FIG. 1 is a vertical cross-sectional view of a crystal refining apparatus used in an embodiment of the compound semiconductor single crystal refining method of the present invention, and FIG.
3 and 4 are longitudinal sectional views showing the conventional crystal purification apparatus, and FIG. 5 shows another embodiment of the crystal purification apparatus used in the method of the present invention. FIG. 6: Crucible, 7: I[[-V group compound, 8: ■group element, 9: Liquid sealant, 10: Heater, 12: Melting zone, 13: InP crystal. 1 bite of ivy

Claims (1)

【特許請求の範囲】[Claims] (1)半導体結晶の一部を加熱して溶融帯域を形成させ
、該溶融帯域を前記結晶内の垂直方向に移動させながら
内部の不純物をその一端に集めて前記半導体結晶を精製
する化合物半導体結晶精製方法において、III−V族化
合物をるつぼに収納してその上部にIII族元素を配し、
さらにその上部には液体封止剤を配して前記るつぼを封
止し、ついで加熱ヒータにより前記III族元素を溶融さ
せ、該III族元素の溶融により前記III−V族化合物を両
者の接する境界面より順次溶融して溶融ゾーンを形成さ
せ、該溶融ゾーンを前記III−V族化合物の下方へ移動
させると共に前記III−V族化合物の結晶を析出させて
前記溶融ゾーンの上方に浮上させるようにし、さらにこ
の状態で前記るつぼに種結晶を配して前記溶融ゾーンと
接触させて前記III−V族化合物半導体の単結晶を成長
させることを特徴とする化合物半導体単結晶精製方法。
(1) A compound semiconductor crystal in which a part of the semiconductor crystal is heated to form a molten zone, and the molten zone is moved in the vertical direction within the crystal, while internal impurities are collected at one end to refine the semiconductor crystal. In the purification method, a III-V group compound is stored in a crucible, a group III element is placed on top of the crucible,
Furthermore, a liquid sealant is placed above the crucible to seal the crucible, and then the group III element is melted by a heater, and the group III element is melted to separate the group III-V compound at the boundary where the two contact each other. The crystals of the III-V compound are precipitated and floated above the melting zone by sequentially melting from the surface to form a melting zone, and moving the melting zone below the III-V compound. . A compound semiconductor single crystal refining method, further comprising disposing a seed crystal in the crucible in this state and bringing it into contact with the melting zone to grow a single crystal of the III-V compound semiconductor.
JP26196687A 1987-10-16 1987-10-16 Compound semiconductor crystal purification method Expired - Fee Related JPH0699216B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26196687A JPH0699216B2 (en) 1987-10-16 1987-10-16 Compound semiconductor crystal purification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26196687A JPH0699216B2 (en) 1987-10-16 1987-10-16 Compound semiconductor crystal purification method

Publications (2)

Publication Number Publication Date
JPH01103984A true JPH01103984A (en) 1989-04-21
JPH0699216B2 JPH0699216B2 (en) 1994-12-07

Family

ID=17369130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26196687A Expired - Fee Related JPH0699216B2 (en) 1987-10-16 1987-10-16 Compound semiconductor crystal purification method

Country Status (1)

Country Link
JP (1) JPH0699216B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024027072A1 (en) * 2022-08-05 2024-02-08 中国电子科技集团公司第十三研究所 Method for preparing compound crystal via melt migration under supergravity

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024027072A1 (en) * 2022-08-05 2024-02-08 中国电子科技集团公司第十三研究所 Method for preparing compound crystal via melt migration under supergravity

Also Published As

Publication number Publication date
JPH0699216B2 (en) 1994-12-07

Similar Documents

Publication Publication Date Title
US4312849A (en) Phosphorous removal in silicon purification
CA1130985A (en) Silicon purification method
KR20110127113A (en) Method and apparatus for refining metallurgical grade silicon to produce solar grade silicon
US4246249A (en) Silicon purification process
Chevy Improvement of growth parameters for Bridgman-grown InSe crystals
JPH01103984A (en) Method for refining compound semiconductor crystal
US3899304A (en) Process of growing crystals
US2990261A (en) Processing of boron compact
US20110120365A1 (en) Process for removal of contaminants from a melt of non-ferrous metals and apparatus for growing high purity silicon crystals
US3245761A (en) Apparatus for making magnesium oxide crystals
JPH0873297A (en) Substrate material for solar cell and solar cell using the same
JPH039173B2 (en)
Wilcox et al. Czochralski growth of CuCl
JPS5899115A (en) Casting method for polycrystalline silicon ingot
JP2539841B2 (en) Crystal manufacturing method
JP2542434B2 (en) Compound semiconductor crystal manufacturing method and manufacturing apparatus
JPS56149399A (en) Liquid phase epitaxial growing method
JPH02196082A (en) Production of silicon single crystal
JPH0527500Y2 (en)
JPH0426728A (en) Manufacture of high purity in
JPH0696444B2 (en) Method for producing high-purity silicon
JP3684446B2 (en) Method and apparatus for manufacturing semi-insulating GaAs single crystal
JPH0476926B2 (en)
JPH0354185A (en) Production of iii-v compound semiconductor single crystal
JPH0867593A (en) Method for growing single crystal

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees