JPH01103131A - Motor - Google Patents

Motor

Info

Publication number
JPH01103131A
JPH01103131A JP26135987A JP26135987A JPH01103131A JP H01103131 A JPH01103131 A JP H01103131A JP 26135987 A JP26135987 A JP 26135987A JP 26135987 A JP26135987 A JP 26135987A JP H01103131 A JPH01103131 A JP H01103131A
Authority
JP
Japan
Prior art keywords
rotating body
circumferential surface
rotary body
fixed
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26135987A
Other languages
Japanese (ja)
Other versions
JPH041574B2 (en
Inventor
Ryukichi Tsuno
柳吉 津野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec Sankyo Corp
Original Assignee
Nidec Sankyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidec Sankyo Corp filed Critical Nidec Sankyo Corp
Priority to JP26135987A priority Critical patent/JPH01103131A/en
Publication of JPH01103131A publication Critical patent/JPH01103131A/en
Publication of JPH041574B2 publication Critical patent/JPH041574B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the outer peripheral surface of a rotary body and the inner peripheral surface of a fixed bearing from coming in contact with each other, by limiting the diameter of the rotary body according to working rotational frequency, and by controlling the expanded degree of the rotary body due to a centrifugal force, to be a fixed degree or less. CONSTITUTION:The outer peripheral surface 21 of a rotary body 12 and the inner peripheral surface 24 of a fixed bearing 11 are confronted with each other at a specified interval. On the outer peripheral surface 21 of the rotary body 12, groups 18 are, formed. Then, between the rotary body 12 and the fixed bearing 11, a dynamic pressure bearing is formed, and the dynamic pressure bearing is rotatably supported. The groups 8 are inclined at specified angles to the central axis at both the upper and lower end sections of the rotary body 12, and are formed so that the upper side group and the lower side group may be formed inclined in the directions opposite to each other. Then, the average diameter of a diameter for connecting the center line of the thickness of the cylindrical rotary body 12 is selected to come to a value within a specified range according to working rotational frequency.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は1回転体が動圧軸受によって支承された電動機
に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an electric motor in which one rotating body is supported by a hydrodynamic bearing.

(従来の技術) ロータを構成する円筒状回転体の外周面又はこの円筒状
回転体の外周面を回転自在に支承する固定軸受の内周面
の何れか一方にグルーブを設けて動圧軸受を形成し、上
記円筒状回転体の内周面にはマグネットを固着し、この
マグネットに対向させて駆動用コイルを配置してなる電
動機がある。
(Prior art) A hydrodynamic bearing is constructed by providing a groove on either the outer circumferential surface of a cylindrical rotating body constituting a rotor or the inner circumferential surface of a fixed bearing that rotatably supports the outer circumferential surface of this cylindrical rotating body. There is an electric motor in which a magnet is fixed to the inner circumferential surface of the cylindrical rotating body, and a driving coil is arranged opposite to the magnet.

(発明が解決しようとする問題点) 上記のような電動機において動圧軸受を有効に作用させ
るには、円筒状回転体の径を大きくして角速度を高くし
た方がよいが、角速度を高くするために回転体の怪をあ
まり大きくすると、回転体を高速回転させた場合に遠心
力により回転体が外側に膨み、その外周側に配置された
固定軸受の内周面に接触し、甚だしい場合には致命的な
欠陥である焼き付きを生じることがあった。また1回転
体の内周側に固着されるマグネットは剛性が小さいため
、マグネットは遠心力として作用するが、剛性保持には
寄与せず1円筒状回転体の遠心力による膨みを助長し、
軸受の焼き付きの危険性を増大させている。特に、近年
広く用いられるようになった樹脂結合あるいはゴム結合
マグネットはほとんど剛性をもたないため、これを電動
機に用いた場合は軸受の焼き付きの危険性がさらに大き
くなる。
(Problem to be Solved by the Invention) In order for the dynamic pressure bearing to work effectively in the electric motor as described above, it is better to increase the diameter of the cylindrical rotating body and increase the angular velocity. Therefore, if the diameter of the rotating body is made too large, when the rotating body is rotated at high speed, the centrifugal force will cause the rotating body to bulge outward and come into contact with the inner circumferential surface of the fixed bearing placed on the outer circumferential side. In some cases, burn-in occurred, which was a fatal flaw. In addition, since the magnet fixed to the inner circumference of the rotating body has low rigidity, the magnet acts as a centrifugal force, but does not contribute to maintaining rigidity and promotes the expansion of the cylindrical rotating body due to the centrifugal force.
This increases the risk of bearing seizure. In particular, resin-bonded or rubber-bonded magnets, which have become widely used in recent years, have almost no rigidity, so when they are used in electric motors, there is an even greater risk of bearing seizure.

本発明は、このような従来の動圧軸受を有する電動機の
問題点を解消するためになされたもので、回転体の直径
を使用回転数に対して制限して遠心力による回転体の膨
み量を一定値以下に押え、もって、回転体の外周面と固
定軸受の内周面どの接触を防止し、軸受部の焼き付きを
解消することができる電動機を提供することを目的とす
る。
The present invention was made in order to solve the problems of conventional electric motors with hydrodynamic bearings, and the diameter of the rotating body is limited to the number of rotations used, thereby preventing the swelling of the rotating body due to centrifugal force. An object of the present invention is to provide an electric motor capable of suppressing the amount below a certain value, thereby preventing contact between the outer circumferential surface of a rotating body and the inner circumferential surface of a fixed bearing, and eliminating seizure of the bearing part.

(問題点を解決するための手段) 本発明は、動圧軸受を有する電動機において。(Means for solving problems) The present invention relates to an electric motor having a hydrodynamic bearing.

円筒状回転体の肉厚の中心を結ぶ直径である平均直径が
使用回転数に対して次の表の範囲で構成されることを特
徴とする。
It is characterized in that the average diameter, which is the diameter connecting the centers of the wall thicknesses of the cylindrical rotating body, is configured within the range shown in the following table for the number of rotations used.

本発明はまた、円筒状回転体の内周面に円筒状のヨーク
の介在の下にマグネットを固着し、上記ヨークと円筒状
回転体の内周面との間に遠心力によるヨークの膨みに対
する逃げ部を形成すると共に、上記円筒状回転体の肉厚
の中心を結ぶ直径である平均直径が使用回転数に対して
次の表の範囲で構成されることを特徴とする。
The present invention also provides a structure in which a magnet is fixed to the inner circumferential surface of the cylindrical rotating body under the interposition of a cylindrical yoke, and the yoke is bulged due to centrifugal force between the yoke and the inner circumferential surface of the cylindrical rotating body. The cylindrical rotating body is characterized in that the average diameter, which is the diameter connecting the centers of the wall thicknesses of the cylindrical rotating body, falls within the range shown in the following table for the number of rotations used.

(作  用) 遠心力による回転体の膨みの許容限度は半径で2μm程
度であり、大きくても2.3μm以下に抑えたい。遠心
力は回転体の回転数と回転体の平均直径が大きく影響す
るが、これらを上記の各表の範囲で構成することにより
、遠心力による回転体の膨みを上記許容限度内に抑える
ことができる。
(Function) The permissible limit for swelling of the rotating body due to centrifugal force is about 2 μm in radius, and it is desirable to keep it to 2.3 μm or less at most. Centrifugal force is greatly influenced by the rotation speed of the rotating body and the average diameter of the rotating body, but by configuring these within the ranges shown in the tables above, it is possible to suppress the expansion of the rotating body due to centrifugal force within the above allowable limits. Can be done.

また、ヨークと円筒状回転体の内周面との間に遠心力に
よるヨークの膨みに対する逃げを形成することにより、
回転体の回転数に対する回転体の平均直径を大きくする
ことができる。
In addition, by forming a relief between the yoke and the inner circumferential surface of the cylindrical rotating body to prevent the yoke from expanding due to centrifugal force,
The average diameter of the rotating body can be increased relative to the rotation speed of the rotating body.

(実施例) 以下、図面を参照しながら本発明に係る電動機の実施例
について説明する。
(Example) Hereinafter, an example of the electric motor according to the present invention will be described with reference to the drawings.

第1図乃至第3図は、ビデオテープレコーダやデジタル
オーディオテープレコーダ等に用いら九る回転磁気ヘッ
ドのrgAa 711電動機の例を示す。第1図乃至第
3図において、符号11は円筒状の固定軸受であり、こ
の固定軸受11の底部にはカップ状のフレーム25が、
固定され、フレーム25の中心部の孔に支柱19が圧入
により立てられている。固定軸受11の外周の一部はフ
ランジ状に突出すると共に円筒状に形成された固定ドラ
ム26となっている。
1 to 3 show examples of rgAa 711 motors for rotating magnetic heads used in video tape recorders, digital audio tape recorders, and the like. In FIGS. 1 to 3, reference numeral 11 is a cylindrical fixed bearing, and a cup-shaped frame 25 is attached to the bottom of the fixed bearing 11.
The frame 25 is fixed in place, and a column 19 is press-fitted into a hole in the center of the frame 25 . A part of the outer periphery of the fixed bearing 11 protrudes like a flange and serves as a fixed drum 26 formed in a cylindrical shape.

固定軸受11の内周側には円筒状回転体12が落とし込
まれている。回転体12の中心部にはスラスト受けねじ
27が螺入され、回転体12の肩部中央を貫通した上記
ねじ27の下端が支柱19の上端部のスラスト軸受28
上に乗せられている。支柱19の上端部外周には円環状
のマグネット16が固定され、回転体12にも上記マグ
ネット16に対向させて円環状のマグネット15が固着
されている。各マグネット15゜16は対向面が同極に
着磁され、その反発力によって上記ねじ27ど軸受28
でなるスラスト軸受部に過大な負荷がかからないように
なっている。
A cylindrical rotating body 12 is dropped into the inner peripheral side of the fixed bearing 11. A thrust bearing screw 27 is screwed into the center of the rotating body 12, and the lower end of the screw 27 passing through the center of the shoulder of the rotating body 12 is a thrust bearing 28 at the upper end of the column 19.
is placed on top. An annular magnet 16 is fixed to the outer periphery of the upper end of the support column 19, and an annular magnet 15 is also fixed to the rotating body 12 so as to face the magnet 16. The opposing surfaces of each magnet 15 and 16 are magnetized with the same polarity, and the repulsive force causes the screw 27 and the bearing 28 to be magnetized.
This prevents excessive load from being applied to the thrust bearing.

回転体12の外周面21と固定軸受11の内周面24は
所定の間隙をおいて対向している。回転体12の外周面
21には第2図に示すようにグルーブ18が形成され、
もって回転体12と固定軸受11との間に動圧軸受が形
成され、この動圧軸受を介して回転体12が回転自在に
支承されている。グルーブ18は回転体12の上下両端
部に中心軸線に対し所定角度傾けて、かつ、上側のグル
ーブと下側のグルーブの傾きの向きを逆にして形成され
ている。グルーブ18は固定軸受11の内周側に形成し
てもよい。
The outer circumferential surface 21 of the rotating body 12 and the inner circumferential surface 24 of the fixed bearing 11 face each other with a predetermined gap therebetween. As shown in FIG. 2, a groove 18 is formed on the outer circumferential surface 21 of the rotating body 12.
A dynamic pressure bearing is thus formed between the rotating body 12 and the fixed bearing 11, and the rotating body 12 is rotatably supported via this dynamic pressure bearing. The grooves 18 are formed at both the upper and lower ends of the rotating body 12 so as to be inclined at a predetermined angle with respect to the central axis, and the directions of inclination of the upper groove and the lower groove are opposite. The groove 18 may be formed on the inner peripheral side of the fixed bearing 11.

回転体12の上端部には回転ドラム20が固着されてい
る0回転ドラム20の外径は固定ドラム26の外径とほ
ぼ同じであり、回転ドラム20の外周寄りの下面側には
磁気ヘッド30が取りつけられている。
A rotating drum 20 is fixed to the upper end of the rotating body 12. The outer diameter of the zero-rotating drum 20 is approximately the same as the outer diameter of the fixed drum 26, and a magnetic head 30 is mounted on the lower surface of the rotating drum 20 near the outer periphery. is attached.

固定ドラム26と回転ドラム20の対向面には回転トラ
ンス23を構成するコイルが相対向して取りつけてられ
ていて、磁気ヘッド30と外部回路どの信号の授受を行
うようになっている。
Coils constituting a rotary transformer 23 are mounted on opposing surfaces of the fixed drum 26 and the rotating drum 20 so as to face each other, and send and receive signals between the magnetic head 30 and an external circuit.

前記支柱19の外周には磁路形成用の鉄心31が固定さ
れている。鉄心31には適宜の相数の駆動コイル17が
配置されている。一方、回転体12の内周側には円筒状
のヨーク13が固着され、このヨーク13の内周側には
さらに円筒状のマグネット14が固着されている。マグ
ネット14は上記鉄心31の外周面に対して所定の間隙
をおいて対向すると共に、周方向に適宜の極数に着磁さ
れている。
An iron core 31 for forming a magnetic path is fixed to the outer periphery of the pillar 19. Drive coils 17 having an appropriate number of phases are arranged on the iron core 31 . On the other hand, a cylindrical yoke 13 is fixed to the inner circumferential side of the rotating body 12, and a cylindrical magnet 14 is further fixed to the inner circumferential side of this yoke 13. The magnet 14 faces the outer peripheral surface of the iron core 31 with a predetermined gap therebetween, and is magnetized to have an appropriate number of poles in the circumferential direction.

いま1回転体12の回転位置に応じて各相の駆動コイル
17に対する通電を制御すれば、マグネット14に回転
トルクを生じてこれと一体の回転体12及び回転ドラム
20が回転駆動される。回転体12の回転により、同回
転体12の外周面21のグルーブ18と固定軸受11の
内周面24との間で構成される動圧軸受が機能し、固定
軸受11が回転体12を無接触でラジアル方向に支承す
る。
If the energization of the drive coils 17 of each phase is controlled according to the rotational position of the rotary body 12, a rotational torque is generated in the magnet 14, and the rotary body 12 and the rotary drum 20, which are integral with the magnet 14, are rotationally driven. As the rotating body 12 rotates, the dynamic pressure bearing formed between the groove 18 on the outer circumferential surface 21 of the rotating body 12 and the inner circumferential surface 24 of the fixed bearing 11 functions, and the fixed bearing 11 displaces the rotating body 12. Radial support in contact.

なお、回転駆動の対象は任意であり、上記の例における
回転ドラム20に代えて回転多面鏡を回転体12に固着
すれば、光偏向器を構成することができる。
Note that the object to be rotationally driven is arbitrary, and if a rotating polygon mirror is fixed to the rotating body 12 instead of the rotating drum 20 in the above example, an optical deflector can be constructed.

さて1回転体12の回転により遠心力が生じる。Now, centrifugal force is generated by the rotation of the rotating body 12.

この遠心力は回転体12の回転数が高くなればなる程大
きくなり、これに伴って回転体12が第3図に鎖線で示
すように外側に膨む0元々1回転体12の外周面21と
固定軸受11の内周面24でなる動圧軸受の相互間隔は
きわめて小さいため、回転体12の膨みによって回転体
12と固定軸受11とが接触し、焼き付きを生じる危険
性があることは前述の通りである。そこで、上記実施例
では、円筒状回転体12の肉厚の中心を結ぶ直径である
平均直径が使用回転数に対して特許請求の範囲第1項に
記載した表の範囲で構成した。
This centrifugal force increases as the rotational speed of the rotating body 12 increases, and as a result, the rotating body 12 expands outward as shown by the chain line in FIG. Since the mutual spacing between the dynamic pressure bearing, which is made up of the inner circumferential surface 24 of the fixed bearing 11 and the fixed bearing 11, is extremely small, there is no risk that the rotating body 12 and the fixed bearing 11 will come into contact with each other due to the swelling of the rotating body 12, resulting in seizure. As mentioned above. Therefore, in the above embodiment, the average diameter, which is the diameter connecting the centers of the wall thicknesses of the cylindrical rotating body 12, is configured to be within the range shown in the table set forth in claim 1 for the number of rotations used.

以下、上記構成の根拠を説明する。第4図に示すように
、円筒状回転体12が中心軸線を中心に回転するとき、
J心力による回転体12の半径の増加分δは。
The basis of the above configuration will be explained below. As shown in FIG. 4, when the cylindrical rotating body 12 rotates around the central axis,
The increase δ in the radius of the rotating body 12 due to the J center force is.

ただし、γ:重密度g/cn+2) r:平均半径(am) g : 980 (am/ S ” )E:ヤング率(
g/cm2) ω:角速度(1/ S) で示される。また、第5図に示すように、回転体12の
内周面にヨーク13を固着し、さらにその内周面にマグ
ネット14を固着した場合、マグネット14が樹脂結合
又はゴム結合マグネットのように、回転体12やヨーク
13の材料に比べてヤング率が極めて低い材質で構成さ
れている場合は、遠心力による回転体12の半径の増加
分δは。
However, γ: heavy density g/cn+2) r: average radius (am) g: 980 (am/S'') E: Young's modulus (
g/cm2) ω: Angular velocity (1/S). Furthermore, as shown in FIG. 5, when the yoke 13 is fixed to the inner circumferential surface of the rotating body 12 and the magnet 14 is further fixed to the inner circumferential surface, the magnet 14 becomes a resin-bonded or rubber-bonded magnet. If the rotating body 12 and the yoke 13 are made of a material with an extremely low Young's modulus compared to the materials of the rotating body 12 and the yoke 13, the increase in the radius of the rotating body 12 due to centrifugal force δ is.

ただし、ω:角速度(1/S) g:重力の加速度(980cm/ S” )γl:回転
体12の密度(g/cm’)γ1:ヨーク13の密度(
g/cm3)γ、:マグネット14の密度(g/cm’
)R5:回転体12の回向半径(C■) ■!=ワーク13の平均半径(C■) R9:マグネット14の平均半径(am)E S回転体
12のヤング率(g/am”)R2:ヨーク13のヤン
グ率(g/c+w”)し、二回転体12の肉厚(am) t、;ヨーク13の肉厚(am) し、:マグネット14の肉厚(C醜) で示される。そこで次に、第5図において回転体12の
材質をアルミ合金、ヨーク13の材質を軟鋼、マグネッ
ト14をゴムマグネット(フェライト磁性粉をゴム質バ
インダーで結合したもので、通称は「ポリマグ」)とし
た場合の遠心力による回転体の膨みを(2)式を適用し
て求める。ここでゴムマグネットの剛性は極めて小さく
また、 アルミ合金の密度γ、は2.7、ヤング率E、は7.3
X10’軟鋼の密度γ2は7.9.ヤング率E2は21
 X 10’ゴムマグネツトの密度γ、は4 である、−例として回転体12の肉厚t、 =0.3.
ヨーク13の肉厚t、=0.08、マグネット14の肉
厚し、=0.16の場合について遠心力による膨みδ 
(μm)を回転体の平均半径と回転数に対して計算した
値を表1に示す。
However, ω: Angular velocity (1/S) g: Acceleration of gravity (980cm/S”) γl: Density of rotating body 12 (g/cm') γ1: Density of yoke 13 (
g/cm3) γ,: Density of magnet 14 (g/cm'
) R5: Turning radius of rotating body 12 (C■) ■! = Average radius of workpiece 13 (C) R9: Average radius of magnet 14 (am) E S Young's modulus of rotating body 12 (g/am") R2: Young's modulus of yoke 13 (g/c+w"), Thickness of the rotating body 12 (am): t, Thickness of the yoke 13 (am), Thickness of the magnet 14 (C). Therefore, in Fig. 5, the rotating body 12 is made of an aluminum alloy, the yoke 13 is made of mild steel, and the magnet 14 is made of a rubber magnet (ferrite magnetic powder is bonded with a rubber binder, commonly known as a "polymag"). The expansion of the rotating body due to centrifugal force in this case is determined by applying equation (2). Here, the rigidity of the rubber magnet is extremely small, and the density γ of the aluminum alloy is 2.7, and the Young's modulus E is 7.3.
The density γ2 of X10' mild steel is 7.9. Young's modulus E2 is 21
The density γ of the X 10′ rubber magnet is 4. For example, the thickness t of the rotating body 12 is 0.3.
When the thickness of the yoke 13 is t = 0.08 and the thickness of the magnet 14 is 0.16, the swelling due to centrifugal force δ is
(μm) calculated for the average radius and rotational speed of the rotating body are shown in Table 1.

表     1 膨み(μm) 動圧軸受の嵌合隙間は、軸受剛性、加工精度等を加味し
て通常片面3〜7μm程度に設定されるが、真円度の加
工精度(通常1μm以下)1回転中の軸の振れ(通常1
μm以下)を加味すると、上記嵌合隙間をやや太き目に
設定したとしても、許される回転体の膨みは半径で2μ
m程度が限度であり、大きくても2.3μm以下に抑え
る必要がある0表1において太線は許容される膨みの限
界を示すもので、この太線の左上の範囲が許容範囲であ
る0表1では回転体の径を半径で表わしているので、こ
れを2イΔして直径で表わし、その許容範囲を求めれば
、特許請求の範囲第1項に2戎した表のようになる。表
1から明らかなように、この種の電動機では1回転体の
径が大きくなる程高速回転に耐えられず、動圧軸受の大
きな機能の一つである高速回転に限界があることがわか
る。そこで、本発明では、使用回転数に対する回転体の
平均直径(又は半径)の範囲を設定することにより動圧
軸受の優れた機能を量大限に活用し得るようにしたので
ある。
Table 1 Swelling (μm) The fitting clearance of hydrodynamic bearings is usually set to about 3 to 7 μm on one side, taking bearing rigidity, processing accuracy, etc. into account, but the processing accuracy of roundness (usually 1 μm or less)1 Runout of shaft during rotation (usually 1
(μm or less), even if the above fitting gap is set slightly thick, the allowable bulge of the rotating body is 2 μm in radius.
The limit is about m, and it is necessary to keep it to 2.3 μm or less at most.In Table 1, the thick line indicates the limit of allowable bulge, and the upper left range of this thick line is the allowable range.Table 1 In No. 1, the diameter of the rotating body is expressed as a radius, so if this is expressed as a diameter by 2 ∆ and the allowable range is determined, the result will be as shown in the table shown in Claim 1. As is clear from Table 1, in this type of electric motor, the larger the diameter of one rotating body, the less it can withstand high-speed rotation, and it can be seen that there is a limit to high-speed rotation, which is one of the major functions of hydrodynamic bearings. Therefore, in the present invention, by setting the range of the average diameter (or radius) of the rotating body relative to the number of rotations used, the excellent functions of the hydrodynamic bearing can be utilized to the maximum extent.

次に、第6図及び第7図の実施例について説明する0回
転体の高速回転による遠心力に基づく膨みは、円筒状回
転体12自体の遠心力のみでなく。
Next, the swelling caused by the centrifugal force caused by the high-speed rotation of the 0-rotator, which will be explained with reference to the embodiments of FIGS. 6 and 7, is caused not only by the centrifugal force of the cylindrical rotor 12 itself.

ヨーク13及びマグネット14、特に後者の遠心力が大
きく寄与している。そこで、マグネット14の遠心力に
よる膨み力が回転体12に伝達されないか又は伝達され
ても極めて僅かであれば回転体12の膨みは小さくなり
、使用回転数に対する回転体の平均直径を大きくするこ
とができる。第6図及び第7図はそのような実施例を示
す。第6図の例は。
The centrifugal force of the yoke 13 and the magnet 14, especially the latter, greatly contributes. Therefore, if the swelling force due to the centrifugal force of the magnet 14 is not transmitted to the rotating body 12, or even if it is transmitted, it is very small, the swelling of the rotating body 12 will be small, and the average diameter of the rotating body for the number of rotations used will be increased. can do. Figures 6 and 7 illustrate such an embodiment. The example in Figure 6 is.

ヨーク13の外周上端部のみを回転体12の内周に嵌合
固着し、回転体12の内周下半部に大径部を形成してこ
れをヨーク13の膨みに対する逃げ部36としたもので
ある。第7図の例は1回転体12の内周面とヨーク13
の外周面との間にヨーク13の膨みに対する逃げ部とし
ての間隙38を形成すると共に1回転体12とヨーク1
3をゴム系又はアクリル系の接着剤40で部分的に接着
し、剛性の小さい接着剤40によってヨーク13の膨み
力の回転体12への伝達が緩和されるようにしたもので
ある。また、第6図及び第7図の例では、何れも回転磁
気ヘッドの回転ドラム又は回転多面鏡等を乗せて固着す
るための円筒状回転体12の肩の部分を補強用リブとし
て作用させるようになっている。
Only the upper end of the outer periphery of the yoke 13 is fitted and fixed to the inner periphery of the rotating body 12, and a large diameter part is formed in the lower half of the inner periphery of the rotating body 12, which serves as a relief part 36 for the bulge of the yoke 13. It is something. The example in FIG. 7 shows the inner peripheral surface of one rotating body 12 and the yoke 13.
A gap 38 is formed between the outer peripheral surface of the yoke 13 and the yoke 1 as a relief part for the bulge of the yoke 13.
3 is partially adhered with a rubber-based or acrylic-based adhesive 40, and the transmission of the expansion force of the yoke 13 to the rotating body 12 is alleviated by the adhesive 40 having low rigidity. In the examples shown in FIGS. 6 and 7, the shoulder portion of the cylindrical rotating body 12 on which the rotating drum of the rotating magnetic head or the rotating polygon mirror is placed and fixed is made to act as a reinforcing rib. It has become.

第6図及び第7図の実施例によれば、マグネット14及
びヨーク13の遠心力による膨み力は逃げ部36又は接
着剤40によりキャンセルされて回転体12にはほとん
ど伝達されず1回転体12の膨み量は少なくなる。従っ
て、使用回転数に対する回転体の平均直径又は半径を大
きくすることができる。表2は、各部の材質、肉厚等の
条件を前述の実施例の場合と同一として遠心力による膨
みδを回転体の平均半径と回転数との関係で示したもの
である。
According to the embodiments shown in FIGS. 6 and 7, the swelling force due to the centrifugal force of the magnet 14 and the yoke 13 is canceled by the relief portion 36 or the adhesive 40, and is hardly transmitted to the rotating body 12, so that the swelling force is not transmitted to the rotating body 12. The amount of swelling in No. 12 becomes smaller. Therefore, it is possible to increase the average diameter or radius of the rotating body relative to the number of rotations used. Table 2 shows the bulge δ due to centrifugal force in relation to the average radius of the rotating body and the number of rotations, assuming that the conditions such as the material and wall thickness of each part are the same as in the previous embodiment.

表     2 膨み(μm) 表2において太線は許容される膨みの限界を示すもので
、表1の場合と同様に、回転体の膨みの限界を2.3μ
mとし、これを境にして太線が引かれている。太線の左
上の範囲が許容範囲である。
Table 2 Bulge (μm) In Table 2, the thick line indicates the limit of allowable bulge, and as in Table 1, the limit of bulge of the rotating body is 2.3 μm.
m, and a thick line is drawn around this point. The upper left range of the thick line is the permissible range.

表2でも回転体の径を半径で表わしているので。Table 2 also shows the diameter of the rotating body in terms of radius.

これを2倍して直径で表わし、その許容範囲を求めれば
、特許請求の範囲第2項に記載した表のようになる。
If this is doubled and expressed as a diameter, and the allowable range is determined, the table shown in claim 2 will be obtained.

なお、何れの実施例の場合も1回転体12の材質をアル
ミ合金として計算したが、鉄鋼系の材質としてもほどん
ど同じ値が得られる。即ち、前記(1)式におけるγ/
Eの直は、アルミ合金の場合であるのに対し、鉄鋼系の
場合は であって、両者はほとんど差がないからである。
Although the calculations were made assuming that the material of the rotating body 12 is an aluminum alloy in each of the embodiments, almost the same values can be obtained even if the material is made of steel. That is, γ/ in the above equation (1)
This is because E is direct in the case of aluminum alloys, whereas it is direct in the case of steel, and there is almost no difference between the two.

従って1回転体12の材質が変わっても、表1、表2で
示す結果にはほとんど変動がない。
Therefore, even if the material of the rotating body 12 changes, there is almost no change in the results shown in Tables 1 and 2.

(発明の効果) 本発明によれば1円筒状回転体の肉厚の中心を結ぶ直径
である平均直径を、使用回転数に対して一定の範囲内に
抑えたため1回転体の外周面と固定軸受の内周面との接
触を防止して動圧軸受部の焼き付きを解消することがで
きる。また1円筒状回転体とその内周側のヨークとの間
に遠心力によるヨークの膨みに対する逃げ部を形成する
ことにより、円筒状回転体の平均直径を使用回転数に対
してより大きくすることができる。
(Effects of the Invention) According to the present invention, the average diameter, which is the diameter connecting the centers of the wall thicknesses of one cylindrical rotating body, is suppressed within a certain range with respect to the number of rotations used, so that it is fixed to the outer circumferential surface of one rotating body. It is possible to prevent seizure of the dynamic pressure bearing portion by preventing contact with the inner circumferential surface of the bearing. In addition, by forming a relief part between the cylindrical rotating body and the yoke on the inner circumferential side of the yoke to prevent swelling of the yoke due to centrifugal force, the average diameter of the cylindrical rotating body can be made larger relative to the operating speed. be able to.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る電動機の一実施例を示す縦断面図
、第2図は同上実施例の動圧軸受部の一部断面正面図、
第3図は同上軸受部の遠心力による膨みの様子を示す縦
断面図、第4図は同じく円筒状回転体の平均半径と膨み
の関係を示す縦断面図、第5図は同じく回転体の膨み量
を求める計算の基礎となる各部の平均半径ど肉厚の関係
を示す縦断面図、第6図は本発明に係る電動機の別の実
施例の要部を示す縦断面図、第7図は本発明に係る電動
機のさらに別の実施例の要部を示す縦断面図である。 11・・・・固定軸受、12・・・・円筒状回転体、1
4・・・・マグネット、17・・・・駆動用コイル、1
8・・・・グルーブ、21・・・・円筒状回転体の外周
面、24・・・・固定軸受の内周面、13・・・・ヨー
ク、 36.38・・・・逃げ部。 瑯40
FIG. 1 is a longitudinal sectional view showing an embodiment of the electric motor according to the present invention, and FIG. 2 is a partially sectional front view of a hydrodynamic bearing section of the same embodiment.
Fig. 3 is a longitudinal cross-sectional view showing how the bearing portion swells due to centrifugal force, Fig. 4 is a longitudinal cross-sectional view showing the relationship between the average radius and the swell of the cylindrical rotating body, and Fig. 5 is the same as the rotating body. FIG. 6 is a vertical cross-sectional view showing the relationship between the average radius and wall thickness of each part, which is the basis for calculating the amount of body expansion; FIG. 6 is a vertical cross-sectional view showing the main parts of another embodiment of the electric motor according to the present invention; FIG. 7 is a longitudinal cross-sectional view showing a main part of still another embodiment of the electric motor according to the present invention. 11... Fixed bearing, 12... Cylindrical rotating body, 1
4... Magnet, 17... Drive coil, 1
8...Groove, 21...Outer circumferential surface of cylindrical rotating body, 24...Inner circumferential surface of fixed bearing, 13...Yoke, 36.38...Relief portion. Enamel 40

Claims (1)

【特許請求の範囲】 1、円筒状回転体の外周面又はこの円筒状回転体の外周
面を回転自在に支承する固定軸受の内周面の何れか一方
にグルーブを設けて動圧軸受を形成し、上記円筒状回転
体の内周面にはマグネットを固着し、このマグネットに
対向させて駆動用コイルを配置してなる電動機において
、上記円筒状回転体の肉厚の中心を結ぶ直径である平均
直径が使用回転数に対して次の表の範囲で構成されるこ
とを特徴とする電動機。 2、円筒状回転体の外周面又はこの円筒状回転体の外周
面を回転自在に支承する固定軸受の内周面の何れか一方
にグルーブを設けて動圧軸受を形成し、上記円筒状回転
体の内周面には円筒状のヨークの介在の下にマグネット
を固着し、このマグネットに対向させて駆動用コイルを
配置してなる電動機において、上記ヨークと円筒状回転
体の内周面との間に遠心力によるヨークの膨みに対する
逃げ部を形成すると共に、上記円筒状回転体の肉厚の中
心を結ぶ直径である平均直径が使用回転数に対して次の
表の範囲で構成されることを特徴とする電動機。
[Claims] 1. A hydrodynamic bearing is formed by providing a groove on either the outer circumferential surface of a cylindrical rotating body or the inner circumferential surface of a fixed bearing that rotatably supports the outer circumferential surface of this cylindrical rotating body. In an electric motor in which a magnet is fixed to the inner circumferential surface of the cylindrical rotating body and a driving coil is arranged opposite to the magnet, the diameter is the diameter connecting the center of the wall thickness of the cylindrical rotating body. An electric motor characterized in that its average diameter falls within the range shown in the following table for the number of rotations used. 2. A hydrodynamic bearing is formed by providing a groove on either the outer circumferential surface of the cylindrical rotating body or the inner circumferential surface of a fixed bearing that rotatably supports the outer circumferential surface of the cylindrical rotating body, and the cylindrical rotating body is In an electric motor in which a magnet is fixed to the inner circumferential surface of the body under the interposition of a cylindrical yoke, and a driving coil is arranged opposite to this magnet, the yoke and the inner circumferential surface of the cylindrical rotating body In addition to forming a relief part for the expansion of the yoke due to centrifugal force between An electric motor characterized by:
JP26135987A 1987-10-16 1987-10-16 Motor Granted JPH01103131A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26135987A JPH01103131A (en) 1987-10-16 1987-10-16 Motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26135987A JPH01103131A (en) 1987-10-16 1987-10-16 Motor

Publications (2)

Publication Number Publication Date
JPH01103131A true JPH01103131A (en) 1989-04-20
JPH041574B2 JPH041574B2 (en) 1992-01-13

Family

ID=17360747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26135987A Granted JPH01103131A (en) 1987-10-16 1987-10-16 Motor

Country Status (1)

Country Link
JP (1) JPH01103131A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008211914A (en) * 2007-02-26 2008-09-11 Ricoh Co Ltd Rotation driving apparatus, optical scanner and image forming apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008211914A (en) * 2007-02-26 2008-09-11 Ricoh Co Ltd Rotation driving apparatus, optical scanner and image forming apparatus

Also Published As

Publication number Publication date
JPH041574B2 (en) 1992-01-13

Similar Documents

Publication Publication Date Title
EP0794344B1 (en) High speed rotor assembly
JPH01103131A (en) Motor
JP2000304033A (en) Dynamic pressure bearing
JPH08335366A (en) Dynamic pressure bearing motor
JPH0720397A (en) Light deflector
JP2536471Y2 (en) motor
EP1134875A1 (en) A spindle motor for disk driving device with fluid bearing
JP3145820B2 (en) Spindle motor
JPH04111256A (en) Spindle motor
JP2892142B2 (en) Spindle motor
JPH0447443Y2 (en)
JPH0750583Y2 (en) Fluid bearing
JP3407960B2 (en) High-speed rotating body
JPS62279560A (en) Disk driving device
JPS6254819A (en) Rotary head assembly for magnetic recording and reproducing device
JPH06189489A (en) Spindle motor
JPS6069320A (en) Shaft unit with bearing
JP2560507Y2 (en) Dynamic pressure bearing device
JP3355884B2 (en) Brushless motor
JPH03213715A (en) Thrust bearing
JPH0327747A (en) Rotational driving gear for polygon mirror
JPH05130764A (en) Spindle motor
JPS62112209A (en) Rotating magnetic head device
JPS6223344A (en) Spindle device
JPS61204864A (en) Rotary drum device

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees