JPH01101336A - Biaxially oriented polyether ether ketone film - Google Patents

Biaxially oriented polyether ether ketone film

Info

Publication number
JPH01101336A
JPH01101336A JP25743387A JP25743387A JPH01101336A JP H01101336 A JPH01101336 A JP H01101336A JP 25743387 A JP25743387 A JP 25743387A JP 25743387 A JP25743387 A JP 25743387A JP H01101336 A JPH01101336 A JP H01101336A
Authority
JP
Japan
Prior art keywords
film
polyetheretherketone
silicone resin
particle size
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25743387A
Other languages
Japanese (ja)
Other versions
JPH0696646B2 (en
Inventor
Kinji Hasegawa
欣治 長谷川
Norihiro Nomi
能美 慶弘
Hisashi Hamano
浜野 久
Hideo Kato
秀雄 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP25743387A priority Critical patent/JPH0696646B2/en
Publication of JPH01101336A publication Critical patent/JPH01101336A/en
Publication of JPH0696646B2 publication Critical patent/JPH0696646B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0373Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement containing additives, e.g. fillers

Abstract

PURPOSE:To obtain the titled film outstanding in surface flatness, slipperiness, traveling durability, electrical insulating characteristics, heat resistance etc., to be used in e.g. capacitors, by incorporating a thermoplastic polyether ether ketone with specific silicone resin fine particles. CONSTITUTION:The objective film with low repeated coefficient of friction, thus excellent in slipperiness, can be obtained by incorporating (A) a thermoplastic polyether ether ketone with (B) 0.005-3.0wt.%, based on the component A, of silicone resin fine particles having constitution of formula RX(SiO2)X/2 (R is 1-7C hydrocarbon group; X is 1-1.2), with the f-value falling between 0.4 and pi/6 expressed by the equation; f=V/D<3> [V is average volume per particle (mum<3>); D is average maximum size (mum)] and average size of 0.01-4mum.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は二軸配向ポリエーテルエーテルケトンフィルム
に関し、更に詳しくはシリコン樹脂微粒子を含有し、表
面が平坦で滑り性、走行耐久性。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a biaxially oriented polyetheretherketone film, more specifically, it contains silicone resin fine particles, has a flat surface, has good slip properties, and has good running durability.

絶縁特性等に優れ、かつ耐熱性に優れた二軸配向ポリエ
ーテルエーテルケトンフィルムに関する。
This invention relates to a biaxially oriented polyetheretherketone film that has excellent insulation properties and heat resistance.

[従来技術] 従来から、二軸配向ポリエチレンテレフタレートフィル
ムは、その機械的性質、電気的性質、耐熱性、耐薬品性
等に優れていることから、工業用途に広く用いられてい
る。
[Prior Art] Biaxially oriented polyethylene terephthalate films have been widely used in industrial applications because of their excellent mechanical properties, electrical properties, heat resistance, chemical resistance, and the like.

しかしながら、近年、用途によってはフィルムの要求特
性が高まり、また二軸配向ポリエチレンテレフタレート
フィルムの特性にも限界がある巳とから、より特性の優
れたフィルムが求められている。例えば、二軸配向ポリ
エチレンテレフタレートフィルムは、長期耐熱性がE種
・(長期耐熱温fl:125℃)ないし8種(同:13
0℃)であり、モーター絶縁、断線被覆材料として用い
る場合この長期耐熱性の点からモーターの小型化が制限
されるという問題が生じている。また、上記フィルムを
コンデンサー用途に用いる場合、85℃近くから誘電正
接が増大し、使用温度の制限をもたらしている。更にま
た、上記フィルムをフレキシブルプリンドロ路基盤とし
て用いる場合、ハンダ耐熱性が問題となり、その展開が
制限されている。このようなことから、より耐熱性の優
れたフィルムが求められている。
However, in recent years, the required properties of films have increased depending on the application, and there are limits to the properties of biaxially oriented polyethylene terephthalate films, so there is a demand for films with even more excellent properties. For example, biaxially oriented polyethylene terephthalate film has a long-term heat resistance of class E (long-term heat resistance fl: 125°C) to class 8 (long-term heat resistance fl: 135°C).
0° C.), and when used as a motor insulation or disconnection covering material, there is a problem in that miniaturization of motors is restricted due to this long-term heat resistance. Furthermore, when the above film is used for capacitor applications, the dielectric loss tangent increases from around 85° C., which limits the operating temperature. Furthermore, when the above-mentioned film is used as a flexible printed circuit board, solder heat resistance becomes a problem, and its development is limited. For these reasons, there is a demand for films with even better heat resistance.

ところで、強靭で優れた耐熱性を有する結晶性熱可塑性
ポリマーとして、熱可塑性ボーリエーテルエーテルケト
ンが知られ(特公昭60−32642号、特公昭61−
10486号)、このフィルム化の検討、提案がされて
いる。例えば、特開昭57−137116@公報には、
熱可塑性ポリエーテルエーテルケトンフィルムは耐熱性
を活かした用途分野、すなわちモーター用絶縁フィルム
、トランス用絶縁フィルム。
By the way, thermoplastic boriether ether ketone is known as a crystalline thermoplastic polymer having toughness and excellent heat resistance (Japanese Patent Publication No. 32642/1983, Japanese Patent Publication No. 61/1989).
No. 10486), the development of this film has been studied and proposed. For example, in JP-A-57-137116@publication,
Thermoplastic polyetheretherketone film is used in fields that take advantage of its heat resistance, namely insulating film for motors and insulating film for transformers.

コンデンサー用絶縁フィルム、フレキシブルプリント回
路基板などへの展開が期待されるとして、圧延法で一軸
方向に配向したフィルムを製造する方法が記載され、そ
して用途によっては炭酸カルシウム、微粒子ケイ酸塩、
タルク、塩基性炭酸マグネシウム、アルミナ、アルミナ
水和物、硫酸バリウム、硫酸カルシウム、雲母粉、亜鉛
華、81化チタン、カーボンブラックなどの無機充填材
を加えても良いことが説明されている。
The paper describes a method for producing a uniaxially oriented film using a rolling method, which is expected to be used in insulating films for capacitors, flexible printed circuit boards, etc.
It is explained that inorganic fillers such as talc, basic magnesium carbonate, alumina, alumina hydrate, barium sulfate, calcium sulfate, mica powder, zinc white, titanium 81ide, and carbon black may be added.

特開昭58−63417号公報には、等方性二軸配向ポ
リエーテルエーテルケトンフィルムの製造方法が記載さ
れている。
JP-A-58-63417 describes a method for producing an isotropic biaxially oriented polyetheretherketone film.

特開昭60−93625号公報には、圧延法で二輪配向
した垂直磁化用ポリエーテルエーテルケトンフイルムが
記載されている。
JP-A No. 60-93625 describes a polyetheretherketone film for perpendicular magnetization which is oriented in two wheels by a rolling method.

特開昭60−187928号公報には、その長さ方向及
びそれと直角方向の5%伸長時応力が共に13?cy/
−以上、少くとも一方向の初期弾性率が60ONy/−
以上、並びに180℃における長さ方向及びそれと直角
方向の熱収縮率が4%以下である二軸配向ポリエーテル
ケトン(又はポリエーテルエーテルケトン)フィルムを
ベースとする磁気記録材料が記載され、そしてポリマー
中に二酸化チタンのつや消削、微粒子シリカ、チャイナ
クレイなどの滑剤を含有させてよいことが説明されてい
る。
JP-A No. 60-187928 discloses that the stress at 5% elongation in both the longitudinal direction and the direction perpendicular thereto is 13? cy/
- or more, the initial elastic modulus in at least one direction is 60ONy/-
A magnetic recording material based on a biaxially oriented polyetherketone (or polyetheretherketone) film having a heat shrinkage rate of 4% or less in the longitudinal direction and perpendicular direction at 180° C. is described, and the polymer It is explained that a lubricant such as matting titanium dioxide, particulate silica, or china clay may be contained therein.

特開昭60−189421号公報には、無機粒子含有の
ポリエーテルケトン(又はポリエーテルエーテルケトン
)からなり、表面粗さRaがo、ooa〜0.090で
かつ動摩擦係数μdが0.12〜0.50である二軸配
向フィルムが記載され、この無機粒子として酸化マグネ
シウム、酸化亜鉛、炭酸マグネシウム、燐酸マグネシウ
ム、硫酸カルシウム、硫酸バリウム、酸化アルミニウム
、二酸化ケイ素。
JP-A-60-189421 discloses a polyetherketone (or polyetheretherketone) containing inorganic particles, which has a surface roughness Ra of o, ooa~0.090 and a dynamic friction coefficient μd of 0.12~0.090. 0.50, the inorganic particles include magnesium oxide, zinc oxide, magnesium carbonate, magnesium phosphate, calcium sulfate, barium sulfate, aluminum oxide, silicon dioxide.

酸化チタン、カオリン、ケイ藻土等の無機酸化物、無機
塩類、アルミノ珪酸塩等やカーボンブラック等が挙げら
れると説明されている。
It is explained that inorganic oxides such as titanium oxide, kaolin, and diatomaceous earth, inorganic salts, aluminosilicates, and carbon black can be mentioned.

特開昭61−37418号公報には、ポリエーテルエー
テルケトン100重ご部に無i質充填剤0.01〜10
重量部を配合した組成物を製膜し二軸配向させた易滑性
熱可塑性ポリエーテルエーテルケトンフィルムが記載さ
れ、この無機質充填剤はタルク、シリカ、カオリン、焼
成カオリン、マイカ、アエロジル、サイロイド、炭酸カ
ルシウム、チタン酸カリウム繊維等の1種又は2種以上
を適宜選択して用いるが、特に平均粒径5μ以下の粒径
の細かいものが好ましいと説明されている。
JP-A No. 61-37418 discloses that 100 parts of polyetheretherketone is mixed with 0.01 to 10 parts of an iridium-free filler.
A biaxially oriented easily slippery thermoplastic polyetheretherketone film is described, which is prepared by forming a biaxially oriented composition containing the following inorganic fillers: talc, silica, kaolin, calcined kaolin, mica, aerosil, thyroid, One or more types of fibers such as calcium carbonate and potassium titanate fibers are appropriately selected and used, and it is explained that fine particles with an average particle size of 5 μm or less are particularly preferable.

しかしながら、本発明者らの研究結果によると、これら
二軸配向ポリエーテルエーテルケトンフィルムは、該フ
ィルム中の無機粒子の囲りにボイドが生じており、走行
耐久性、絶縁欠陥異常率、絶縁破壊率等に改善すべき課
題の在ることが明らかとなった。また、無機粒子はフィ
ルム中での分散が悪いことが明らかとなった。
However, according to the research results of the present inventors, these biaxially oriented polyether ether ketone films have voids around the inorganic particles in the film, which improves running durability, insulation defect abnormality rate, and dielectric breakdown. It became clear that there were issues that needed to be improved, such as in terms of It was also revealed that inorganic particles were poorly dispersed in the film.

[発明の目的] 本発明の目的は、表面が平坦で滑り性、走行耐久性、絶
縁特性等に優れ、かつ耐熱性に優れた二輪配向ポリエー
テルエーテルケトンフィルムを提供することにある。
[Object of the Invention] An object of the present invention is to provide a two-wheel oriented polyetheretherketone film that has a flat surface, excellent slip properties, running durability, insulation properties, etc., and excellent heat resistance.

本発明の他の目的は、フィルム表面にシリコン樹脂微粒
子に由来する多数の微細な突起を有し、かつ表面が平坦
で滑り性、走行耐久性、絶縁特性等に優れた二軸配向ポ
リエーテルエーテルケトンフィルムを提供することにあ
る。
Another object of the present invention is to provide biaxially oriented polyether ether which has a large number of fine protrusions derived from silicone resin particles on the film surface, has a flat surface, and has excellent slip properties, running durability, insulation properties, etc. Our goal is to provide a ketone film.

本発明のさらに他の目的及び利点は、以下の説明から明
らかとなろう。
Further objects and advantages of the present invention will become apparent from the description below.

[発明の構成・効果] 本発明によれば、本発明の上記目的及び利点は第1に、 (I)  熱可塑性ポリエーテルエーテルケトン、及び (II)(a) 下記式(A) Rx St 02−x /2  ・・・(A)ここで、
Rは炭素数1〜7の炭化水 素基であり、そしてXは1〜1.2の数である で表わされる組成を有し、 (b)  下記式(B) f =V/D3      ・・・(B)ここで、■は
粒子の平均体積 (μm’ )でありそしてDは粒子の平均最大粒径(μ
m)である で定義される体積形状係数<r >が0.4より大ぎく
そしてπ/6以下であり、そして (C)  0.01〜4μmの平均粒径を有するシリコ
ン樹脂微粒子0.005〜3.0重1%(熱可塑性ポリ
エーテルエーテルケトンに対し) から成る緊密な混合物から形成された二軸配向ポリエー
テルエーテルケトンフィルムによって達成される。
[Structures and Effects of the Invention] According to the present invention, the above-mentioned objects and advantages of the present invention are firstly achieved by: (I) a thermoplastic polyetheretherketone; and (II) (a) the following formula (A) Rx St 02 -x/2...(A) Here,
R is a hydrocarbon group having 1 to 7 carbon atoms, and X is a number of 1 to 1.2, and has a composition represented by (b) the following formula (B) f = V/D3... (B) where ■ is the average volume of the particles (μm') and D is the average maximum diameter of the particles (μm')
(C) silicone resin fine particles having an average particle size of 0.01 to 4 μm; This is accomplished with a biaxially oriented polyetheretherketone film formed from an intimate mixture of ~3.0% by weight (based on thermoplastic polyetheretherketone).

本発明における熱可塑性ポリエーテルエーテルケトンは
、構成単位 該単位と他の構成単位からなるポリマーである。
The thermoplastic polyetheretherketone in the present invention is a polymer consisting of the above structural unit and other structural units.

この他の構成単位としては、例えば 等が挙げられる。上記構成単位において、Aは直接結合
、酸素、−8Oz +、−co−または二価の低級脂肪
族炭化水素基であり、QおよびQ′は同一であっても相
違してもよ<−CO−または−802−であり、nはO
又は1である。これらポリマーは、特公昭60−326
42号公報、特公昭61−10486号公報、特開昭5
7−tayttj号公報等に記載されている。
Examples of other structural units include the following. In the above structural unit, A is a direct bond, oxygen, -8Oz +, -co- or a divalent lower aliphatic hydrocarbon group, and Q and Q' may be the same or different <-CO - or -802-, and n is O
Or 1. These polymers are
Publication No. 42, Japanese Patent Publication No. 61-10486, Japanese Patent Publication No. 5
7-tayttj publication etc.

熱可塑性ポリエーテルエーテルケトンには、流動性改良
などの目的でポリアリーレンポリエーテル、ポリスルホ
ン、ボリアリレート、ポリエステル、ポリカーボネート
等の樹脂をブレンドしても良く、また安定剤、酸化防止
剤、紫外線吸収剤等の如き添加剤を含有させても良い。
Thermoplastic polyether ether ketone may be blended with resins such as polyarylene polyether, polysulfone, polyarylate, polyester, polycarbonate, etc. for the purpose of improving fluidity, and may also be blended with stabilizers, antioxidants, and ultraviolet absorbers. It may also contain additives such as.

熱可塑性ポリエーテルエーテルケトンは、上述の通り、
それ自体公知であり、且つそれ自体公知の方法で製造す
ることができる。
As mentioned above, the thermoplastic polyetheretherketone is
They are known per se and can be produced by methods known per se.

上記熱可塑性ポリエーテルエーテルケトンは、見かけの
溶融粘度が温度380℃、見かけの剪断速度200se
c’の条件で、500ボイズ〜10000ボイズ、更に
は1000ボイズ〜5000ボイズの範囲にあるものが
、製膜性、フィルム特性の点から好ましい。
The above thermoplastic polyether ether ketone has an apparent melt viscosity of 380° C. and an apparent shear rate of 200 se.
The condition c' is preferably in the range of 500 voids to 10000 voids, more preferably 1000 voids to 5000 voids, from the viewpoint of film formability and film properties.

本発明の二軸配向ポリエーテルエーテルケトンフィルム
はそのフィルム表面の平坦性を定義するRaの後記説明
から明らかなとおり、フィルム表面に多数の微細な突起
を有している。
The biaxially oriented polyetheretherketone film of the present invention has a large number of fine protrusions on the film surface, as is clear from the later explanation of Ra, which defines the flatness of the film surface.

それらの多数の微細な突起は本発明によれば熱可塑性ポ
リエーテルエーテルケトン中に分散して含有される多数
の実質的に不活性な固体微粒子に由来する。
According to the invention, these large numbers of microscopic protrusions originate from a large number of substantially inert solid fine particles dispersed in the thermoplastic polyetheretherketone.

本発明において、シリコン樹脂微粒子(II)は、下記
式(A> Rx Si 02−x /2     = (A)ここ
で、Rは炭素数1〜7の炭化水素基でありそして×は1
〜1.2である で表わされる組成を有゛する。
In the present invention, the silicone resin fine particles (II) have the following formula (A> Rx Si 02-x /2 = (A), where R is a hydrocarbon group having 1 to 7 carbon atoms, and x is 1
It has a composition expressed as ~1.2.

上2式(A)におけるRは炭素数1〜7の炭化水素基で
あり、例えば炭素数1〜7のアルキル基。
R in the above two formulas (A) is a hydrocarbon group having 1 to 7 carbon atoms, such as an alkyl group having 1 to 7 carbon atoms.

フェニル基あるいはトリル基が好ましい。炭素数1“〜
7のアルキル基は直鎖状であっても分岐鎖状であっても
よく、例えばメチル、エチル、n−プロピル、 1so
−プロピル、n−ブチル、13o−ブチル、 tert
−ブチル、n−ペンチル、n−ヘプチル等をあげること
ができる。
A phenyl group or a tolyl group is preferred. Carbon number 1"~
The alkyl group of 7 may be linear or branched, such as methyl, ethyl, n-propyl, 1so
-propyl, n-butyl, 13o-butyl, tert
-butyl, n-pentyl, n-heptyl and the like.

これらのうち、Rとしてはメチルおよびフェニルが好ま
しく、就中メチルが特に好ましい。
Among these, R is preferably methyl and phenyl, with methyl being particularly preferred.

上記式(A)におけるXは1〜1.2の数である。X in the above formula (A) is a number from 1 to 1.2.

上記式(A)においてXが1であるとき、上記式(A)
は、下記式<A)−1 R3iO/、r        ・・・(A)−1ここ
で、Rの定義は上記に同じである で表わすことができる。
When X is 1 in the above formula (A), the above formula (A)
can be represented by the following formula <A)-1 R3iO/, r...(A)-1 where the definition of R is the same as above.

上記式(A>−1の組成は、シリコン樹脂の三次元重合
体鎖構造における下記構造部分:−0−8i −0− に由来するものである。
The composition of the above formula (A>-1) originates from the following structural part: -0-8i -0- in the three-dimensional polymer chain structure of the silicone resin.

また、上記式(A)においてXが1.2であるとき、上
記式<A)は下記式<A) −2R7λ S f O/
、t      ・・・(A)−2ここで、Rの定義は
上記に同じである で表わすことができる。
Moreover, when X is 1.2 in the above formula (A), the above formula<A) becomes the following formula<A) -2R7λ S f O/
, t...(A)-2 Here, the definition of R is the same as above.

上記式(A)−2の組成は、上記(A>−1の構造0.
8モルと下記式(A)′ R2Si O・・・(A)’ ここで、Rの定義は上記と同じである で表わされる構造0.2モルとから成ると理解すること
ができる。
The composition of the above formula (A)-2 is the structure 0.
8 mol and 0.2 mol of the structure represented by the following formula (A)' R2Si O...(A)' where the definition of R is the same as above.

上記式(A)”はシリコン樹脂の三次元重合体鎖におけ
る下記構造部分; −o−sr  −o− ■ に由来する。
The above formula (A) is derived from the following structural part in the three-dimensional polymer chain of silicone resin: -o-sr -o- (2).

以上の説明から理解されるように、本発明の上記式(A
>の組成は、例えば上記式(A、)−1構造のみから実
質的になるか、あるいは上記式(A)−1の構造と上記
式(A>−2の構造が適当な割合でランダムに結合した
状態で共存プる構造から成ることがわかる。
As understood from the above explanation, the above formula (A
For example, the composition of > may consist essentially only of the structure of the above formula (A,)-1, or the structure of the above formula (A)-1 and the structure of the above formula (A>-2 may be randomly arranged in an appropriate ratio) It can be seen that the structure consists of a structure that coexists in a bonded state.

本発明のシリコン樹脂粒子は、好ましくは上記 −式(
A>において、Xが1〜1.1の間の値を有する。
The silicone resin particles of the present invention preferably have the above formula (
A>, X has a value between 1 and 1.1.

また、本発明のシリコン樹脂粒子(n)は、下記式(B
) f =V/D3         ・・・(B)ここで
、■は粒子1ヶ当りの平均体積(μ7FL3)でありモ
してDは粒子の平均最大粒径(μm)である で定義される体積形状係数<f )が0.4より太きく
そしてπ/6以下であるものである。
Further, the silicone resin particles (n) of the present invention can be expressed by the following formula (B
) f = V/D3 (B) where ■ is the average volume per particle (μ7FL3), and D is the average maximum particle diameter (μm) of the particles.The volume defined by The shape factor <f 2 ) is thicker than 0.4 and less than or equal to π/6.

上記定義において、Dの粒子の平均最大粒径は粒子を横
切る任意の直線が粒子の周囲と交叉する2点間の距離の
うち最大の長さを持つ距離を云うものと理解すべきであ
る。
In the above definition, the average maximum particle diameter of the particles of D should be understood as the distance having the maximum length among the distances between two points where any straight line that crosses the particle intersects the circumference of the particle.

本発明のシリコン樹脂粒子の好ましい「の値は0.44
〜π/6であり、より好ましいfの値は0.48〜π/
6である。fの値がπ/6である粒子は真球である。下
限よりも小さいf値を持つシリコン樹脂粒子の使用では
フィルム表面諸特性のa、IImが極めて困難となる。
The preferred value of the silicone resin particles of the present invention is 0.44.
~π/6, and a more preferable value of f is 0.48~π/6.
It is 6. A particle whose value of f is π/6 is a true sphere. When silicone resin particles having an f value smaller than the lower limit are used, the film surface characteristics a and IIm become extremely difficult.

本発明で用いられるシリコン樹脂粒子は、さらに、0.
01〜4μmの平均粒径を有している。平均粒径が0.
01μ瓦よりも小さい粒子を使用した場合には滑り性や
耐削れ性の向上効果が不充分であり、一方平均粒径が4
μmより大きい粒子を使用した場合には平面平坦性の十
分でないフィルムしか得られない。
The silicone resin particles used in the present invention further have 0.
It has an average particle size of 0.01 to 4 μm. Average particle size is 0.
When particles smaller than 01μ tiles are used, the effect of improving slipperiness and abrasion resistance is insufficient;
If particles larger than μm are used, only a film with insufficient planar flatness can be obtained.

平均粒径は好ましくは0.05〜3μmの値にある。The average particle size preferably lies in a value of 0.05 to 3 μm.

ここに古う平均粒径とは、ストークスの式に基づいて算
出された等値線径粒度分布の積算50%点における径で
あると理解される。
It is understood that the old average particle size here is the diameter at the 50% point of integration of the isovalue particle size distribution calculated based on Stokes' equation.

本発明で用いられるシリコン樹脂粒子は、例えば、下記
式 %式%) ここで、Rは炭素数1〜7の炭化水素基でありそしてR
′は低級アルキル基である で表わされるトリアルコキシシランまたはこの部分加水
分解縮合物を、アンモニアあるいメチルアミン、ジメチ
ルアミン、エチレンジアミン等の如きアミンの存在下、
撹拌下に、加水分解および縮合せしめることによって製
造できる。上記出発原料を使用する上記方法によれば、
上記式(A)−1で表わされる組成を持つシリコン樹脂
粒子を製造することができる。
The silicone resin particles used in the present invention can be prepared, for example, by the following formula (%), where R is a hydrocarbon group having 1 to 7 carbon atoms, and R
' is a lower alkyl group A trialkoxysilane or a partially hydrolyzed condensate thereof is treated in the presence of ammonia or an amine such as methylamine, dimethylamine, ethylenediamine, etc.
It can be produced by hydrolysis and condensation under stirring. According to the above method using the above starting material,
Silicone resin particles having the composition represented by the above formula (A)-1 can be manufactured.

R2S!  (OR’ >2 ここで、RおよびR′の定義は上記に同じである で表わされるジアルコキシシランを上記トリアルコキシ
シランと一緒に併用し、上記方法に従えば、上記式(A
)−2で表わされる組成を持つシリコン樹脂粒子を製造
することができる。
R2S! (OR'>2 Here, the definitions of R and R' are the same as above. If dialkoxysilane represented by is used together with the above trialkoxysilane and the above method is followed, the above formula (A
)-2 can be produced.

本発明で用いられるシリコン樹脂粒子は、下記式 %式% ここで、γは粒径比であり、025は微粒子の積算ff
1ffiが全体の型口の25%であるときの粒径であり
、そしてDyeは微粒子の積算重量が全体のIfliの
15%であるときの粒径である、但し積鋒重団の割合は
大きい粒径の方から測定するものとする で表わされる粒径比(γ)が好ましくは1〜1.4の範
囲にあるものである。この粒径比は更に好ましく1〜1
.3の範囲にあり、特に好ましくは1〜1.3の範囲に
あり、特に好ましくは1〜1.15の範囲にある。
The silicone resin particles used in the present invention are expressed by the following formula % where γ is the particle size ratio and 025 is the integrated fine particle ff
1ffi is the particle size when it is 25% of the total mold mouth, and Dye is the particle size when the integrated weight of fine particles is 15% of the total Ifli, however, the proportion of Jifeng heavy group is large. The particle size ratio (γ), which is measured from the particle size, is preferably in the range of 1 to 1.4. This particle size ratio is more preferably 1 to 1.
.. It is in the range of 3, particularly preferably in the range of 1 to 1.3, particularly preferably in the range of 1 to 1.15.

本発明のフィルムを形成する熱可塑性ポリエーテルエー
テルケトン(I)とシリコン樹脂微粒子(II)との緊
密な混合物は、該微粒子(II)との緊密な混合物は、
該微粒子(II)を0.005〜3.0重量%(熱可塑
性ポリエーテルエーテルケトンに対し)を含有している
The intimate mixture of thermoplastic polyetheretherketone (I) and silicone resin microparticles (II) forming the film of the present invention comprises:
The fine particles (II) are contained in an amount of 0.005 to 3.0% by weight (based on the thermoplastic polyetheretherketone).

該微粒子(II)の量が0.005重量%未満では、フ
ィルムの滑り性や耐削れ性の向上効果が不充分であり、
一方3.0重]%を超えるとフィルムの平坦性が低下す
る。
If the amount of the fine particles (II) is less than 0.005% by weight, the effect of improving the slipperiness and abrasion resistance of the film is insufficient,
On the other hand, if it exceeds 3.0% by weight, the flatness of the film decreases.

該微粒子(IF ) (7)ffiハ0.01〜0.5
ff1m%(熱可塑性ポリエーテルエーテルケトン対し
)が好ましい。
The fine particles (IF) (7) ffi 0.01 to 0.5
ff1m% (based on thermoplastic polyetheretherketone) is preferred.

本発明で使用される上記シリコン樹脂微粒子は、上記の
如く、ポリエーテルエーテルケトンフィルムに表面平坦
性、WJり性および耐削れ性を付与する。特に、優れた
耐削れ性を与える理由として、本発明者の研究によれば
は、該シリコン樹脂微粒子がそれが混合されているポリ
エーテルエーテルケトンと非常に親和性が大きいことに
よることが明らかとされた。
As described above, the silicone resin fine particles used in the present invention impart surface flatness, WJ resistance, and abrasion resistance to the polyetheretherketone film. In particular, according to the research conducted by the present inventors, it is clear that the reason for the excellent abrasion resistance is that the silicone resin fine particles have a very high affinity with the polyetheretherketone in which they are mixed. It was done.

すなわち、該シリコン樹脂微粒子を含有する本発明のフ
ィルム表面をイオンエツチングしrフィルム中のシリコ
ン樹脂微粒子を暴露させ、走査型電子顕微鏡にて表面を
観察すると、シリコン樹脂微粒子の周囲表面がポリエー
テルエーテルケトン基質と実質的に接触している状態、
換言すれば該周囲表面とポリエーテルエーテルケトン基
質との間にボイドが殆んどあるいは仝く看られない状態
が観察されるのである。
That is, when the surface of the film of the present invention containing the silicone resin fine particles was ion-etched to expose the silicone resin fine particles in the film and the surface was observed with a scanning electron microscope, it was found that the surrounding surface of the silicone resin fine particles was polyether ether. being in substantial contact with a ketone substrate;
In other words, little or no voids are observed between the surrounding surface and the polyetheretherketone matrix.

また、本発明のフィルムの上記シリコン樹脂微粒子がポ
リエーテルエーテルケトン基質と大きい親和性を有する
ことを、別の尺度である後に定義するボイド比(粒子の
長径対ボイドの長径の比)で評価すると、本発明のフィ
ルムはボイド比が1.0〜1.5であるものが実質的に
全てであり、1.0〜1.3であるものはその大部分で
あり、さらに1.0〜1.15であるものはその主たる
部分を占めることが明らかとなった。
Furthermore, the fact that the silicone resin fine particles of the film of the present invention have a high affinity with the polyetheretherketone substrate can be evaluated using another measure, the void ratio (ratio of the long diameter of the particles to the long diameter of the voids), which will be defined later. Substantially all of the films of the present invention have a void ratio of 1.0 to 1.5, most of them have a void ratio of 1.0 to 1.3, and further have a void ratio of 1.0 to 1. It became clear that those with a value of .15 accounted for the main part.

ボイドが少なく、そしてボイド比が1.0に近い本発明
の二軸配向ポリエーテルエーテルケトンフィルムは特に
耐削れ性及び絶縁破壊電圧に優れている。
The biaxially oriented polyetheretherketone film of the present invention, which has few voids and a void ratio close to 1.0, is particularly excellent in abrasion resistance and dielectric breakdown voltage.

一般的に熱可塑性ポリエーテルエーテルケトンと不活性
粒子(l剤)とは親和性がない。このため溶融製膜した
ポリエーテルエーテルケトン未延伸フィルムを二輪延伸
すると、該微粒子とポリエーテルエーテルケトンの境界
に剥離が生じ、該微粒子の囲りにボイドが形成されるの
が普通である。
In general, thermoplastic polyetheretherketones and inert particles (l-agents) have no affinity. Therefore, when an unstretched film of melt-formed polyetheretherketone is stretched with two wheels, peeling occurs at the boundary between the fine particles and the polyetheretherketone, and voids are usually formed around the fine particles.

このボ、イドは、微粒子が大きいほど、形状が球形に近
いほど、また微粒子が単一粒子で変形しにくいほど、そ
してまた未延伸フィルムを延伸する際に延伸面積倍率が
大きいほど、また低温で行うほど大きくなる傾向がある
。このボイドは、大きくなればなる程突起の形状がゆる
やかな形となるので摩擦係数を高くすることとなり、そ
れと共に繰り返し使用時に生じた二軸配向ポリエーテル
エーテルケトンフィルムのボイドの脱落を起し、耐久性
を低下させる、また削れ粉発生の原因となっている。
The larger the particle size, the closer the shape is to a spherical shape, the more difficult the particle is to deform as a single particle, the larger the stretching area ratio when stretching an unstretched film, and the lower the temperature. It tends to get bigger the more you do it. The larger the voids become, the more gradual the shape of the protrusions becomes, increasing the coefficient of friction, which also causes the voids in the biaxially oriented polyetheretherketone film to fall off during repeated use. This reduces durability and causes shavings.

このように従来の無機不活性滑剤の場合には、該滑剤周
辺のボイド農は、かなり大きく、高強力ポリエーテルエ
ーテルケトンフィルムにおいてはこのボイドは更に大ぎ
くなり、その結果磁気テープのカレンダー工程等、加工
工程で耐削れ性が劣るのが常である。またコンデンサー
においては絶線゛破壊電圧の低下に結びつ(。
As described above, in the case of conventional inorganic inert lubricants, the voids around the lubricant are quite large, and in high-strength polyetheretherketone films, these voids become even larger, resulting in problems such as the calendering process of magnetic tape, etc. , the abrasion resistance is usually poor during the machining process. Also, in capacitors, disconnection leads to a decrease in breakdown voltage.

本発明で用いられる上記シリコン樹脂微粒子は上記の如
くポリエーテルエーテルケトン基質との親和性が大きく
、このため粒子周辺にボイドが発生する頻度が少ない。
As mentioned above, the silicone resin fine particles used in the present invention have a high affinity with the polyetheretherketone substrate, and therefore voids are less likely to occur around the particles.

そのため、粒子が大きくなるにつれて一般に大ぎくなる
ボイドを発生ずる頻度を、上記シリコン樹脂微粒子を使
用する場合には小さく抑えることができるため、本発明
によれば比較的大粒子としてシリコン樹脂微粒子を用い
、それと−緒にボイドの発生する割合が少ない比較的小
粒子を併用して、2種類の粒子を用いる利点を有しつつ
、走行性、耐摩耗性、耐疲労性、電気絶縁性および透明
性等に優れたフィルムを提供しうろことが明らかとなっ
た。
Therefore, when using the above-mentioned silicone resin fine particles, the frequency of generating voids, which generally becomes larger as the particles become larger, can be suppressed to a low level. At the same time, relatively small particles with a low rate of void generation are used, and while having the advantage of using two types of particles, it has excellent runnability, abrasion resistance, fatigue resistance, electrical insulation, and transparency. It has become clear that it is possible to provide an excellent film.

すなわら、かかる二軸配向ポリエーテルエーテルケトン
フィルムは、 (I)  熱可塑性ポリエーテルエーテルケトン、(■
)(1)上記式(A)で表わされる組成を有し、山) 
上記式(B)で定義される体積形状係数(「)が0.4
より大きくπ/6以下であり、そして +c+  0.3〜4μmの平均粒径を有する、シリコ
ン樹脂微粒子0.005〜1重量%(熱可塑性ポリエー
テルエーテルケトンに対し)及び (III )   0.01〜1μmの平均粒径を有し
、そして該平均粒径が上記シリコン樹脂微粒子の平均粒
径よりも小さい不活性微粒子0.005〜1重量%(熱
可塑性ポリエーテルエーテルケトンに対し) から成る緊密な混合物から形成された二軸配向フィルム
である。
That is, such a biaxially oriented polyetheretherketone film comprises (I) a thermoplastic polyetheretherketone, (■
) (1) Having the composition represented by the above formula (A),
The volumetric shape factor (') defined by the above formula (B) is 0.4
0.005 to 1% by weight of silicone resin microparticles (based on thermoplastic polyetheretherketone) which are larger than π/6 and have an average particle size of +c+ 0.3 to 4 μm and (III) 0.01 0.005 to 1% by weight (based on thermoplastic polyetheretherketone) of inert microparticles having an average particle size of ~1 μm and whose average particle size is smaller than the average particle size of the silicone resin microparticles. It is a biaxially oriented film formed from a mixture of

熱可塑性ポリエーテルエーテルケトン(I>とシリコン
樹脂微粒子(If、lについて前述したとおりである。
The thermoplastic polyether ether ketone (I>) and the silicone resin fine particles (If, l are as described above.

ただ、シリコン樹脂微粒子としては、この場合、平均粒
径0.3〜4μmの比較的大きい粒子が使用される。
However, as the silicone resin fine particles, relatively large particles with an average particle size of 0.3 to 4 μm are used in this case.

平均粒径がシリコン樹脂微粒子のそれよりも小さい不活
性微粒子(III)としては、熱可塑性ポリエーテルエ
ーテルケトンに不活性で不溶性であり、そして常温で固
体のものが使用される。これらは外部添加粒子でも内部
生成粒子でもよい。また、例えば有機酸の金属塩でもよ
く、また無機物でもよい。好ましい不活性粒子(A>と
しては、■炭酸カルシウム、■二酸化ケイ素(水和物、
ケイ藻土、ケイ砂1石英等を含む)、アルミナ、081
02分を30重洛%以上含有するケイ酸塩(例えば非晶
質或は結晶質の粘土鉱物、アルミノシリケート化合物(
焼成物や水和物を含む)、温石綿、ジルコン、フライア
ッシュ等)、■Mg、Zn 。
As the inert fine particles (III) whose average particle size is smaller than that of the silicone resin fine particles, those which are inert and insoluble in the thermoplastic polyetheretherketone and are solid at room temperature are used. These may be externally added particles or internally generated particles. Further, for example, a metal salt of an organic acid may be used, or an inorganic substance may be used. Preferred inert particles (A> include: 1) calcium carbonate, 2) silicon dioxide (hydrate,
(including diatomaceous earth, silica sand, 1 quartz, etc.), alumina, 081
Silicates (e.g. amorphous or crystalline clay minerals, aluminosilicate compounds) containing 30% by weight or more of
(including fired products and hydrated products), warm asbestos, zircon, fly ash, etc.), ■Mg, Zn.

Zr及びT1の酸化物、■Ca及びBaの硫酸塩、■L
i、l’4a及びCaのリン酸塩(1水素塩や2水素塩
を含む)、■1−t 、 Na及びKの安息香酸塩、■
Ca 、Ba 、Zn及びMnのテレフタル酸塩、@!
vlo 、 Ca 、 Ba 、 Zn 、 Cd 、
 Pb 。
Zr and T1 oxides, ■Ca and Ba sulfates, ■L
i, l'4a and Ca phosphates (including monohydrogen salts and dihydrogen salts), ■1-t, Na and K benzoates, ■
Terephthalates of Ca, Ba, Zn and Mn, @!
vlo, Ca, Ba, Zn, Cd,
Pb.

Sr、Mn、Fe、co及びNiのチタン酸塩、QBa
及びpbのクロム酸塩、O炭素(例えばカーボンブラッ
ク、グラファイト等)、■ガラス(例えばガラス粉、ガ
ラスピーズ等)、■MoCO3、■ホタル石、及び@Z
n Sが例示される。
Sr, Mn, Fe, co and Ni titanates, QBa
and pb chromate, O carbon (e.g. carbon black, graphite, etc.), ■Glass (e.g. glass powder, glass beads, etc.), ■MoCO3, ■Fluorstone, and @Z
An example is nS.

特に好ましいものとして、無水ケイ酸、含水ケイ酸、酸
化アルミニウム、ケイ酸アルミニウム(焼成物、水和物
等を含む)、燐R1リチウム、燐酸3リチウム、燐酸ナ
トリウム、燐酸カルシウム。
Particularly preferred are anhydrous silicic acid, hydrated silicic acid, aluminum oxide, aluminum silicate (including fired products, hydrates, etc.), phosphorus R1 lithium, trilithium phosphate, sodium phosphate, and calcium phosphate.

硫酸バリウム、酸化チタン、安息香酸リチウム。Barium sulfate, titanium oxide, lithium benzoate.

これらの化合物の複塩(水和物を含む)、ガラス粉、粘
土(カオリン、ベントナイト、白土等を含む)゛、タル
ク、ケイ藻土等が例示される。かかる不活性微粒子(I
[[)の中でも特に外部添加粒子が好ましい。
Examples include double salts (including hydrates) of these compounds, glass powder, clay (including kaolin, bentonite, clay, etc.), talc, diatomaceous earth, and the like. Such inert fine particles (I
Among [[), externally added particles are particularly preferred.

シリコン樹脂微粒子(II)は0.3〜4μmの平均粒
径を有している。好ましくは0.3〜2μm。
The silicone resin fine particles (II) have an average particle size of 0.3 to 4 μm. Preferably 0.3 to 2 μm.

特に好ましくは0.5〜1.5μmの平均粒径を有して
いる。
Particularly preferably, they have an average particle size of 0.5 to 1.5 μm.

また、不活性粒子(1)は0.01〜1μmの平均粒径
を有するが上記シリコン樹脂微粒子(It)の平均粒径
よりも小さい平均粒径のものとしt1併用される。
In addition, the inert particles (1) have an average particle size of 0.01 to 1 μm, but are smaller than the average particle size of the silicone resin fine particles (It), and are used in combination with t1.

不活性微粒子(III)は、好ましくは0.05〜0.
8μmの平均粒径、より好ましくは0.1〜0.5μm
の平均粒径を有している。
The inert fine particles (III) preferably have a particle size of 0.05 to 0.0.
Average particle size of 8 μm, more preferably 0.1-0.5 μm
It has an average particle size of

不活性微粒子(1)の含有量は熱可塑性ポリエーテルエ
ーテルケトンに対し0.005〜1重量%であるが、0
.01〜1重量%、更には0.01〜0.5重量%、特
に0.05〜0.3重量%が好ましい。−方シリコン樹
脂微粒子(n)の含有量は熱可塑性ポリエーテルエーテ
ルケトンに対し0.005〜1重量%であるが、0.0
1〜1重量%、更には0.04〜0.5、特に0.1〜
0.5重量%が好ましい。
The content of the inert fine particles (1) is 0.005 to 1% by weight based on the thermoplastic polyetheretherketone, but
.. 01 to 1% by weight, more preferably 0.01 to 0.5% by weight, especially 0.05 to 0.3% by weight. - The content of silicone resin fine particles (n) is 0.005 to 1% by weight based on thermoplastic polyetheretherketone, but 0.0
1 to 1% by weight, more preferably 0.04 to 0.5, especially 0.1 to
0.5% by weight is preferred.

不活性微粒子(I[)或はシリコン樹脂微粒子(II)
の含有−が少なすぎると、大小2種の粒子を用いる相乗
効果が得られず、走行性、耐摩耗性、゛耐疲労性、つぶ
れ性、端面揃い性等の特性が低下するので好ましくない
。一方不活性粒子(1)の含有量が多すぎると、ポリマ
ー中の小さい粒子に起因するボイドの発生する頻度が多
くなる傾向になり、耐摩耗性、耐疲労性、つぶれ性・、
絶縁電圧。
Inert fine particles (I[) or silicone resin fine particles (II)
If the content of - is too small, the synergistic effect of using two types of particles, large and small, cannot be obtained, and properties such as runnability, wear resistance, fatigue resistance, crushability, and end surface alignment are deteriorated, which is undesirable. On the other hand, if the content of inert particles (1) is too large, voids due to small particles in the polymer tend to occur more frequently, resulting in poor wear resistance, fatigue resistance, crushability,
insulation voltage.

透明性等が低下する。Transparency etc. decreases.

またシリコン樹脂微粒子<II)の含有量が多すぎると
、フィルム表面が粗れすぎ、例えば磁気テープにおける
電磁変換特性が低下するので、好ましくない。
Furthermore, if the content of silicone resin fine particles <II) is too large, the surface of the film becomes too rough and, for example, the electromagnetic conversion characteristics of a magnetic tape deteriorate, which is not preferable.

本発明の二軸配向フィルムを製造する際に、シリコン樹
脂微粒子あるいはそれと不活性微粒子をポリエーテルエ
ーテルケトンと緊密に混合するにはこれらの微粒子を、
ポリエーテルエーテルケトンの重合前又は重合中に重合
釜中で、重合終了侵ペレタイズするどき押出機中で、あ
るいはシート状に溶融押出しする際押出機中で、該ポリ
エーテルエーテルケトンと十分に混練すればよい。
When producing the biaxially oriented film of the present invention, in order to intimately mix silicone resin fine particles or their inert fine particles with polyetheretherketone, these fine particles are
Before or during the polymerization of the polyether ether ketone, it is sufficiently kneaded with the polyether ether ketone in a polymerization kettle, in an extruder when polymerization is completed and pelletized, or in an extruder when melt extruding into a sheet. Bye.

本発明のポリエーテルエーテルケトンフィルムは、例え
ば、融点(T+a:”C)+30℃ないしくTs +9
0) ’cの温度で熱可塑性ポリエーテルエーテルケト
ンを溶融押出して未延伸フィルムを得、該未延伸フィル
ムを一軸方向(縦方向又は横方向)に(T(1−10)
〜(Till +45) ’Cの温度(但し、Tg:ポ
リエーテルエーテルケトンのガラス転移温度)で1.5
倍以上、特に2.5倍以上で延伸し、次いで上記延伸方
向と直角方向(−段目延伸が縦方向の場合には、二段目
延伸は横方向となる)に(T(1+10)〜(T(1+
40) ’Cの温度で2.5〜5.0倍の倍率で延伸す
ることで製造できる。この場合、面積延伸倍率は4倍以
上、更には6倍以上にするのが好ましい。延伸手段は同
時二輪延伸、逐次二輪延伸のいずれでも良い。
The polyetheretherketone film of the present invention has, for example, a melting point (T+a: "C) +30°C or Ts +9
0) Melt extrude thermoplastic polyetheretherketone at a temperature of 'c to obtain an unstretched film.
~(Till +45) 'C temperature (Tg: glass transition temperature of polyetheretherketone) 1.5
Stretched by a factor of at least 2.5 times, especially 2.5 times or more, and then in a direction perpendicular to the above stretching direction (if the -th stage stretching is in the vertical direction, the second stage stretching is in the horizontal direction) (T(1+10)~ (T(1+
40) It can be produced by stretching at a temperature of 2.5 to 5.0 times. In this case, the area stretching ratio is preferably 4 times or more, more preferably 6 times or more. The stretching means may be either simultaneous two-wheel stretching or sequential two-wheel stretching.

更に、二軸配向フィルムは(’l、+70)’C〜To
+  (’C)の温度で熱固定することができる。例え
ばポリエーテルエーテルケトンフィルムについては20
0〜350℃で熱固定することが好ましい。
Furthermore, the biaxially oriented film is ('l, +70)'C~To
It can be heat-set at a temperature of + ('C). For example, for polyetheretherketone film, 20
It is preferable to heat set at 0 to 350°C.

熱固定時間は例えば1〜120秒である。The heat setting time is, for example, 1 to 120 seconds.

ポリエーテルエーテルケトンフィルムの厚みは、1〜2
50μm1更には1〜125μm1特に1〜75μmが
好ましい。
The thickness of the polyetheretherketone film is 1 to 2
50 μm1, more preferably 1 to 125 μm1, particularly 1 to 75 μm.

本発明の二軸配向ポリエーテルエーテルケトンフィルム
は、均一な凹凸表面特性、すぐれた滑り性、耐熱性及び
耐削れ性を有し、すりきず、白粉等の発生量が著しく少
ないという特徴を有する。
The biaxially oriented polyether ether ketone film of the present invention has uniform uneven surface characteristics, excellent slipperiness, heat resistance, and abrasion resistance, and is characterized by significantly less generation of scratches, white powder, etc.

この二軸配向ポリエーテルエーテルケトンフィルムはこ
れらの特性を活かして各種の用途に広く用いることがで
きる。例えば、電絶材料用途、モーター絶縁、電線被覆
用として用いると、優れた耐熱性及び加工性等が得られ
る。また、コンデンサー用途に用いると、低い摩擦係数
、すぐれた巻回性、低いつぶれ荷重及びそのすぐれた耐
熱性故に、使用温度の高い高品位のコンデンサーを得る
ことができる。また、FPC(フレキシブルプリントサ
ーキット)用途に用いると、耐ハンダ性に優れたFPC
を得ることが可能である。また、磁気記録用例えばビデ
オ用、オーディオ用、コンピューター用などのベースフ
ィルムとして用いると、優れた電磁変換特性、滑り性、
走行耐久性等が得られる。特に、金属薄膜をベースフィ
ルムに付与してなる、真空蒸着又はスパッター用のベー
スフィルムとしてはその耐熱性により好適である。
This biaxially oriented polyetheretherketone film can be widely used in various applications by taking advantage of these properties. For example, when used as electrical insulation materials, motor insulation, and wire coatings, excellent heat resistance and processability can be obtained. Furthermore, when used in capacitor applications, it is possible to obtain high-quality capacitors that can be used at high temperatures due to its low coefficient of friction, excellent winding properties, low crushing load, and excellent heat resistance. In addition, when used in FPC (flexible printed circuit) applications, FPC with excellent solder resistance
It is possible to obtain In addition, when used as a base film for magnetic recording such as video, audio, and computers, it has excellent electromagnetic conversion characteristics, slipperiness,
Driving durability etc. can be obtained. In particular, it is suitable as a base film for vacuum evaporation or sputtering, which is obtained by applying a metal thin film to a base film, due to its heat resistance.

二軸配向ポリエーテルエーテルケトンフィルムは、電絶
用、コンデンサー用、FPC用、金属薄膜磁気記録媒体
用として好ましいが、塗布!磁気記録媒体用、蒸着用、
乾燥転写等のベースフィルムとしても広く適用すること
ができる。
Biaxially oriented polyetheretherketone film is preferable for use in electrical disconnections, capacitors, FPCs, and metal thin film magnetic recording media, but coating! For magnetic recording media, for vapor deposition,
It can also be widely applied as a base film for dry transfer, etc.

なお、本発明における種々の物性値および特性は以下の
如くして測定されたものであり且つ定義される。
Note that various physical property values and characteristics in the present invention were measured and defined as follows.

(1)粒子の平均粒径(OP) 島津製作所製CP −50型セントリフニゲルパーテイ
クルサイズ アナライザー(CentrifugalP
article s tze Analyser )を
用いて測定した。
(1) Average particle size (OP) Shimadzu CP-50 Centrifugal Particle Size Analyzer (CentrifugalP)
It was measured using an article tze analyzer).

得られた遠心沈降曲線を基に算出した各粒径の粒子とそ
の存在量との積算曲線から、50マスパーセントに相当
する粒径を読み取り、この値を上記平均粒径とした(8
00k「粒度測定技術」日刊工業新聞社発行、 197
5年1頁242〜247参照)。
The particle size corresponding to 50 mass percent was read from the integrated curve of particles of each particle size and their abundance calculated based on the obtained centrifugal sedimentation curve, and this value was taken as the above average particle size (8
00k "Particle size measurement technology" published by Nikkan Kogyo Shimbun, 197
5th Year 1, pp. 242-247).

(2)粒子の粒度分布比(γ) 粒子の平均粒径の測定において得られた遠心沈降曲線を
基に、各粒径の粒子とその存在量との積口曲線を算出し
て描き、粒径の大きい方から積算した粒子のw4棹!f
fiが257スバーセントに相当する粒径(D25 )
と、粒子の積算重量が75マスバーセントに相当する粒
径(D7?)を読みとり、前者の値を後者の値で除しく
Dδ/Dが)各々の粒子の粒度分布比(γ)を算出する
(2) Particle size distribution ratio (γ) Based on the centrifugal sedimentation curve obtained in the measurement of the average particle size of particles, calculate and draw the product curve of particles of each particle size and their abundance, and W4 rods of particles integrated from the larger diameter! f
Particle size corresponding to fi of 257 percent (D25)
Then, read the particle diameter (D7?) whose cumulative weight corresponds to 75 mass percent, and divide the former value by the latter value (Dδ/D) to calculate the particle size distribution ratio (γ) of each particle. .

(3)  フィルムの摩擦係数(μk)温度20℃、湿
度60%の環境で、巾172インチに裁断したフィルム
を、固定棒(表面粗さ0.3μm)に角度θ−152/
 180πラジアン(152°)で接触させて毎分20
0αの速さで移動(rI!ilりさせる。入口テンショ
ンT1が35gとなるようにテンションコントローラー
を調整した時の出口テンション(T+  :g>をフィ
ルムが90m走行したのち出口テンション検出機で検出
し、次式で走行摩擦係数μkを算出する。
(3) Film friction coefficient (μk) In an environment of temperature 20°C and humidity 60%, a film cut to a width of 172 inches was held at an angle of θ-152/ by a fixed rod (surface roughness 0.3 μm).
20 per minute with contact at 180π radians (152°)
Move at a speed of 0α (rI!il). When the tension controller is adjusted so that the inlet tension T1 is 35 g, the exit tension (T+:g> is detected by the exit tension detector after the film has traveled 90 m. , calculate the running friction coefficient μk using the following formula.

μk = (2,303/θ) log  (T2 /
TI )(4)  フィルム表面の平坦性 CLA (Center L ine Averaa 
−中心線平均粗さ)JIS  B  0601に準じて
測定した。東京精密社■製の触針式表面粗さ計(SUR
FCOM3B)を用いて、針の半径2μ、荷重0.07
9の条件下にチャート(フィルム表面粗さ曲線)をかか
せた。フィルム表面粗さ曲線からその中心線の方向に測
定長さしの部分を抜き取り、この抜き取り部分の中心線
をX軸とし、縦倍率の方向をY軸として、粗さ曲線Y=
f(x)で表わしたとき、次の式で与えられる値(Ra
 :μm)をフィルム表面の平坦性として定義する。
μk = (2,303/θ) log (T2/
TI ) (4) Film surface flatness CLA (Center Line Averaa)
- Centerline average roughness) Measured according to JIS B 0601. Stylus type surface roughness meter (SUR) manufactured by Tokyo Seimitsu Co., Ltd.
FCOM3B), needle radius 2μ, load 0.07
A chart (film surface roughness curve) was drawn under the following conditions. A part of the measurement length is extracted from the film surface roughness curve in the direction of its center line, and the center line of this extracted part is taken as the X axis, and the direction of vertical magnification is taken as the Y axis, and the roughness curve Y=
When expressed as f(x), the value (Ra
: μm) is defined as the flatness of the film surface.

Ra −(1/L)fLIf  (x )ldx本発明
では、基準長を0.25 Mとして8個測定し、値の大
きい方から3個除いた5個の平均値としてRaを表わし
た。
Ra - (1/L) fLIf (x) ldx In the present invention, eight measurements were taken with a reference length of 0.25 M, and Ra was expressed as the average value of five, excluding three from the largest value.

(5)  ボイド比 試料フィルム小片を走査型電子顕微鏡用試料台に固定し
、日本電子■製スパッタリング装ff(JF C−11
00型イオンスパツタリング装置)用いて、フィルム表
面を下記条件にてイオンエツチング処理を施した。ペル
ジャー内に上記試料台を設置し、約10’ T orr
の真空状態まで真空度を上げ、電圧0.25KV、電流
i2.smAにて約10分間イオンエツチングを実施し
た。更に同装置にてフィルム表面に金スパッターを施し
、約200人程度の金wJWA層を形成し走査型電子顕
微鏡1万〜3万倍にて測定を行った。尚、ボイドは粒径
0.3μm以上の滑剤についてのみ測定を行った。
(5) Void ratio sample film small piece was fixed on a sample stage for a scanning electron microscope, and sputtering equipment ff (JF C-11 manufactured by JEOL Ltd.
The surface of the film was subjected to ion etching using a Model 00 ion sputtering apparatus under the following conditions. Place the sample stand in the Pelger and heat it to about 10' Torr.
The degree of vacuum was increased to a vacuum state of 0.25 KV and current i2. Ion etching was performed at smA for about 10 minutes. Furthermore, gold sputtering was performed on the film surface using the same apparatus to form a gold wJWA layer of approximately 200 layers, and measurement was performed using a scanning electron microscope at a magnification of 10,000 to 30,000 times. Note that voids were measured only for lubricants with a particle size of 0.3 μm or more.

(6)へ−ズ(曇り度) JIS−に674に準じ、日本精密光学社製、積分球式
HTRメーターによりフィルムのへ−ズを求めた。
(6) Haze (haze) The haze of the film was determined according to JIS-674 using an integrating sphere HTR meter manufactured by Nippon Seimitsu Kogaku Co., Ltd.

(7)  体積形状係数<f ) 走査型電子顕微鏡により粒子の写真を例えば5000倍
で10視野撮影し、例えば画像解析処理装置ルーゼック
ス500(日本レギ・ニレーター製)を用い、最大径の
平均値を各視野毎に測定し、更に、10視野の平均値を
求め、Dとした。
(7) Volume shape factor <f) Photographs of particles are taken with a scanning electron microscope in 10 fields of view at a magnification of, for example, 5000 times, and the average value of the maximum diameter is calculated using, for example, an image analysis processing device Luzex 500 (manufactured by Nippon Regi Nilator). Measurements were made for each visual field, and the average value of the 10 visual fields was determined and designated as D.

測定法の上記(1)項で求めた、粒子の平均粒径dより
、粒子の平均体積(■−(π/6)d3)を求め、形状
係数fを次式により算出した。
The average volume of the particles (■-(π/6) d3) was determined from the average particle diameter d of the particles determined in the above section (1) of the measurement method, and the shape factor f was calculated using the following formula.

f =V/D” 式中、■は粒子の平均体積(μm’)、Dは粒子の平均
最大粒径(μm)を表わす。
f = V/D'' In the formula, ■ represents the average volume of the particles (μm'), and D represents the average maximum particle diameter (μm) of the particles.

(8)絶縁破壊電圧及び絶縁破壊異常率絶縁破壊電圧は
JIS−C−2318に示される方払で測定する。n−
100の平均値を採用し、この平均値の1/3以下の値
を示すものの割合(%)を絶縁破壊異常率とする。
(8) Dielectric breakdown voltage and dielectric breakdown abnormality rate Dielectric breakdown voltage is measured according to the method shown in JIS-C-2318. n-
An average value of 100 is adopted, and the ratio (%) of those exhibiting a value of 1/3 or less of this average value is defined as the dielectric breakdown abnormality rate.

(9)素子端面不揃い、及び偏平化後の素子端面形状の
評価 10μのフィルムをアルミニウム蒸着し、2G1111
1巾にスリットしたものを、外径3gの巻芯に巻張力4
09、巻取速度30c11/ Secで4mの長さを巻
回した素子を作り、素子端面不揃いについては、端面が
全て完全に揃っているものをOとし、一部にやや不揃い
のものもあるがその程度も小で、実用上何ら差支えない
ものをΔ、使用できないものを×とする。
(9) Evaluation of element end face irregularities and element end face shape after flattening A 10μ film was deposited with aluminum and 2G1111
The 1-width slit is wound around a core with an outer diameter of 3 g at a tension of 4.
09. An element was wound to a length of 4 m at a winding speed of 30c11/Sec. Regarding the unevenness of the element end faces, the end face was all perfectly aligned, and O was the end face. Some of the end faces were slightly uneven. A case where the degree of damage is small and causes no practical problem is marked as Δ, and a case where it cannot be used is marked as ×.

該素子をプレスにより偏平につぶした時の偏平化後の素
子端面形状評価は、フィルム層匍が一直線で均一につぶ
れて隙間のないものを0.一部に僅かに隙間が認められ
るが実用上何ら問題のないものをΔ、つぶれが不均一で
フィルム層間に隙間ができて使用できないのを×とする
When the element is flattened by pressing, the shape of the end face of the element after flattening is evaluated as 0.0. A film in which a slight gap is observed in some parts but causes no practical problem is marked as Δ, and a case in which the film is unusable due to non-uniform crushing and gaps between the film layers is marked as ×.

(ト)) 滑剤の凝集 フィルムを偏光下で20倍に拡大し、偏光板を直交させ
暗視野中で光るもののうち、25μ以上の凝集滑剤の個
数を測定することで評価した。測定面積は10ciとし
、1 cd当りの個数0〜10個のものを0.10〜3
0個のものをΔ、30個以上を×とした。
(g)) The agglomerated film of the lubricant was magnified 20 times under polarized light, and the number of agglomerated lubricants of 25μ or more that glowed in the dark field with a polarizing plate orthogonally crossed was evaluated. The measurement area is 10ci, and the number of pieces per cd is 0.10 to 3.
0 items were evaluated as Δ, and 30 or more items were evaluated as ×.

CIl+  コンデンサー総合評価 つぶれ性1巻回性等の取扱い作業性、蒸着加工性、絶縁
破壊電圧及び絶縁破壊異常率等の電気特性について総合
的に評価して、いずれも良好なものを◎、若干劣る面を
有するが実用上問題ないものをO0実用上問題のあるも
のを△、使用に耐えないものを×とする。
Comprehensive evaluation of CIl+ capacitors Comprehensive evaluation of handling workability such as crushability, single-turning property, vapor deposition processability, electrical properties such as dielectric breakdown voltage and dielectric breakdown abnormality rate, and ◎ is good for all, and ◎ is slightly poor. Those that have a surface but have no practical problems are designated as O0, those that have practical problems are designated as Δ, and those that cannot withstand use are designated as ×.

[実施例] 以下、実施例を掲げて本発明を更に説明する。[Example] The present invention will be further explained below with reference to Examples.

実施例1〜7 熱可塑性ポリエーテルエーテルケトン(IC1社製:ポ
リエーテルエーテルケトン380G)にシリコン樹脂微
粒子及び不活性粒子を表−1に示す割合で混合し、ブレ
ンド後、押出様により380℃で押出し、80℃の温度
に保持したキャスティングドラム上ヘキャストし、90
μの未延伸フィルムを作成し、これを縦方向へ160℃
で2.7倍延伸し、更にテンターに供給し横方向へ16
0℃で3゜5倍延伸し、250℃で30秒間熱固定した
。これらフィルムの特性について、表−1に示す。
Examples 1 to 7 Thermoplastic polyetheretherketone (manufactured by IC1: Polyetheretherketone 380G) was mixed with silicone resin fine particles and inert particles in the proportions shown in Table 1, and after blending, it was extruded at 380°C. Extruded and cast onto a casting drum maintained at a temperature of 80°C.
Create an unstretched film of μ and stretch it in the longitudinal direction at 160℃
Stretch it 2.7 times, then feed it to a tenter and stretch it 16
It was stretched 3 degrees 5 times at 0°C and heat-set at 250°C for 30 seconds. Table 1 shows the properties of these films.

比較例1〜3 実施例1と同じポリマーを用い、滑剤のみを表−1に示
すものに変更する以外は、実施例1と同様に行った。
Comparative Examples 1 to 3 Comparative Examples 1 to 3 The same polymers as in Example 1 were used, except that only the lubricant was changed to those shown in Table 1.

これらフィルムの特性を表−1に示す。The properties of these films are shown in Table-1.

なお、表−1に示すシリコン樹脂微粒子は表−1に示さ
れた平均粒径を示し、体積形状係数が0.52〜0.4
8であ、かつ粒度分布比(γ)が1.1〜2.0のもの
である。(組成はCH3Si  O)t ) 表−1の結果により、本発明のフィルムは表面が平坦で
、かつくり返しの摩擦係数も小さく、滑り性の優れたフ
ィルムであることが分る。また、本発明のフィルムは滑
剤の凝集も少なく、コンデンサー用フィルムとして見た
場合、非常に優れたものであることが分る。
The silicone resin fine particles shown in Table 1 have the average particle diameter shown in Table 1, and have a volume shape coefficient of 0.52 to 0.4.
8 and a particle size distribution ratio (γ) of 1.1 to 2.0. (Composition: CH3SiO)t) From the results in Table 1, it can be seen that the film of the present invention has a flat surface, a small coefficient of friction in repeated cycles, and excellent slipperiness. Furthermore, the film of the present invention has less agglomeration of lubricant, and is found to be very excellent when viewed as a film for capacitors.

特許出願人 帝 人 株 式 会 社 代  理  人  弁理士  前  1) 純  博ご
パ−“5、 手続補正書 平成 元年 1月/θ日
Patent Applicant Teijin Ltd. Representative Patent Attorney 1) Jun Hirogo Par “5, Procedural Amendment January/θ, 1989

Claims (1)

【特許請求の範囲】 1、( I )熱可塑性ポリエーテルエーテルケトン、及
び (II)(a)下記式(A) R_xSiO_2_−_x_/_2・・・(A) ここで、Rは炭素数1〜7の炭化水素基であり、そして
xは1〜1.2の数である で表わされる組成を有し、 (b)下記式(B) f=V/D^3・・・(B) ここで、Vは粒子1個当りの平均体積(μm^3)であ
りそしてDは粒子の平均最大粒径(μm)である で定義される体積形状係数(f)が0.4より大きくそ
してπ/6以下であり、そして (c)0.01〜4μmの平均粒径を有するシリコン樹
脂微粒子0.005〜3.0重量%(熱可塑性ポリエー
テルエーテルケトンに対して) から成る緊密な混合物から形成された二軸配向ポリエー
テルエーテルケトンフィルム。 2、上記式(A)において、Rが炭素数1〜7の直鎖状
もしくは分岐鎖状のアルキル基、フェニル基又はトリル
基である特許請求の範囲第1項記載のフィルム。 3、上記式(A)において、xが1〜1.1の数である
特許請求の範囲第1項記載のフィルム。 4、体積形状係数(f)が0.44〜π/6の間にある
特許請求の範囲第1項記載のフィルム。 5、平均粒径が0.05〜3μmの間にある特許請求の
範囲第1項記載のフィルム。 6、シリコン樹脂微粒子の量が0.01〜1.5重量%
(熱可塑性ポリエーテルエーテルケトンに対し)である
特許請求の範囲第1項記載のフィルム。 7、上記シリコン樹脂微粒子が下記式(C)γ=D_2
_5/D_7_5・・・(C) ここで、D_2_5は粒子の積算重量が25%のときの
平均粒径(μm)でありそしてD_7_5は粒子の積算
重量が75%のときの平均粒径(μm)である で定義される粒度分布比(γ)として1〜1.4の間の
値を有する特許請求の範囲第1項記載のフィルム。 8、( I )熱可塑性ポリエーテルエーテルケトン、 (II)(a)上記式(A)で表わされる組成を有し、 (b)上記式(B)で定義される体積形状係数(f)が
0.4より大きくπ/6以下であり、そして (c)0.3〜4μmの平均粒径を有する、シリコン樹
脂微粒子0.005〜3.0重量%(熱可塑性ポリエー
テルエーテルケトンに対し)及び (III)0.01〜1μmの平均粒径を有しそして該平
均粒径が上記シリコン樹脂微粒 子の平均粒径よりも小さい不活性微粒子0.005〜3
.0重量%(熱可塑性ポリエーテルエーテルケトンに対
し) からなる緊密な混合物から形成された二軸配向ポリエー
テルエーテルケトンフィルム。
[Claims] 1. (I) Thermoplastic polyether ether ketone, and (II) (a) the following formula (A) R_xSiO_2_-_x_/_2...(A) where R has 1 to 1 carbon atoms 7 hydrocarbon group, and x is a number from 1 to 1.2, and has a composition represented by (b) the following formula (B) f=V/D^3...(B) where where V is the average volume per particle (μm^3) and D is the average maximum particle diameter (μm) of the particles.The volume shape factor (f) defined by is greater than 0.4 and π /6 or less, and (c) from an intimate mixture consisting of 0.005 to 3.0% by weight (based on thermoplastic polyetheretherketone) of silicone resin microparticles having an average particle size of 0.01 to 4 μm. Biaxially oriented polyetheretherketone film formed. 2. The film according to claim 1, wherein in the above formula (A), R is a linear or branched alkyl group having 1 to 7 carbon atoms, a phenyl group, or a tolyl group. 3. The film according to claim 1, wherein in the above formula (A), x is a number from 1 to 1.1. 4. The film according to claim 1, having a volumetric shape factor (f) of between 0.44 and π/6. 5. The film according to claim 1, wherein the average particle size is between 0.05 and 3 μm. 6. The amount of silicone resin fine particles is 0.01 to 1.5% by weight
The film according to claim 1, which is (relative to thermoplastic polyetheretherketone). 7. The silicone resin fine particles have the following formula (C) γ=D_2
_5/D_7_5...(C) Here, D_2_5 is the average particle diameter (μm) when the cumulative weight of particles is 25%, and D_7_5 is the average particle diameter (μm) when the cumulative weight of particles is 75%. 2. A film according to claim 1, having a particle size distribution ratio (γ) of between 1 and 1.4. 8. (I) Thermoplastic polyetheretherketone, (II) (a) has a composition represented by the above formula (A), (b) has a volume shape factor (f) defined by the above formula (B) 0.005 to 3.0% by weight of silicone resin fine particles (based on thermoplastic polyetheretherketone) having an average particle size of greater than 0.4 and less than or equal to π/6, and (c) 0.3 to 4 μm. and (III) inert fine particles having an average particle size of 0.01 to 1 μm and smaller than the average particle size of the silicone resin fine particles.
.. Biaxially oriented polyetheretherketone film formed from an intimate mixture of 0% by weight (based on thermoplastic polyetheretherketone).
JP25743387A 1987-10-14 1987-10-14 Biaxially oriented polyetheretherketone film Expired - Lifetime JPH0696646B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25743387A JPH0696646B2 (en) 1987-10-14 1987-10-14 Biaxially oriented polyetheretherketone film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25743387A JPH0696646B2 (en) 1987-10-14 1987-10-14 Biaxially oriented polyetheretherketone film

Publications (2)

Publication Number Publication Date
JPH01101336A true JPH01101336A (en) 1989-04-19
JPH0696646B2 JPH0696646B2 (en) 1994-11-30

Family

ID=17306296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25743387A Expired - Lifetime JPH0696646B2 (en) 1987-10-14 1987-10-14 Biaxially oriented polyetheretherketone film

Country Status (1)

Country Link
JP (1) JPH0696646B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998058987A1 (en) * 1997-06-20 1998-12-30 Nippon Zeon Co., Ltd. Polymer film and film capacitor
CN101942177A (en) * 2010-08-20 2011-01-12 陈逊 Manufacturing method of polyether-ether-ketone thin film
JP2012097147A (en) * 2010-10-29 2012-05-24 Teijin Ltd Biaxially oriented film
CN114717464A (en) * 2022-02-25 2022-07-08 温州市海格阀门有限公司 Heat-resistant cast stainless steel and preparation method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998058987A1 (en) * 1997-06-20 1998-12-30 Nippon Zeon Co., Ltd. Polymer film and film capacitor
US6630234B1 (en) 1997-06-20 2003-10-07 Nippo Zeon Co., Ltd. Polymeric film and film capacitor
CN101942177A (en) * 2010-08-20 2011-01-12 陈逊 Manufacturing method of polyether-ether-ketone thin film
JP2012097147A (en) * 2010-10-29 2012-05-24 Teijin Ltd Biaxially oriented film
CN114717464A (en) * 2022-02-25 2022-07-08 温州市海格阀门有限公司 Heat-resistant cast stainless steel and preparation method thereof
CN114717464B (en) * 2022-02-25 2023-04-18 温州市海格阀门有限公司 Heat-resistant cast stainless steel and preparation method thereof

Also Published As

Publication number Publication date
JPH0696646B2 (en) 1994-11-30

Similar Documents

Publication Publication Date Title
EP0245883A2 (en) Polyester film for magnetic recording medium
KR100218698B1 (en) Thermoplastic polyester composition and film produced therefrom
JPH01101336A (en) Biaxially oriented polyether ether ketone film
JPH0358583B2 (en)
JPH01101335A (en) Biaxially oriented polyether ether ketone film
JPH0458818B2 (en)
JPH0520664A (en) High-density magnetic recording medium
JPH0766694B2 (en) Film for electrical insulation materials
JPS63191838A (en) Biaxially oriented polyester film
JP3275971B2 (en) Laminated polyester film and method for producing the same
JPH11348210A (en) Laminated polyester film
JPS6270046A (en) Compounded biaxially oriented polyester film having excellent transparency
JPS6230106B2 (en)
JPH07165946A (en) Biaxially oriented polyester film
WO2001019902A1 (en) Polyester composition, film made thereof, and magnetic recording medium
JPH0458821B2 (en)
JPH01126340A (en) Biaxially oriented polyester film
JPH0458819B2 (en)
JPH07119293B2 (en) Biaxially oriented polyester film
JP3053469B2 (en) Composite oriented polyester film
JPS5941258A (en) Polyester film
JP3139513B2 (en) Biaxially oriented laminated polyester film
JPH0618149B2 (en) Capacitor
JPH0665483A (en) Polyester composition and film composed of the composition
JP2550745B2 (en) Polyester resin film

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term