JPH01100713A - Magnetic head - Google Patents

Magnetic head

Info

Publication number
JPH01100713A
JPH01100713A JP25706487A JP25706487A JPH01100713A JP H01100713 A JPH01100713 A JP H01100713A JP 25706487 A JP25706487 A JP 25706487A JP 25706487 A JP25706487 A JP 25706487A JP H01100713 A JPH01100713 A JP H01100713A
Authority
JP
Japan
Prior art keywords
film
thin film
stress
tensile force
sputtered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25706487A
Other languages
Japanese (ja)
Inventor
Kazuyasu Kaneko
金子 一康
Yoshimi Kikuchi
良巳 菊池
Masanori Yamaoka
山岡 正規
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec Instruments Corp
Original Assignee
Sankyo Seiki Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sankyo Seiki Manufacturing Co Ltd filed Critical Sankyo Seiki Manufacturing Co Ltd
Priority to JP25706487A priority Critical patent/JPH01100713A/en
Publication of JPH01100713A publication Critical patent/JPH01100713A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/31Structure or manufacture of heads, e.g. inductive using thin films
    • G11B5/3163Fabrication methods or processes specially adapted for a particular head structure, e.g. using base layers for electroplating, using functional layers for masking, using energy or particle beams for shaping the structure or modifying the properties of the basic layers

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Magnetic Heads (AREA)

Abstract

PURPOSE:To prevent peeling or cracking from being generated and to prevent a magnetic characteristic from being deteriorated by constituting a metallic magnetic thin film of a sputter film in which a tensile force remains immediately after sputtering and the sputter film in which compressive stress remains, and arranging the sputter film with the tensile force on a substrate side. CONSTITUTION:The metallic magnetic thin film 4 is constituted of the sputter film 4A in which the tensile force remains immediately after the sputtering and the sputter film 4B in which the compressive force remains, and the sputter film 4A with the tensile force is arranged on the side of the substrates 1A and 1B. Therefore, it is possible to reduce displacement at a boundary part between the substrate whose coefficient of linear expansion is different from that of the metallic magnetic thin film and the metallic magnetic thin film 4 even at the time of rising a temperature such as in a heat treatment time. In other words, even when the temperature of the sputter film 4A with the tensile force adhered on the substrates 1A and 1B whose coefficients of linear expansion are small is increased by performing the heat treatment or filling glass with low m.p., etc., the linear expansion of the sputter film 4A functions in a direction to eliminate the tensile force. In such a way, it is possible to prevent excessive strain between the substrates 1A and 1B and the sputter film 4A with the tensile force from being generated, and to prevent a device from being damaged or deterioration in the magnetic characteristic from being generated.

Description

【発明の詳細な説明】 、 (産業上の利用分野) 一本発明は磁気ヘッドに関する。更に詳細に説明すると
、本発明はセラミック強磁性材料あるいはセラミック非
磁性材料から成る基板と強磁性金属の薄膜とを組合せた
複合磁気ヘッドに関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a magnetic head. More specifically, the present invention relates to a composite magnetic head that combines a substrate made of a ceramic ferromagnetic material or a ceramic nonmagnetic material and a ferromagnetic metal thin film.

(従来の技術) このような磁気ヘッドとしては、従来、特開昭60−2
23012号に明らかなように、強磁性酸化物より成る
磁気コアに強磁性金属例えばセンダスト合金の薄膜を真
空薄膜形成技術により形成し、非磁性材料に挟まれるよ
うにしてギャップ対向面(本明細書では磁気ギャップに
対して平行な突合せ接合面をいう)に露呈する強磁性金
属の薄膜間で磁気ギャップを形成する薄膜磁気ヘッドが
知られている。
(Prior art) As such a magnetic head, conventionally, Japanese Patent Application Laid-Open No. 60-2
No. 23012, a thin film of a ferromagnetic metal, such as Sendust alloy, is formed on a magnetic core made of a ferromagnetic oxide by vacuum thin film forming technology, and is sandwiched between non-magnetic materials to form a gap facing surface (hereinafter referred to as A thin film magnetic head is known in which a magnetic gap is formed between thin films of ferromagnetic metal exposed at a butt joint surface parallel to the magnetic gap.

この磁気ヘッドにおいて重要な強磁性金属の薄膜は、通
常スパッタリング等の真空薄膜形成技術によって磁気特
性に優れるセンダスト合金を付着して形成されている。
The ferromagnetic metal thin film, which is important in this magnetic head, is usually formed by depositing a sendust alloy, which has excellent magnetic properties, using a vacuum thin film forming technique such as sputtering.

また、第5図に示すように、薄膜形成に先立ってCr、
5102の下地材を基板101上に付着させ、基板10
1と磁性WA102との間にCr層103.5102層
104を介在させて基板101と金属磁性薄膜102と
の間の密着力を増大させるようにして金属磁性薄膜を形
成するーこともある(特開昭61−3311号)。
In addition, as shown in FIG. 5, Cr,
A base material No. 5102 is attached onto the substrate 101, and the substrate 10
In some cases, a metal magnetic thin film is formed by interposing a Cr layer 103 and a 5102 layer 104 between the substrate 101 and the magnetic WA 102 to increase the adhesion between the substrate 101 and the metal magnetic thin film 102. Kaisho 61-3311).

(発明が解決しようとする問題点) しかしながら、スパッタリングによる膜形成は、蒸着法
等に比べてスパッタリング粒子が持つエネルギーが非常
に大きいことから、基板との付着力の増加や粒子打込み
効果による内部応力の増加といった種々の現象を引き起
し、基板強度に多大な影響を与える。特に、センダスト
合金は硬くて脆い所謂硬脆材料に属するため内部歪を多
く有する。
(Problem to be solved by the invention) However, when forming a film by sputtering, the energy of the sputtered particles is much larger than that of vapor deposition, so the increase in adhesive force with the substrate and the internal stress due to the particle implantation effect. This causes various phenomena such as an increase in the amount of carbon, which has a great impact on the strength of the substrate. In particular, since Sendust alloy belongs to a so-called hard and brittle material that is hard and brittle, it has a large amount of internal strain.

併せて、熱膨張率の異なるフェライト基板上にスパッタ
膜が堆積するため、基板の突合せのために高融点ガラス
を充填する時や熱処理(アニール処理)工程時に温度が
上がると、基板と膜との間のWjg量が異なり膜が剥離
したり、フェライトやガラス等にクラックが生じやすい
問題がある。このため、複合磁気ヘッドを製造する上で
はいかにセンダスト膜の内部応力を制御するかが本質的
な問題となっている。
In addition, since sputtered films are deposited on ferrite substrates with different coefficients of thermal expansion, if the temperature rises during filling high melting point glass to butt the substrates or during the heat treatment (annealing process), the relationship between the substrate and the film will increase. There is a problem that the amount of Wjg between the two is different, which causes the film to peel off, and cracks to occur in ferrite, glass, etc. Therefore, in manufacturing a composite magnetic head, how to control the internal stress of the sendust film is an essential problem.

例えば、膜応力が引張のときは熱処理(アニール処理)
後に柱状晶の横方向結合力が弱まり磁気特性が悪化し、
過度の引張応力では基板をえぐるように剥離する0反面
、圧縮応力では密な膜となり磁気特性は良好となるが、
基板や引張応力となるガラスとは逆の応力となるためク
ラックや割れの原因となる。この傾向は10μI以上の
膜厚になると顕在化する。
For example, when the film stress is tensile, heat treatment (annealing treatment)
Later, the lateral bonding force of the columnar crystals weakened and the magnetic properties deteriorated.
Excessive tensile stress causes the substrate to peel off, while compressive stress results in a dense film with good magnetic properties.
The stress is opposite to that of the substrate and the tensile stress of the glass, which causes cracks and breaks. This tendency becomes obvious when the film thickness becomes 10 μI or more.

このスパッタ膜に残留する応力は、ガラス充填後の熱処
理で極小となるように制御しなければならないが、その
挙動はスパッタ後に圧縮のときは熱処理後“0″に近づ
き、スパッタ後に引張応力のときは熱処理後更に引張応
力となる。これは基板との熱膨張率の差、即ち基板の熱
膨張率が膜のそれより小さいことからと説明され、現状
ではこの差が大きいからである。そして、この変位は膜
の厚みが大きくなればなる程大となり、それに伴って磁
気特性も劣化する。そこで、膜厚を極薄にすれば良いの
であるが、現状ではヘッド構成上、一定の膜厚が必要と
なり、上述の変位を無視できない、このため、磁気特性
を良好とするには、アニール処理前即ち成膜直後には圧
縮応力が残留するようにして、アニール処理によって応
力を“0”としなければならないが、成膜直後に圧縮応
力が残留する場合、該膜よりも線膨張率の小さな基板等
とは逆の応力であることよりアニール時の温度上昇には
却って変位を増長させる方向に作用し、膜剥離や基板等
の破壊を招く虞がある。
The stress remaining in this sputtered film must be controlled to a minimum through heat treatment after glass filling, but its behavior is close to zero after heat treatment when compressive stress is applied after sputtering, and when tensile stress is applied after sputtering. becomes more tensile stress after heat treatment. This is explained by the difference in thermal expansion coefficient between the film and the substrate, that is, the coefficient of thermal expansion of the substrate is smaller than that of the film, and this difference is currently large. This displacement increases as the thickness of the film increases, and the magnetic properties deteriorate accordingly. Therefore, it would be better to make the film extremely thin, but due to the current structure of the head, a certain film thickness is required, and the above-mentioned displacement cannot be ignored. Therefore, in order to improve the magnetic properties, annealing It is necessary to make sure that compressive stress remains before film formation, and reduce the stress to "0" by annealing. However, if compressive stress remains immediately after film formation, it is necessary to use a film with a smaller coefficient of linear expansion than the film. Since the stress is opposite to that of the substrate, etc., the temperature increase during annealing actually acts in the direction of increasing the displacement, which may lead to film peeling and destruction of the substrate, etc.

また、成膜面にあらかじめCr等を付着させる場合、C
rと5i02の下地層103,104は300Å以上数
千人の範囲内で厚い程効果が認められる。
In addition, when attaching Cr etc. to the film forming surface in advance, C
The effect is recognized as the underlying layers 103 and 104 of r and 5i02 are thicker, in the range of 300 Å or more and several thousand people.

しかし、その反面下地層が厚くなると、基板101と金
属磁性薄膜102との間の磁気的連続性が損なわれ、磁
気特性が劣化し、また疑似ギャップとして出力されてし
まう、さらに下地層を300人〜数千人の極薄に形成す
ることは、その制御が困難であり製造上の煩しさがつき
まとう。
However, on the other hand, when the underlayer becomes thicker, the magnetic continuity between the substrate 101 and the metal magnetic thin film 102 is lost, the magnetic properties deteriorate, and a pseudo gap is output. Forming ultra-thin layers of ~ several thousand layers is difficult to control and is fraught with manufacturing hassles.

そこで、本発明は金属磁性薄膜の剥離や基板等のクラッ
クの発生がなく容易に製造でき、しかも磁気特性の劣化
が少ない磁気ヘッドを提供することを目的とする。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a magnetic head that can be easily manufactured without peeling of a metal magnetic thin film or cracking of a substrate, etc., and which exhibits less deterioration of magnetic properties.

(問題点を解決するための手段) かかる目的を達成するため、本発明の磁気ヘッドは、金
属磁性薄膜をスパッタリング直後に引張応力が残留する
スパッタ膜と圧縮応力が残留するスパッタ膜とから構成
し、基板側に引張応力のスパッタ膜を配置するようにし
ている。
(Means for Solving the Problems) In order to achieve the above object, the magnetic head of the present invention comprises a sputtered film in which tensile stress remains and a sputtered film in which compressive stress remains immediately after sputtering a metal magnetic thin film. , a sputtered film with tensile stress is placed on the substrate side.

(作用) したがって、線膨張率が小さな基板に対し密着している
引張応力のスパッタ膜は熱処理あるいは高融点ガラスの
充填等によって温度が上げられても、スパッタ膜の線膨
張は引張応力を解消する方向に作用するので、即ち圧縮
方向に向うので線膨張率の異なる基板と金属磁性薄膜と
の境界部分における変位が少なく破壊することがない、
即ち、第2図に示すように、スパッタ直後の金属磁性薄
膜の膜全体としての応力は、圧縮応力だけの膜の場合(
符号■で示す)よりも引張応力側寄り(符号■で示す)
となり、アニール処理を施して応力″0”とするとき(
符号■で示す)、ストレス等によって昇温過程に膜や基
板が破壊したりクラックが入ることがない。
(Function) Therefore, even if the temperature of a sputtered film with tensile stress that is in close contact with a substrate with a small coefficient of linear expansion is increased by heat treatment or filling with high melting point glass, the linear expansion of the sputtered film will eliminate the tensile stress. Since it acts in the direction of compression, that is, in the direction of compression, the displacement at the boundary between the substrate and the metal magnetic thin film, which have different coefficients of linear expansion, is small and does not cause damage.
That is, as shown in Figure 2, the stress of the entire film of the metal magnetic thin film immediately after sputtering is as follows for a film with only compressive stress (
(indicated by symbol ■) is closer to the tensile stress side (indicated by symbol ■)
So, when annealing is applied to reduce the stress to ``0'' (
(indicated by symbol ■), the film and substrate will not be destroyed or cracked during the temperature rising process due to stress or the like.

(実施例) 以下、本発明の構成を図面に示す実施例に基づいて詳細
に説明する。
(Example) Hereinafter, the configuration of the present invention will be described in detail based on an example shown in the drawings.

第1図(A>、(B)i  (C)に本発明の膜構造の
一実施例を示す、金属磁性薄膜4は、成膜直後に引張応
力が残留するスパッタ膜4Aと圧縮応力が残留するスパ
ッタ膜4Bとから成り、基板1側に引張応力のスパッタ
膜4Bが配置されている。
FIG. 1 (A>, (B) i (C) shows an embodiment of the film structure of the present invention. The metal magnetic thin film 4 has a sputtered film 4A in which tensile stress remains immediately after film formation and a sputtered film 4A in which compressive stress remains. The tensile stress sputtered film 4B is arranged on the substrate 1 side.

引張スパッタ膜4Aと圧縮スパッタM4Bとは、第1図
(A)に示すようにほぼ同じ厚さに成膜しても良いし、
第1図(B)に示すように引張スパッタM4Aと圧縮ス
パッタ膜4Bとを交互に何層も繰返し形成して所定厚さ
のスパッタ膜4を得るようにしたり、第1図(C)に示
すように膜と基板との間に生ずるストレスの緩和を若干
1!牲にして磁気特性にとって好ましくない引張スパッ
タ膜4Aをできるだけ薄くすることもある。
The tension sputtered film 4A and the compression sputtered film M4B may be formed to have approximately the same thickness as shown in FIG. 1(A), or
As shown in FIG. 1(B), tensile sputtering M4A and compressive sputtering film 4B are alternately and repeatedly formed to obtain a sputtered film 4 of a predetermined thickness, or as shown in FIG. 1(C). As such, the stress generated between the film and the substrate is slightly alleviated by 1! At the same time, the tensile sputtered film 4A, which is unfavorable for magnetic properties, may be made as thin as possible.

以下、本発明の磁気ヘッドの製造工程を図面に基づいて
詳細に説明する。
Hereinafter, the manufacturing process of the magnetic head of the present invention will be explained in detail based on the drawings.

まず、基板1の表面、例えばギャップ対向面3に、テー
プ摺接面5と直交する方向(深直方向)に向かって延び
る方形、■形ないし台形のトラック溝13を研削によっ
て所定ピッチで多数本形成するr第3図(a))。
First, on the surface of the substrate 1, for example, the gap facing surface 3, a large number of rectangular, ■-shaped or trapezoidal track grooves 13 are formed at a predetermined pitch by grinding, extending in a direction perpendicular to the tape sliding surface 5 (in the transverse direction). Figure 3(a)).

次いでこの基板lを前述の深直方向と直交する面即ちテ
ープ摺接面5と平行な面に沿って2分し、一対の基板I
A、IBを形成する[第3図(b)]。
Next, this substrate I is divided into two parts along a plane perpendicular to the above-mentioned transverse direction, that is, a plane parallel to the tape sliding surface 5, and a pair of substrates I are separated.
A and IB are formed [Fig. 3(b)].

そして、これらを洗浄し、真空薄膜形成技術を用いて強
磁性金属の金属磁性薄M4を稜線7に沿って均一な厚さ
となるように形成する[第3図(c)]、通常、金属磁
性薄膜4はセンダスト合金等から成る強磁性金属をスパ
ッタリング法によって膜付けする。スパッタリングは、
例えば標準センダスト合金をターゲットとする場合、ア
ルゴンガス雰囲気中、基板温度200℃で約400人/
minのレートで行なわれる。この時、金属磁性薄膜4
に所定の応力が残留するように、公知の歪測定手段例え
ば歪ゲージ等を使ってスパッタリング中に薄膜の内部応
力をモニターし、スパッタリング条件・Arガスの導入
ガス圧をフィードバック制御する。
Then, these are cleaned and a thin metal magnetic thin M4 of ferromagnetic metal is formed using vacuum thin film forming technology so that it has a uniform thickness along the ridge line 7 [Fig. 3(c)]. The thin film 4 is formed by sputtering a ferromagnetic metal such as Sendust alloy. Sputtering is
For example, when targeting standard Sendust alloy, approximately 400 people/person at a substrate temperature of 200°C in an argon gas atmosphere
This is done at a rate of min. At this time, the metal magnetic thin film 4
The internal stress of the thin film is monitored during sputtering using a known strain measuring means such as a strain gauge, and the sputtering conditions and the pressure of Ar gas introduced are feedback-controlled so that a predetermined stress remains.

スパッタリング法においては、導入ガス(Ar)の圧力
を変化させることによって、形成される膜の内部応力を
制御できることが一般に知られている。導入ガスが低い
場合には圧縮応力、高ければ引張応力となる。そこで、
第1図示すように、例えば導入ガス圧を6.0w+TO
rrとして引張応力のスパッタ膜4Aを成膜し、4 、
0 +mTOrrとして圧縮応力のスパッタ膜4Bを成
膜するようにしている0図示していないが歪ゲージは、
基板IA、IBの裏面に貼着あるいは裏面上に直接形成
されている。基板IA、IBは、一般にその形と弾性定
数および薄膜中の応力の大きさによって決まる曲りを示
す、そこで、基板IA、IBを抵抗線歪ゲージを使って
、測定することにより膜の内部応力を測定できる。圧縮
応力のスパッタ膜4Bに与えられる初期設定圧縮応力は
、例えばセンダスト合金をスパッタリング法により膜形
成する場合、例えば4〜8 (X 109 dyn/j
)の範囲に設定することが好ましい、また、引張応力の
スパッタ膜4Aに与えられる初期設定引張応力は、例え
ば0〜4 (X 109 dyn/aJ)の範囲に設定
することが好ましい、尚、金属磁性薄M4は、通常、−
層当たり5〜6μmの膜厚となるように実質的な多層膜
とすることが好ましい、そこで通常強磁性金属を@続的
にスパッタリング法により膜形成することによって、あ
る〜(は強磁性金属と非磁性体を交互にスパッタリング
法により膜形成することによって結晶の422面(又は
211面)の結晶粒径が520〜570人、一方結晶の
220面では結晶粒径が200〜300人の複数層の磁
性薄膜に形成される、この際、引張応力→圧縮応力→引
張応力→圧縮応力と繰返して初期応力を与えることによ
り(第1図(B)参照)、膜全体としての応力を第2図
の■の状態より■の状態へより近づけるようにしても良
い、また、第1図(C)に示すように、引張応力のスパ
ッタ膜4Aを圧縮応力の膜4Bに比べて相当薄くし、基
板と薄膜との境界部分における応力緩和は最低限のもの
として、磁気特性の向上を図ることも可能である。この
場合、圧縮応力の[4Bは一層であっても、多層膜であ
っても良い。
In the sputtering method, it is generally known that the internal stress of the formed film can be controlled by changing the pressure of introduced gas (Ar). When the introduced gas is low, the stress is compressive, and when the gas is high, the stress is tensile. Therefore,
As shown in Figure 1, for example, the introduced gas pressure is 6.0w+TO.
A tensile stress sputtered film 4A was formed as rr, 4,
A sputtered film 4B with a compressive stress of 0 +mTOrr is formed.0Although not shown in the figure, the strain gauge is
It is attached to the back surface of the substrates IA and IB or is formed directly on the back surface. Substrates IA and IB generally exhibit curvature determined by their shape, elastic constant, and the magnitude of stress in the thin film. Therefore, by measuring the substrates IA and IB using a resistance wire strain gauge, the internal stress of the film can be measured. Can be measured. The initial setting compressive stress given to the compressive stress sputtered film 4B is, for example, 4 to 8 (X 109 dyn/j
), and the initial setting tensile stress given to the tensile stress sputtered film 4A is preferably set in the range of, for example, 0 to 4 (X 109 dyn/aJ). Magnetic thin M4 is usually -
It is preferable to form a substantial multilayer film with a film thickness of 5 to 6 μm per layer. Therefore, by sequentially forming a film of a ferromagnetic metal by a sputtering method, By forming films of non-magnetic materials alternately by sputtering method, the crystal grain size of the 422 planes (or 211 planes) of the crystal is 520 to 570 people, while the crystal grain size of the 220 planes of the crystal is 200 to 300 people. At this time, by repeatedly applying initial stress in the order of tensile stress → compressive stress → tensile stress → compressive stress (see Figure 1 (B)), the stress of the entire film can be reduced to the value shown in Figure 2. In addition, as shown in FIG. 1(C), the tensile stress sputtered film 4A may be made considerably thinner than the compressive stress film 4B, and the substrate It is also possible to improve the magnetic properties by minimizing stress relaxation at the boundary between the film and the thin film.In this case, the compressive stress [4B may be a single layer or a multilayer film. .

次いで、金属磁性薄WA4の電気抵抗をモニターしなが
ら第2図の■の応力状態となるようにアニール処理を行
なう0通常このときのアニール温度は、500〜600
℃の範囲である。
Next, while monitoring the electrical resistance of the metal magnetic thin WA4, annealing is performed to achieve the stress state shown in Figure 2. Normally, the annealing temperature at this time is 500 to 600.
℃ range.

ついで、トラック溝13に高融点ガラス10を充填して
金属磁性薄JIW4を保護する[ガラスボンディング第
3図(d)]。
Next, the track groove 13 is filled with high melting point glass 10 to protect the metal magnetic thin JIW 4 [Glass bonding FIG. 3(d)].

その後、ギャップ対向面3及びテープ摺接面5を研削し
て余分なガラス及び金属磁性薄膜4並びを研削して余分
なガラス及び金属磁性薄WA4並びにモニター用リード
線の結線部分を取除き所定の面荒さの平坦な面とする。
Thereafter, the gap facing surface 3 and the tape sliding contact surface 5 are ground, and the excess glass and metal magnetic thin film 4 is ground to remove the excess glass and metal magnetic thin WA 4 and the connecting portion of the monitor lead wire. The surface should be flat with no roughness.

研削は通常ラップによって行なわれ鏡面仕上げとされる
。これによって薄膜形成面6に形成された金属磁性薄膜
4の端面でトラックが構成される。
Grinding is usually done by lapping to give a mirror finish. As a result, a track is formed on the end face of the metal magnetic thin film 4 formed on the thin film forming surface 6.

その後、前述のトラック溝13の隣に該溝13に沿って
疑似ギャップを無くすための凹部8が研削される[第3
図(e)]。
Thereafter, a recess 8 is ground next to the aforementioned track groove 13 along the groove 13 to eliminate a false gap [third
Figure (e)].

その後、一方の基板IAのギャップ対向面3に巻線?1
112を形成する[第3図(f)]、この巻線清12は
デイツプス寸法を規制する6次いで、両基板1^、1B
のギャップ対向面にS i 02等の非磁性材から成る
スペーサ(図示省略)をスパッタリング法によって形成
する。
After that, the wire is wound on the gap facing surface 3 of one board IA. 1
112 [FIG. 3(f)], this winding wire 12 regulates the depth dimension 6, and then both substrates 1^, 1B
A spacer (not shown) made of a non-magnetic material such as S i 02 is formed on the surface facing the gap by a sputtering method.

次いで、一対の基板IA、IBを向い合せて金属磁性薄
WA4同士を突合せるようにして、凹部8に低融点ガラ
ス11を充填し接合する[ギャップボンディング第3図
(g)]。
Next, the pair of substrates IA and IB are faced to each other and the metal magnetic thin WA4 pieces are butted against each other, and the recess 8 is filled with low melting point glass 11 and bonded [gap bonding FIG. 3(g)].

上述のギャップボンディングの後、テープ摺接げる[第
3図(h)]。
After the above-mentioned gap bonding, tape bonding is performed [Fig. 3(h)].

次に磁気ギャップgがテープ摺動方向に対して所定のア
ジマス角度を取るように斜めにスライスし、多数のチッ
プ状の磁気コアを切り出す[第3図(i)]。
Next, the tape is sliced diagonally so that the magnetic gap g takes a predetermined azimuth angle with respect to the tape sliding direction, and a large number of chip-shaped magnetic cores are cut out [FIG. 3(i)].

その後検査を経てサポートに取付け、さらにトラック方
向に馴染みを良くする摺動面仕上げ加工を施して巻線す
る[第3図(j)]。
After that, it is inspected and installed on a support, and the sliding surface is finished to improve its conformability in the track direction, and then the wire is wound [Fig. 3 (j)].

尚、本発明は上述の製法によって製造される磁気ヘッド
に限定されず、第4図に示すようにギャップ対向面の全
面に強磁性金属のスパッタ膜4を形成した一対の基板I
A、IBを突合せ接合してギャップを形成したヘッドブ
ロック1にトラック形成溝13を入れてトラックを形成
してから所定幅にスライスし、ヘッドチップ切出す所謂
MIGタイプの磁気ヘッドあるいは強磁性金属のスパッ
タ膜4と酸化物基板とを組合せて成るあらゆる構造の磁
気ヘッドに応用できることは言うまでもない。
Note that the present invention is not limited to the magnetic head manufactured by the above-mentioned manufacturing method, but can also be applied to a pair of substrates I on which a sputtered film 4 of ferromagnetic metal is formed on the entire surface of the gap-opposing surfaces, as shown in FIG.
A so-called MIG type magnetic head or a ferromagnetic metal head is produced by inserting a track forming groove 13 into a head block 1 in which A and IB are butt-jointed to form a gap, forming a track, slicing it into a predetermined width, and cutting out a head chip. Needless to say, the present invention can be applied to any magnetic head having a combination of sputtered film 4 and an oxide substrate.

また、本発明は、Co−Zr−Nb合金等の非晶質金属
を薄膜材として使う場合にも適用できる。
Furthermore, the present invention can also be applied to cases where amorphous metals such as Co-Zr-Nb alloys are used as thin film materials.

(発明の効果) 以上の説明より明らかなように、本発明は金属磁性薄膜
をスパッタリング直後に引張応力が残留するスパッタ膜
と圧縮応力が残留するスi<ツタ膜とから構成し、基板
側に引張応力のスパッタ膜を配置するようにしているの
で、熱処理時などの温度上昇時にも線膨張率の異なる基
板と金属磁性薄膜との境界部分における変位が少なく基
板や金属磁性薄膜が破壊したり剥離することがない、即
ち、線膨張率が小さな基板に対し密着している引張応力
のスパッタ膜は熱処理あるいは高融点ガラスの充填等に
よって温度が上げられても、スパッタ膜の線膨張は引張
応力を解消する方向に作用するので、基板と引張応カス
バッタ膜との間には過度の歪が発生せず破壊することが
ない。
(Effects of the Invention) As is clear from the above description, the present invention comprises a metal magnetic thin film consisting of a sputtered film in which tensile stress remains immediately after sputtering and an i < ivy film in which compressive stress remains. Since a sputtered film with tensile stress is placed, there is little displacement at the boundary between the substrate and the metal magnetic thin film, which have different coefficients of linear expansion, even when the temperature rises during heat treatment, preventing the substrate or the metal magnetic thin film from breaking or peeling. In other words, even if the temperature of a sputtered film with tensile stress that is in close contact with a substrate with a small coefficient of linear expansion is increased by heat treatment or filling with high melting point glass, the linear expansion of the sputtered film will not reduce the tensile stress. Since it acts in the direction of canceling the stress, excessive strain does not occur between the substrate and the tensile stress batter film, and no breakage occurs.

また、この磁気ヘッドは、基板に密着する部分を引張応
力が残留するスパッタ膜としているので磁気特性は若干
劣化するものの、金属磁性薄膜と同一素材を使用してい
るので金属磁性薄膜と基板との間に非磁性体を介在させ
て磁束流れを悪くする場合に比べれば磁気特性はそれ程
劣化しない。
In addition, this magnetic head uses a sputtered film with residual tensile stress on the part that comes into close contact with the substrate, so the magnetic properties are slightly degraded, but since it uses the same material as the metal magnetic thin film, the relationship between the metal magnetic thin film and the substrate is Compared to the case where a non-magnetic material is interposed between the two to impair the magnetic flux flow, the magnetic properties do not deteriorate as much.

また、この磁気ヘッドは非磁性体を介在させていないの
で磁気的に連続性があり、疑似ギャップの発生の虞がな
いし、同一センダスト合金で応力制御が可能となるため
非磁性材を介在させる場合に比べて膜厚に正確さを必要
とせず製造上容易である。
In addition, since this magnetic head does not include a non-magnetic material, it is magnetically continuous and there is no risk of pseudo gaps occurring, and stress control is possible with the same Sendust alloy, so when a non-magnetic material is used. It is easy to manufacture as it does not require precision in film thickness compared to .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(A)、(B)、(C)は本発明の磁気ヘッドの
一実施例を示す金属磁性薄膜部分の拡大断面図である。 第2図は金属磁性薄膜内残留応力とスパッタリング導入
アルゴンガス圧との1%を示すグラフ、第3図は磁気ヘ
ッドの製造工程の一例を示す加工工程図、第4図は他の
製法によってつくられた磁気ヘッドの他の実施例を示す
斜視図、第5図は従来の磁気ヘッドの金属磁性薄膜部分
を示す拡大断面図である。 4・・・金属磁性薄膜、 4A・・・引張応力が残留するスパッタ膜、4B・・・
圧縮応力が残留するスパッタ膜。 特許出願人  株式会社 三協精機製作所第2′vA 第5図
FIGS. 1A, 1B, and 1C are enlarged sectional views of a metal magnetic thin film portion showing an embodiment of the magnetic head of the present invention. Figure 2 is a graph showing 1% of the residual stress in the metal magnetic thin film and the argon gas pressure introduced during sputtering, Figure 3 is a processing process diagram showing an example of the manufacturing process of a magnetic head, and Figure 4 is a graph showing 1% of the residual stress in the metal magnetic thin film and the argon gas pressure introduced during sputtering. FIG. 5 is an enlarged sectional view showing a metal magnetic thin film portion of the conventional magnetic head. 4...Metal magnetic thin film, 4A...Sputtered film with residual tensile stress, 4B...
A sputtered film with residual compressive stress. Patent applicant: Sankyo Seiki Seisakusho Co., Ltd. No. 2'vA Figure 5

Claims (4)

【特許請求の範囲】[Claims] (1)薄膜形成面を設け該薄膜形成面にスパッタリング
にて金属磁性薄膜を形成して成る一対の基板を突合せて
ギャップを構成する磁気ヘッドにおいて、前記金属磁性
薄膜はスパッタリング直後に引張応力が残留するスパッ
タ膜と圧縮応力が残留するスパッタ膜とから成り、基板
側に引張応力のスパッタ膜を配置したことを特徴とする
磁気ヘッド。
(1) In a magnetic head in which a gap is formed by abutting a pair of substrates each having a thin film formation surface on which a metal magnetic thin film is formed by sputtering, tensile stress remains in the metal magnetic thin film immediately after sputtering. 1. A magnetic head comprising a sputtered film with residual compressive stress and a sputtered film with residual compressive stress, the sputtered film with tensile stress being disposed on the substrate side.
(2)前記引張応力スパッタ膜と圧縮応力スパッタ膜は
ほぼ同じ厚みであることを特徴とする特許請求の範囲第
1項に記載の磁気ヘッド。
(2) The magnetic head according to claim 1, wherein the tensile stress sputtered film and the compressive stress sputtered film have approximately the same thickness.
(3)前記金属磁性薄膜は引張応力スパッタ膜と圧縮応
力スパッタ膜とを交互に積層して所定厚さに形成したも
のであることを特徴とする特許請求の範囲第1項に記載
の磁気ヘッド。
(3) The magnetic head according to claim 1, wherein the metal magnetic thin film is formed by alternately laminating tensile stress sputtered films and compressive stress sputtered films to a predetermined thickness. .
(4)前記金属磁性薄膜は引張応力スパッタ膜が圧縮応
力スパッタ膜に比べて相当薄い膜であることを特徴とす
る特許請求の範囲第1項に記載の磁気ヘッド。
(4) The magnetic head according to claim 1, wherein the metal magnetic thin film is a tensile stress sputtered film that is considerably thinner than a compressive stress sputtered film.
JP25706487A 1987-10-14 1987-10-14 Magnetic head Pending JPH01100713A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25706487A JPH01100713A (en) 1987-10-14 1987-10-14 Magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25706487A JPH01100713A (en) 1987-10-14 1987-10-14 Magnetic head

Publications (1)

Publication Number Publication Date
JPH01100713A true JPH01100713A (en) 1989-04-19

Family

ID=17301239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25706487A Pending JPH01100713A (en) 1987-10-14 1987-10-14 Magnetic head

Country Status (1)

Country Link
JP (1) JPH01100713A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010264991A (en) * 2009-05-13 2010-11-25 Toyo Glass Co Ltd Glass bottle mounting inner plug in opening part

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010264991A (en) * 2009-05-13 2010-11-25 Toyo Glass Co Ltd Glass bottle mounting inner plug in opening part

Similar Documents

Publication Publication Date Title
JPH0542726B2 (en)
KR930002394B1 (en) Magnetic head
KR930002393B1 (en) Magnetic transducer head
JPH01100713A (en) Magnetic head
JPS6180512A (en) Magnetic head
JPS60201509A (en) Manufacture of magnetic head
JPS6214313A (en) Magnetic head
JPS63273205A (en) Sputtering method for magnetic head
JPS61190702A (en) Magnetic head
JPS63249918A (en) Manufacture of magnetic head
JPH01102713A (en) Magnetic head made of soft magnetic metallic film
JP2556479B2 (en) Magnetic head
JPH01279405A (en) Composite magnetic head and its manufacture
JPH06274817A (en) Production of magnetic head
JPH08147621A (en) Magnetic head
JPH06338014A (en) Magnetic head
JP2005302160A (en) Magnetic head
JPS62141609A (en) Manufacture of magnetic head
JPH07296322A (en) Magnetic head
JPH07225916A (en) Magnetic head
JPH0646446B2 (en) Member for magnetic head core
JPH05128434A (en) Magnetic head and production thereof
JPH01182906A (en) Magnetic head
JPH05151512A (en) Production of magnetic head
JPH04268202A (en) Magnetic head