JP7577918B2 - 推定装置、推定方法、及びコンピュータプログラム - Google Patents
推定装置、推定方法、及びコンピュータプログラム Download PDFInfo
- Publication number
- JP7577918B2 JP7577918B2 JP2019183332A JP2019183332A JP7577918B2 JP 7577918 B2 JP7577918 B2 JP 7577918B2 JP 2019183332 A JP2019183332 A JP 2019183332A JP 2019183332 A JP2019183332 A JP 2019183332A JP 7577918 B2 JP7577918 B2 JP 7577918B2
- Authority
- JP
- Japan
- Prior art keywords
- degree
- history
- lead
- temperature
- acid battery
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0047—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/374—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC] with means for correcting the measurement for temperature or ageing
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/378—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC] specially adapted for the type of battery or accumulator
- G01R31/379—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC] specially adapted for the type of battery or accumulator for lead-acid batteries
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/382—Arrangements for monitoring battery or accumulator variables, e.g. SoC
- G01R31/3842—Arrangements for monitoring battery or accumulator variables, e.g. SoC combining voltage and current measurements
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/392—Determining battery ageing or deterioration, e.g. state of health
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/06—Lead-acid accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/425—Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/48—Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/48—Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
- H01M10/486—Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0047—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
- H02J7/005—Detection of state of health [SOH]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/425—Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
- H01M2010/4271—Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0047—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
- H02J7/0048—Detection of remaining charge capacity or state of charge [SOC]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Power Engineering (AREA)
- Health & Medical Sciences (AREA)
- Medical Informatics (AREA)
- General Health & Medical Sciences (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Secondary Cells (AREA)
- Tests Of Electric Status Of Batteries (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Description
特許文献1には、鉛蓄電池の電流及び電圧に基づいて内部抵抗を算出し、内部抵抗に基づいて劣化を判定する劣化判定装置が開示されている。
実施形態に係る推定装置は、鉛蓄電池の電流、電圧、及び該鉛蓄電池の温度に基づく導出履歴を導出する導出部と、導出した前記導出履歴、並びに電流、電圧、及び前記鉛蓄電池の温度に基づく第1履歴と、正極電極材料の軟化の第1度合との第1関係、電流、電圧、及び前記鉛蓄電池の温度に基づく第2履歴と、正極格子の腐食の第2度合との第2関係、電流、電圧、及び前記鉛蓄電池の温度に基づく第3履歴と、負極サルフェーションの第3度合との第3関係、及び電流、電圧、及び前記鉛蓄電池の温度に基づく第4履歴と、負極電極材料の収縮の第4度合との第4関係からなる群から選択される少なくとも2つの関係に基づいて、第1度合、第2度合、第3度合、及び第4度合のうちの少なくとも2つの度合を特定する特定部と、特定した前記少なくとも2つの度合に基づいて、前記鉛蓄電池の劣化の度合を推定する推定部とを備える。
例えば、上記劣化要因のいずれかの1つが極端に進行していると推定される場合に、劣化要因に影響する因子の計測結果に基づいて鉛蓄電池の交換を促すことが考えられる。
しかし、現実には各劣化要因の度合はそれ程大きくないという場合でも、これらの劣化要因の組み合わせによって、鉛蓄電池全体としては劣化が進行していると判断すべきことがあることを本願発明者は見出した。
従来、これらの劣化要因の相互の関係性や影響については、十分な検討がなされていなかった。
例えば、正極板と負極板の劣化が同時進行することによる、鉛蓄電池の急速な劣化を良好に予測できる。また、一つの劣化要因のみに悪影響となる使用履歴ののちに、異なる劣化要因にのみに悪影響となる使用履歴が起こる場合や、上記の二種類の使用履歴パターンが繰り返される場合においても、鉛蓄電池の劣化を良好に予測できる。
劣化を予測することにより、故障リスクを推定し、突然の使用不能状態に陥ることを回避できる。
補正係数には、温度だけでなく、放電量、電流値、電気量を含んでもよい。
上記構成によれば、良好に劣化要因の度合を特定できる。
上記構成によれば、劣化要因の度合と設計情報とに基づいて、良好に劣化要因の度合を特定できる。
上記構成によれば、良好に劣化要因の度合を特定できる。
上記構成によれば、劣化要因の度合と診断情報とに基づいて、良好に劣化度合を推定できる。
上記構成によれば、良好に劣化要因の度合を特定できる。
上記構成によれば、学習モデルを用いて、容易に、良好に劣化要因の度合を特定し、特定した劣化要因の度合に基づいて、良好に鉛蓄電池の劣化を推定できる。
図1は実施形態1に係る充放電システム1、負荷13、及びサーバ9の構成を示すブロック図、図2はBMU3の構成を示すブロック図である。
充放電システム1は、鉛蓄電池(以下、電池という)2と、BMU(Battery Management Unit)3と、電圧センサ4と、電流センサ5と、温度センサ6と、制御装置7とを備える。
制御装置7は充放電システム1全体を制御し、制御部71、記憶部72、及び通信部77を備える。
サーバ9は、制御部91、及び通信部92を備える。
制御装置7の制御部71は、通信部77、ネットワーク10、及び通信部92を介し、制御部91と接続されている。
電池2は、端子11,12を介して負荷13と接続している。
記憶部32、記憶部72は、例えばハードディスクドライブ(HDD)等により構成され、各種のプログラム及びデータを記憶する。
通信部37、77、及び92は、ネットワークを介して他の装置との間で通信を行う機能を有し、所要の情報の送受信を行うことができる。
入力部36は、電圧センサ4、電流センサ5、及び温度センサ6からの検出結果の入力を受け付ける。
電流センサ5は、電池2に直列に接続されており、電池2の電流に応じた検出結果を出力する。なお、電流センサ5は、例えばクランプ式電流センサのように、電池2に電気的に接続していないものを用いることもできる。
温度センサ6は、電池2の近傍に配置されており、電池2の温度に応じた検出結果を出力する。なお、劣化の予測には、電池2の温度として、電池2の電解液の温度を用いるのが好ましい。そのため、温度センサ6が配置される位置に応じて、温度センサ6が検出した温度を、電解液の温度となるように温度補正してもよい。
図3及び図4に示すように、電池2は、電槽20と、正極端子28と、負極端子29と、複数の極板群23とを備える。
負極端子29は、正極端子28と同様に、ブッシング291と、負極柱292とを含み(図3参照)、正極端子28と同様の構成を有する。
劣化度合DB34は、No.列、生涯有効放電電気量列,生涯有効充電電気量列,生涯有効過充電電気量列、温度積算値列、及びSOC0~20%滞在時間列,SOC20~40%滞在時間列,SOC40~60%滞在時間列,SOC60~80%滞在時間列,及びSOC80~100%滞在時間列等の履歴列、正極格子厚さ列等の設計情報列、診断情報列、第1度合列,第2度合列,第3度合列,及び第4度合列等の劣化要因度合列、並びに劣化度合列を対応付けて記憶している。
温度積算値列は、例えば-20℃から80℃まで、10℃間隔毎に、各温度間隔の中心温度に所定の係数及び時間を乗じた積算値を記憶している。
正極格子厚さ列は、正極格子の厚さを記憶している。
診断情報列は、内部抵抗、SOC、OCV等の診断情報を記憶している。
第3度合列は、負極サルフェーションの度合である第3度合を記憶している。第3度合は6段階の評価で表す。評価は上記と同様の数値で表される。評価は、負極電極材料中の硫酸鉛量等により行う。
第4度合列は、負極電極材料の収縮の度合である第4度合を記憶している。第4度合は6段階の評価で表す。評価は上記と同様の数値で表される。評価は、電極材料の収縮によるクラックの度合や比表面積の低下度等により行う。
なお、第1度合、第2度合、第3度合及び第4度合の評価は、6段階に限定されるものではなく、100段階でもよく、それぞれの度合と関連する物理量の値を用いてもよい。
履歴情報として、生涯有効放電電気量、生涯有効充電電気量、生涯有効過充電電気量、温度積算値以外に、例えば放置時間等を記憶してもよい。
設計情報として、正極格子厚さ以外に、正極板及び負極板の枚数、極板の枚数、正極活物質量、正極格子の質量、正極格子のデザイン、正極電極材料の密度、正極電極材料の組成、正極電極材料中の添加剤の量及び種類、正極合金の組成、正極板に当接する不織布の有無並びに厚さ、材質及び通気度、負極活物質量、負極電極材料中のカーボン量及び種類、負極電極材料中の添加剤の量及び種類、負極電極材料の比表面積、電解液の添加剤の種類及び濃度、並びに電解液の比重及び量からなる群から選択される少なくとも1つを設計情報として記憶してもよい。
診断情報として内部抵抗や開放電圧等を記憶してもよい。なお、内部抵抗や開放電圧は、SOCに依存するため、別途取得したSOCによって内部抵抗や開放電圧を補正してもよい。
使用履歴DB35は、電池2毎に、各推定時点の導出履歴、劣化要因の度合、及び劣化度合を記憶している。図6はIDNo.1の電池2の使用履歴を示している。使用履歴DB35は、No.列、生涯有効放電電気量列、生涯有効充電電気量列、生涯有効過充電電気量列、温度積算値列、SOC0~20%滞在時間列、SOC20~40%滞在時間列、SOC40~60%滞在時間列、SOC60~80%滞在時間列、SOC80~100%滞在時間列、正極格子厚さ列、診断情報列、第1度合列、第2度合列、第3度合列、第4度合列、及び劣化度合列を記憶している。No.列は、各推定時点のNo.を記憶している。生涯有効放電電気量列、生涯有効充電電気量列、生涯有効過充電電気量列、温度積算値列、SOC0~20%滞在時間列、SOC20~40%滞在時間列、SOC40~60%滞在時間列、SOC60~80%滞在時間列、SOC80~100%滞在時間列、正極格子厚さ列、及び診断情報列は、劣化度合DB34の生涯有効放電電気量列、生涯有効充電電気量列、生涯有効過充電電気量列、温度積算値列、SOC0~20%滞在時間列、SOC20~40%滞在時間列、SOC40~60%滞在時間列、SOC60~80%滞在時間列、SOC80~100%滞在時間列、正極格子厚さ列、及び診断情報列と同様の内容を記憶している。
使用履歴DB35に記憶される情報は上述の場合に限定されない。
図7は、制御部31による劣化度合の推定処理の手順を示すフローチャートである。制御部31は所定の推定時点で、以下の処理を行う。
制御部31は、IDNo.1の電池2につき、推定時点で取得した電圧、電流、温度に基づいて生涯有効放電電気量等の導出履歴を導出し、使用履歴DB35に記憶する(S1)。
劣化度合DB34に設計情報又は診断情報も記憶している場合、S2において、第1履歴と設計情報又は診断情報と、第1度合との第1関係に基づいて、第1度合を特定する。第2度合、第3度合、第4度合も、履歴、及び、設計情報又は診断情報と、度合との関係に基づいて特定する。
本実施形態においては、第1度合、第2度合、第3度合、及び第4度合の全てを特定し、これらを用いて劣化度合を推定する場合につき説明しているがこれに限定されない。第1度合、第2度合、第3度合、及び第4度合のうちの少なくとも2つを特定し、これらを用いて劣化度合を推定すればよい。
劣化度合DB34には、第1関係、第2関係、第3関係、及び第4関係の関数を記憶してもよい。
図8は、実施形態2に係る制御装置7の構成を示すブロック図である。
実施形態2に係る充放電システム1は、制御装置7が、記憶部72に、劣化推定のためのプログラム73、劣化度合DB74、使用履歴DB75、学習モデルDB76を記憶していること以外は、実施形態1に係る充放電システム1と同様の構成を有する。
学習モデルDB76は、後述する第1学習モデルと第2学習モデルとを記憶している。
劣化度合DB74は、劣化度合DB34と同様の構成を有する。
使用履歴DB75は、電池2毎に、各推定時点の導出履歴、診断情報、設計情報、劣化要因の度合、実測の劣化要因の度合、劣化度合、及び実測に基づく劣化度合を記憶している。図9はIDNo.1の電池2の使用履歴を示している。使用履歴DB75は、No.列、生涯有効放電電気量列、生涯有効充電電気量列、生涯有効過充電電気量列、温度積算値列、SOC0~20%滞在時間列、SOC20~40%滞在時間列、SOC40~60%滞在時間列、SOC60~80%滞在時間列、SOC80~100%滞在時間列、正極格子厚さ列、診断情報列、第1度合列、第2度合列、第3度合列、第4度合列、実測第1度合列、実測第2度合列、実測第3度合列、実測第4度合列、劣化度合列、及び実測劣化度合列を記憶している。No.列は、推定時点のNo.を記憶している。生涯有効放電電気量列、生涯有効充電電気量列、生涯有効過充電電気量列、温度積算値列、SOC0~20%滞在時間列、SOC20~40%滞在時間列、SOC40~60%滞在時間列、SOC60~80%滞在時間列、SOC80~100%滞在時間列、正極格子厚さ列、及び診断情報列は、劣化度合DB34の生涯有効放電電気量列、生涯有効充電電気量列、生涯有効過充電電気量列、温度積算値列、SOC0~20%滞在時間列、SOC20~40%滞在時間列、SOC40~60%滞在時間列、SOC60~80%滞在時間列、SOC80~100%滞在時間列、正極格子厚さ列と同様の内容を記憶している。
劣化度合列は、特定した第1度合、第2度合、第3度合、第4度合を第2学習モデルに入力して推定した劣化度合を記憶している。
実測劣化度合列は、実測によりSOHを求めて、判定した劣化度合を記憶している。
実測による劣化要因の度合、及び実測による劣化度合は、後述する再学習に用いるために求めており、全ての推定時点において求める必要はない。
第1学習モデルは、人工知能ソフトウェアの一部であるプログラムモジュールとしての利用が想定される学習モデルであり、多層のニューラルネットワーク(深層学習)を用いることができ、例えば畳み込みニューラルネットワーク(Convolutional Neural Network:CNN)を用いることができるが、リカレントニューラルネットワーク(Recurrent Neural Network:RNN)を用いてもよい。決定木、ランダムフォレスト、サポートベクターマシン等の他の機械学習を用いてもよい。制御部71が、第1学習モデルからの指令に従って、第1学習モデルの入力層に入力された導出履歴情報に対し演算を行い、第1度合、第2度合、第3度合、第4度合の組み合わせとその確率とを出力するように動作する。図10では、便宜上、2つ中間層を図示しているが、中間層の層数は2つに限定されず、3つ以上であってもよい。CNNの場合、コンボリューション層及びプーリング層を含む。ノード(ニューロン)の数も図10の場合に限定されない。
出力層は、
例えば、第1度合1、第2度合3、第3度合3、第4度合0…0.91
第1度合1、第2度合2、第3度合2、第4度合1…0.08
・・・
のように出力する。
制御部71は、劣化度合DB74を読み出し、各行の履歴と、第1度合、第2度合、第3度合、及び第4度合とを対応付けた教師データを取得する(S11)。
制御部71は、出力層から出力された各度合の特定結果を、教師データにおいて履歴情報に対しラベル付けされた情報、即ち正解値と比較し、出力層からの出力値が正解値に近づくように、中間層での演算処理に用いるパラメータを最適化する。該パラメータは、例えば上述の重み(結合係数)、活性化関数の係数等である。パラメータの最適化の方法は特に限定されないが、例えば制御部71は誤差逆伝播法を用いて各種パラメータの最適化を行う。
制御部71は、劣化度合DB74に含まれる各教師データの履歴情報について上記の処理を行い、第1学習モデルを生成する。制御部71は、生成した第1学習モデルを記憶部72に格納し、一連の処理を終了する。
第2学習モデルは、人工知能ソフトウェアの一部であるプログラムモジュールとしての利用が想定される学習モデルであり、例えばCNNを用いることができるが、RNNを用いてもよい。RNNを用いる場合、劣化要因の度合の経時的な変動を入力する。他の機械学習を用いてもよい。制御部71が、学習モデルからの指令に従って、第2学習モデルの入力層に入力された第1度合、第2度合、第3度合、第4度合に対し演算を行い、電池2の劣化度合とその確率とを出力するように動作する。図12では、便宜上、2つ中間層を図示しているが、中間層の層数は2つに限定されず、3つ以上であってもよい。ノードの数も図12の場合に限定されない。また、第1学習モデルで入力したデータを入力データとして含んでもよい。
出力層は、
例えば、劣化度合1…0.01
劣化度合2…0.07
劣化度合3…0.88
・・・
のように出力する。
第2学習モデルは、第1学習モデルと同様にして生成される。
制御部71は、IDNo.1の電池2につき、推定時点で、生涯有効放電電気等の導出履歴を導出し、使用履歴DB75に記憶する(S21)。設計情報及び診断情報も導出してもよい。
制御部71は、学習モデルDB76を読み出し、導出履歴を第1学習モデルに入力する(S22)。
制御部71は、第1学習モデルが出力した第1度合、第2度合、第3度合、第4度合の組み合わせのうち、確率が高いものを特定する(S23)。
制御部71は、特定した第1度合、第2度合、第3度合、第4度合の組み合わせを第2学習モデルに入力する(S24)。
制御部71は、第2学習モデルが出力した劣化度合に基づき、期待値[Σ(劣化度×確率)]を取得して総合劣化度合を推定し(S25)、処理を終了する。
第1度合、第2度合、第3度合、及び第4度合のうちの少なくとも2つを特定し、これらを用いて劣化度合を推定すればよい。上述したように、第1学習モデルの出力層が、第1度合、第2度合、第3度合、第4度合夫々の評価値と確率とを出力する4つのノードを有する場合、確率に対し閾値を設けて特定することで、特定する度合が選択される。第1学習モデルの出力層が、第1度合、第2度合、第3度合、第4度合の組み合わせを出力する場合、各度合につき、0~5までの評価値と「不明」のいずれかを対応させる。最も確率が高い組み合わせにおいて、「不明」の度合を含む場合、該度合は特定されないことになる。
また、前記データのうち、実測劣化度合を含む行のデータは、劣化度合DB74に記憶してもよい。
実施形態3に係る充放電システム1は、学習モデルDB76が、導出履歴を入力して、夫々第1度合、第2度合、第3度合、第4度合の評価の確率を出力する学習モデルA、B、C、Dを記憶していること以外は、実施形態2に係る充放電システム1と同様の構成を有する。
学習モデルAは、人工知能ソフトウェアの一部であるプログラムモジュールとしての利用が想定される学習モデルであり、例えばCNNを用いることができるが、RNNを用いてもよい。他の機械学習を用いてもよい。制御部71が、学習モデルAからの指令に従って、学習モデルAの入力層に入力された導出履歴に対し演算を行い、電池2の第1度合とその確率とを出力するように動作する。図14では、便宜上、2つ中間層を図示しているが、中間層の層数は2つに限定されず、3つ以上であってもよい。ノードの数も図14の場合に限定されない。
学習モデルAの出力層は、第1度合を出力する。出力層のノードの数は第1度合の数に対応する。例えば、第1度合が0から5までの数値で表される場合、ノードの数を6に設定できる。出力層は、第1度合の評価値と、各評価値の確率とを出力する。
出力層は、
例えば、第1度合0…0.01
第1度合1…0.87
第1度合2…0.08
・・・
のように出力する。
制御部71は、劣化度合DB74を読み出し、導出履歴に、第1度合を対応させた教師データを取得し、該教師データを用いて学習モデルAを生成する。
学習モデルBの出力層は、第2度合を出力する。出力層のノードの数は第2度合の数に対応する。例えば、第2度合が0から5までの数値で表される場合、ノードの数を6に設定できる。出力層は、第2度合の評価値と、各評価値の確率とを出力する。
制御部71は、劣化度合DB74を読み出し、導出履歴に、第2度合を対応させた教師データを取得し、該教師データを用いて学習モデルBを生成する。
学習モデルCの出力層は、第3度合を出力する。出力層のノードの数は第3度合の数に対応する。例えば、第3度合が0から5までの数値で表される場合、ノードの数を6に設定できる。出力層は、第3度合の評価値と、各評価値の確率とを出力する。
制御部71は、劣化度合DB74を読み出し、導出履歴に、第3度合を対応させた教師データを取得し、該教師データを用いて学習モデルCを生成する。
学習モデルDの出力層は、第4度合を出力する。出力層のノードの数は第4度合の数に対応する。例えば、第4度合が0から5までの数値で表される場合、ノードの数を6に設定できる。出力層は、第4度合の評価値と、各評価値の確率とを出力する。
制御部71は、劣化度合DB74を読み出し、導出履歴に、第4度合を対応させた教師データを取得し、該教師データを用いて学習モデルDを生成する。
図15は、制御部71による劣化度合の推定処理の手順を示すフローチャートである。制御部71は所定の推定時点で、以下の処理を行う。
制御部71は、IDNo.1の電池2につき、推定時点で取得した電圧、電流、温度に基づいて生涯有効放電電気量、温度積算値等の導出履歴を導出し、使用履歴DB75に記憶する(S31)。
制御部71は、学習モデルAが出力した第1度合のうち、最も確率が高いものを特定し、使用履歴DB75に記憶する(S33)。
制御部71は、特定した第1度合に基づいて劣化度合を推定し(S34)、使用履歴DB75に記憶し、処理を終了する。制御部71は、劣化度合DB74から導出される、第1度合と劣化度合との関係に基づいて、劣化度合を推定することができる。第1度合に対し劣化度合を対応させた教師データを用いて学習モデルを生成し、該学習モデルに特定した第1度合を入力して、劣化度合を取得してもよい。
2 電池(蓄電素子)
3 BMU
31、71、91 制御部(導出部、特定部、推定部、履歴消去部)
32、72 記憶部
33、73 プログラム
34、74 劣化度合DB
35、75 使用履歴DB
36 入力部
37、77、92 通信部
7 制御装置
76 学習モデルDB
9 サーバ
10 ネットワーク
13 負荷
Claims (11)
- 鉛蓄電池の電流、電圧、及び該鉛蓄電池の温度に基づく生涯有効放電電気量、生涯有効充電電気量、生涯有効過充電電気量、温度積算値、SOC0~20%滞在時間、SOC20~40%滞在時間、SOC40~60%滞在時間、SOC60~80%滞在時間、SOC80~100%滞在時間、及び、正極格子厚さのうちのいずれか複数を含む導出履歴を導出する導出部と、
導出した前記導出履歴、並びに
鉛蓄電池の電流、電圧、及び前記鉛蓄電池の温度に基づく前記導出履歴の一部である第1履歴と、正極電極材料の軟化の第1度合との第1関係、
鉛蓄電池の電流、電圧、及び前記鉛蓄電池の温度に基づく前記導出履歴の一部である第2履歴と、正極格子の腐食の第2度合との第2関係、
鉛蓄電池の電流、電圧、及び前記鉛蓄電池の温度に基づく前記導出履歴の一部である第3履歴と、負極サルフェーションの第3度合との第3関係、及び
鉛蓄電池の電流、電圧、及び前記鉛蓄電池の温度に基づく前記導出履歴の一部である第4履歴と、負極電極材料の収縮の第4度合との第4関係からなる群から選択される少なくとも2つの関係に基づいて、前記第1度合、前記第2度合、前記第3度合、及び前記第4度合のうちの少なくとも2つの度合を特定する特定部と、
前記第1履歴、前記第2履歴、前記第3履歴及び前記第4履歴は、相互に、同一又は異なるか、又は一部が共通しており、
前記特定部により特定した前記少なくとも2つの度合に基づいて、前記鉛蓄電池の劣化の度合を推定する推定部と
を備える推定装置。 - 前記特定部は、
前記鉛蓄電池の電流、電圧、及び前記鉛蓄電池の温度に基づく前記導出履歴を入力した場合に、前記第1度合、前記第2度合、前記第3度合、及び前記第4度合のうちの少なくとも2つの度合を出力する第1学習モデルに、新たに導出した前記導出履歴を入力して、少なくとも2つの度合を特定し、
前記推定部は、
前記第1度合、前記第2度合、前記第3度合、及び前記第4度合のうちの少なくとも2つの度合を入力した場合に、前記鉛蓄電池の劣化の度合を出力する第2学習モデルに、特定した前記少なくとも2つの度合を入力して、劣化の度合を推定する、請求項1に記載の推定装置。 - 前記導出履歴は、放電電気量を温度に基づく係数により補正した有効放電電気量、充電電気量を温度に基づく係数により補正した有効充電電気量、又は温度に所定の係数を乗じて積算した温度積算値を含む、請求項1又は2に記載の推定装置。
- 前記特定部は、
前記導出履歴、及び前記鉛蓄電池の設計情報に基づいて、前記少なくとも2つの度合を特定する、請求項1から3までのいずれか1項に記載の推定装置。 - 前記設計情報は、極板の枚数、正極活物質量、正極格子の質量、正極格子の厚さ、正極格子のデザイン、正極電極材料の密度、正極電極材料の組成、正極電極材料中の添加剤の量及び種類、正極合金の組成、正極板に当接する不織布の有無並びに厚さ、材質及び通気度、負極活物質量、負極電極材料中のカーボン量及び種類、負極電極材料中の添加剤の量及び種類、負極電極材料の比表面積、電解液の添加剤の種類及び濃度、並びに電解液の比重及び量からなる群から選択される少なくとも1つである、請求項4に記載の推定装置。
- 前記推定部は、
前記少なくとも2つの度合、及び前記鉛蓄電池の診断情報に基づいて、劣化の度合を推定する、請求項1から5までのいずれか1項に記載の推定装置。 - 前記診断情報は、内部抵抗、開放電圧、及びSOCからなる群から選択される少なくとも1つである、請求項6に記載の推定装置。
- 前記導出履歴と、前記特定部が特定した前記劣化の度合又は前記診断情報を記憶する記億部と、
前記劣化の度合又は前記診断情報と、閾値とに基づいて、前記鉛蓄電池が交換されたと推定した場合に、前記導出履歴、及び前記劣化の度合又は前記診断情報を消去する履歴消去部と
を備える、請求項6又は7に記載の推定装置。 - 鉛蓄電池の電流、電圧、及び該鉛蓄電池の温度に基づく生涯有効放電電気量、生涯有効充電電気量、生涯有効過充電電気量、温度積算値、SOC0~20%滞在時間、SOC20~40%滞在時間、SOC40~60%滞在時間、SOC60~80%滞在時間、SOC80~100%滞在時間、及び、正極格子厚さのうちのいずれか複数を含む導出履歴を導出する導出部と、
鉛蓄電池の電流、電圧、及び該鉛蓄電池の温度に基づく前記導出履歴を入力した場合に、正極電極材料の軟化の第1度合、正極格子の腐食の第2度合、負極サルフェーションの第3度合、及び負極電極材料の収縮の第4度合のうちの少なくとも1つの度合を出力する学習モデルに、新たに導出した前記導出履歴を入力して、少なくとも2つの度合を特定する特定部と、
特定した前記少なくとも2つの度合に基づいて、鉛蓄電池の劣化の度合を推定する推定部と
を備える推定装置。 - 鉛蓄電池の電流、電圧、及び該鉛蓄電池の温度に基づく生涯有効放電電気量、生涯有効充電電気量、生涯有効過充電電気量、温度積算値、SOC0~20%滞在時間、SOC20~40%滞在時間、SOC40~60%滞在時間、SOC60~80%滞在時間、SOC80~100%滞在時間、及び、正極格子厚さのうちのいずれか複数を含む導出履歴を導出し、
導出した前記導出履歴、並びに
鉛蓄電池の電流、電圧、及び前記鉛蓄電池の温度に基づく前記導出履歴の一部である第1履歴と、正極電極材料の軟化の第1度合との第1関係、
鉛蓄電池の電流、電圧、及び前記鉛蓄電池の温度に基づく前記導出履歴の一部である第2履歴と、正極格子の腐食の第2度合との第2関係、
鉛蓄電池の電流、電圧、及び前記鉛蓄電池の温度に基づく前記導出履歴の一部である第3履歴と、負極サルフェーションの第3度合との第3関係、及び
鉛蓄電池の電流、電圧、及び前記鉛蓄電池の温度に基づく前記導出履歴の一部である第4履歴と、負極電極材料の収縮の第4度合との第4関係からなる群から選択される少なくとも2つの関係に基づいて、前記第1度合、前記第2度合、前記第3度合、及び前記第4度合のうちの少なくとも2つの度合を特定し、
前記第1履歴、前記第2履歴、前記第3履歴及び前記第4履歴は、相互に、同一又は異なるか、又は一部が共通しており、
特定した前記少なくとも2つの度合に基づいて、前記鉛蓄電池の劣化の度合を推定する、推定方法。 - 鉛蓄電池の電流、電圧、及び該鉛蓄電池の温度に基づく生涯有効放電電気量、生涯有効充電電気量、生涯有効過充電電気量、温度積算値、SOC0~20%滞在時間、SOC20~40%滞在時間、SOC40~60%滞在時間、SOC60~80%滞在時間、SOC80~100%滞在時間、及び、正極格子厚さのうちのいずれか複数を含む導出履歴を導出し、
導出した前記導出履歴、並びに
鉛蓄電池の電流、電圧、及び前記鉛蓄電池の温度に基づく前記導出履歴の一部である第1履歴と、正極電極材料の軟化の第1度合との第1関係、
鉛蓄電池の電流、電圧、及び前記鉛蓄電池の温度に基づく前記導出履歴の一部である第2履歴と、正極格子の腐食の第2度合との第2関係、
鉛蓄電池の電流、電圧、及び前記鉛蓄電池の温度に基づく前記導出履歴の一部である第3履歴と、負極サルフェーションの第3度合との第3関係、及び
鉛蓄電池の電流、電圧、及び前記鉛蓄電池の温度に基づく前記導出履歴の一部である第4履歴と、負極電極材料の収縮の第4度合との第4関係からなる群から選択される少なくとも2つの関係に基づいて、前記第1度合、前記第2度合、前記第3度合、及び前記第4度合のうちの少なくとも2つの度合を特定し、
前記第1履歴、前記第2履歴、前記第3履歴及び前記第4履歴は、相互に、同一又は異なるか、又は一部が共通しており、
特定した前記少なくとも2つの度合に基づいて、前記鉛蓄電池の劣化の度合を推定する
処理をコンピュータに実行させるコンピュータプログラム。
Priority Applications (5)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2019183332A JP7577918B2 (ja) | 2019-10-03 | 2019-10-03 | 推定装置、推定方法、及びコンピュータプログラム |
| US17/765,521 US12044743B2 (en) | 2019-10-03 | 2020-10-02 | Estimation device, estimation method, and computer program |
| PCT/JP2020/037500 WO2021066125A1 (ja) | 2019-10-03 | 2020-10-02 | 推定装置、推定方法、及びコンピュータプログラム |
| CN202080069302.8A CN114730929A (zh) | 2019-10-03 | 2020-10-02 | 推断装置、推断方法以及计算机程序 |
| EP20871532.6A EP4030532A4 (en) | 2019-10-03 | 2020-10-02 | ESTIMATION DEVICE, ESTIMATION METHOD AND COMPUTER PROGRAM |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2019183332A JP7577918B2 (ja) | 2019-10-03 | 2019-10-03 | 推定装置、推定方法、及びコンピュータプログラム |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JP2021061118A JP2021061118A (ja) | 2021-04-15 |
| JP7577918B2 true JP7577918B2 (ja) | 2024-11-06 |
Family
ID=75338127
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2019183332A Active JP7577918B2 (ja) | 2019-10-03 | 2019-10-03 | 推定装置、推定方法、及びコンピュータプログラム |
Country Status (5)
| Country | Link |
|---|---|
| US (1) | US12044743B2 (ja) |
| EP (1) | EP4030532A4 (ja) |
| JP (1) | JP7577918B2 (ja) |
| CN (1) | CN114730929A (ja) |
| WO (1) | WO2021066125A1 (ja) |
Families Citing this family (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2023106301A1 (ja) * | 2021-12-10 | 2023-06-15 | 古河電気工業株式会社 | 鉛蓄電池システム及び鉛蓄電池の劣化推定方法 |
| EP4446763A4 (en) * | 2021-12-10 | 2025-12-17 | Furukawa Electric Co Ltd | LEAD-ACUMULATOR SYSTEM AND METHOD FOR ESTIMATING THE DECLINE OF A LEAD-ACUMULATOR BATTERY |
| JP2024148412A (ja) * | 2023-04-05 | 2024-10-18 | トヨタ自動車株式会社 | バッテリー制御システム |
| JP2025117777A (ja) * | 2024-01-31 | 2025-08-13 | 株式会社Gsユアサ | 情報処理装置、予測方法及び予測プログラム |
Citations (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2004317256A (ja) | 2003-04-15 | 2004-11-11 | Nippon Soken Inc | 車両用蓄電装置の内部状態検出システム |
| JP2006172748A (ja) | 2004-12-13 | 2006-06-29 | Matsushita Electric Ind Co Ltd | 電池パック |
| US20090033277A1 (en) | 2007-07-31 | 2009-02-05 | Apple Inc. | Battery charging system and mobile and accessory devices |
| JP2010159661A (ja) | 2009-01-07 | 2010-07-22 | Shin Kobe Electric Mach Co Ltd | 風力発電用蓄電池制御システム及びその制御方法 |
| JP2014105995A (ja) | 2012-11-22 | 2014-06-09 | Furukawa Electric Co Ltd:The | 二次電池の状態推定装置及び方法 |
| JP2019066216A (ja) | 2017-09-29 | 2019-04-25 | 本田技研工業株式会社 | 電池容量推定装置、方法及びプログラム |
| JP2019078572A (ja) | 2017-10-20 | 2019-05-23 | 本田技研工業株式会社 | 電源システム及び車両 |
| JP2019079629A (ja) | 2017-10-20 | 2019-05-23 | 本田技研工業株式会社 | 電源システム |
Family Cites Families (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS60101867A (ja) * | 1983-11-08 | 1985-06-05 | Matsushita Electric Ind Co Ltd | 鉛蓄電池用極板及びその製造方法 |
| JP2712400B2 (ja) * | 1988-10-19 | 1998-02-10 | 松下電器産業株式会社 | 鉛蓄電池 |
| JP3620249B2 (ja) * | 1997-12-05 | 2005-02-16 | 松下電器産業株式会社 | 鉛蓄電池 |
| JP2016109639A (ja) | 2014-12-10 | 2016-06-20 | 株式会社デンソー | 鉛バッテリの劣化診断装置 |
-
2019
- 2019-10-03 JP JP2019183332A patent/JP7577918B2/ja active Active
-
2020
- 2020-10-02 CN CN202080069302.8A patent/CN114730929A/zh active Pending
- 2020-10-02 WO PCT/JP2020/037500 patent/WO2021066125A1/ja not_active Ceased
- 2020-10-02 EP EP20871532.6A patent/EP4030532A4/en active Pending
- 2020-10-02 US US17/765,521 patent/US12044743B2/en active Active
Patent Citations (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2004317256A (ja) | 2003-04-15 | 2004-11-11 | Nippon Soken Inc | 車両用蓄電装置の内部状態検出システム |
| JP2004333472A (ja) | 2003-04-15 | 2004-11-25 | Nippon Soken Inc | 車両用蓄電装置の内部状態検出システム |
| JP2006172748A (ja) | 2004-12-13 | 2006-06-29 | Matsushita Electric Ind Co Ltd | 電池パック |
| US20090033277A1 (en) | 2007-07-31 | 2009-02-05 | Apple Inc. | Battery charging system and mobile and accessory devices |
| JP2010159661A (ja) | 2009-01-07 | 2010-07-22 | Shin Kobe Electric Mach Co Ltd | 風力発電用蓄電池制御システム及びその制御方法 |
| JP2014105995A (ja) | 2012-11-22 | 2014-06-09 | Furukawa Electric Co Ltd:The | 二次電池の状態推定装置及び方法 |
| JP2019066216A (ja) | 2017-09-29 | 2019-04-25 | 本田技研工業株式会社 | 電池容量推定装置、方法及びプログラム |
| JP2019078572A (ja) | 2017-10-20 | 2019-05-23 | 本田技研工業株式会社 | 電源システム及び車両 |
| JP2019079629A (ja) | 2017-10-20 | 2019-05-23 | 本田技研工業株式会社 | 電源システム |
Also Published As
| Publication number | Publication date |
|---|---|
| EP4030532A1 (en) | 2022-07-20 |
| WO2021066125A1 (ja) | 2021-04-08 |
| US12044743B2 (en) | 2024-07-23 |
| US20220326311A1 (en) | 2022-10-13 |
| CN114730929A (zh) | 2022-07-08 |
| EP4030532A4 (en) | 2023-12-27 |
| JP2021061118A (ja) | 2021-04-15 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP7472459B2 (ja) | 推定装置、推定方法、及びコンピュータプログラム | |
| JP7552008B2 (ja) | 推定装置、推定方法、及びコンピュータプログラム | |
| JP7577918B2 (ja) | 推定装置、推定方法、及びコンピュータプログラム | |
| Lee et al. | Soft computing for battery state-of-charge (BSOC) estimation in battery string systems | |
| JP7292404B2 (ja) | バッテリ健全状態の推定方法 | |
| US20060028172A1 (en) | Self-diagnosis system for an energy storage device | |
| JP7546700B2 (ja) | バッテリー管理装置及び方法 | |
| KR20190056743A (ko) | 배터리 저항 추정 장치 및 방법 | |
| US11835589B2 (en) | Method and apparatus for machine-individual improvement of the lifetime of a battery in a battery-operated machine | |
| KR20210000207A (ko) | 내부 단락 셀 검출 방법 | |
| CN115720689A (zh) | 二次电池的劣化度判定装置 | |
| KR102710934B1 (ko) | 배터리 진단 시스템 및 방법 | |
| JP7388103B2 (ja) | 推定装置、推定方法及びコンピュータプログラム | |
| CN117031296A (zh) | 一种基于边界构造的电池系统性能评估方法 | |
| Johnson et al. | Random Forest Regressor Based SoC Estimation of Li-ion Battery for Electric Vehicle Applications | |
| KR102899559B1 (ko) | 배터리의 잔여 수명을 결정하는 방법 및 장치 | |
| Zhang et al. | A new battery modelling method based on simulation error minimization | |
| US12233745B2 (en) | Estimation device, estimation method, and computer program | |
| JP7600055B2 (ja) | 蓄電素子の充電率推定装置および充電率推定方法 | |
| KR20250144163A (ko) | 배터리 관리 방법 및 시스템 | |
| KR20250096377A (ko) | 배터리 열관리를 위한 충방전 전략의 기계학습 기반 배터리 충방전 전류 예측 방법 및 장치 | |
| JP2024126952A (ja) | 二次電池システムおよび二次電池の異常劣化予測方法 | |
| CN119153823A (zh) | 用电设备、电池模组及其控制方法 | |
| KR20240162881A (ko) | 배터리 관리 장치 및 그것의 동작 방법 | |
| CN117572267A (zh) | 一种充电模拟方法及电池监控系统 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220802 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230801 |
|
| A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230929 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20240109 |
|
| A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20240305 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20240611 |
|
| A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20240711 |
|
| TRDD | Decision of grant or rejection written | ||
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20240924 |
|
| A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20241007 |
|
| R150 | Certificate of patent or registration of utility model |
Ref document number: 7577918 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |