JP7542596B2 - Autonomous Driving System - Google Patents

Autonomous Driving System Download PDF

Info

Publication number
JP7542596B2
JP7542596B2 JP2022205593A JP2022205593A JP7542596B2 JP 7542596 B2 JP7542596 B2 JP 7542596B2 JP 2022205593 A JP2022205593 A JP 2022205593A JP 2022205593 A JP2022205593 A JP 2022205593A JP 7542596 B2 JP7542596 B2 JP 7542596B2
Authority
JP
Japan
Prior art keywords
path
area
calculation unit
row
travel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022205593A
Other languages
Japanese (ja)
Other versions
JP2023029429A (en
Inventor
俊樹 渡邉
友彦 佐野
脩 吉田
翔太郎 川畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2022205593A priority Critical patent/JP7542596B2/en
Publication of JP2023029429A publication Critical patent/JP2023029429A/en
Application granted granted Critical
Publication of JP7542596B2 publication Critical patent/JP7542596B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Guiding Agricultural Machines (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Outside Dividers And Delivering Mechanisms For Harvesters (AREA)
  • Combines (AREA)

Description

本発明は、コンバインの自動走行を管理する自動走行システムに関する。 The present invention relates to an automatic driving system that manages the automatic driving of a combine harvester.

特許文献1には、自動走行が可能なコンバインの発明が記載されている。この収穫機を利用した収穫作業において、オペレータは、収穫作業の最初にコンバインを手動で操作し、圃場内の外周部分を一周するように刈取走行を行う。 Patent Document 1 describes an invention for a combine harvester that is capable of automatic driving. In harvesting work using this harvester, an operator manually operates the combine harvester at the beginning of the harvesting work, and the combine harvester drives around the outer perimeter of the field to harvest.

この外周部分での走行において、コンバインの走行すべき方位が記録される。そして、記録された方位に基づく自動走行によって、圃場における未刈領域での刈取走行が行われる。 When traveling around this outer perimeter, the direction in which the combine should travel is recorded. Then, the combine automatically travels based on the recorded direction to harvest in the uncut areas of the field.

実開平2-107911号公報Japanese Utility Model Application Publication No. 2-107911

特許文献1には、自動走行のための目標走行経路の算出については詳述されていない。ここで、特許文献1に記載のコンバインにおいて、条方向に沿う自動走行のための目標走行経路を算出することが考えられる。 Patent Document 1 does not provide a detailed description of the calculation of a target driving path for automatic driving. Here, it is conceivable that the combine described in Patent Document 1 calculates a target driving path for automatic driving along the row direction.

このコンバインが条方向の目標走行経路に沿って自動走行を行うと、収穫作業の効率が良好となりやすい。例えば、自脱型コンバインは、一般に、条方向に刈取走行を行った場合に穀粒の回収効率が良好となるように設計されている。そのため、上記のコンバインが自脱型コンバインである場合、条方向に延びる複数の目標走行経路に沿って自動走行を行うことにより、収穫作業の効率が良好となる。 When this combine harvester automatically travels along a target travel path in the row direction, the efficiency of the harvesting work tends to be improved. For example, a head-throttling combine harvester is generally designed to have good grain recovery efficiency when it travels for harvesting in the row direction. Therefore, when the above combine harvester is a head-throttling combine harvester, the efficiency of the harvesting work is improved by automatically traveling along multiple target travel paths that extend in the row direction.

ここで、自脱型コンバインは、一般に、圃場の植立穀稈を梳き分ける複数のデバイダと、圃場の植立穀稈を刈り取る刈取部と、を備えている。 Here, a head-feeding combine harvester generally has multiple dividers that separate the planted culms in the field, and a harvesting unit that harvests the planted culms in the field.

自脱型コンバインが条方向に延びる複数の目標走行経路に沿って自動走行を行う構成においては、刈取部の横幅に対応する所定の間隔で平行に並ぶ複数の目標走行経路が算出される構成が考えられる。この構成では、全ての目標走行経路が走行済みとなると、圃場の全体が既刈となる。 In a configuration in which a self-feeding combine harvester automatically travels along multiple target travel paths extending in the row direction, a configuration is considered in which multiple target travel paths are calculated that are arranged in parallel at a predetermined interval corresponding to the width of the cutting unit. In this configuration, when all the target travel paths have been traveled, the entire field is considered to have been mowed.

しかしながら、この構成では、コンバインが目標走行経路に沿って刈取走行を行う際、刈取部の通過範囲の一部が、既刈領域に重複する事態が想定される。ここで、コンバインは、一般に、刈取走行を行いながら藁を落とす。従って、既刈領域には、藁が落ちていることがある。 However, with this configuration, when the combine harvester performs cutting travel along the target travel path, it is expected that part of the passing range of the cutting unit will overlap with the already-cut area. Here, the combine harvester generally drops straw while performing cutting travel. Therefore, straw may fall in the already-cut area.

そのため、刈取部の通過範囲と既刈領域との重複範囲の幅が比較的広い場合、既刈領域に落ちている藁が刈取部に入り込みがちである。そして、藁が刈取部に入り込むと、コンバインにおける脱穀処理の効率が低下してしまいやすい。 Therefore, if the overlapping range between the passing range of the cutting unit and the already-cut area is relatively wide, straw that has fallen in the already-cut area is likely to get into the cutting unit. And if straw gets into the cutting unit, the efficiency of the threshing process in the combine is likely to decrease.

本発明の目的は、刈取部の通過範囲と既刈領域との重複範囲の幅が比較的広くなる事態を回避しやすい自動走行システムを提供することである。 The object of the present invention is to provide an automatic driving system that can easily avoid a situation in which the overlapping range between the passing range of the cutting unit and the already cut area becomes relatively wide.

本発明の特徴は、圃場の植立穀稈を刈り取る刈取部を有するコンバインの自動走行を管理する自動走行システムであって、条方向に沿う自動走行のための目標走行経路を算出する経路算出部を備え、前記経路算出部は、前記コンバインが前記目標走行経路に沿って走行する際に前記刈取部の通過範囲と既刈領域との重複範囲の幅が常に所定条数分以下となるように、前記目標走行経路を算出するように構成されていることにある。 A feature of the present invention is an automatic driving system that manages the automatic driving of a combine harvester having a cutting unit that cuts planted stalks in a field , and is equipped with a path calculation unit that calculates a target driving path for automatic driving along the row direction, and the path calculation unit is configured to calculate the target driving path so that when the combine harvester travels along the target driving path, the width of the overlapping range between the passing range of the cutting unit and the already-cut area is always less than a specified number of rows .

さらに、本発明において、未刈領域を複数の分割後領域に分割する中割走行が前記コンバインによって行われる場合、前記経路算出部は、一つの前記分割後領域での刈取走行が開始されてから完了するまでの間、前記コンバインが前記目標走行経路に沿って走行する際に前記刈取部の通過範囲と既刈領域との重複範囲の幅が常に前記所定条数分以下となるように、前記目標走行経路を算出するように構成されていると好適である。Furthermore, in the present invention, when the combine performs intermediate division running to divide an unmowed area into a plurality of divided areas, it is preferable that the path calculation unit is configured to calculate the target running path so that when the combine runs along the target running path from the start of mowing running in one of the divided areas to its completion, the width of the overlapping area between the passing range of the mowing unit and the already-mowed area is always less than the specified number of rows.

さらに、本発明において、前記コンバインは、圃場の植立穀稈を梳き分ける複数のデバイダを有しており、前記経路算出部は、一つの前記分割後領域での刈取走行が開始されてから完了するまでの間、前記コンバインが前記目標走行経路に沿って走行する際に所定条件が常に満たされるように、前記目標走行経路を算出するように構成されており、前記所定条件は、前記複数のデバイダのうちの左端から所定個数目のデバイダが、前記一つの分割後領域における左端に位置する条よりも右側に位置し、且つ、前記複数のデバイダのうちの右端から前記所定個数目のデバイダが、前記一つの分割後領域における右端に位置する条よりも左側に位置することであると好適である。Furthermore, in the present invention, the combine has a plurality of dividers that comb the planted stalks in the field, and the path calculation unit is configured to calculate the target running path so that a specified condition is always satisfied when the combine runs along the target running path from the start to the completion of harvesting running in one of the divided areas, and it is preferable that the specified condition is that a specified number of dividers from the left end of the plurality of dividers is located to the right of the row located at the left end of one of the divided areas, and that the specified number of dividers from the right end of the plurality of dividers is located to the left of the row located at the right end of one of the divided areas.

さらに、本発明において、前記分割後領域の条数を算出する分割後条数算出部を備え、前記経路算出部は、前記分割後条数算出部の算出結果と、前記コンバインの刈取条数と、に基づいて前記目標走行経路を算出すると好適である。Furthermore, in the present invention, a post-division row number calculation unit is provided which calculates the number of rows in the post-division area, and it is preferable that the path calculation unit calculates the target driving path based on the calculation result of the post-division row number calculation unit and the number of cutting rows of the combine.

さらに、本発明において、前記所定個数は、3つであると好適である。 Furthermore, in the present invention, it is preferable that the predetermined number is three.

この構成であれば、所定個数が4つ以上である場合に比べて、刈取部の通過範囲と既刈領域との重複範囲の幅が狭くなりやすい。そのため、刈取部の通過範囲と既刈領域との重複範囲の幅が比較的広くなる事態を確実に回避しやすい。 With this configuration, the width of the overlapping range between the passing range of the mowing unit and the already-mowed area is likely to be narrower than when the specified number is four or more. Therefore, it is easy to reliably avoid a situation where the width of the overlapping range between the passing range of the mowing unit and the already-mowed area becomes relatively wide.

さらに、本発明において、前記未刈領域の条数を算出する条数算出部を備え、前記経路算出部は、前記条数算出部の算出結果と、前記コンバインの刈取条数と、に基づいて前記目標走行経路を算出すると好適である。 Furthermore, in the present invention, it is preferable to include a row number calculation unit that calculates the number of rows in the uncut area, and the path calculation unit calculates the target travel path based on the calculation result of the row number calculation unit and the number of cut rows of the combine.

コンバインが目標走行経路に沿って走行する際に所定条件が満たされるような目標走行経路の位置は、未刈領域の条数、及び、コンバインの刈取条数に応じて異なる。 The position of the target travel path at which a specified condition is met when the combine travels along the target travel path varies depending on the number of rows in the uncut area and the number of cutting rows of the combine.

ここで、上記の構成によれば、目標走行経路は、未刈領域の条数、及び、コンバインの刈取条数に基づいて算出される。そのため、目標走行経路が未刈領域の条数及びコンバインの刈取条数とは無関係に算出される構成に比べて、目標走行経路の位置が適切な位置になりやすい。 Here, according to the above configuration, the target travel path is calculated based on the number of rows in the uncut area and the number of cut rows of the combine. Therefore, the position of the target travel path is more likely to be appropriate than in a configuration in which the target travel path is calculated regardless of the number of rows in the uncut area and the number of cut rows of the combine.

コンバインの左側面図である。FIG. 通過基準位置と条方向経路との位置関係を示す図である。FIG. 13 is a diagram showing the positional relationship between a passing reference position and a stripe direction path. 刈取走行経路に沿った渦巻き走行を示す図である。FIG. 13 is a diagram showing a spiral travel along a mowing travel path. 刈取走行経路に沿った往復走行を示す図である。FIG. 2 is a diagram showing round trip travel along a mowing travel route. 制御部に関する構成を示すブロック図である。FIG. 2 is a block diagram showing a configuration relating to a control unit. 中割走行を示す図である。FIG. 北側領域における条方向経路の位置がシフト算出部によって改めて算出される前の状態を示す図である。FIG. 13 is a diagram showing a state before the position of the stripe direction path in the north region is recalculated by the shift calculation unit. 北側領域における条方向経路の位置がシフト算出部によって改めて算出された後の状態を示す図である。FIG. 13 is a diagram showing a state after the position of the row direction path in the north region is recalculated by the shift calculation unit. 南側領域における条方向経路の位置がシフト算出部によって改めて算出される前の状態を示す図である。FIG. 13 is a diagram showing a state before the position of the stripe direction path in the south region is recalculated by the shift calculation unit. 南側領域における条方向経路の位置がシフト算出部によって改めて算出された後の状態を示す図である。FIG. 13 is a diagram showing a state after the position of the stripe direction path in the south region is recalculated by the shift calculation unit. 作業領域における条方向経路の位置がシフト算出部によって改めて算出される前の状態を示す図である。13 is a diagram showing a state before the position of the row direction path in the working area is recalculated by the shift calculation unit. FIG. 作業領域における条方向経路の位置がシフト算出部によって改めて算出された後の状態を示す図である。13 is a diagram showing a state after the position of the row direction path in the working area is recalculated by the shift calculation unit. FIG. 経路算出部により算出された刈取走行経路を示す図である。11 is a diagram showing a mowing travel route calculated by a route calculation unit. FIG. タッチパネルにおける表示画面を示す図である。FIG. 2 is a diagram showing a display screen of a touch panel. タッチパネルにおける表示画面を示す図である。FIG. 2 is a diagram showing a display screen of a touch panel. 刈取走行経路に沿った渦巻き走行を示す図である。FIG. 13 is a diagram showing a spiral travel along a mowing travel path. 渦巻き走行における第1経路に沿う刈取走行が完了した時点でコンバインの走行が往復走行に移行する場合の例を示す図である。13 is a diagram showing an example in which the combine harvester transitions to reciprocating travel at the time when the reaping travel along a first path in spiral travel is completed. FIG. 渦巻き走行における第3経路に沿う刈取走行が完了した時点でコンバインの走行が往復走行に移行する場合の例を示す図である。13 is a diagram showing an example in which the combine harvester transitions to reciprocating travel when the reaping travel along the third route in spiral travel is completed. FIG.

本発明を実施するための形態について、図面に基づき説明する。尚、以下の説明においては、特に断りがない限り、前後の方向について以下のように記載している。即ち、機体の作業走行時における前進側の進行方向が「前」であり、後進側の進行方向が「後」である。そして、前後方向での前向き姿勢を基準として右側に相当する方向が「右」であり、左側に相当する方向が「左」である。 The embodiment of the present invention will be described with reference to the drawings. In the following description, unless otherwise specified, the forward and backward directions are described as follows. That is, the forward direction of the machine when traveling for work is "forward", and the backward direction is "rear". Furthermore, the direction corresponding to the right side of the forward posture in the forward and backward directions is "right", and the direction corresponding to the left side is "left".

また、図1に関する説明においては、矢印Fの方向を「前」、矢印Bの方向を「後」とする。 In addition, in the explanation of Figure 1, the direction of arrow F is "front" and the direction of arrow B is "rear."

また、図2から図4、図6から図13、図16から図18に示す矢印Nの方向を「北」、矢印Sの方向を「南」として、矢印Eの方向を「東」、矢印Wの方向を「西」とする。 In addition, the direction of arrow N shown in Figures 2 to 4, 6 to 13, and 16 to 18 is defined as "north", the direction of arrow S is defined as "south", the direction of arrow E is defined as "east", and the direction of arrow W is defined as "west".

〔コンバインの全体構成〕
図1に示すように、自脱型のコンバイン1は、複数のデバイダ5、クローラ式の走行装置11、運転部12、脱穀装置13、穀粒タンク14、刈取部H、藁排出装置17、穀粒排出装置18、衛星測位モジュール80を備えている。
[Overall configuration of the combine]
As shown in Figure 1, the head-feeding combine 1 is equipped with multiple dividers 5, a crawler-type running device 11, a driving unit 12, a threshing device 13, a grain tank 14, a harvesting unit H, a straw discharge device 17, a grain discharge device 18, and a satellite positioning module 80.

走行装置11は、コンバイン1における下部に備えられている。また、走行装置11は、エンジン(図示せず)からの動力によって駆動する。そして、コンバイン1は、走行装置11によって自走可能である。 The traveling device 11 is provided at the bottom of the combine harvester 1. The traveling device 11 is driven by power from an engine (not shown). The combine harvester 1 can be self-propelled by the traveling device 11.

また、運転部12、脱穀装置13、穀粒タンク14は、走行装置11の上側に備えられている。運転部12には、コンバイン1の作業を監視するオペレータが搭乗可能である。尚、オペレータは、コンバイン1の機外からコンバイン1の作業を監視していても良い。 The driving section 12, threshing device 13, and grain tank 14 are provided above the traveling device 11. An operator can ride in the driving section 12 to monitor the operation of the combine harvester 1. The operator may also monitor the operation of the combine harvester 1 from outside the combine harvester 1.

穀粒排出装置18は、穀粒タンク14に接続している。また、衛星測位モジュール80は、運転部12の上面に取り付けられている。 The grain discharge device 18 is connected to the grain tank 14. The satellite positioning module 80 is mounted on the top surface of the driving section 12.

複数のデバイダ5は、コンバイン1における前端部に備えられている。 Multiple dividers 5 are provided at the front end of the combine 1.

図2に示すように、コンバイン1は、第1デバイダ51、第2デバイダ52、第3デバイダ53、第4デバイダ54、第5デバイダ55、第6デバイダ56、第7デバイダ57を備えている。第1デバイダ51、第2デバイダ52、第3デバイダ53、第4デバイダ54、第5デバイダ55、第6デバイダ56、第7デバイダ57は、何れも、デバイダ5である。 As shown in FIG. 2, the combine 1 has a first divider 51, a second divider 52, a third divider 53, a fourth divider 54, a fifth divider 55, a sixth divider 56, and a seventh divider 57. The first divider 51, the second divider 52, the third divider 53, the fourth divider 54, the fifth divider 55, the sixth divider 56, and the seventh divider 57 are all dividers 5.

これらのデバイダ5は、機体左側から、第1デバイダ51、第2デバイダ52、第3デバイダ53、第4デバイダ54、第5デバイダ55、第6デバイダ56、第7デバイダ57の順に並んでいる。 These dividers 5 are arranged in the following order from the left side of the aircraft: first divider 51, second divider 52, third divider 53, fourth divider 54, fifth divider 55, sixth divider 56, and seventh divider 57.

そして、これらのデバイダ5は、圃場の植立穀稈を梳き分ける。 These dividers 5 then separate the planted stalks in the field.

即ち、コンバイン1は、圃場の植立穀稈を梳き分ける複数のデバイダ5を有している。 That is, the combine harvester 1 has multiple dividers 5 that separate the planted stalks in the field.

図1に示すように、刈取部Hは、コンバイン1における前部に備えられている。そして、刈取部Hは、バリカン型の切断装置15、及び、搬送装置16を有している。 As shown in FIG. 1, the harvesting unit H is provided at the front of the combine harvester 1. The harvesting unit H has a clipper-type cutting device 15 and a conveying device 16.

切断装置15は、複数のデバイダ5によって梳き分けられた植立穀稈の株元を切断する。そして、搬送装置16は、切断装置15により切断された穀稈を後側へ搬送する。 The cutting device 15 cuts the base of the planted culms that have been separated by the multiple dividers 5. The transport device 16 then transports the culms cut by the cutting device 15 to the rear.

この構成により、刈取部Hは、圃場の植立穀稈を刈り取る。コンバイン1は、刈取部Hによって圃場の植立穀稈を刈り取りながら走行装置11によって走行する刈取走行が可能である。 With this configuration, the reaping unit H reaps the planted stalks in the field. The combine harvester 1 is capable of reaping travel, traveling on the traveling device 11 while reaping the planted stalks in the field with the reaping unit H.

即ち、コンバイン1は、圃場の植立穀稈を刈り取る刈取部Hを有する。 That is, the combine harvester 1 has a harvesting section H that harvests planted stalks in the field.

搬送装置16により搬送された穀稈は、脱穀装置13において脱穀処理される。脱穀処理により得られた穀粒は、穀粒タンク14に貯留される。穀粒タンク14に貯留された穀粒は、必要に応じて、穀粒排出装置18によって機外に排出される。 The stalks transported by the conveying device 16 are threshed in the threshing device 13. The grains obtained by the threshing process are stored in the grain tank 14. The grains stored in the grain tank 14 are discharged outside the machine by the grain discharge device 18 as necessary.

また、藁排出装置17は、コンバイン1における後端部に備えられている。そして、藁排出装置17は、脱穀処理によって穀粒が分離された藁を機体後方に排出する。 The straw discharge device 17 is also provided at the rear end of the combine harvester 1. The straw discharge device 17 discharges the straw from which the grains have been separated by the threshing process to the rear of the machine body.

尚、本実施形態において、藁排出装置17は、藁をカッター(図示せず)によって細断処理した後に排出することが可能である。また、藁排出装置17は、藁を細断処理せずに排出することも可能である。 In this embodiment, the straw discharge device 17 can discharge the straw after shredding it with a cutter (not shown). The straw discharge device 17 can also discharge the straw without shredding it.

また、運転部12には、通信端末4(図5参照)が配置されている。通信端末4は、種々の情報を表示可能に構成されている。本実施形態において、通信端末4は、運転部12に固定されている。しかしながら、本発明はこれに限定されず、通信端末4は、運転部12に対して着脱可能に構成されていても良いし、通信端末4は、コンバイン1の機外に位置していても良い。 The driving unit 12 is also provided with a communication terminal 4 (see FIG. 5). The communication terminal 4 is configured to be able to display various information. In this embodiment, the communication terminal 4 is fixed to the driving unit 12. However, the present invention is not limited to this, and the communication terminal 4 may be configured to be detachable from the driving unit 12, or the communication terminal 4 may be located outside the combine harvester 1.

ここで、コンバイン1は、図2に示すように圃場における外周側の領域で穀物を収穫しながら周回走行を行った後、図3及び図4に示すように圃場における内側の領域で刈取走行を行うことにより、圃場の穀物を収穫するように構成されている。 The combine harvester 1 is configured to harvest grains in the field by first traveling in a circle while harvesting grains in the outer peripheral area of the field as shown in FIG. 2, and then performing a reaping run in the inner area of the field as shown in FIGS. 3 and 4.

本実施形態においては、図2に示す周回走行は手動走行により行われる。また、図3及び図4に示す内側の領域での刈取走行は、自動走行により行われる。 In this embodiment, the circular driving shown in FIG. 2 is performed by manual driving. Also, the mowing driving in the inner area shown in FIG. 3 and FIG. 4 is performed by automatic driving.

尚、本発明はこれに限定されず、図2に示す周回走行は自動走行により行われても良い。また、図3及び図4に示す内側の領域での刈取走行は手動走行により行われても良い。 However, the present invention is not limited to this, and the circular travel shown in Figure 2 may be performed by automatic travel. Also, the mowing travel in the inner area shown in Figures 3 and 4 may be performed by manual travel.

尚、オペレータは、通信端末4を操作することにより、エンジンの回転速度を変更することができる。 The operator can change the engine speed by operating the communication terminal 4.

作物の状態によって、適切な作業速度は異なる。オペレータが通信端末4を操作し、エンジンの回転速度を適切な回転速度に設定すれば、作物の状態に適した作業速度で作業を行うことができる。 The appropriate working speed varies depending on the condition of the crop. If the operator operates the communication terminal 4 to set the engine rotation speed to an appropriate rotation speed, work can be performed at a working speed appropriate to the condition of the crop.

圃場での収穫作業において、コンバイン1は、自動走行システムA(図5参照)によって制御される。即ち、自動走行システムAは、コンバイン1の自動走行を管理する。以下では、自動走行システムAの構成について説明する。 During harvesting work in a farm field, the combine harvester 1 is controlled by an automatic driving system A (see FIG. 5). In other words, the automatic driving system A manages the automatic driving of the combine harvester 1. The configuration of the automatic driving system A is described below.

〔自動走行システムの構成〕
図5に示すように、自動走行システムAは、制御部20及び衛星測位モジュール80を備えている。尚、制御部20は、コンバイン1に備えられている。また、上述の通り、衛星測位モジュール80も、コンバイン1に備えられている。
[Configuration of the automated driving system]
5, the automatic driving system A includes a control unit 20 and a satellite positioning module 80. The control unit 20 is provided in the combine harvester 1. As described above, the satellite positioning module 80 is also provided in the combine harvester 1.

制御部20は、自車位置算出部21、領域算出部22、経路算出部23、走行制御部24を有している。 The control unit 20 has a vehicle position calculation unit 21, an area calculation unit 22, a route calculation unit 23, and a driving control unit 24.

衛星測位モジュール80は、GPS(グローバル・ポジショニング・システム)で用いられる人工衛星からのGPS信号を受信する。そして、図5に示すように、衛星測位モジュール80は、受信したGPS信号に基づいて、コンバイン1の自車位置を示す測位データを自車位置算出部21へ送る。 The satellite positioning module 80 receives GPS signals from satellites used in the Global Positioning System (GPS). As shown in FIG. 5, the satellite positioning module 80 sends positioning data indicating the vehicle position of the combine harvester 1 to the vehicle position calculation unit 21 based on the received GPS signals.

自車位置算出部21は、衛星測位モジュール80により出力された測位データに基づいて、コンバイン1の位置座標を経時的に算出する。算出されたコンバイン1の経時的な位置座標は、領域算出部22及び走行制御部24へ送られる。 The vehicle position calculation unit 21 calculates the position coordinates of the combine harvester 1 over time based on the positioning data output by the satellite positioning module 80. The calculated position coordinates of the combine harvester 1 over time are sent to the area calculation unit 22 and the driving control unit 24.

領域算出部22は、自車位置算出部21から受け取ったコンバイン1の経時的な位置座標に基づいて、図3に示すように、外周領域SA及び作業対象領域CAを算出する。 The area calculation unit 22 calculates the outer perimeter area SA and the work target area CA based on the time-dependent position coordinates of the combine harvester 1 received from the vehicle position calculation unit 21, as shown in FIG. 3.

より具体的には、領域算出部22は、自車位置算出部21から受け取ったコンバイン1の経時的な位置座標に基づいて、圃場の外周側における周回走行でのコンバイン1の走行軌跡を算出する。そして、領域算出部22は、算出されたコンバイン1の走行軌跡に基づいて、コンバイン1が穀物を収穫しながら周回走行した圃場の外周側の領域を外周領域SAとして算出する。また、領域算出部22は、算出された外周領域SAよりも圃場内側の領域を、作業対象領域CAとして算出する。 More specifically, the area calculation unit 22 calculates the travel trajectory of the combine harvester 1 during circular travel on the outer periphery of the field based on the time-dependent position coordinates of the combine harvester 1 received from the vehicle position calculation unit 21. Then, based on the calculated travel trajectory of the combine harvester 1, the area on the outer periphery of the field where the combine harvester 1 has traveled while harvesting grains is calculated as the outer periphery area SA. The area calculation unit 22 also calculates the area inside the field from the calculated outer periphery area SA as the work target area CA.

例えば、図2の上部においては、圃場の外周側における周回走行のためのコンバイン1の走行経路が矢印で示されている。図2に示す例では、コンバイン1は、3周の周回走行を行う。そして、この走行経路に沿った刈取走行が完了すると、圃場は、図3に示す状態となる。 For example, in the upper part of FIG. 2, the travel path of the combine harvester 1 for traveling around the outer periphery of the field is indicated by an arrow. In the example shown in FIG. 2, the combine harvester 1 travels around the field three times. Then, when the harvesting travel along this travel path is completed, the field becomes as shown in FIG. 3.

図3に示すように、領域算出部22は、コンバイン1が穀物を収穫しながら周回走行した圃場の外周側の領域を外周領域SAとして算出する。また、領域算出部22は、算出された外周領域SAよりも圃場内側の領域を、作業対象領域CAとして算出する。 As shown in FIG. 3, the area calculation unit 22 calculates the area on the outer periphery of the field where the combine harvester 1 has traveled while harvesting grain as the outer periphery area SA. The area calculation unit 22 also calculates the area inside the field from the calculated outer periphery area SA as the work target area CA.

そして、図5に示すように、領域算出部22による算出結果は、経路算出部23へ送られる。 Then, as shown in FIG. 5, the calculation result by the area calculation unit 22 is sent to the path calculation unit 23.

経路算出部23は、領域算出部22から受け取った算出結果に基づいて、図3に示すように、作業対象領域CAにおける刈取走行のための走行経路である刈取走行経路LNを算出する。尚、図3に示すように、本実施形態においては、刈取走行経路LNは、縦横方向に延びる複数のメッシュ線である。また、複数のメッシュ線は直線でなくても良く、湾曲していても良い。 Based on the calculation results received from the area calculation unit 22, the route calculation unit 23 calculates the mowing travel route LN, which is a travel route for mowing travel in the work target area CA, as shown in FIG. 3. Note that, as shown in FIG. 3, in this embodiment, the mowing travel route LN is a plurality of mesh lines extending in the vertical and horizontal directions. Furthermore, the plurality of mesh lines do not have to be straight lines, and may be curved.

図5に示すように、経路算出部23により算出された刈取走行経路LNは、走行制御部24へ送られる。 As shown in FIG. 5, the harvesting driving route LN calculated by the route calculation unit 23 is sent to the driving control unit 24.

走行制御部24は、走行装置11を制御可能に構成されている。そして、走行制御部24は、自車位置算出部21から受け取ったコンバイン1の位置座標と、経路算出部23から受け取った刈取走行経路LNと、に基づいて、コンバイン1の自動走行を制御する。より具体的には、走行制御部24は、図3及び図4に示すように、刈取走行経路LNに沿った自動走行によって刈取走行が行われるように、コンバイン1の走行を制御する。 The travel control unit 24 is configured to be able to control the travel device 11. The travel control unit 24 controls the automatic travel of the combine harvester 1 based on the position coordinates of the combine harvester 1 received from the vehicle position calculation unit 21 and the reaping travel route LN received from the route calculation unit 23. More specifically, the travel control unit 24 controls the travel of the combine harvester 1 so that reaping travel is performed by automatic travel along the reaping travel route LN, as shown in Figures 3 and 4.

即ち、コンバイン1は、自動走行可能である。 In other words, the combine 1 can run automatically.

〔コンバインによる収穫作業の流れ〕
以下では、コンバイン1による収穫作業の例として、コンバイン1が、図2に示す圃場で収穫作業を行う場合の流れについて説明する。
[Flow of harvesting work using a combine harvester]
In the following, as an example of harvesting work by the combine harvester 1, a flow in which the combine harvester 1 performs harvesting work in the farm field shown in FIG. 2 will be described.

本実施形態において、コンバイン1は、第1収穫走行と、第2収穫走行と、によって圃場の穀物を収穫するように構成されている。尚、第1収穫走行とは、圃場の外周領域SAにおいて手動走行により行われる収穫走行である。また、第2収穫走行とは、第1収穫走行の後に外周領域SAよりも圃場内側の領域において自動走行により行われる収穫走行である。 In this embodiment, the combine 1 is configured to harvest grains from a field by a first harvesting run and a second harvesting run. The first harvesting run is a harvesting run that is performed manually in the outer peripheral area SA of the field. The second harvesting run is a harvesting run that is performed automatically in an area of the field that is closer to the inner side than the outer peripheral area SA after the first harvesting run.

最初に、オペレータは、コンバイン1を手動で操作し、図2に示すように、圃場内の外周部分において、圃場の境界線BDに沿って周回するように刈取走行を行う。図2に示す例では、コンバイン1は、3周の周回走行を行う。この周回走行が完了すると、圃場は、図3に示す状態となる。 First, the operator manually operates the combine harvester 1, and as shown in FIG. 2, the combine harvester 1 performs a circular run along the boundary line BD of the field in the outer periphery of the field to harvest crops. In the example shown in FIG. 2, the combine harvester 1 performs three circular runs. When this circular run is completed, the field is in the state shown in FIG. 3.

領域算出部22は、自車位置算出部21から受け取ったコンバイン1の経時的な位置座標に基づいて、図2に示す周回走行でのコンバイン1の走行軌跡を算出する。そして、図3に示すように、領域算出部22は、算出されたコンバイン1の走行軌跡に基づいて、コンバイン1が植立穀稈を刈り取りながら周回走行した圃場の外周側の領域を外周領域SAとして算出する。また、領域算出部22は、算出された外周領域SAよりも圃場内側の領域を、作業対象領域CAとして算出する。 The area calculation unit 22 calculates the travel path of the combine harvester 1 during the circular travel shown in FIG. 2 based on the time-dependent position coordinates of the combine harvester 1 received from the vehicle position calculation unit 21. Then, as shown in FIG. 3, the area calculation unit 22 calculates the area on the outer periphery of the field where the combine harvester 1 has traveled while harvesting the planted stalks as the outer periphery area SA based on the calculated travel path of the combine harvester 1. The area calculation unit 22 also calculates the area inside the field from the calculated outer periphery area SA as the work target area CA.

次に、経路算出部23は、領域算出部22から受け取った算出結果に基づいて、図3に示すように、作業対象領域CAにおける刈取走行経路LNを算出する。 Next, the route calculation unit 23 calculates the mowing travel route LN in the work target area CA, as shown in FIG. 3, based on the calculation results received from the area calculation unit 22.

そして、オペレータが自動走行開始ボタン(図示せず)を押すことにより、図3に示すように、刈取走行経路LNに沿った自動走行が開始される。このとき、走行制御部24は、刈取走行経路LNに沿った自動走行によって刈取走行が行われるように、コンバイン1の走行を制御する。 Then, when the operator presses the automatic driving start button (not shown), automatic driving along the reaping driving path LN is started as shown in FIG. 3. At this time, the driving control unit 24 controls the driving of the combine 1 so that reaping driving is performed by automatic driving along the reaping driving path LN.

作業対象領域CAにおける自動走行が開始されると、図3に示すように、まず、コンバイン1は、作業対象領域CAにおける外周部分において、作業対象領域CAの外形に沿って周回するように刈取走行を行う。このとき、コンバイン1は、刈取走行経路LNに沿った走行と、αターンによる方向転換と、を繰り返す。これにより、コンバイン1は、作業対象領域CAの未刈領域における外周部分を渦巻き状に刈取走行する。 When automatic travel in the work area CA is started, as shown in FIG. 3, the combine harvester 1 first performs mowing travel in a circle along the outer shape of the work area CA in the outer periphery of the work area CA. At this time, the combine harvester 1 repeats traveling along the mowing travel path LN and changing direction by making an α turn. As a result, the combine harvester 1 performs mowing travel in a spiral shape in the outer periphery of the unmowed area of the work area CA.

尚、以下では、この渦巻き状の刈取走行を、「渦巻き走行」と称する。 In the following, this spiral cutting motion will be referred to as "spiral driving."

図3においては、αターンによる方向転換が3回しか行われていないが、αターンによる方向転換は、4回以上行われても良い。即ち、渦巻き走行は、図3に示すケースよりも長い走行距離に亘って行われても良い。例えば、渦巻き走行は、コンバイン1が2周するまで行われても良い。 In FIG. 3, only three α-turn direction changes are performed, but α-turn direction changes may be performed four or more times. In other words, the spiral travel may be performed over a longer travel distance than in the case shown in FIG. 3. For example, the spiral travel may be performed until the combine 1 completes two revolutions.

渦巻き走行が完了すると、コンバイン1は、刈取走行経路LNに沿って前進しながら行われる刈取走行と、Uターンによる方向転換と、を繰り返すことにより、作業対象領域CAの未刈領域の全体を網羅するように刈取走行を行う。 When the spiral travel is completed, the combine harvester 1 repeats a cycle of forward travel along the harvesting travel path LN and a U-turn to change direction, thereby performing harvesting travel so as to cover the entire uncut area of the work area CA.

尚、以下では、前進しながらの刈取走行及びUターンによる方向転換を繰り返す走行を、「往復走行」と称する。 In the following, the act of mowing while moving forward and repeatedly changing direction by making U-turns will be referred to as "reciprocating driving."

即ち、走行制御部24は、渦巻き走行の後に往復走行に移行するように、コンバイン1の走行を制御する。 In other words, the travel control unit 24 controls the travel of the combine 1 so that it transitions from spiral travel to reciprocating travel.

このように、自動走行システムAは、未刈領域における外周部分を渦巻き状に刈取走行する渦巻き走行と、前進しながらの刈取走行及びUターンによる方向転換を繰り返す往復走行と、が行われるようにコンバイン1の走行を制御する走行制御部24を備えている。 In this way, the automatic driving system A is equipped with a driving control unit 24 that controls the driving of the combine harvester 1 so that it can perform spiral driving, which cuts the outer periphery of the uncut area in a spiral shape, forward driving, and round trip driving that repeatedly changes direction by making U-turns.

また、自動走行システムAは、渦巻き走行及び往復走行のための刈取走行経路LNを算出する経路算出部23を備えている。 The automatic driving system A also includes a route calculation unit 23 that calculates the mowing route LN for spiral driving and round trip driving.

また、渦巻き走行及び往復走行は、上述の第2収穫走行に含まれている。即ち、自動走行システムAは、第2収穫走行のための刈取走行経路LNを算出する経路算出部23を備えている。 In addition, the spiral travel and the round trip travel are included in the second harvesting travel described above. That is, the automatic driving system A is equipped with a route calculation unit 23 that calculates the harvesting travel route LN for the second harvesting travel.

コンバイン1により刈取走行が行われている間、上述の通り、切断装置15により刈り取られた刈取穀稈は、搬送装置16によって脱穀装置13へ搬送される。そして、脱穀装置13において、刈取穀稈は脱穀処理される。 As described above, while the combine harvester 1 is running, the harvested stalks cut by the cutting device 15 are transported to the threshing device 13 by the conveying device 16. Then, in the threshing device 13, the harvested stalks are threshed.

〔条方向経路の算出に関する構成〕
図3及び図4に示すように、刈取走行経路LNは、複数の条方向経路LA(本発明に係る「目標走行経路」に相当)と、複数の横方向経路LBと、を含んでいる。各条方向経路LAは、上述の第2収穫走行のための条方向の刈取走行経路LNである。また、各横方向経路LBは、第2収穫走行のための条方向に交差する方向の刈取走行経路LNである。
[Configuration for calculating the row direction path]
As shown in Figures 3 and 4, the reaping travel path LN includes a plurality of row direction paths LA (corresponding to the "target travel path" of the present invention) and a plurality of lateral directions paths LB. Each row direction path LA is a reaping travel path LN in the row direction for the second harvesting travel described above. Also, each lateral direction path LB is a reaping travel path LN in a direction intersecting the row direction for the second harvesting travel.

即ち、経路算出部23は、条方向に沿う自動走行のための複数の条方向経路LAを算出する。また、経路算出部23は、条方向に交差する方向の自動走行のための複数の横方向経路LBを算出する。 That is, the route calculation unit 23 calculates multiple stripe direction routes LA for automatic driving along the stripe direction. The route calculation unit 23 also calculates multiple lateral routes LB for automatic driving in a direction intersecting the stripe direction.

即ち、自動走行システムAは、条方向に沿う自動走行のための条方向経路LAを算出する経路算出部23を備えている。 That is, the automatic driving system A is equipped with a route calculation unit 23 that calculates a line direction route LA for automatic driving along the line direction.

尚、横方向経路LBは、条方向経路LAに直交していても良いし、直交していなくても良い。 The lateral path LB may or may not be perpendicular to the strip path LA.

また、図5に示すように、制御部20は、通過基準位置算出部25を有している。衛星測位モジュール80は、受信したGPS信号に基づいて、コンバイン1の自車位置を示す測位データを通過基準位置算出部25へ送る。 As shown in FIG. 5, the control unit 20 also has a passing reference position calculation unit 25. The satellite positioning module 80 sends positioning data indicating the vehicle position of the combine harvester 1 to the passing reference position calculation unit 25 based on the received GPS signal.

通過基準位置算出部25は、衛星測位モジュール80により出力された測位データに基づいて、通過基準位置を算出する。通過基準位置とは、上述の第1収穫走行における条方向での収穫走行においてコンバイン1の所定部位が通過した位置である。 The passing reference position calculation unit 25 calculates the passing reference position based on the positioning data output by the satellite positioning module 80. The passing reference position is the position where a specific part of the combine 1 passes during the harvesting run in the row direction in the first harvesting run described above.

また、本実施形態において、この所定部位は、第1デバイダ51である。従って、本実施形態において、通過基準位置算出部25は、衛星測位モジュール80により出力された測位データに基づいて、上述の第1収穫走行における条方向での収穫走行において第1デバイダ51が通過した位置を算出する。 In this embodiment, the specified portion is the first divider 51. Therefore, in this embodiment, the passing reference position calculation unit 25 calculates the position where the first divider 51 passed during the harvesting run in the row direction in the first harvesting run described above, based on the positioning data output by the satellite positioning module 80.

尚、本発明はこれに限定されず、所定部位は、第7デバイダ57であっても良い。 However, the present invention is not limited to this, and the specified portion may be the seventh divider 57.

即ち、所定部位は、複数のデバイダ5のうちの左端または右端に位置するデバイダ5である。 In other words, the specified portion is the divider 5 located at the left end or the right end of the multiple dividers 5.

例えば、図2の下部には、コンバイン1が第1収穫走行における条方向での収穫走行を行っている様子が示されている。ここでは、コンバイン1は、圃場の北部において、第1収穫走行における最後の1周を走行している。また、図2に示す圃場では、条方向は、東西方向である。 For example, the lower part of FIG. 2 shows the combine harvester 1 performing a harvesting run in the row direction during the first harvesting run. Here, the combine harvester 1 is traveling in the northern part of the field, completing the final lap of the first harvesting run. In the field shown in FIG. 2, the row direction is east-west.

図2の下部には、通過ラインPが示されている。通過ラインPは、第1デバイダ51の通過位置である。即ち、この例においては、通過ラインPの位置が、通過基準位置算出部25により算出される通過基準位置である。 The passing line P is shown at the bottom of FIG. 2. The passing line P is the passing position of the first divider 51. That is, in this example, the position of the passing line P is the passing reference position calculated by the passing reference position calculation unit 25.

図5に示すように、通過基準位置算出部25により算出された通過基準位置は、経路算出部23へ送られる。 As shown in FIG. 5, the passing reference position calculated by the passing reference position calculation unit 25 is sent to the path calculation unit 23.

経路算出部23は、通過基準位置算出部25により算出された通過基準位置に基づいて、条方向経路LAを算出する。 The path calculation unit 23 calculates the line direction path LA based on the passing reference position calculated by the passing reference position calculation unit 25.

詳述すると、経路算出部23は、図2に示すように、作業対象領域CAにおける最も北側に位置する条方向経路LAの位置を、通過基準位置から第1距離DFだけ離れた位置に決定する。即ち、複数の条方向経路LAのうち、最も北側に位置する条方向経路LAは、通過ラインPから南側へ第1距離DFだけ離れた位置に位置することとなる。 In more detail, as shown in FIG. 2, the path calculation unit 23 determines the position of the northernmost line direction path LA in the work area CA to be a position that is a first distance DF away from the passing reference position. In other words, of the multiple line direction paths LA, the northernmost line direction path LA is located at a position that is a first distance DF away to the south of the passing line P.

そして、経路算出部23は、図3に示すように、条方向経路LA同士の間隔が所定の第1間隔D1となるように、平行に並ぶ複数の条方向経路LAを算出する。即ち、経路算出部23は、所定の第1間隔D1で平行に並ぶ複数の条方向経路LAを算出するように構成されている。 Then, as shown in FIG. 3, the path calculation unit 23 calculates a plurality of parallel line direction paths LA such that the distance between the line direction paths LA is a predetermined first distance D1. That is, the path calculation unit 23 is configured to calculate a plurality of parallel line direction paths LA at a predetermined first distance D1.

以下では、第1距離DF及び第1間隔D1について詳述する。図5に示すように、制御部20は、機種情報記憶部26及び条間取得部27を有している。また、経路算出部23は、距離算出部23aを有している。 The first distance DF and the first interval D1 are described in detail below. As shown in FIG. 5, the control unit 20 has a model information storage unit 26 and a row-to-row spacing acquisition unit 27. The path calculation unit 23 also has a distance calculation unit 23a.

機種情報記憶部26は、コンバイン1の仕様に関する各種情報を記憶している。ここで、機種情報記憶部26に記憶されている情報には、コンバイン1の刈取条数が含まれている。そして、経路算出部23は、機種情報記憶部26から、コンバイン1の刈取条数を取得する。尚、本実施形態において、コンバイン1の刈取条数は、6条である。 The model information storage unit 26 stores various information related to the specifications of the combine harvester 1. Here, the information stored in the model information storage unit 26 includes the number of reaping rows of the combine harvester 1. The path calculation unit 23 then obtains the number of reaping rows of the combine harvester 1 from the model information storage unit 26. In this embodiment, the number of reaping rows of the combine harvester 1 is 6.

条間取得部27は、コンバイン1の外部に設けられた管理サーバ6から、条間情報を取得する。条間情報とは、圃場における条間を示す情報である。尚、図2から図4に示す圃場における条間は、図2の下部に示すように、G1である。即ち、この圃場においては、複数の条が、互いにG1の間隔を空けて、南北方向に並んでいる。 The row spacing acquisition unit 27 acquires row spacing information from a management server 6 provided outside the combine harvester 1. The row spacing information is information indicating the row spacing in the field. The row spacing in the field shown in Figures 2 to 4 is G1, as shown in the lower part of Figure 2. That is, in this field, multiple rows are lined up in the north-south direction with a spacing of G1 between them.

即ち、自動走行システムAは、圃場における条間を示す情報である条間情報を取得する条間取得部27を備えている。 That is, the automated driving system A is equipped with a row-spacing acquisition unit 27 that acquires row-spacing information, which is information indicating the row-spacing in the field.

図5に示すように、条間取得部27は、取得した条間情報を経路算出部23へ送る。 As shown in FIG. 5, the row-spacing acquisition unit 27 sends the acquired row-spacing information to the path calculation unit 23.

そして、距離算出部23aは、機種情報記憶部26から取得したコンバイン1の刈取条数と、条間取得部27から受け取った条間情報と、に基づいて、適切な第1距離DFを算出する。これにより、経路算出部23は、第1距離DFを決定する。 The distance calculation unit 23a then calculates an appropriate first distance DF based on the number of reaping rows of the combine harvester 1 acquired from the model information storage unit 26 and the row-spacing information received from the row-spacing acquisition unit 27. As a result, the path calculation unit 23 determines the first distance DF.

即ち、経路算出部23は、通過基準位置と条方向経路LAとの間の距離を、コンバイン1の刈取条数に基づいて決定する。また、経路算出部23は、通過基準位置と条方向経路LAとの間の距離を、条間情報に基づいて決定する。 That is, the path calculation unit 23 determines the distance between the passing reference position and the row direction path LA based on the number of harvesting rows of the combine harvester 1. The path calculation unit 23 also determines the distance between the passing reference position and the row direction path LA based on the row spacing information.

尚、距離算出部23aは、コンバイン1の刈取条数が多いほど第1距離DFが長くなるように、第1距離DFを算出する。また、距離算出部23aは、条間情報により示される条間が広いほど第1距離DFが長くなるように、第1距離DFを算出する。 The distance calculation unit 23a calculates the first distance DF so that the greater the number of cutting rows of the combine harvester 1, the longer the first distance DF. The distance calculation unit 23a also calculates the first distance DF so that the greater the row spacing indicated by the row spacing information, the longer the first distance DF.

また、図5に示すように、制御部20は、第1間隔算出部23bを有している。第1間隔算出部23bは、機種情報記憶部26から取得したコンバイン1の刈取条数と、条間取得部27から受け取った条間情報と、に基づいて、適切な第1間隔D1を算出する。これにより、経路算出部23は、第1間隔D1を決定する。 As shown in FIG. 5, the control unit 20 also has a first interval calculation unit 23b. The first interval calculation unit 23b calculates an appropriate first interval D1 based on the number of harvesting rows of the combine harvester 1 acquired from the model information storage unit 26 and the row-spacing information received from the row-spacing acquisition unit 27. As a result, the path calculation unit 23 determines the first interval D1.

即ち、経路算出部23は、第1間隔D1を、コンバイン1の刈取条数に基づいて決定する。また、経路算出部23は、第1間隔D1を、条間情報に基づいて決定する。 That is, the path calculation unit 23 determines the first interval D1 based on the number of cutting rows of the combine harvester 1. The path calculation unit 23 also determines the first interval D1 based on row-to-row information.

尚、第1間隔算出部23bは、コンバイン1の刈取条数が多いほど第1間隔D1が広くなるように、第1間隔D1を算出する。また、第1間隔算出部23bは、条間情報により示される条間が広いほど第1間隔D1が広くなるように、第1間隔D1を算出する。 The first interval calculation unit 23b calculates the first interval D1 so that the greater the number of cutting rows of the combine harvester 1, the wider the first interval D1. The first interval calculation unit 23b also calculates the first interval D1 so that the wider the row spacing indicated by the row spacing information, the wider the first interval D1.

〔横方向経路の算出に関する構成〕
経路算出部23は、図3に示すように、横方向経路LB同士の間隔が所定の第2間隔D2となるように、平行に並ぶ複数の横方向経路LBを算出する。即ち、経路算出部23は、所定の第2間隔D2で平行に並ぶ複数の横方向経路LBを算出するように構成されている。
[Configuration for calculating lateral path]
3, the path calculation unit 23 calculates a plurality of lateral paths LB arranged in parallel such that the interval between the lateral paths LB is a predetermined second interval D2. That is, the path calculation unit 23 is configured to calculate a plurality of lateral paths LB arranged in parallel at the predetermined second interval D2.

以下では、第2間隔D2について詳述する。図5に示すように、経路算出部23は、第2間隔算出部23cを有している。 The second interval D2 will be described in detail below. As shown in FIG. 5, the path calculation unit 23 has a second interval calculation unit 23c.

また、機種情報記憶部26に記憶されている情報には、コンバイン1の刈幅が含まれている。そして、経路算出部23は、機種情報記憶部26から、コンバイン1の刈幅を取得する。尚、本実施形態において、コンバイン1の刈幅は、機体横幅方向における第1デバイダ51と第7デバイダ57との間の距離である。 The information stored in the model information storage unit 26 also includes the mowing width of the combine harvester 1. The path calculation unit 23 then acquires the mowing width of the combine harvester 1 from the model information storage unit 26. In this embodiment, the mowing width of the combine harvester 1 is the distance between the first divider 51 and the seventh divider 57 in the width direction of the machine body.

第2間隔算出部23cは、機種情報記憶部26から取得したコンバイン1の刈幅に基づいて、適切な第2間隔D2を算出する。これにより、経路算出部23は、第2間隔D2を決定する。 The second interval calculation unit 23c calculates an appropriate second interval D2 based on the mowing width of the combine harvester 1 obtained from the model information storage unit 26. As a result, the path calculation unit 23 determines the second interval D2.

即ち、経路算出部23は、第2間隔D2を、コンバイン1の刈幅に基づいて決定する。 In other words, the path calculation unit 23 determines the second distance D2 based on the mowing width of the combine harvester 1.

尚、第2間隔算出部23cは、コンバイン1の刈幅が広いほど第2間隔D2が広くなるように、第2間隔D2を算出する。 The second interval calculation unit 23c calculates the second interval D2 so that the wider the mowing width of the combine 1, the wider the second interval D2.

〔条方向経路のシフトに関する構成〕
図5に示すように、経路算出部23は、シフト算出部23dを有している。以下では、シフト算出部23dの機能について説明する。
[Configuration regarding shifting of stripe direction path]
5, the path calculation unit 23 includes a shift calculation unit 23d. The function of the shift calculation unit 23d will be described below.

図5に示すように、制御部20は、条数算出部28(本発明に係る「分割後条数算出部」に相当)を有している。条数算出部28は、圃場における未刈領域の条数を算出するように構成されている。 5, the control unit 20 has a row number calculation unit 28 (corresponding to the “post-division row number calculation unit” of the present invention) . The row number calculation unit 28 is configured to calculate the number of rows in an uncut area in the field.

条数算出部28について詳述する。コンバイン1が手動走行または自動走行によって刈取走行を行っている間、自車位置算出部21は、衛星測位モジュール80により出力された測位データに基づいて、コンバイン1の位置座標を経時的に算出する。算出されたコンバイン1の経時的な位置座標は、条数算出部28へ送られる。 The row number calculation unit 28 will now be described in detail. While the combine harvester 1 is performing harvesting driving by manual driving or automatic driving, the vehicle position calculation unit 21 calculates the position coordinates of the combine harvester 1 over time based on the positioning data output by the satellite positioning module 80. The calculated position coordinates of the combine harvester 1 over time are sent to the row number calculation unit 28.

また、条間取得部27は、管理サーバ6から取得した条間情報を条数算出部28へ送る。 In addition, the row-spacing acquisition unit 27 sends the row-spacing information acquired from the management server 6 to the row number calculation unit 28.

そして、条数算出部28は、自車位置算出部21から受け取ったコンバイン1の経時的な位置座標に基づいて、圃場における未刈領域の範囲を経時的に算出する。さらに、条数算出部28は、算出された未刈領域の範囲と、条間取得部27から受け取った条間情報と、に基づいて、未刈領域の条数を経時的に算出する。 Then, the row number calculation unit 28 calculates the range of the uncut area in the field over time based on the position coordinates of the combine harvester 1 over time received from the vehicle position calculation unit 21. Furthermore, the row number calculation unit 28 calculates the number of rows of the uncut area over time based on the calculated range of the uncut area and the row spacing information received from the row spacing acquisition unit 27.

即ち、自動走行システムAは、未刈領域の条数を算出する条数算出部28を備えている。 That is, the automated driving system A is equipped with a row number calculation unit 28 that calculates the number of rows in the uncut area.

条数算出部28による算出結果は、シフト算出部23dへ送られる。そして、シフト算出部23dは、条数算出部28から受け取った算出結果と、機種情報記憶部26から取得したコンバイン1の刈取条数と、に基づいて、条方向経路LAを算出する。 The calculation result by the row number calculation unit 28 is sent to the shift calculation unit 23d. The shift calculation unit 23d then calculates the row direction path LA based on the calculation result received from the row number calculation unit 28 and the number of reaping rows of the combine harvester 1 acquired from the model information storage unit 26.

即ち、経路算出部23は、条数算出部28の算出結果と、コンバイン1の刈取条数と、に基づいて条方向経路LAを算出する。 That is, the path calculation unit 23 calculates the row direction path LA based on the calculation result of the row number calculation unit 28 and the number of harvesting rows of the combine harvester 1.

このとき、シフト算出部23dは、コンバイン1が条方向経路LAに沿って走行する際に所定条件が満たされるように、条方向経路LAを算出する。 At this time, the shift calculation unit 23d calculates the row direction path LA so that a predetermined condition is satisfied when the combine harvester 1 travels along the row direction path LA.

そして、この所定条件は、「複数のデバイダ5のうちの左端から所定個数目のデバイダ5が、未刈領域における左端に位置する条よりも右側に位置し、且つ、複数のデバイダ5のうちの右端から所定個数目のデバイダ5が、未刈領域における右端に位置する条よりも左側に位置すること」である。 The specified condition is that "among the multiple dividers 5, the divider 5 that is a specified number from the left end is located to the right of the row that is located at the left end of the uncut area, and the divider 5 that is a specified number from the right end is located to the left of the row that is located at the right end of the uncut area."

また、本実施形態において、所定個数は、3つである。即ち、本実施形態において、所定条件は、「第3デバイダ53が、未刈領域における左端に位置する条よりも右側に位置し、且つ、第5デバイダ55が、未刈領域における右端に位置する条よりも左側に位置すること」である。 In addition, in this embodiment, the predetermined number is three. That is, in this embodiment, the predetermined condition is that "the third divider 53 is located to the right of the row located at the left end of the uncut area, and the fifth divider 55 is located to the left of the row located at the right end of the uncut area."

より具体的には、上述のように第1間隔D1で平行に並ぶ複数の条方向経路LAが算出された後、シフト算出部23dは、コンバイン1が条方向経路LAに沿って走行する際に所定条件が常に満たされるか否かを判定する。尚、この判定は、条数算出部28の算出結果と、コンバイン1の刈取条数と、に基づいて行われる。また、この判定は、第1間隔D1で平行に並ぶ複数の条方向経路LAが算出された直後、及び、コンバイン1が条方向経路LAに沿って走行しているときに行われる。 More specifically, after multiple row direction paths LA arranged in parallel with the first interval D1 are calculated as described above, the shift calculation unit 23d judges whether or not a predetermined condition is always satisfied when the combine harvester 1 travels along the row direction path LA. This judgment is made based on the calculation result of the row number calculation unit 28 and the number of reaping rows of the combine harvester 1. This judgment is also made immediately after multiple row direction paths LA arranged in parallel with the first interval D1 are calculated, and when the combine harvester 1 is traveling along the row direction path LA.

そして、コンバイン1が条方向経路LAに沿って走行する際に所定条件が常には満たされないと判定された場合、シフト算出部23dは、複数の条方向経路LAのうち、一つまたは複数の条方向経路LAの位置を、改めて算出する。このとき、シフト算出部23dは、コンバイン1が条方向経路LAに沿って走行する際に所定条件が常に満たされるように、条方向経路LAの位置を改めて算出する。これにより、複数の条方向経路LAのうち、一つまたは複数の条方向経路LAの位置がシフトすることとなる。 If it is determined that the specified condition is not always satisfied when the combine harvester 1 travels along the row direction path LA, the shift calculation unit 23d recalculates the position of one or more of the row direction paths LA among the multiple row direction paths LA. At this time, the shift calculation unit 23d recalculates the position of the row direction path LA so that the specified condition is always satisfied when the combine harvester 1 travels along the row direction path LA. As a result, the position of one or more of the row direction paths LA among the multiple row direction paths LA is shifted.

このように、経路算出部23は、コンバイン1が条方向経路LAに沿って走行する際に所定条件が満たされるように、条方向経路LAを算出するように構成されている。 In this way, the path calculation unit 23 is configured to calculate the row direction path LA so that a predetermined condition is satisfied when the combine 1 travels along the row direction path LA.

以下では、シフト算出部23dによって条方向経路LAの位置が改めて算出される例として、コンバイン1が、図6に示す圃場で収穫作業を行う場合の流れについて説明する。 Below, as an example of how the position of the row direction path LA is recalculated by the shift calculation unit 23d, a flow is described for when the combine harvester 1 performs harvesting work in the field shown in Figure 6.

図6に示す圃場では、条方向は、東西方向である。また、この例では、コンバイン1は、作業対象領域CAにおける渦巻き走行を完了し、往復走行に移行しようとしている。このとき、図6に示すように、コンバイン1が、未刈領域における南北方向中間部分を刈取走行しながら、西から東へ向かって通過するものとする。この刈取走行は、所謂、中割走行である。これにより、未刈領域は、北側領域CA1(本発明に係る「分割後領域」に相当)と、南側領域CA2(本発明に係る「分割後領域」に相当)と、の2つの未刈領域に分割される。 In the field shown in Fig. 6, the row direction is east-west. In this example, the combine harvester 1 has completed the spiral travel in the work target area CA and is about to transition to a round trip travel. At this time, as shown in Fig. 6, the combine harvester 1 passes from west to east while mowing the north-south middle part of the unmowed area. This mowing travel is so-called middle division travel. As a result, the unmowed area is divided into two unmowed areas, a northern area CA1 (corresponding to the "division area" of the present invention) and a southern area CA2 (corresponding to the "division area" of the present invention) .

そして、このとき、図7に示すように、北側領域CA1に対応する条方向経路LAとして、第1条方向経路LA1、第2条方向経路LA2、第3条方向経路LA3の3つの条方向経路LAが既に算出されている。 At this time, as shown in FIG. 7, three line direction routes LA, the first line direction route LA1, the second line direction route LA2, and the third line direction route LA3, have already been calculated as line direction routes LA corresponding to the north area CA1.

尚、北側から順に、第1条方向経路LA1、第2条方向経路LA2、第3条方向経路LA3が並んでいる。また、これら3つの条方向経路LAは、互いに第1間隔D1を空けて並んでいる。 In addition, from the north side, the first line direction route LA1, the second line direction route LA2, and the third line direction route LA3 are lined up. Furthermore, these three line direction routes LA are lined up with a first distance D1 between them.

図7に示すように、北側領域CA1の条数は、16条である。また、このとき、北側領域CA1の条数は、条数算出部28によって算出され、シフト算出部23dへ送られる。また、このとき、経路算出部23は、機種情報記憶部26から、コンバイン1の刈取条数を既に取得している。 As shown in FIG. 7, the number of rows in the north area CA1 is 16. At this time, the number of rows in the north area CA1 is calculated by the row number calculation unit 28 and sent to the shift calculation unit 23d. At this time, the path calculation unit 23 has already acquired the number of reaping rows of the combine harvester 1 from the model information storage unit 26.

ここで、シフト算出部23dは、北側領域CA1においてコンバイン1が条方向経路LAに沿って走行する際に所定条件が常に満たされるか否かを判定する。より具体的には、シフト算出部23dは、図7に示すように、コンバイン1が、第1条方向経路LA1、第3条方向経路LA3、第2条方向経路LA2の順に刈取走行した場合に、所定条件が常に満たされるか否かを判定する。 Here, the shift calculation unit 23d determines whether the predetermined condition is always satisfied when the combine harvester 1 travels along the row direction path LA in the north area CA1. More specifically, the shift calculation unit 23d determines whether the predetermined condition is always satisfied when the combine harvester 1 travels for harvesting along the first row direction path LA1, the third row direction path LA3, and the second row direction path LA2 in that order, as shown in FIG. 7.

尚、本実施形態において、走行制御部24は、往復走行を行う場合、未刈領域における最も右側の部分に対応する条方向経路LAに沿って刈取走行を行うように、コンバイン1の走行を制御するように構成されている。 In addition, in this embodiment, the travel control unit 24 is configured to control the travel of the combine harvester 1 so that, when traveling back and forth, the combine harvester 1 travels along the row direction path LA that corresponds to the rightmost part of the uncut area.

仮に、図7に示すように、コンバイン1が、第1条方向経路LA1、第3条方向経路LA3、第2条方向経路LA2の順に刈取走行した場合、まず、コンバイン1は、第1条方向経路LA1に沿って刈取走行を行う。これにより、図7に示すように、北側領域CA1における未刈領域は、第1未刈領域CA11となる。第1未刈領域CA11の条数は、10条である。 Assuming that the combine harvester 1 cuts along the first row direction path LA1, the third row direction path LA3, and the second row direction path LA2 in this order, as shown in FIG. 7, the combine harvester 1 cuts along the first row direction path LA1 first. As a result, as shown in FIG. 7, the uncut area in the north area CA1 becomes the first uncut area CA11. The number of rows in the first uncut area CA11 is 10.

次に、コンバイン1は、第3条方向経路LA3に沿って刈取走行を行う。これにより、図7に示すように、北側領域CA1における未刈領域は、第2未刈領域CA12となる。第2未刈領域CA12の条数は、6条である。 Next, the combine 1 performs mowing travel along the third row direction path LA3. As a result, as shown in FIG. 7, the unmowed area in the north area CA1 becomes the second unmowed area CA12. The number of rows in the second unmowed area CA12 is six.

最後に、コンバイン1は、第2条方向経路LA2に沿って刈取走行を行う。これにより、北側領域CA1の全体が既刈領域となる。 Finally, the combine 1 performs mowing travel along the second direction path LA2. As a result, the entire northern area CA1 becomes a mowed area.

ここで、コンバイン1が第1条方向経路LA1に沿って刈取走行を行うとき、未刈領域における右端に位置する条は、図7に示す第1位置Q1に位置している。また、このとき、未刈領域における左端に位置する条は、図7に示す第2位置Q2に位置している。 When the combine harvester 1 performs cutting travel along the first row direction path LA1, the row located at the right end of the uncut area is located at the first position Q1 shown in FIG. 7. Also, at this time, the row located at the left end of the uncut area is located at the second position Q2 shown in FIG. 7.

そして、このとき、第3デバイダ53は、第2位置Q2よりも右側に位置している。また、第5デバイダ55は、第1位置Q1よりも左側に位置している。従って、コンバイン1が第1条方向経路LA1に沿って刈取走行を行う間、上述の所定条件は満たされる。 At this time, the third divider 53 is located to the right of the second position Q2. The fifth divider 55 is located to the left of the first position Q1. Therefore, while the combine 1 is performing harvesting travel along the first row direction path LA1, the above-mentioned specified conditions are satisfied.

次に、コンバイン1が第3条方向経路LA3に沿って刈取走行を行うとき、未刈領域における右端に位置する条は、図7に示す第2位置Q2に位置している。また、このとき、未刈領域における左端に位置する条は、図7に示す第3位置Q3に位置している。 Next, when the combine harvester 1 performs cutting travel along the third row direction path LA3, the row located at the right end of the uncut area is located at the second position Q2 shown in FIG. 7. Also, at this time, the row located at the left end of the uncut area is located at the third position Q3 shown in FIG. 7.

そして、このとき、第3デバイダ53は、第3位置Q3よりも右側に位置している。しかしながら、第5デバイダ55は、第2位置Q2よりも右側に位置している。従って、コンバイン1が第3条方向経路LA3に沿って刈取走行を行う間、上述の所定条件は満たされない。 At this time, the third divider 53 is located to the right of the third position Q3. However, the fifth divider 55 is located to the right of the second position Q2. Therefore, while the combine 1 is performing harvesting travel along the third row direction path LA3, the above-mentioned predetermined condition is not satisfied.

そのため、シフト算出部23dは、コンバイン1が、第1条方向経路LA1、第3条方向経路LA3、第2条方向経路LA2の順に刈取走行した場合に、所定条件が常には満たされないと判定する。尚、この判定は、コンバイン1が第1条方向経路LA1に沿う走行を開始する前に行われる。 Therefore, when the combine harvester 1 travels along the first row direction path LA1, the third row direction path LA3, and the second row direction path LA2 in this order, the shift calculation unit 23d determines that the predetermined condition is not always satisfied. Note that this determination is made before the combine harvester 1 starts traveling along the first row direction path LA1.

その結果、シフト算出部23dは、図8に示すように、第3条方向経路LA3の位置を、改めて算出する。この例では、第3条方向経路LA3の位置は、北側へシフトする。これにより、第2条方向経路LA2と第3条方向経路LA3との間隔は、第1シフト間隔DS1となる。 As a result, the shift calculation unit 23d recalculates the position of the Article 3 direction route LA3 as shown in FIG. 8. In this example, the position of the Article 3 direction route LA3 shifts to the north. As a result, the distance between the Article 2 direction route LA2 and the Article 3 direction route LA3 becomes the first shift distance DS1.

尚、第1シフト間隔DS1は、第1間隔D1よりも狭い。 Note that the first shift interval DS1 is narrower than the first interval D1.

そして、この例では、第3条方向経路LA3の位置が北側へシフトすることにより、コンバイン1が条方向経路LAに沿って走行する際に所定条件が常に満たされるようになる。 In this example, the position of the third row direction path LA3 is shifted northward, so that the specified condition is always satisfied when the combine harvester 1 travels along the row direction path LA.

詳述すると、図8に示すように、コンバイン1が第1条方向経路LA1に沿って刈取走行を行うとき、未刈領域における右端に位置する条は、図8に示す第1位置Q1に位置している。また、このとき、未刈領域における左端に位置する条は、図8に示す第2位置Q2に位置している。 In more detail, as shown in FIG. 8, when the combine harvester 1 performs mowing travel along the first row direction path LA1, the row located at the right end of the uncut area is located at the first position Q1 shown in FIG. 8. At this time, the row located at the left end of the uncut area is located at the second position Q2 shown in FIG. 8.

そして、このとき、第3デバイダ53は、第2位置Q2よりも右側に位置している。また、第5デバイダ55は、第1位置Q1よりも左側に位置している。従って、コンバイン1が第1条方向経路LA1に沿って刈取走行を行う間、上述の所定条件は満たされる。 At this time, the third divider 53 is located to the right of the second position Q2. The fifth divider 55 is located to the left of the first position Q1. Therefore, while the combine 1 is performing harvesting travel along the first row direction path LA1, the above-mentioned specified conditions are satisfied.

次に、コンバイン1が第3条方向経路LA3に沿って刈取走行を行うとき、未刈領域における右端に位置する条は、図8に示す第2位置Q2に位置している。また、このとき、未刈領域における左端に位置する条は、図8に示す第3位置Q3に位置している。 Next, when the combine harvester 1 performs mowing travel along the third row direction path LA3, the row located at the right end of the uncut area is located at the second position Q2 shown in FIG. 8. At this time, the row located at the left end of the uncut area is located at the third position Q3 shown in FIG. 8.

そして、このとき、第3デバイダ53は、第3位置Q3よりも右側に位置している。また、第5デバイダ55は、第2位置Q2よりも左側に位置している。従って、コンバイン1が第3条方向経路LA3に沿って刈取走行を行う間、上述の所定条件は満たされる。 At this time, the third divider 53 is located to the right of the third position Q3. The fifth divider 55 is located to the left of the second position Q2. Therefore, while the combine 1 is performing harvesting travel along the third row direction path LA3, the above-mentioned specified conditions are satisfied.

最後に、コンバイン1が第2条方向経路LA2に沿って刈取走行を行うとき、未刈領域における右端に位置する条は、図8に示す第3位置Q3に位置している。また、このとき、未刈領域における左端に位置する条は、図8に示す第4位置Q4に位置している。 Finally, when the combine harvester 1 performs mowing travel along the second row direction path LA2, the row located at the right end of the uncut area is located at the third position Q3 shown in FIG. 8. Also, at this time, the row located at the left end of the uncut area is located at the fourth position Q4 shown in FIG. 8.

そして、このとき、第3デバイダ53は、第4位置Q4よりも右側に位置している。また、第5デバイダ55は、第3位置Q3よりも左側に位置している。従って、コンバイン1が第2条方向経路LA2に沿って刈取走行を行う間、上述の所定条件は満たされる。 At this time, the third divider 53 is located to the right of the fourth position Q4. The fifth divider 55 is located to the left of the third position Q3. Therefore, while the combine 1 is performing harvesting travel along the second row direction path LA2, the above-mentioned specified conditions are satisfied.

このように、図8に示す例では、コンバイン1が条方向経路LAに沿って走行する際に所定条件が常に満たされる。 In this way, in the example shown in Figure 8, the specified conditions are always met when the combine 1 travels along the row direction path LA.

そして、コンバイン1は、北側領域CA1における刈取走行を完了した後、南側領域CA2における刈取走行を開始する。このとき、図9に示すように、南側領域CA2に対応する条方向経路LAとして、第4条方向経路LA4、第5条方向経路LA5、第6条方向経路LA6の3つの条方向経路LAが既に算出されている。 Then, after completing the reaping run in the northern area CA1, the combine harvester 1 starts reaping run in the southern area CA2. At this time, as shown in FIG. 9, three row direction paths LA, the fourth row direction path LA4, the fifth row direction path LA5, and the sixth row direction path LA6, have already been calculated as the row direction paths LA corresponding to the southern area CA2.

尚、北側から順に、第4条方向経路LA4、第5条方向経路LA5、第6条方向経路LA6が並んでいる。また、これら3つの条方向経路LAは、互いに第1間隔D1を空けて並んでいる。 In addition, from the north side, the line 4 direction route LA4, the line 5 direction route LA5, and the line 6 direction route LA6 are lined up. Furthermore, these three line direction routes LA are lined up with a first distance D1 between them.

また、図9に示すように、南側領域CA2の条数は、15条である。また、このとき、南側領域CA2の条数は、条数算出部28によって算出され、シフト算出部23dへ送られる。また、このとき、経路算出部23は、機種情報記憶部26から、コンバイン1の刈取条数を既に取得している。 As shown in FIG. 9, the number of rows in the southern area CA2 is 15. At this time, the number of rows in the southern area CA2 is calculated by the row number calculation unit 28 and sent to the shift calculation unit 23d. At this time, the path calculation unit 23 has already acquired the number of reaping rows of the combine harvester 1 from the model information storage unit 26.

ここで、シフト算出部23dは、南側領域CA2においてコンバイン1が条方向経路LAに沿って走行する際に所定条件が常に満たされるか否かを判定する。より具体的には、シフト算出部23dは、図9に示すように、コンバイン1が、第4条方向経路LA4、第6条方向経路LA6、第5条方向経路LA5の順に刈取走行した場合に、所定条件が常に満たされるか否かを判定する。 Here, the shift calculation unit 23d determines whether the predetermined condition is always satisfied when the combine harvester 1 travels along the row direction path LA in the southern area CA2. More specifically, as shown in FIG. 9, the shift calculation unit 23d determines whether the predetermined condition is always satisfied when the combine harvester 1 travels for harvesting along the row direction path LA4, row direction path LA6, and row direction path LA5 in that order.

仮に、図9に示すように、コンバイン1が、第4条方向経路LA4、第6条方向経路LA6、第5条方向経路LA5の順に刈取走行した場合、まず、コンバイン1は、第4条方向経路LA4に沿って刈取走行を行う。これにより、図9に示すように、南側領域CA2における未刈領域は、第1未刈領域CA21となる。第1未刈領域CA21の条数は、9条である。 Assuming that the combine harvester 1 cuts along the 4th row direction path LA4, the 6th row direction path LA6, and the 5th row direction path LA5 in this order, as shown in FIG. 9, the combine harvester 1 first cuts along the 4th row direction path LA4. As a result, as shown in FIG. 9, the uncut area in the south area CA2 becomes the first uncut area CA21. The number of rows in the first uncut area CA21 is 9.

次に、コンバイン1は、第6条方向経路LA6に沿って刈取走行を行う。これにより、図9に示すように、南側領域CA2における未刈領域は、第2未刈領域CA22となる。第2未刈領域CA22の条数は、6条である。 Next, the combine 1 performs mowing travel along the six-row direction path LA6. As a result, as shown in FIG. 9, the unmowed area in the south area CA2 becomes the second unmowed area CA22. The number of rows in the second unmowed area CA22 is six.

最後に、コンバイン1は、第5条方向経路LA5に沿って刈取走行を行う。これにより、南側領域CA2の全体が既刈領域となる。 Finally, the combine harvester 1 performs mowing travel along the fifth direction route LA5. As a result, the entire southern area CA2 becomes a mowed area.

ここで、コンバイン1が第4条方向経路LA4に沿って刈取走行を行うとき、未刈領域における右端に位置する条は、図9に示す第5位置Q5に位置している。また、このとき、未刈領域における左端に位置する条は、図9に示す第6位置Q6に位置している。 When the combine harvester 1 performs cutting travel along the fourth row direction path LA4, the row located at the right end of the uncut area is located at the fifth position Q5 shown in FIG. 9. Also, at this time, the row located at the left end of the uncut area is located at the sixth position Q6 shown in FIG. 9.

そして、このとき、第3デバイダ53は、第6位置Q6よりも右側に位置している。また、第5デバイダ55は、第5位置Q5よりも左側に位置している。従って、コンバイン1が第4条方向経路LA4に沿って刈取走行を行う間、上述の所定条件は満たされる。 At this time, the third divider 53 is located to the right of the sixth position Q6. The fifth divider 55 is located to the left of the fifth position Q5. Therefore, while the combine 1 is performing harvesting travel along the fourth-row direction path LA4, the above-mentioned predetermined conditions are satisfied.

次に、コンバイン1が第6条方向経路LA6に沿って刈取走行を行うとき、未刈領域における右端に位置する条は、図9に示す第6位置Q6に位置している。また、このとき、未刈領域における左端に位置する条は、図9に示す第7位置Q7に位置している。 Next, when the combine harvester 1 performs cutting travel along the sixth row direction path LA6, the row located at the right end of the uncut area is located at the sixth position Q6 shown in FIG. 9. Also, at this time, the row located at the left end of the uncut area is located at the seventh position Q7 shown in FIG. 9.

そして、このとき、第3デバイダ53は、第7位置Q7よりも右側に位置している。しかしながら、第5デバイダ55は、第6位置Q6よりも右側に位置している。従って、コンバイン1が第6条方向経路LA6に沿って刈取走行を行う間、上述の所定条件は満たされない。 At this time, the third divider 53 is located to the right of the seventh position Q7. However, the fifth divider 55 is located to the right of the sixth position Q6. Therefore, while the combine 1 is performing harvesting travel along the sixth direction path LA6, the above-mentioned predetermined condition is not satisfied.

そのため、シフト算出部23dは、コンバイン1が、第4条方向経路LA4、第6条方向経路LA6、第5条方向経路LA5の順に刈取走行した場合に、所定条件が常には満たされないと判定する。尚、この判定は、コンバイン1が第4条方向経路LA4に沿う走行を開始する前に行われる。 Therefore, when the combine harvester 1 travels along the 4th row direction path LA4, the 6th row direction path LA6, and the 5th row direction path LA5 in this order, the shift calculation unit 23d determines that the predetermined condition is not always satisfied. Note that this determination is made before the combine harvester 1 starts traveling along the 4th row direction path LA4.

その結果、シフト算出部23dは、図10に示すように、第5条方向経路LA5及び第6条方向経路LA6の位置を、改めて算出する。この例では、第5条方向経路LA5及び第6条方向経路LA6の位置は、それぞれ北側へシフトする。これにより、第4条方向経路LA4と第5条方向経路LA5との間隔は、第2シフト間隔DS2となる。また、第5条方向経路LA5と第6条方向経路LA6との間隔は、第3シフト間隔DS3となる。 As a result, the shift calculation unit 23d recalculates the positions of the Article 5 direction route LA5 and the Article 6 direction route LA6 as shown in FIG. 10. In this example, the positions of the Article 5 direction route LA5 and the Article 6 direction route LA6 are each shifted northward. As a result, the distance between the Article 4 direction route LA4 and the Article 5 direction route LA5 becomes the second shift distance DS2. Also, the distance between the Article 5 direction route LA5 and the Article 6 direction route LA6 becomes the third shift distance DS3.

尚、第2シフト間隔DS2及び第3シフト間隔DS3は、何れも、第1間隔D1よりも狭い。また、この例では、第2シフト間隔DS2及び第3シフト間隔DS3は、互いに同一の広さである。 The second shift interval DS2 and the third shift interval DS3 are both narrower than the first interval D1. In this example, the second shift interval DS2 and the third shift interval DS3 are the same width.

そして、この例では、第5条方向経路LA5及び第6条方向経路LA6の位置が北側へシフトすることにより、コンバイン1が条方向経路LAに沿って走行する際に所定条件が常に満たされるようになる。 In this example, the positions of the row 5 direction path LA5 and row 6 direction path LA6 are shifted northward, so that the specified conditions are always satisfied when the combine harvester 1 travels along the row direction path LA.

詳述すると、図10に示すように、コンバイン1が第4条方向経路LA4に沿って刈取走行を行うとき、未刈領域における右端に位置する条は、図10に示す第5位置Q5に位置している。また、このとき、未刈領域における左端に位置する条は、図10に示す第6位置Q6に位置している。 In more detail, as shown in FIG. 10, when the combine harvester 1 performs mowing travel along the fourth row direction path LA4, the row located at the right end of the uncut area is located at the fifth position Q5 shown in FIG. 10. At this time, the row located at the left end of the uncut area is located at the sixth position Q6 shown in FIG. 10.

そして、このとき、第3デバイダ53は、第6位置Q6よりも右側に位置している。また、第5デバイダ55は、第5位置Q5よりも左側に位置している。従って、コンバイン1が第4条方向経路LA4に沿って刈取走行を行う間、上述の所定条件は満たされる。 At this time, the third divider 53 is located to the right of the sixth position Q6. The fifth divider 55 is located to the left of the fifth position Q5. Therefore, while the combine 1 is performing harvesting travel along the fourth-row direction path LA4, the above-mentioned predetermined conditions are satisfied.

次に、コンバイン1が第6条方向経路LA6に沿って刈取走行を行うとき、未刈領域における右端に位置する条は、図10に示す第6位置Q6に位置している。また、このとき、未刈領域における左端に位置する条は、図10に示す第7位置Q7に位置している。 Next, when the combine harvester 1 performs mowing travel along the sixth row direction path LA6, the row located at the right end of the uncut area is located at the sixth position Q6 shown in FIG. 10. Also, at this time, the row located at the left end of the uncut area is located at the seventh position Q7 shown in FIG. 10.

そして、このとき、第3デバイダ53は、第7位置Q7よりも右側に位置している。また、第5デバイダ55は、第6位置Q6よりも左側に位置している。従って、コンバイン1が第6条方向経路LA6に沿って刈取走行を行う間、上述の所定条件は満たされる。 At this time, the third divider 53 is located to the right of the seventh position Q7. The fifth divider 55 is located to the left of the sixth position Q6. Therefore, while the combine 1 is performing harvesting travel along the sixth direction path LA6, the above-mentioned predetermined conditions are satisfied.

最後に、コンバイン1が第5条方向経路LA5に沿って刈取走行を行うとき、未刈領域における右端に位置する条は、図10に示す第7位置Q7に位置している。また、このとき、未刈領域における左端に位置する条は、図10に示す第8位置Q8に位置している。 Finally, when the combine harvester 1 performs mowing travel along the fifth row direction path LA5, the row located at the right end of the uncut area is located at the seventh position Q7 shown in FIG. 10. Also, at this time, the row located at the left end of the uncut area is located at the eighth position Q8 shown in FIG. 10.

そして、このとき、第3デバイダ53は、第8位置Q8よりも右側に位置している。また、第5デバイダ55は、第7位置Q7よりも左側に位置している。従って、コンバイン1が第5条方向経路LA5に沿って刈取走行を行う間、上述の所定条件は満たされる。 At this time, the third divider 53 is located to the right of the eighth position Q8. The fifth divider 55 is located to the left of the seventh position Q7. Therefore, while the combine 1 is performing harvesting travel along the fifth directional path LA5, the above-mentioned predetermined conditions are satisfied.

このように、図10に示す例では、コンバイン1が条方向経路LAに沿って走行する際に所定条件が常に満たされる。 In this way, in the example shown in Figure 10, the specified conditions are always met when the combine 1 travels along the row direction path LA.

また、図8及び図10に示すように、条方向経路LAの位置のシフトの仕方は、未刈領域の条数に応じて異なる。即ち、シフト算出部23dは、未刈領域の条数に応じて条方向経路LAの位置をシフトさせる。 Also, as shown in Figures 8 and 10, the way in which the position of the row direction path LA is shifted varies depending on the number of rows in the uncut area. That is, the shift calculation unit 23d shifts the position of the row direction path LA depending on the number of rows in the uncut area.

尚、以上で説明したように、圃場における未刈領域が複数に分割された場合、シフト算出部23dは、その分割によって生じた複数の未刈領域のうち、コンバイン1が現在刈取走行を行っている未刈領域、あるいは、コンバイン1が直近で刈取走行を行う予定の未刈領域のみを対象にして、所定条件が常に満たされるか否かの判定を行うと共に、条方向経路LAの位置をシフトさせる。 As described above, when the uncut area in the field is divided into multiple areas, the shift calculation unit 23d determines whether the specified condition is always satisfied and shifts the position of the row direction path LA only for the uncut area in which the combine harvester 1 is currently cutting or the uncut area in which the combine harvester 1 is scheduled to cut in the near future, out of the multiple uncut areas resulting from the division.

次に、シフト算出部23dによって条方向経路LAの位置が改めて算出される別の例として、図11に示すように、5条刈りのコンバイン2が、所定の作業領域CA3における刈取走行を行う場合について説明する。作業領域CA3は、未刈領域である。 Next, as another example in which the position of the row direction path LA is recalculated by the shift calculation unit 23d, a case will be described in which a 5-row combine harvester 2 performs mowing travel in a specified work area CA3, as shown in FIG. 11. The work area CA3 is an unmowed area.

尚、コンバイン2は、刈取条数が異なること以外は、コンバイン1と同様の構成を備えている。コンバイン2は、図11に示すように、第1デバイダ51、第2デバイダ52、第3デバイダ53、第4デバイダ54、第5デバイダ55、第6デバイダ56の6つのデバイダ5を備えている。 The combine harvester 2 has the same configuration as the combine harvester 1, except for the number of cutting rows. As shown in FIG. 11, the combine harvester 2 has six dividers 5: a first divider 51, a second divider 52, a third divider 53, a fourth divider 54, a fifth divider 55, and a sixth divider 56.

そして、この例では、所定条件は、「第3デバイダ53が、未刈領域における左端に位置する条よりも右側に位置し、且つ、第4デバイダ54が、未刈領域における右端に位置する条よりも左側に位置すること」である。 In this example, the specified condition is that "the third divider 53 is located to the right of the row located at the left end of the uncut area, and the fourth divider 54 is located to the left of the row located at the right end of the uncut area."

また、作業領域CA3における条方向は、東西方向である。そして、作業領域CA3における刈取走行を開始する前に、図11に示すように、作業領域CA3に対応する条方向経路LAとして、第7条方向経路LA7、第8条方向経路LA8、第9条方向経路LA9、第10条方向経路LA10の4つの条方向経路LAが既に算出されている。 The row direction in the working area CA3 is east-west. And before starting the harvesting run in the working area CA3, as shown in FIG. 11, four row direction routes LA corresponding to the working area CA3 have already been calculated: row 7 direction route LA7, row 8 direction route LA8, row 9 direction route LA9, and row 10 direction route LA10.

尚、北側から順に、第7条方向経路LA7、第8条方向経路LA8、第9条方向経路LA9、第10条方向経路LA10が並んでいる。また、これら4つの条方向経路LAは、互いに第3間隔D3を空けて並んでいる。第3間隔D3は、第1間隔D1よりも狭い。 In addition, from the north side, the line 7 directional route LA7, the line 8 directional route LA8, the line 9 directional route LA9, and the line 10 directional route LA10 are lined up. Furthermore, these four line directional routes LA are lined up with a third distance D3 between them. The third distance D3 is narrower than the first distance D1.

また、図11に示すように、作業領域CA3の条数は、16条である。また、このとき、作業領域CA3の条数は、条数算出部28によって算出され、シフト算出部23dへ送られる。また、このとき、経路算出部23は、機種情報記憶部26から、コンバイン1の刈取条数を既に取得している。 As shown in FIG. 11, the number of rows in the work area CA3 is 16. At this time, the number of rows in the work area CA3 is calculated by the row number calculation unit 28 and sent to the shift calculation unit 23d. At this time, the path calculation unit 23 has already acquired the number of reaping rows of the combine harvester 1 from the model information storage unit 26.

ここで、シフト算出部23dは、作業領域CA3においてコンバイン2が条方向経路LAに沿って走行する際に所定条件が常に満たされるか否かを判定する。より具体的には、シフト算出部23dは、図11に示すように、コンバイン2が、第7条方向経路LA7、第10条方向経路LA10、第8条方向経路LA8、第9条方向経路LA9の順に刈取走行した場合に、所定条件が常に満たされるか否かを判定する。 Here, the shift calculation unit 23d determines whether or not the predetermined condition is always satisfied when the combine harvester 2 travels along the row direction path LA in the working area CA3. More specifically, as shown in FIG. 11, the shift calculation unit 23d determines whether or not the predetermined condition is always satisfied when the combine harvester 2 travels for harvesting along the row 7 direction path LA7, row 10 direction path LA10, row 8 direction path LA8, and row 9 direction path LA9 in that order.

仮に、図11に示すように、コンバイン2が、第7条方向経路LA7、第10条方向経路LA10、第8条方向経路LA8、第9条方向経路LA9の順に刈取走行した場合、まず、コンバイン2は、第7条方向経路LA7に沿って刈取走行を行う。これにより、図11に示すように、作業領域CA3における未刈領域は、第1未刈領域CA31となる。第1未刈領域CA31の条数は、11条である。 Assuming that the combine harvester 2 cuts along the 7-row directional path LA7, the 10-row directional path LA10, the 8-row directional path LA8, and the 9-row directional path LA9 in this order, as shown in FIG. 11, the combine harvester 2 first cuts along the 7-row directional path LA7. As a result, as shown in FIG. 11, the uncut area in the working area CA3 becomes the first uncut area CA31. The number of rows in the first uncut area CA31 is 11.

次に、コンバイン2は、第10条方向経路LA10に沿って刈取走行を行う。これにより、図11に示すように、作業領域CA3における未刈領域は、第2未刈領域CA32となる。第2未刈領域CA32の条数は、10条である。 Next, the combine harvester 2 performs mowing travel along the 10-row directional path LA10. As a result, as shown in FIG. 11, the unmowed area in the working area CA3 becomes the second unmowed area CA32. The number of rows in the second unmowed area CA32 is 10.

次に、コンバイン2は、第8条方向経路LA8に沿って刈取走行を行う。これにより、図11に示すように、作業領域CA3における未刈領域は、第3未刈領域CA33となる。第3未刈領域CA33の条数は、5条である。 Next, the combine harvester 2 performs mowing travel along the eight-row direction path LA8. As a result, as shown in FIG. 11, the unmowed area in the working area CA3 becomes the third unmowed area CA33. The third unmowed area CA33 has five rows.

最後に、コンバイン2は、第9条方向経路LA9に沿って刈取走行を行う。これにより、作業領域CA3の全体が既刈領域となる。 Finally, the combine 2 performs mowing travel along the 9th directional route LA9. As a result, the entire working area CA3 becomes the already-mowed area.

ここで、コンバイン2が第7条方向経路LA7に沿って刈取走行を行うとき、未刈領域における右端に位置する条は、図11に示す第9位置Q9に位置している。また、このとき、未刈領域における左端に位置する条は、図11に示す第10位置Q10に位置している。 When the combine harvester 2 is traveling along the seventh row direction path LA7, the row located at the right end of the uncut area is located at the ninth position Q9 shown in FIG. 11. Also, at this time, the row located at the left end of the uncut area is located at the tenth position Q10 shown in FIG. 11.

そして、このとき、第3デバイダ53は、第10位置Q10よりも右側に位置している。また、第4デバイダ54は、第9位置Q9よりも左側に位置している。従って、コンバイン2が第7条方向経路LA7に沿って刈取走行を行う間、上述の所定条件は満たされる。 At this time, the third divider 53 is located to the right of the tenth position Q10. The fourth divider 54 is located to the left of the ninth position Q9. Therefore, while the combine 2 is performing harvesting travel along the seventh direction path LA7, the above-mentioned specified conditions are satisfied.

次に、コンバイン2が第10条方向経路LA10に沿って刈取走行を行うとき、未刈領域における右端に位置する条は、図11に示す第10位置Q10に位置している。また、このとき、未刈領域における左端に位置する条は、図11に示す第11位置Q11に位置している。 Next, when the combine harvester 2 performs mowing travel along the 10th row direction path LA10, the row located at the right end of the uncut area is located at the 10th position Q10 shown in FIG. 11. Also, at this time, the row located at the left end of the uncut area is located at the 11th position Q11 shown in FIG. 11.

そして、このとき、第3デバイダ53は、第11位置Q11よりも右側に位置している。しかしながら、第4デバイダ54は、第10位置Q10よりも右側に位置している。従って、コンバイン2が第10条方向経路LA10に沿って刈取走行を行う間、上述の所定条件は満たされない。 At this time, the third divider 53 is located to the right of the eleventh position Q11. However, the fourth divider 54 is located to the right of the tenth position Q10. Therefore, while the combine 2 is performing harvesting travel along the ten-way directional path LA10, the above-mentioned predetermined condition is not satisfied.

そのため、シフト算出部23dは、コンバイン2が、第7条方向経路LA7、第10条方向経路LA10、第8条方向経路LA8、第9条方向経路LA9の順に刈取走行した場合に、所定条件が常には満たされないと判定する。尚、この判定は、コンバイン2が第7条方向経路LA7に沿う走行を開始する前に行われる。 Therefore, when the combine harvester 2 travels along the 7th row direction path LA7, the 10th row direction path LA10, the 8th row direction path LA8, and the 9th row direction path LA9 in this order, the shift calculation unit 23d determines that the predetermined condition is not always satisfied. Note that this determination is made before the combine harvester 2 starts traveling along the 7th row direction path LA7.

その結果、シフト算出部23dは、図12に示すように、第8条方向経路LA8、第9条方向経路LA9、第10条方向経路LA10の位置を、改めて算出する。この例では、第8条方向経路LA8、第9条方向経路LA9、第10条方向経路LA10の位置は、それぞれ北側へシフトする。これにより、第7条方向経路LA7と第8条方向経路LA8との間隔は、第4シフト間隔DS4となる。また、第8条方向経路LA8と第9条方向経路LA9との間隔は、第5シフト間隔DS5となる。また、第9条方向経路LA9と第10条方向経路LA10との間隔は、第6シフト間隔DS6となる。 As a result, the shift calculation unit 23d recalculates the positions of the Article 8 direction route LA8, the Article 9 direction route LA9, and the Article 10 direction route LA10, as shown in FIG. 12. In this example, the positions of the Article 8 direction route LA8, the Article 9 direction route LA9, and the Article 10 direction route LA10 are each shifted northward. As a result, the distance between the Article 7 direction route LA7 and the Article 8 direction route LA8 becomes the fourth shift distance DS4. Also, the distance between the Article 8 direction route LA8 and the Article 9 direction route LA9 becomes the fifth shift distance DS5. Also, the distance between the Article 9 direction route LA9 and the Article 10 direction route LA10 becomes the sixth shift distance DS6.

尚、第4シフト間隔DS4、第5シフト間隔DS5、第6シフト間隔DS6は、何れも、第3間隔D3よりも狭い。また、この例では、第4シフト間隔DS4、第5シフト間隔DS5、第6シフト間隔DS6は、互いに同一の広さである。 The fourth shift interval DS4, the fifth shift interval DS5, and the sixth shift interval DS6 are all narrower than the third interval D3. In this example, the fourth shift interval DS4, the fifth shift interval DS5, and the sixth shift interval DS6 are all the same width.

そして、この例では、第8条方向経路LA8、第9条方向経路LA9、第10条方向経路LA10の位置が北側へシフトすることにより、コンバイン2が条方向経路LAに沿って走行する際に所定条件が常に満たされるようになる。 In this example, the positions of row 8 direction path LA8, row 9 direction path LA9, and row 10 direction path LA10 are shifted northward, so that the specified conditions are always satisfied when the combine harvester 2 travels along the row direction path LA.

詳述すると、図12に示すように、コンバイン2が第7条方向経路LA7に沿って刈取走行を行うとき、未刈領域における右端に位置する条は、図12に示す第9位置Q9に位置している。また、このとき、未刈領域における左端に位置する条は、図12に示す第10位置Q10に位置している。 In more detail, as shown in FIG. 12, when the combine harvester 2 performs mowing travel along the seventh row direction path LA7, the row located at the right end of the uncut area is located at the ninth position Q9 shown in FIG. 12. At this time, the row located at the left end of the uncut area is located at the tenth position Q10 shown in FIG. 12.

そして、このとき、第3デバイダ53は、第10位置Q10よりも右側に位置している。また、第4デバイダ54は、第9位置Q9よりも左側に位置している。従って、コンバイン2が第7条方向経路LA7に沿って刈取走行を行う間、上述の所定条件は満たされる。 At this time, the third divider 53 is located to the right of the tenth position Q10. The fourth divider 54 is located to the left of the ninth position Q9. Therefore, while the combine 2 is performing harvesting travel along the seventh direction path LA7, the above-mentioned specified conditions are satisfied.

次に、コンバイン2が第10条方向経路LA10に沿って刈取走行を行うとき、未刈領域における右端に位置する条は、図12に示す第10位置Q10に位置している。また、このとき、未刈領域における左端に位置する条は、図12に示す第11位置Q11に位置している。 Next, when the combine harvester 2 performs mowing travel along the 10th row direction path LA10, the row located at the right end of the unmowed area is located at the 10th position Q10 shown in FIG. 12. Also, at this time, the row located at the left end of the unmowed area is located at the 11th position Q11 shown in FIG. 12.

そして、このとき、第3デバイダ53は、第11位置Q11よりも右側に位置している。また、第4デバイダ54は、第10位置Q10よりも左側に位置している。従って、コンバイン2が第10条方向経路LA10に沿って刈取走行を行う間、上述の所定条件は満たされる。 At this time, the third divider 53 is located to the right of the eleventh position Q11. The fourth divider 54 is located to the left of the tenth position Q10. Therefore, while the combine 2 is performing harvesting travel along the ten-way directional path LA10, the above-mentioned predetermined conditions are satisfied.

次に、コンバイン2が第8条方向経路LA8に沿って刈取走行を行うとき、未刈領域における右端に位置する条は、図12に示す第11位置Q11に位置している。また、このとき、未刈領域における左端に位置する条は、図12に示す第12位置Q12に位置している。 Next, when the combine harvester 2 performs mowing travel along the row 8 direction path LA8, the row located at the right end of the uncut area is located at the 11th position Q11 shown in FIG. 12. Also, at this time, the row located at the left end of the uncut area is located at the 12th position Q12 shown in FIG. 12.

そして、このとき、第3デバイダ53は、第12位置Q12よりも右側に位置している。また、第4デバイダ54は、第11位置Q11よりも左側に位置している。従って、コンバイン2が第8条方向経路LA8に沿って刈取走行を行う間、上述の所定条件は満たされる。 At this time, the third divider 53 is located to the right of the twelfth position Q12. The fourth divider 54 is located to the left of the eleventh position Q11. Therefore, while the combine 2 is performing harvesting travel along the eighth direction path LA8, the above-mentioned predetermined conditions are satisfied.

最後に、コンバイン2が第9条方向経路LA9に沿って刈取走行を行うとき、未刈領域における右端に位置する条は、図12に示す第12位置Q12に位置している。また、このとき、未刈領域における左端に位置する条は、図12に示す第13位置Q13に位置している。 Finally, when the combine harvester 2 performs mowing travel along the row 9 direction path LA9, the row located at the right end of the uncut area is located at the 12th position Q12 shown in FIG. 12. Also, at this time, the row located at the left end of the uncut area is located at the 13th position Q13 shown in FIG. 12.

そして、このとき、第3デバイダ53は、第13位置Q13よりも右側に位置している。また、第4デバイダ54は、第12位置Q12よりも左側に位置している。従って、コンバイン2が第9条方向経路LA9に沿って刈取走行を行う間、上述の所定条件は満たされる。 At this time, the third divider 53 is located to the right of the thirteenth position Q13. The fourth divider 54 is located to the left of the twelfth position Q12. Therefore, while the combine 2 is performing harvesting travel along the ninth direction path LA9, the above-mentioned specified conditions are satisfied.

このように、図12に示す例では、コンバイン2が条方向経路LAに沿って走行する際に所定条件が常に満たされる。 In this way, in the example shown in Figure 12, the specified conditions are always met when the combine 2 travels along the row direction path LA.

また、図8及び図12に示すように、条方向経路LAの位置のシフトの仕方は、刈取条数に応じて異なる。即ち、シフト算出部23dは、刈取条数に応じて条方向経路LAの位置をシフトさせる。 As shown in Figures 8 and 12, the way in which the position of the row direction path LA is shifted varies depending on the number of reaping rows. That is, the shift calculation unit 23d shifts the position of the row direction path LA depending on the number of reaping rows.

〔条方向決定部に関する構成〕
図5に示すように、自動走行システムAは、通信端末4を備えている。そして、通信端末4は、条方向決定部4cを有している。以下では、条方向決定部4cの機能について説明する。
[Configuration of the stripe direction determination unit]
5, the automatic driving system A includes a communication terminal 4. The communication terminal 4 includes a line direction determination unit 4c. The function of the line direction determination unit 4c will be described below.

図13に示すように、コンバイン1は、正方形や長方形でない四角形状の未刈領域において、自動走行により刈取走行を行うことが可能である。そして、自動走行システムAは、そのような自動走行を管理することが可能である。 As shown in FIG. 13, the combine harvester 1 can perform automatic driving to cut in uncut areas that are rectangular and not square. The automatic driving system A can manage such automatic driving.

即ち、自動走行システムAは、圃場における四角形状の未刈領域において刈取走行を行うコンバイン1の自動走行を管理する。 In other words, the automatic driving system A manages the automatic driving of the combine harvester 1, which performs cutting driving in a rectangular uncut area in the field.

図5、図14、図15に示すように、通信端末4は、タッチパネル4aを有している。タッチパネル4aは、オペレータによるタッチ操作に応じて、未刈領域の輪郭線を構成する4辺のうち、1辺を選択する。即ち、オペレータは、タッチパネル4aをタッチ操作することにより、未刈領域の輪郭線を構成する4辺のうち、1辺を選択することができる。 As shown in Figs. 5, 14, and 15, the communication terminal 4 has a touch panel 4a. The touch panel 4a selects one of the four sides that make up the contour of the unmowed area in response to a touch operation by the operator. In other words, the operator can select one of the four sides that make up the contour of the unmowed area by touching the touch panel 4a.

例えば、図14では、タッチパネル4aに、外周領域SA及び作業対象領域CAが表示されている。このとき、作業対象領域CAの全体が未刈領域であるとする。また、未刈領域の輪郭線を構成する4辺は、それぞれ、第1辺S1、第2辺S2、第3辺S3、第4辺S4である。 For example, in FIG. 14, the outer peripheral area SA and the work area CA are displayed on the touch panel 4a. In this case, the entire work area CA is an unmowed area. The four sides that make up the contour of the unmowed area are the first side S1, the second side S2, the third side S3, and the fourth side S4.

第1辺S1は、未刈領域の北端に位置する。第2辺S2は、未刈領域の輪郭線において第1辺S1に隣接し、未刈領域の西端に位置する。第3辺S3は、第1辺S1の対辺であり、未刈領域の南端に位置する。第4辺S4は、未刈領域の輪郭線における第2辺S2の対辺であり、未刈領域の東端に位置する。 The first side S1 is located at the northern end of the unmowed area. The second side S2 is adjacent to the first side S1 on the contour line of the unmowed area and is located at the western end of the unmowed area. The third side S3 is opposite the first side S1 and is located at the southern end of the unmowed area. The fourth side S4 is opposite the second side S2 on the contour line of the unmowed area and is located at the eastern end of the unmowed area.

そして、図14に示すように、オペレータは、タッチパネル4aに表示された第1辺S1、第2辺S2、第3辺S3、第4辺S4のうち、何れかをタッチ操作する。これにより、オペレータは、第1辺S1、第2辺S2、第3辺S3、第4辺S4の中から1辺を選択することができる。 Then, as shown in FIG. 14, the operator touches any one of the first side S1, the second side S2, the third side S3, and the fourth side S4 displayed on the touch panel 4a. This allows the operator to select one side from the first side S1, the second side S2, the third side S3, and the fourth side S4.

即ち、自動走行システムAは、未刈領域の輪郭線を構成する4辺のうち、1辺を選択するタッチパネル4aを備えている。 That is, the automated driving system A is equipped with a touch panel 4a that selects one of the four sides that form the contour of the unmowed area.

図14に示す例では、オペレータは、第1辺S1をタッチ操作する。これにより、第1辺S1が選択される。そして、図15に示すように、選択された1辺は、タッチパネル4aにおいて強調表示される。この例では、第1辺S1が選択されたため、図15に示すように、第1辺S1が強調表示される。 In the example shown in FIG. 14, the operator touches the first side S1. This selects the first side S1. Then, as shown in FIG. 15, the selected side is highlighted on the touch panel 4a. In this example, since the first side S1 has been selected, the first side S1 is highlighted as shown in FIG. 15.

また、図5に示すように、通信端末4は、判定部4bを有している。選択辺を示す情報は、タッチパネル4aから判定部4b及び条方向決定部4cへ送られる。尚、選択辺とは、タッチパネル4aにより選択された辺である。 As shown in FIG. 5, the communication terminal 4 also has a determination unit 4b. Information indicating the selected side is sent from the touch panel 4a to the determination unit 4b and the line direction determination unit 4c. The selected side is the side selected by the touch panel 4a.

そして、判定部4bは、選択辺に対する選択辺の対辺の傾きが所定の基準角度以下であるか否かを判定する。例えば、図15に示す場合には、判定部4bは、第1辺S1に対する第3辺S3の傾きが基準角度以下であるか否かを判定する。 Then, the determination unit 4b determines whether the inclination of the opposite side of the selected side with respect to the selected side is equal to or less than a predetermined reference angle. For example, in the case shown in FIG. 15, the determination unit 4b determines whether the inclination of the third side S3 with respect to the first side S1 is equal to or less than a reference angle.

即ち、自動走行システムAは、タッチパネル4aにより選択された辺である選択辺に対する選択辺の対辺の傾きが所定の基準角度以下であるか否かを判定する判定部4bを備えている。 That is, the automated driving system A is equipped with a determination unit 4b that determines whether the inclination of the opposite side of the selected side relative to the selected side, which is the side selected by the touch panel 4a, is equal to or smaller than a predetermined reference angle.

図5に示すように、判定部4bによる判定結果は、条方向決定部4cへ送られる。また、自車位置算出部21により算出されたコンバイン1の位置座標は、通信端末4へ送られる。 As shown in FIG. 5, the result of the determination by the determination unit 4b is sent to the row direction determination unit 4c. In addition, the position coordinates of the combine 1 calculated by the vehicle position calculation unit 21 are sent to the communication terminal 4.

また、コンバイン1の走行が渦巻き走行から往復走行へ移行する際、走行制御部24は、所定の信号を条方向決定部4cへ送る。この信号は、渦巻き走行から往復走行への移行を示す信号である。 When the combine harvester 1 transitions from spiral travel to reciprocating travel, the travel control unit 24 sends a predetermined signal to the row direction determination unit 4c. This signal indicates the transition from spiral travel to reciprocating travel.

そして、条方向決定部4cは、選択辺を示す情報と、判定部4bによる判定結果と、コンバイン1の位置座標と、走行制御部24から受け取った上述の信号と、に基づいて、未刈領域における条方向を決定する。 Then, the row direction determination unit 4c determines the row direction in the uncut area based on the information indicating the selected side, the determination result by the determination unit 4b, the position coordinates of the combine 1, and the above-mentioned signal received from the travel control unit 24.

より具体的には、判定部4bにより選択辺に対する選択辺の対辺の傾きが基準角度よりも大きいと判定された場合、条方向決定部4cは、選択辺の延びる方向を条方向として決定する。 More specifically, if the determination unit 4b determines that the inclination of the opposite side of the selected side with respect to the selected side is greater than the reference angle, the stripe direction determination unit 4c determines the direction in which the selected side extends as the stripe direction.

また、判定部4bにより選択辺に対する選択辺の対辺の傾きが基準角度以下であると判定された場合、条方向決定部4cは、機体の状態に応じて、選択辺の延びる方向と、選択辺の対辺の延びる方向と、のうちの何れか一方を条方向として決定する。 In addition, if the determination unit 4b determines that the inclination of the opposite side of the selected side with respect to the selected side is equal to or less than the reference angle, the line direction determination unit 4c determines the line direction to be either the extension direction of the selected side or the extension direction of the opposite side of the selected side, depending on the state of the aircraft.

尚、コンバイン1の位置座標、及び、渦巻き走行から往復走行への移行は、何れも上述の「機体の状態」に相当する。 The position coordinates of the combine harvester 1 and the transition from spiral travel to reciprocating travel both correspond to the "machine state" described above.

即ち、自動走行システムAは、未刈領域における条方向を決定する条方向決定部4cを備えている。 That is, the automated driving system A is equipped with a row direction determination unit 4c that determines the row direction in the unmowed area.

条方向決定部4cにより決定された条方向を示す情報は、走行制御部24へ送られる。そして、走行制御部24は、往復走行において、条方向決定部4cにより条方向として決定された方向に沿って刈取走行が行われるようにコンバイン1の走行を制御する。 The information indicating the row direction determined by the row direction determination unit 4c is sent to the travel control unit 24. The travel control unit 24 then controls the travel of the combine 1 so that, during round trip travel, the harvesting travel is performed along the direction determined as the row direction by the row direction determination unit 4c.

以下では、判定部4bにより選択辺に対する選択辺の対辺の傾きが基準角度以下であると判定された場合における条方向の決定について、コンバイン1が図13、図16から図18に示す圃場で収穫作業を行う場合を例に挙げて説明する。 The following describes how to determine the row direction when the determining unit 4b determines that the inclination of the opposite side of the selected side with respect to the selected side is equal to or less than the reference angle, using as an example a case in which the combine harvester 1 performs harvesting work in the fields shown in Figures 13, 16 to 18.

この例では、図13に示すように、コンバイン1は、まず、圃場における外周側の領域で刈取走行する。この刈取走行が完了すると、領域算出部22によって、外周領域SA及び作業対象領域CAが算出される。 In this example, as shown in FIG. 13, the combine harvester 1 first performs mowing in the outer peripheral area of the field. When this mowing is completed, the area calculation unit 22 calculates the outer peripheral area SA and the work target area CA.

このとき、圃場における未刈領域は、作業対象領域CAに一致している。そして、この例では、作業対象領域CAは、四角形状である。 At this time, the uncut area in the field coincides with the work area CA. In this example, the work area CA is rectangular.

そして、作業対象領域CAの輪郭線を構成する4辺は、第1辺S1、第2辺S2、第3辺S3、第4辺S4である。第1辺S1は、作業対象領域CAにおける北側に位置している。第2辺S2は、第1辺S1に隣接すると共に、作業対象領域CAにおける西側に位置している。第3辺S3は、第1辺S1の対辺であると共に、作業対象領域CAにおける南側に位置している。第4辺S4は、第2辺S2の対辺であると共に、作業対象領域CAにおける東側に位置している。 The four sides that make up the contour of the work area CA are the first side S1, the second side S2, the third side S3, and the fourth side S4. The first side S1 is located on the north side of the work area CA. The second side S2 is adjacent to the first side S1 and is located on the west side of the work area CA. The third side S3 is the opposite side to the first side S1 and is located on the south side of the work area CA. The fourth side S4 is the opposite side to the second side S2 and is located on the east side of the work area CA.

また、この例では、図14及び図15に示すように、第1辺S1が、タッチパネル4aにより選択されるものとする。即ち、第1辺S1は、選択辺である。 In this example, as shown in Figures 14 and 15, it is assumed that the first side S1 is selected by the touch panel 4a. In other words, the first side S1 is the selected side.

この例においても、上述の通り、経路算出部23は、領域算出部22から受け取った算出結果に基づいて、作業対象領域CAにおける刈取走行経路LNを算出する。 In this example, as described above, the route calculation unit 23 calculates the harvesting driving route LN in the work target area CA based on the calculation results received from the area calculation unit 22.

上述の説明において、経路算出部23は、図3に示すように、縦横方向に延びる複数のメッシュ線である刈取走行経路LNを算出した。しかしながら、経路算出部23は、図13に示すような刈取走行経路LNを算出することも可能であるように構成されている。 In the above description, the route calculation unit 23 calculated the mowing travel route LN, which is a number of mesh lines extending vertically and horizontally, as shown in FIG. 3. However, the route calculation unit 23 is configured to be capable of calculating the mowing travel route LN as shown in FIG. 13.

図13に示す刈取走行経路LNは、互いに平行に所定間隔で並ぶ複数の第1経路L1と、互いに平行に所定間隔で並ぶ複数の第2経路L2と、互いに平行に所定間隔で並ぶ複数の第3経路L3と、互いに平行に所定間隔で並ぶ複数の第4経路L4と、により構成されている。 The harvesting travel path LN shown in FIG. 13 is composed of a plurality of first paths L1 arranged parallel to each other at a predetermined interval, a plurality of second paths L2 arranged parallel to each other at a predetermined interval, a plurality of third paths L3 arranged parallel to each other at a predetermined interval, and a plurality of fourth paths L4 arranged parallel to each other at a predetermined interval.

そして、複数の第1経路L1は、第1辺S1に平行に並んでいる。また、複数の第2経路L2は、第2辺S2に平行に並んでいる。また、複数の第3経路L3は、第3辺S3に平行に並んでいる。また、複数の第4経路L4は、第4辺S4に平行に並んでいる。 The multiple first paths L1 are arranged parallel to the first side S1. The multiple second paths L2 are arranged parallel to the second side S2. The multiple third paths L3 are arranged parallel to the third side S3. The multiple fourth paths L4 are arranged parallel to the fourth side S4.

即ち、経路算出部23は、選択辺である第1辺S1に平行に所定間隔で並ぶ複数の第1経路L1と、未刈領域の輪郭線において第1辺S1に隣接する第2辺S2に平行に所定間隔で並ぶ複数の第2経路L2と、選択辺の対辺である第3辺S3に平行に所定間隔で並ぶ複数の第3経路L3と、未刈領域の輪郭線における第2辺S2の対辺である第4辺S4に平行に所定間隔で並ぶ複数の第4経路L4と、を刈取走行経路LNとして算出する。 In other words, the path calculation unit 23 calculates the following as the mowing travel paths LN: a plurality of first paths L1 arranged at a predetermined interval parallel to the first side S1, which is the selected side; a plurality of second paths L2 arranged at a predetermined interval parallel to the second side S2 adjacent to the first side S1 on the contour line of the unmowed area; a plurality of third paths L3 arranged at a predetermined interval parallel to the third side S3, which is the opposite side of the selected side; and a plurality of fourth paths L4 arranged at a predetermined interval parallel to the fourth side S4, which is the opposite side of the second side S2 on the contour line of the unmowed area.

経路算出部23によって刈取走行経路LNが算出されると、図16に示すように、コンバイン1は、走行制御部24の制御により、渦巻き走行を開始する。 When the harvesting travel path LN is calculated by the path calculation unit 23, the combine harvester 1 starts spiral travel under the control of the travel control unit 24, as shown in FIG. 16.

この例では、渦巻き走行において、コンバイン1は、まず、北側第1走行経路L11に沿う刈取走行を行う。尚、北側第1走行経路L11は、複数の第1経路L1のうち、第1辺S1に最も近接した第1経路L1である。 In this example, in the spiral travel, the combine harvester 1 first performs harvesting travel along the north first travel path L11. The north first travel path L11 is the first path L1 that is closest to the first side S1 among the multiple first paths L1.

次に、コンバイン1は、西側第1走行経路L21に沿う刈取走行を行う。尚、西側第1走行経路L21は、複数の第2経路L2のうち、第2辺S2に最も近接した第2経路L2である。 Next, the combine harvester 1 performs harvesting travel along the western first travel path L21. The western first travel path L21 is the second path L2 that is closest to the second side S2 among the multiple second paths L2.

次に、コンバイン1は、南側第1走行経路L31に沿う刈取走行を行う。尚、南側第1走行経路L31は、複数の第3経路L3のうち、第3辺S3に最も近接した第3経路L3である。 Next, the combine harvester 1 performs harvesting travel along the south-side first travel path L31. The south-side first travel path L31 is the third path L3 that is closest to the third side S3 among the multiple third paths L3.

次に、コンバイン1は、東側第1走行経路L41に沿う刈取走行を行う。尚、東側第1走行経路L41は、複数の第4経路L4のうち、第4辺S4に最も近接した第4経路L4である。 Next, the combine harvester 1 performs harvesting travel along the eastern first travel path L41. The eastern first travel path L41 is the fourth path L4 that is closest to the fourth side S4 among the multiple fourth paths L4.

次に、コンバイン1は、北側第2走行経路L12に沿う刈取走行を行う。尚、北側第2走行経路L12は、まだ刈取走行の行われていない第1経路L1のうち、第1辺S1に最も近接した第1経路L1である。 Next, the combine harvester 1 performs reaping travel along the north second travel path L12. The north second travel path L12 is the first path L1 that is closest to the first side S1 among the first paths L1 on which reaping travel has not yet been performed.

北側第2走行経路L12に沿う刈取走行が完了すると、それ以降は、順次、西側第2走行経路L22、南側第2走行経路L32、東側第2走行経路L42に沿う刈取走行が行われる。 Once the mowing operation along the north side second travel path L12 is completed, mowing operations will be performed sequentially along the west side second travel path L22, the south side second travel path L32, and the east side second travel path L42.

尚、西側第2走行経路L22は、まだ刈取走行の行われていない第2経路L2のうち、第2辺S2に最も近接した第2経路L2である。また、南側第2走行経路L32は、まだ刈取走行の行われていない第3経路L3のうち、第3辺S3に最も近接した第3経路L3である。また、東側第2走行経路L42は、まだ刈取走行の行われていない第4経路L4のうち、第4辺S4に最も近接した第4経路L4である。 The west side second travel path L22 is the second route L2 that is closest to the second side S2 among the second routes L2 on which mowing has not yet been performed. The south side second travel path L32 is the third route L3 that is closest to the third side S3 among the third routes L3 on which mowing has not yet been performed. The east side second travel path L42 is the fourth route L4 that is closest to the fourth side S4 among the fourth routes L4 on which mowing has not yet been performed.

即ち、走行制御部24は、渦巻き走行において、第1経路L1に沿う刈取走行の次に第2経路L2に沿う刈取走行が行われ、第2経路L2に沿う刈取走行の次に第3経路L3に沿う刈取走行が行われ、第3経路L3に沿う刈取走行の次に第4経路L4に沿う刈取走行が行われ、第4経路L4に沿う刈取走行の次に第1経路L1に沿う刈取走行が行われるようにコンバイン1の走行を制御する。 That is, the travel control unit 24 controls the travel of the combine 1 so that, in the spiral travel, after the cutting travel along the first path L1, the cutting travel along the second path L2 is performed, after the cutting travel along the second path L2, after the cutting travel along the third path L3, after the cutting travel along the third path L3, after the cutting travel along the fourth path L4, and after the cutting travel along the fourth path L4, the cutting travel along the first path L1 is performed.

尚、この例では、走行制御部24は、渦巻き走行において、まず、第1経路L1に沿う刈取走行が行われるようにコンバイン1の走行を制御する。しかしながら、本発明はこれに限定されず、走行制御部24は、渦巻き走行において、まず、第2経路L2、第3経路L3、第4経路L4の何れかに沿う刈取走行が行われるようにコンバイン1の走行を制御するように構成されていても良い。 In this example, the travel control unit 24 controls the travel of the combine harvester 1 so that, in the spiral travel, the combine harvester 1 first performs reaping travel along the first path L1. However, the present invention is not limited to this, and the travel control unit 24 may be configured to control the travel of the combine harvester 1 so that, in the spiral travel, the combine harvester 1 first performs reaping travel along any one of the second path L2, the third path L3, or the fourth path L4.

また、渦巻き走行におけるコンバイン1の周回数は、1周のみでも良い。即ち、渦巻き走行において、図16に示す北側第2走行経路L12、西側第2走行経路L22、南側第2走行経路L32、東側第2走行経路L42に沿う刈取走行は、行われなくても良い。また、渦巻き走行におけるコンバイン1の周回数は、2周以上のいかなる周回数であっても良い。 The number of revolutions of the combine harvester 1 during spiral travel may be only one. In other words, during spiral travel, harvesting travel along the north side second travel path L12, the west side second travel path L22, the south side second travel path L32, and the east side second travel path L42 shown in FIG. 16 does not have to be performed. The number of revolutions of the combine harvester 1 during spiral travel may be any number of revolutions, including two or more revolutions.

ここで、この例では、第1辺S1に対する第3辺S3の傾きが基準角度以下であるものとする。そのため、判定部4bは、選択辺に対する選択辺の対辺の傾きが基準角度以下であると判定する。 In this example, the inclination of the third side S3 relative to the first side S1 is less than or equal to the reference angle. Therefore, the determination unit 4b determines that the inclination of the side opposite the selected side relative to the selected side is less than or equal to the reference angle.

そして、判定部4bにより選択辺に対する選択辺の対辺の傾きが基準角度以下であると判定され、且つ、渦巻き走行における第1経路L1または第2経路L2に沿う刈取走行が完了した時点でコンバイン1の走行が往復走行に移行する場合、条方向決定部4cは、選択辺の対辺の延びる方向を条方向として決定する。また、この場合、走行制御部24は、往復走行において、第3経路L3に沿う刈取走行が行われるようにコンバイン1の走行を制御する。 When the determination unit 4b determines that the inclination of the opposite side of the selected side relative to the selected side is equal to or less than the reference angle, and the combine harvester 1 transitions to reciprocating travel when the reaping travel along the first path L1 or the second path L2 in the spiral travel is completed, the row direction determination unit 4c determines the direction in which the opposite side of the selected side extends as the row direction. In this case, the travel control unit 24 controls the travel of the combine harvester 1 so that the reaping travel along the third path L3 is performed in the reciprocating travel.

また、判定部4bにより選択辺に対する選択辺の対辺の傾きが基準角度以下であると判定され、且つ、渦巻き走行における第3経路L3または第4経路L4に沿う刈取走行が完了した時点でコンバイン1の走行が往復走行に移行する場合、条方向決定部4cは、選択辺の延びる方向を条方向として決定する。また、この場合、走行制御部24は、往復走行において、第1経路L1に沿う刈取走行が行われるようにコンバイン1の走行を制御する。 When the determination unit 4b determines that the inclination of the opposite side of the selected side with respect to the selected side is equal to or less than the reference angle, and the combine harvester 1 transitions to reciprocating travel when the reaping travel along the third path L3 or the fourth path L4 in the spiral travel is completed, the row direction determination unit 4c determines the direction in which the selected side extends as the row direction. In this case, the travel control unit 24 controls the travel of the combine harvester 1 so that the reaping travel is performed along the first path L1 in the reciprocating travel.

例えば、図17に示す例では、図17の上部に示すように、渦巻き走行において、第4経路L4に沿う刈取走行の次に、第1経路L1に沿う刈取走行が行われる。そして、第1経路L1に沿う刈取走行が完了した時点で、渦巻き走行が完了する。 For example, in the example shown in FIG. 17, as shown in the upper part of FIG. 17, in spiral running, after mowing running along the fourth path L4, mowing running along the first path L1 is performed. Then, at the point when mowing running along the first path L1 is completed, the spiral running is completed.

即ち、図17に示す例では、渦巻き走行における第1経路L1に沿う刈取走行が完了した時点でコンバイン1の走行が往復走行に移行する。 In other words, in the example shown in FIG. 17, when the harvesting run along the first path L1 in the spiral run is completed, the run of the combine harvester 1 transitions to reciprocating run.

この場合、条方向決定部4cは、選択辺の対辺の延びる方向を条方向として決定する。即ち、条方向決定部4cは、第3辺S3の延びる方向を条方向として決定する。そして、図17の下部に示すように、走行制御部24は、往復走行において、第3経路L3に沿う刈取走行が行われるようにコンバイン1の走行を制御する。 In this case, the row direction determination unit 4c determines the direction in which the opposite side of the selected side extends as the row direction. In other words, the row direction determination unit 4c determines the direction in which the third side S3 extends as the row direction. Then, as shown in the lower part of FIG. 17, the travel control unit 24 controls the travel of the combine 1 so that the harvesting travel is performed along the third path L3 during the round trip travel.

尚、この場合、往復走行に移行する際に、コンバイン1は、未刈領域の北西部の近傍から、未刈領域の南西部の近傍へ移動する。そして、往復走行における最初の刈取走行は、まだ刈取走行の行われていない第3経路L3のうち、第3辺S3に最も近接した第3経路L3に沿って行われる。 In this case, when the combine 1 transitions to reciprocating travel, it moves from the vicinity of the northwestern part of the uncut area to the vicinity of the southwestern part of the uncut area. The first mowing run in the reciprocating travel is performed along the third path L3 that is closest to the third side S3 among the third paths L3 on which no mowing run has yet been performed.

また、図18に示す例では、図18の上部に示すように、渦巻き走行において、第2経路L2に沿う刈取走行の次に、第3経路L3に沿う刈取走行が行われる。そして、第3経路L3に沿う刈取走行が完了した時点で、渦巻き走行が完了する。 In the example shown in FIG. 18, as shown in the upper part of FIG. 18, in the spiral running, after the cutting run along the second path L2, cutting run along the third path L3 is performed. Then, when the cutting run along the third path L3 is completed, the spiral running is completed.

即ち、図18に示す例では、渦巻き走行における第3経路L3に沿う刈取走行が完了した時点でコンバイン1の走行が往復走行に移行する。 In other words, in the example shown in FIG. 18, when the harvesting run along the third path L3 in the spiral run is completed, the run of the combine harvester 1 transitions to reciprocating run.

この場合、条方向決定部4cは、選択辺の延びる方向を条方向として決定する。即ち、条方向決定部4cは、第1辺S1の延びる方向を条方向として決定する。そして、図18の下部に示すように、走行制御部24は、往復走行において、第1経路L1に沿う刈取走行が行われるようにコンバイン1の走行を制御する。 In this case, the row direction determination unit 4c determines the direction in which the selected side extends as the row direction. That is, the row direction determination unit 4c determines the direction in which the first side S1 extends as the row direction. Then, as shown in the lower part of FIG. 18, the travel control unit 24 controls the travel of the combine 1 so that the harvesting travel is performed along the first path L1 during the round trip travel.

尚、この場合、往復走行に移行する際に、コンバイン1は、未刈領域の南東部の近傍から、未刈領域の北東部の近傍へ移動する。そして、往復走行における最初の刈取走行は、まだ刈取走行の行われていない第1経路L1のうち、第1辺S1に最も近接した第1経路L1に沿って行われる。 In this case, when transitioning to round trip travel, the combine 1 moves from the vicinity of the southeastern part of the uncut area to the vicinity of the northeastern part of the uncut area. The first mowing run in the round trip is performed along the first path L1 that is closest to the first side S1 among the first paths L1 on which no mowing run has yet been performed.

以上で説明した構成であれば、所定個数を比較的少ない個数とすることにより、コンバイン1が条方向経路LAに沿って走行する際に、刈取部Hの通過範囲と既刈領域との重複範囲の幅が比較的狭くなりやすい。 With the configuration described above, by setting the predetermined number to a relatively small number, the width of the overlapping range between the passing range of the cutting unit H and the already-cut area tends to be relatively narrow when the combine 1 travels along the row direction path LA.

例えば、コンバイン1が6条刈りの機種であり、7つのデバイダ5を有しており、所定個数が3つである場合、コンバイン1が条方向経路LAに沿って走行する際、左端から3つ目のデバイダ5が未刈領域における左端に位置する条よりも右側に位置し、且つ、右端から3つ目のデバイダ5が、未刈領域における右端に位置する条よりも左側に位置することとなる。その結果、左端から2つ目のデバイダ5と、右端から2つ目のデバイダ5と、の間に、4条の未刈穀稈が位置する状態で刈取走行が行われることとなる。 For example, if the combine harvester 1 is a six-row harvester with seven dividers 5 and the specified number is three, when the combine harvester 1 travels along the row direction path LA, the third divider 5 from the left end will be located to the right of the row located at the left end of the uncut area, and the third divider 5 from the right end will be located to the left of the row located at the right end of the uncut area. As a result, the harvesting travel will be performed with four rows of uncut stalks located between the second divider 5 from the left end and the second divider 5 from the right end.

そして、このとき、左端のデバイダ5と、左端から2つ目のデバイダ5と、の間の部分が未刈領域を通過する場合、刈取部Hの左部において、刈取部Hの通過範囲と既刈領域とは重複しない。また、左端のデバイダ5と、左端から2つ目のデバイダ5と、の間の部分が既刈領域を通過する場合、刈取部Hの左部において、刈取部Hの通過範囲と既刈領域との重複範囲の幅は、1条分である。 At this time, when the portion between the leftmost divider 5 and the second divider 5 from the left passes through the unmowed area, the passing range of the mowing unit H does not overlap with the already-mowed area on the left side of the mowing unit H. Also, when the portion between the leftmost divider 5 and the second divider 5 from the left passes through the already-mowed area, the width of the overlapping range between the passing range of the mowing unit H and the already-mowed area on the left side of the mowing unit H is one row.

即ち、刈取部Hの左部において、刈取部Hの通過範囲と既刈領域との重複範囲の幅は、最も多い場合でも1条分となる。 In other words, on the left side of the cutting unit H, the width of the overlapping area between the passing range of the cutting unit H and the already cut area is at most one row.

これと同様に、刈取部Hの右部においても、刈取部Hの通過範囲と既刈領域との重複範囲の幅は、最も多い場合でも1条分となる。 Similarly, on the right side of the cutting unit H, the width of the overlapping area between the passing range of the cutting unit H and the already cut area is at most one row.

従って、この場合、刈取部Hの左部または右部において、刈取部Hの通過範囲と既刈領域との重複範囲の幅が2条分以上の幅となる構成に比べて、刈取部Hの通過範囲と既刈領域との重複範囲の幅が狭くなる。 Therefore, in this case, the width of the overlapping range between the passing range of the cutting unit H and the already-cut area is narrower on the left or right side of the cutting unit H than in a configuration in which the width of the overlapping range between the passing range of the cutting unit H and the already-cut area is the width of two or more rows.

このように、以上で説明した構成であれば、コンバイン1が条方向経路LAに沿って走行する際に、刈取部Hの通過範囲と既刈領域との重複範囲の幅が比較的狭くなりやすい。これにより、刈取部Hの通過範囲と既刈領域との重複範囲の幅が比較的広くなる事態を回避しやすい自動走行システムAを実現できる。 In this way, with the configuration described above, when the combine harvester 1 travels along the row direction path LA, the width of the overlapping range between the passing range of the cutting unit H and the already-cut area tends to be relatively narrow. This makes it possible to realize an automatic driving system A that can easily avoid a situation in which the width of the overlapping range between the passing range of the cutting unit H and the already-cut area becomes relatively wide.

尚、以上に記載した実施形態は一例に過ぎないのであり、本発明はこれに限定されるものではなく、適宜変更が可能である。 The embodiment described above is merely an example, and the present invention is not limited to this, and can be modified as appropriate.

〔その他の実施形態〕
(1)走行装置11は、ホイール式であっても良いし、セミクローラ式であっても良い。
Other embodiments
(1) The traveling device 11 may be of a wheel type or a semi-crawler type.

(2)図3に示す例では、経路算出部23により算出される刈取走行経路LNは、縦横方向に延びる複数のメッシュ線である。しかしながら、本発明はこれに限定されず、経路算出部23により算出される刈取走行経路LNは、縦横方向に延びる複数のメッシュ線でなくても良い。例えば、経路算出部23により算出される刈取走行経路LNは、渦巻き状の走行経路であっても良い。また、刈取走行経路LNは、別の刈取走行経路LNと直交していなくても良い。また、経路算出部23により算出される刈取走行経路LNは、互いに平行な複数の平行線であっても良い。 (2) In the example shown in FIG. 3, the mowing travel path LN calculated by the route calculation unit 23 is a plurality of mesh lines extending vertically and horizontally. However, the present invention is not limited to this, and the mowing travel path LN calculated by the route calculation unit 23 does not have to be a plurality of mesh lines extending vertically and horizontally. For example, the mowing travel path LN calculated by the route calculation unit 23 may be a spiral travel path. In addition, the mowing travel path LN does not have to be perpendicular to another mowing travel path LN. In addition, the mowing travel path LN calculated by the route calculation unit 23 may be a plurality of parallel lines that are parallel to each other.

(3)自車位置算出部21、領域算出部22、経路算出部23、走行制御部24、通過基準位置算出部25、機種情報記憶部26、条間取得部27、条数算出部28のうち、一部または全てがコンバイン1の外部に備えられていても良いのであって、例えば、コンバイン1の外部に設けられた管理サーバ6に備えられていても良い。 (3) Some or all of the vehicle position calculation unit 21, area calculation unit 22, route calculation unit 23, driving control unit 24, passing reference position calculation unit 25, model information storage unit 26, row spacing acquisition unit 27, and row number calculation unit 28 may be provided outside the combine harvester 1, and may be provided in, for example, a management server 6 provided outside the combine harvester 1.

(4)判定部4b及び条方向決定部4cのうち、何れか一方または両方が通信端末4の外部に備えられていても良いのであって、例えば、コンバイン1の外部に設けられた管理サーバ6に備えられていても良い。 (4) Either or both of the judgment unit 4b and the row direction determination unit 4c may be provided outside the communication terminal 4, for example, in a management server 6 provided outside the combine harvester 1.

(5)上記実施形態においては、オペレータは、コンバイン1を手動で操作し、図2に示すように、圃場内の外周部分において、圃場の境界線BDに沿って周回するように刈取走行を行う。しかしながら、本発明はこれに限定されず、コンバイン1が自動で走行し、圃場内の外周部分において、圃場の境界線BDに沿って周回するように刈取走行を行うように構成されていても良い。また、このときの周回数は、3周以外の数であっても良い。例えば、このときの周回数は2周であっても良い。 (5) In the above embodiment, the operator manually operates the combine harvester 1, and as shown in FIG. 2, the combine harvester 1 performs a mowing run in a circle along the boundary line BD of the field in the outer periphery of the field. However, the present invention is not limited to this, and the combine harvester 1 may be configured to automatically run and perform a mowing run in a circle along the boundary line BD of the field in the outer periphery of the field. Furthermore, the number of laps in this case may be a number other than three. For example, the number of laps in this case may be two.

(6)本発明に係る「所定個数」は、3つ以外のいかなる個数であっても良い。例えば、所定個数は、2つであっても良い。この場合、6条刈りのコンバイン1の自動走行を管理する自動走行システムAにおいて、所定条件は、「第2デバイダ52が、未刈領域における左端に位置する条よりも右側に位置し、且つ、第6デバイダ56が、未刈領域における右端に位置する条よりも左側に位置すること」である。 (6) The "predetermined number" according to the present invention may be any number other than three. For example, the predetermined number may be two. In this case, in the automatic driving system A that manages the automatic driving of the six-row combine harvester 1, the predetermined condition is that "the second divider 52 is located to the right of the row located at the left end of the uncut area, and the sixth divider 56 is located to the left of the row located at the right end of the uncut area."

(7)経路算出部23は、条数算出部28の算出結果とは無関係に条方向経路LAを算出しても良いし、コンバイン1の刈取条数とは無関係に条方向経路LAを算出しても良い。 (7) The path calculation unit 23 may calculate the row direction path LA regardless of the calculation result of the row number calculation unit 28, or may calculate the row direction path LA regardless of the number of cutting rows of the combine harvester 1.

本発明は、コンバインの自動走行を管理する自動走行システムに利用可能である。 The present invention can be used in an automatic driving system that manages the automatic driving of a combine harvester.

1、2 コンバイン
5 デバイダ
23 経路算出部
28 条数算出部(分割後条数算出部)
A 自動走行システム
CA1 北側領域(分割後領域)
CA2 南側領域(分割後領域)
H 刈取部
LA 条方向経路(目標走行経路)
1, 2 Combine harvester 5 Divider 23 Path calculation unit 28 Row number calculation unit (post-division row number calculation unit)
A. Automated Driving System
CA1 Northern area (area after division)
CA2 South area (area after division)
H Harvesting unit LA Row direction route (target travel route)

Claims (6)

圃場の植立穀稈を刈り取る刈取部を有するコンバインの自動走行を管理する自動走行システムであって、
条方向に沿う自動走行のための目標走行経路を算出する経路算出部を備え、
前記経路算出部は、前記コンバインが前記目標走行経路に沿って走行する際に前記刈取部の通過範囲と既刈領域との重複範囲の幅が常に所定条数分以下となるように、前記目標走行経路を算出するように構成されている自動走行システム
An automatic driving system that manages automatic driving of a combine harvester having a harvesting unit that harvests planted stalks in a field ,
A route calculation unit that calculates a target driving route for automatic driving along the line direction,
The route calculation unit is an automatic driving system configured to calculate the target driving route so that when the combine travels along the target driving route, the width of the overlapping area between the passing range of the cutting unit and the already-cut area is always less than a specified number of rows.
未刈領域の条数を算出する条数算出部を備え、A row number calculation unit is provided for calculating the number of rows in an uncut area,
前記経路算出部は、前記条数算出部の算出結果と、前記コンバインの刈取条数と、に基づいて前記目標走行経路を算出する請求項1に記載の自動走行システム。The automatic driving system according to claim 1 , wherein the route calculation unit calculates the target driving route based on a calculation result of the row number calculation unit and a number of reaping rows of the combine harvester.
未刈領域を複数の分割後領域に分割する中割走行が前記コンバインによって行われる場合、前記経路算出部は、一つの前記分割後領域での刈取走行が開始されてから完了するまでの間、前記コンバインが前記目標走行経路に沿って走行する際に前記刈取部の通過範囲と既刈領域との重複範囲の幅が常に前記所定条数分以下となるように、前記目標走行経路を算出するように構成されている請求項1または2に記載の自動走行システム。The automatic driving system described in claim 1 or 2, wherein when the combine performs intermediate division driving to divide an unmowed area into multiple divided areas, the path calculation unit is configured to calculate the target driving path so that when the combine drives along the target driving path from the start of mowing driving in one of the divided areas to the completion of mowing driving, the width of the overlapping area between the passing range of the mowing unit and the already-mowed area is always less than the specified number of rows. 前記コンバインは、圃場の植立穀稈を梳き分ける複数のデバイダを有しており、The combine has a plurality of dividers for combing planted stalks in a field,
前記経路算出部は、一つの前記分割後領域での刈取走行が開始されてから完了するまでの間、前記コンバインが前記目標走行経路に沿って走行する際に所定条件が常に満たされるように、前記目標走行経路を算出するように構成されており、The path calculation unit is configured to calculate the target travel path so that a predetermined condition is always satisfied when the combine travels along the target travel path from the start to the completion of the reaping travel in one of the divided areas,
前記所定条件は、前記複数のデバイダのうちの左端から所定個数目のデバイダが、前記一つの分割後領域における左端に位置する条よりも右側に位置し、且つ、前記複数のデバイダのうちの右端から前記所定個数目のデバイダが、前記一つの分割後領域における右端に位置する条よりも左側に位置することである請求項3に記載の自動走行システム。The automatic driving system of claim 3, wherein the specified condition is that the divider that is a predetermined number from the left end of the plurality of dividers is located to the right of the row that is located at the left end of the one divided area, and the divider that is a predetermined number from the right end of the plurality of dividers is located to the left of the row that is located at the right end of the one divided area.
前記所定個数は、3つである請求項4に記載の自動走行システム。The automatic driving system according to claim 4 , wherein the predetermined number is three. 前記分割後領域の条数を算出する分割後条数算出部を備え、a post-division row number calculation unit for calculating the row number of the post-division region;
前記経路算出部は、前記分割後条数算出部の算出結果と、前記コンバインの刈取条数と、に基づいて前記目標走行経路を算出する請求項4または5に記載の自動走行システム。The automatic driving system according to claim 4 or 5, wherein the route calculation unit calculates the target driving route based on a calculation result of the post-division row number calculation unit and a number of reaping rows of the combine harvester.
JP2022205593A 2019-11-29 2022-12-22 Autonomous Driving System Active JP7542596B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022205593A JP7542596B2 (en) 2019-11-29 2022-12-22 Autonomous Driving System

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019215934A JP7201572B2 (en) 2019-11-29 2019-11-29 automatic driving system
JP2022205593A JP7542596B2 (en) 2019-11-29 2022-12-22 Autonomous Driving System

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2019215934A Division JP7201572B2 (en) 2019-11-29 2019-11-29 automatic driving system

Publications (2)

Publication Number Publication Date
JP2023029429A JP2023029429A (en) 2023-03-03
JP7542596B2 true JP7542596B2 (en) 2024-08-30

Family

ID=76084631

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2019215934A Active JP7201572B2 (en) 2019-11-29 2019-11-29 automatic driving system
JP2022205593A Active JP7542596B2 (en) 2019-11-29 2022-12-22 Autonomous Driving System

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2019215934A Active JP7201572B2 (en) 2019-11-29 2019-11-29 automatic driving system

Country Status (1)

Country Link
JP (2) JP7201572B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022244696A1 (en) 2021-05-17 2022-11-24

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070168116A1 (en) 2006-01-18 2007-07-19 Meyer Zu Helligen Lars Peter Method for creating reference driving tracks for agricultural working machines
JP2019106897A (en) 2017-12-15 2019-07-04 株式会社クボタ Travel path generation system and field work vehicle

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070168116A1 (en) 2006-01-18 2007-07-19 Meyer Zu Helligen Lars Peter Method for creating reference driving tracks for agricultural working machines
JP2019106897A (en) 2017-12-15 2019-07-04 株式会社クボタ Travel path generation system and field work vehicle

Also Published As

Publication number Publication date
JP2023029429A (en) 2023-03-03
JP2021083396A (en) 2021-06-03
JP7201572B2 (en) 2023-01-10

Similar Documents

Publication Publication Date Title
CN111386030B (en) Automatic travel system, automatic travel management program and method, and recording medium
JP7542596B2 (en) Autonomous Driving System
JP7381402B2 (en) automatic driving system
JP7191001B2 (en) automatic driving system
KR20230018385A (en) combine
JP2022181465A (en) Work method, work vehicle and system
JP7241666B2 (en) automatic driving system
JP2019106926A (en) Automatic traveling system
CN112868369B (en) Automatic traveling system and harvester
JP7113726B2 (en) agricultural machine
JP7275012B2 (en) Automatic travel control system and combine
JP7275013B2 (en) automatic driving system
JP7530813B2 (en) Combine harvester and method for creating a running route
CN112868384A (en) Automatic driving system
WO2020262287A1 (en) Farm operation machine, autonomous travel system, program, recording medium in which program is recorded, and method
JP7191002B2 (en) combine
KR20230111195A (en) How to create combines and driving routes
JP7155097B2 (en) Automatic travel control system and combine
JP7328394B2 (en) Route generation system
JP7232429B1 (en) Grain culm reaping work method
JP7423443B2 (en) harvester
JP7196053B2 (en) combine
JP7275010B2 (en) Automatic travel control system and combine
JP7403397B2 (en) agricultural machinery
JP6937681B2 (en) Combine control system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240723

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240820

R150 Certificate of patent or registration of utility model

Ref document number: 7542596

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150