WO2020262287A1 - Farm operation machine, autonomous travel system, program, recording medium in which program is recorded, and method - Google Patents

Farm operation machine, autonomous travel system, program, recording medium in which program is recorded, and method Download PDF

Info

Publication number
WO2020262287A1
WO2020262287A1 PCT/JP2020/024344 JP2020024344W WO2020262287A1 WO 2020262287 A1 WO2020262287 A1 WO 2020262287A1 JP 2020024344 W JP2020024344 W JP 2020024344W WO 2020262287 A1 WO2020262287 A1 WO 2020262287A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
planted
traveling
travel
crop
Prior art date
Application number
PCT/JP2020/024344
Other languages
French (fr)
Japanese (ja)
Inventor
中林隆志
渡邉俊樹
江戸俊介
宮下隼輔
石見憲一
Original Assignee
株式会社クボタ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2020086287A external-priority patent/JP2021007385A/en
Application filed by 株式会社クボタ filed Critical 株式会社クボタ
Priority to CN202080032318.1A priority Critical patent/CN113766826A/en
Priority to KR1020217032436A priority patent/KR20220025701A/en
Publication of WO2020262287A1 publication Critical patent/WO2020262287A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01BSOIL WORKING IN AGRICULTURE OR FORESTRY; PARTS, DETAILS, OR ACCESSORIES OF AGRICULTURAL MACHINES OR IMPLEMENTS, IN GENERAL
    • A01B69/00Steering of agricultural machines or implements; Guiding agricultural machines or implements on a desired track
    • A01B69/007Steering or guiding of agricultural vehicles, e.g. steering of the tractor to keep the plough in the furrow
    • A01B69/008Steering or guiding of agricultural vehicles, e.g. steering of the tractor to keep the plough in the furrow automatic
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01BSOIL WORKING IN AGRICULTURE OR FORESTRY; PARTS, DETAILS, OR ACCESSORIES OF AGRICULTURAL MACHINES OR IMPLEMENTS, IN GENERAL
    • A01B69/00Steering of agricultural machines or implements; Guiding agricultural machines or implements on a desired track
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D41/00Combines, i.e. harvesters or mowers combined with threshing devices
    • A01D41/12Details of combines
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D41/00Combines, i.e. harvesters or mowers combined with threshing devices
    • A01D41/12Details of combines
    • A01D41/127Control or measuring arrangements specially adapted for combines
    • A01D41/1278Control or measuring arrangements specially adapted for combines for automatic steering
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D69/00Driving mechanisms or parts thereof for harvesters or mowers
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions

Definitions

  • the present invention relates to an agricultural work machine, an automatic driving system, a program, a recording medium on which a program is recorded, and a method.
  • the combine according to Patent Document 1 is equipped with an automatic steering control device.
  • This automatic steering control device detects uncut grain rods by a steering sensor provided near the tip of a weed board (a type of divider) in the cutting section, and automatically adjusts the rods.
  • the steering sensor consists of a pair of left and right steering sensors consisting of limit switches. When the left steering sensor is "OFF” and the right steering sensor is “ON”, left turning is performed and the left steering sensor is When it is "ON” and the right steering sensor is "OFF”, a right turn is performed. When both the left steering sensor and the right steering sensor are "OFF” or “ON”, it is considered that the cursive script is located in the center of the culm row called the strip, and the straight running is performed. With this configuration, when the combine reaches the uncut grain rod region by manual operation, the combine is automatically steered so that the weed board enters approximately between the rows.
  • Patent Document 2 discloses a traveling route generating device that generates a traveling route for a field work vehicle capable of automatically traveling.
  • This traveling route generation device generates a traveling route for automatic traveling in the field based on the handwritten locus input by handwriting through the touch panel.
  • the field work vehicle can automatically travel along the travel route that matches the user's image.
  • this traveling route generating device the relationship between the direction of the grain culm (row) and the traveling direction is not taken into consideration.
  • An object of the present invention is to provide an agricultural work machine capable of automatically traveling along a preset travel path while allowing a specific site to enter between planted crops.
  • the first agricultural work machine has a working unit that performs work on planted crops in the field, an airframe position calculation unit that calculates the airframe position based on positioning data from a satellite positioning module, and an automatic field.
  • a planted crop detection unit that detects the crop interval, and a travel control correction unit that offset-corrects the steering control signal by the automatic travel control unit so that a specific part of the aircraft enters between the planted crops. , Equipped with.
  • the planted crop detection unit detects the distance between the planted crops in a non-contact manner, so that the distance between the planted crops away from the aircraft can be detected quickly. Further, the travel control correction unit calculates the offset amount required for the specific part to enter between the crops with reference to the travel route set by the travel route setting unit. That is, since the steering control is performed along the traveling path that is the control target, the control target immediately reacts to the left-right deviation of one planted culm with respect to the stem portion as in Patent Document 1, and the steering control is performed. Stable steering control is possible compared to the above-mentioned form.
  • the second agricultural work machine automatically performs the work unit for working on the planted crops in the field, the machine position calculation unit for calculating the machine position based on the positioning data from the satellite positioning module, and the field.
  • This second agricultural work machine is different from the above-mentioned first agricultural work machine in the method of correcting the misalignment for the specific part to enter between the crops.
  • the displacement correction is performed by the offset amount from the traveling path as a control reference, whereas in the second agricultural working machine, the displacement correction is set by the traveling path setting unit.
  • the traveling path itself is corrected (displaced).
  • the corrected travel path becomes a new travel target, stable steering control is possible as compared with the steering control of the combine according to Patent Document 1, as in the case of the first agricultural work machine described above. Become.
  • One of the detection methods suitable for detecting the distance between planted crops in a non-contact manner is to recognize the planted crops using a photographed image.
  • the position of the photographing unit and the angle of view of the photographing unit By considering the position of the photographing unit and the angle of view of the photographing unit, the positional relationship between the crop recognized in the photographed image and the specific part can be accurately calculated.
  • a photographing unit that photographs the planted crop and outputs a captured image is provided, and the planted crop detection unit includes the captured image and the photographed image.
  • the position of the planted crop is detected based on the position of the photographing unit calculated from the position of the machine body and the photographing angle of view of the photographing unit.
  • the photographing section is arranged in the front part of the working section.
  • the planted crop detection unit includes a neural network machine-learned to detect the crop interval using the captured image as an input image. It is possible to calculate the accurate distance from a specific site to the planted crop by performing epipolar image processing on the captured image acquired over time.
  • Another detection method suitable for non-contact detection of planted crops is the propagation of the reflected beam at each scanning position using a scanning sensor using an ultrasonic beam, a light beam, an electromagnetic wave beam, or the like. It is to analyze the time. As a result, three-dimensional point cloud data (also called a radar scan image or a distance image) of the traveling forward region is generated, so that the position of the planted crop can be calculated from the three-dimensional point cloud data.
  • the planted crop detection unit is composed of a scanning sensor using an ultrasonic beam, a light beam, an electromagnetic wave beam, or the like.
  • the direction in which the planted crops are lined up is one of the important conditions when setting the travel route for the first time. For this reason, in one of the preferred embodiments of the present invention, a touch panel for displaying the traveling route is provided, and the direction in which the planted crops are lined up is manually input using the touch panel. As a result, the traveling route is set on the condition that the planted crops are lined up.
  • the aircraft is controlled so that the divider enters between the crops.
  • the specific portion is a divider provided in the working portion.
  • the aircraft When the aircraft is equipped with traveling wheels, it is preferable that the aircraft is controlled so that the traveling wheels enter between the crops.
  • the specific portion is a traveling wheel provided on the airframe.
  • the automatic traveling system includes an agricultural work machine provided with a work unit for working on planted crops in a field, and an aircraft position for calculating the aircraft position of the agricultural work machine based on positioning data from a satellite positioning module.
  • the planted crop detection unit that detects the crop interval, which is the interval between the planted crops adjacent to each other in the work width direction, and the planted crop so that a specific part of the machine of the agricultural work machine enters between the planted crops. It is provided with a travel control correction unit that offset-corrects the steering control signal by the automatic travel control unit.
  • the program according to the present invention is a program for an agricultural work machine provided with a working unit for performing work on planted crops in a field and a satellite positioning module, and the aircraft position is based on positioning data from the satellite positioning module.
  • the planted crop detection function that detects the crop interval, which is the interval between the planted crops adjacent in the work width direction, and the automatic travel control unit so that a specific part of the aircraft enters between the planted crops.
  • the computer realizes a driving control correction function that offset-corrects the steering control signal.
  • the recording medium on which the program according to the present invention is recorded is a recording medium on which a program for an agricultural work machine including a working unit for performing work on planted crops in a field and a satellite positioning module is recorded, and is used for satellite positioning.
  • An aircraft position calculation function that calculates the aircraft position based on the positioning data from the module, a travel route setting function that sets a travel route for automatically traveling in the field, and an automatic operation so that the aircraft position follows the travel route.
  • An automatic travel control function that controls travel, a planted crop detection function that detects the crop interval that is the interval between adjacent planted crops in the work width direction, and a specific part of the aircraft that enters between the planted crops.
  • a program for realizing a travel control correction function for offset-correcting the steering control signal by the automatic travel control unit and a computer is recorded.
  • the method according to the present invention is a method of causing an agricultural work machine equipped with a working unit for working on planted crops in a field and a satellite positioning module to perform automatic work running, and using positioning data from the satellite positioning module.
  • An aircraft position calculation step that calculates the aircraft position based on the vehicle position, a travel route setting step that sets a travel route for automatically traveling in the field, and automatic travel that automatically controls the aircraft position so as to follow the travel route.
  • the control step the planted crop detection step that detects the crop interval that is the interval between the planted crops adjacent in the working width direction, and the automatic operation so that a specific part of the machine enters between the planted crops. It includes a travel control correction step for offset-correcting the steering control signal by the travel control unit.
  • the automatic traveling system includes an agricultural work machine provided with a work unit for working on planted crops in a field, and an aircraft position for calculating the aircraft position of the agricultural work machine based on positioning data from a satellite positioning module.
  • the planted crop detection unit that detects the crop interval, which is the interval between the planted crops adjacent to each other in the work width direction, and the planted crop so that a specific part of the machine of the agricultural work machine enters between the planted crops. It is provided with a travel control correction unit that corrects the travel route.
  • the program according to the present invention is a program for an agricultural work machine including a working unit for performing work on planted crops in a field and a satellite positioning module, and the machine position is based on the positioning data from the satellite positioning module.
  • the planted crop detection function that detects the crop interval, which is the interval between the planted crops adjacent in the work width direction, and the traveling route are corrected so that a specific part of the aircraft enters between the planted crops.
  • the driving control correction function is realized in the computer.
  • the recording medium on which the program according to the present invention is recorded is a recording medium on which a program for an agricultural work machine including a working unit for performing work on planted crops in a field and a satellite positioning module is recorded, and is used for satellite positioning.
  • An aircraft position calculation function that calculates the aircraft position based on the positioning data from the module, a travel route setting function that sets a travel route for automatically traveling in the field, and an automatic operation so that the aircraft position follows the travel route.
  • An automatic travel control function that controls travel, a planted crop detection function that detects the crop interval that is the interval between adjacent planted crops in the work width direction, and a specific part of the aircraft that enters between the planted crops.
  • a program for realizing the travel control correction function for correcting the travel path and the computer is recorded.
  • the method according to the present invention is a method of causing an agricultural work machine equipped with a working unit for working on planted crops in a field and a satellite positioning module to perform automatic work running, and using positioning data from the satellite positioning module.
  • An aircraft position calculation step that calculates the aircraft position based on the vehicle position, a travel route setting step that sets a travel route for automatically traveling in the field, and automatic travel that automatically controls the aircraft position so as to follow the travel route.
  • the control step the planted crop detection step that detects the crop interval that is the interval between the planted crops adjacent in the working width direction, and the traveling so that a specific part of the aircraft enters between the planted crops. It includes a travel control correction step that corrects the route.
  • FIGS. 1 and 2 An embodiment of a head-feeding combine, which is an example of an agricultural work machine according to the present invention, is described below based on drawings.
  • the direction of the arrow F shown in FIGS. 1 and 2 is defined as “front”, and the direction of arrow B is defined as “rear”.
  • the direction of the arrow L shown in FIG. 2 is “left”, and the direction of the arrow R is “right”.
  • the direction of the arrow U shown in FIG. 1 is “up”, and the direction of the arrow D is "down”.
  • the head-feeding combine includes a crawler-type traveling device 11, a driving unit 12, a threshing device 13, a grain tank 14 (shown only in FIG. 2), and a working unit.
  • a cutting unit 15, a transport device 16, a grain discharge device 18, and a satellite positioning module 80 are provided.
  • the combine harvester 10 means an aggregate of the main components of the combine, but in some cases, it may mean individual components such as the traveling device 11 and the cutting section 15.
  • the traveling device 11 is provided at the lower part of the combine. Further, the traveling device 11 is driven by power from an engine (not shown). Then, the combine can be self-propelled by the traveling device 11.
  • the operation unit 12, the threshing device 13, and the grain tank 14 are provided above the traveling device 11.
  • the grain discharge device 18 is provided above the threshing device 13 and the grain tank 14.
  • An operator who monitors the work of the combine can be boarded on the driver unit 12. The operator may monitor the work of the combine from outside the combine.
  • the cutting section 15 is supported by the front portion of the machine body 10.
  • the transport device 16 is provided adjacent to the rear side of the cutting section 15.
  • the cutting unit 15 cuts and harvests the planted culm as a planted crop in the field.
  • Planted culms include rice, wheat, soybeans and corn.
  • the combine harvests the planted culms in the field while traveling.
  • the reaping unit 15 performs reaping work on the planted culm.
  • the cutting section 15 is provided with a divider 15C as a specific portion.
  • the tip of the divider 15C protrudes forward in order to weed the adjacent planted culm to be harvested.
  • the aircraft 10 is steered so that the tip of the divider 15C enters between the rows of stems (called strips or rows) of the planted culm.
  • the stem of the planted culm also includes a stem as a cut mark of the cut planted culm, and the divider 15C was cut with the stem of the planted culm before cutting. It often enters between the stem of the planted culm.
  • the planted grain culm cut by the cutting unit 15 is transported to the threshing device 13 by the transport device 16 as a harvested grain culm.
  • the harvested culm is threshed by the threshing device 13.
  • the harvested grains obtained by the threshing treatment are stored in the grain tank 14.
  • the grains stored in the grain tank 14 are discharged to the outside of the machine by the grain discharging device 18 as needed.
  • the grain discharge device 18 is configured to swing around the vertical axis core at the rear of the machine body.
  • the discharge portion of the grain discharge device 18 is located in a discharge state in which the discharge portion of the grain discharge device 18 projects to the lateral outside of the machine body 10 to discharge crops, and the discharge portion of the grain discharge device 18 is located within the range of the machine width of the machine body 10.
  • the grain discharge device 18 is configured so that it can be switched between the stored state and the stored state.
  • the discharge port portion of the grain discharge device 18 is located on the front side of the operation unit 12 and above the cutting unit 15.
  • the satellite positioning module 80 is attached to the upper surface of the ceiling of the driving unit 12.
  • the satellite positioning module 80 receives a GNSS (Global Navigation Satellite System) signal (including a GPS signal) from the artificial satellite GS and acquires the aircraft position.
  • GNSS Global Navigation Satellite System
  • an inertial navigation unit incorporating a gyro acceleration sensor and a magnetic compass sensor is incorporated in the satellite positioning module 80.
  • the inertial navigation unit may be arranged at a different location from the satellite positioning module 80 in the combine.
  • a photographing unit 21 composed of a CCD camera or a CMOS camera is provided on the upper surface of the divider 15C at the right end.
  • the photographing unit 21 can photograph the stems of the planted culms lined up laterally in the front of the traveling direction and the stalks of the cut culms or both of the cut culms during the cutting run. It has a shooting angle of view set as such. Since the photographed image includes at least two stems that are adjacent to each other in the harvest width direction, the distance between the stems of the planted culm, that is, the interstitial space can be detected from the photographed image.
  • the photographing unit 21 can be provided not only on the rightmost divider 15C but also on the leftmost divider 15C and other dividers 15C.
  • the combine of this embodiment can run in both automatic running and manual running.
  • automatic driving the combine automatically travels along a traveling route set in the field.
  • FIG. 3 shows an example of a standard harvesting operation in the field.
  • the rotary mowing work is manually performed along the boundary (shore, etc.) of the field, and the outer peripheral area SA, which is the already worked area (already mowed area), is formed on the outer periphery of the field.
  • the outer peripheral region SA formed by the peripheral mowing run becomes a size that enables the combine's alpha-shaped turn run, the rotary mowing by the automatic run is possible.
  • a running route for automatic running with respect to the unworked area (uncut area) which is the inner area CA of the outer peripheral area SA is set.
  • a reciprocating travel route that combines straight-line travel and U-turn travel is used as the travel route for the central mowing work travel.
  • the traveling route of this straight traveling includes not only a straight route but also a large curved route and a meandering route.
  • FIG. 4 shows a functional block diagram of the combine control system.
  • the control system of this embodiment is composed of a large number of electronic control units called ECUs, various operating devices, sensor groups and switch groups, and a wiring network such as an in-vehicle LAN that transmits data between them.
  • the notification device 84 is a device for notifying the driver or the like of a warning such as an obstacle detection result or a working running state, and is a buzzer, a lamp, a speaker, a display, or the like.
  • the control unit 6 is a core element of this control system and is shown as an aggregate of a plurality of ECUs. Positioning data from the satellite positioning module 80, captured images from the photographing unit 21, and control commands from the tablet computer 85 installed in the driving unit 12 are input to the control unit 6 through a wiring network such as an in-vehicle LAN.
  • the control unit 6 includes an output processing unit 6B and an input processing unit 6A as input / output interfaces.
  • the output processing unit 6B is connected to the vehicle traveling equipment group 7A and the working equipment group 7B.
  • the vehicle traveling device group 7A includes control devices related to vehicle traveling, such as an engine control device, a shift control device, a braking control device, and a steering control device.
  • the working equipment group 7B includes a cutting unit 15, a transporting device 16, a threshing device 13, a power control device in the grain discharging device 18, and the like.
  • a traveling system detection sensor group 8A, a working system detection sensor group 8B, and the like are connected to the input processing unit 6A.
  • the traveling system detection sensor group 8A includes sensors that detect the state of the engine speed adjuster, the accelerator pedal, the brake pedal, the speed change operation tool, and the like.
  • the work system detection sensor group 8B includes a sensor for detecting the device state in the cutting unit 15, the transport device 16, the grain removal device 13, and the grain discharge device 18, and the state of the culm and the grain.
  • the control unit 6 includes a travel control module 60, a travel route setting unit 64, a travel control correction unit 65, an aircraft position calculation unit 66, a notification unit 67, a travel locus management unit 68, and a planted crop detection unit 50. ..
  • the control unit 6 is composed of a computer device having a CPU, a communication function, and a storage function (a drive unit and / or an input / output interface for an internal recording medium and an external recording medium), and a predetermined computer program. To.
  • This computer program uses a computer device as a travel control module 60, a travel route setting unit 64, a travel control correction unit 65, an aircraft position calculation unit 66, a notification unit 67, a travel locus management unit 68, and a planted crop detection unit 50. Make it work.
  • This computer program is recorded on the computer-readable recording medium described above. By executing this computer program, a method including steps corresponding to the above-mentioned functional units is executed in the automatic driving system.
  • the aircraft position calculation unit 66 determines the aircraft position which is the map coordinates (or field coordinates) of at least one specific location of the aircraft 10, for example, the cutting unit 15. calculate.
  • the travel control module 60 is provided with an automatic travel control unit 61, a manual travel control unit 62, and a work control unit 63.
  • a traveling mode switch (not shown) for selecting between an automatic traveling mode in which the vehicle travels by automatic steering and a manual steering mode in which the vehicle travels by manual steering is provided in the driving unit 12. By operating this travel mode switch, it is possible to shift from manual steering running to automatic steering running, or from automatic steering running to manual steering running.
  • the automatic driving control unit 61 and the manual driving control unit 62 have an engine control function, a steering control function, a vehicle speed control function, and the like, and give a driving control signal to the vehicle traveling equipment group 7A.
  • the automatic traveling control unit 61 includes a position deviation calculation unit 61a and a steering control amount calculation unit 61b.
  • the position deviation calculation unit 61a calculates the travel position deviation between the travel route set by the travel route setting unit 64 and the aircraft position calculated by the aircraft position calculation unit 66.
  • the steering control amount calculation unit 61b calculates the steering control amount for automatically steering the aircraft 10 so as to eliminate the deviation of the traveling position.
  • the vehicle speed during automatic driving is determined based on a vehicle speed command generated by the automatic driving control unit 61 based on a vehicle speed value set in advance.
  • the steering control amount and vehicle speed during manual driving are determined based on the steering control amount and vehicle speed command generated by the manual driving control unit 62 based on the manual operation.
  • the work control unit 63 gives a work control signal to the work equipment group 7B via the output processing unit 6B in order to control the movements of the cutting unit 15, the threshing device 13, the grain discharge device 18, and the like.
  • the travel route setting unit 64 has a function of expanding the created travel route for automatic driving in a memory and sequentially setting it as a target travel route in automatic driving.
  • the notification unit 67 generates notification data based on a request from each functional unit of the control unit 6 and gives the notification data to the notification device 84.
  • the travel locus management unit 68 manages an unworked area and an existing work area in the field based on the aircraft position from the aircraft position calculation unit 66 and the work travel information from the travel control module 60.
  • the planted crop detection unit 50 non-contactly detects the inter-row spacing (an example of "crop spacing”), which is the spacing between the stems of adjacent planted culms in the harvest width direction (working width direction).
  • the stems left after cutting the planted culms have a height of several centimeters or more from the field scene. Therefore, the stem portion left after cutting the planted grain culm is detected by the planted crop detection unit 50 and treated as the stem portion of the planted grain culm.
  • the planted crop detection unit 50 includes a photographed image from the photographing unit 21, a position of the photographing unit 21 calculated based on the body position from the machine body position calculation unit 66, and a photographed image of the photographing unit 21. Based on the angle of view, the positions of the stems and the inter-rows of at least two planted culms are detected, and the positional relationship of the divider 15C between the inter-rows in the harvest width direction is calculated.
  • the planted crop detection unit 50 of this embodiment includes an image acquisition unit 51, a machine learning unit 52, and a divider position calculation unit 53.
  • the image acquisition unit 51 stores the photographed image sent from the photographing unit 21 at a predetermined cycle in the memory by linking it with the own machine position calculated by the machine body position calculating unit 66.
  • the machine learning unit 52 is constructed by a machine-learned neural network.
  • this machine-learned neural network as schematically shown in FIG. 5, the photographed image acquired by the photographing unit 21 is used as an input image, and the stem of the planted culm included in this photographed image is used. It recognizes the part and outputs the position of the stem part. Therefore, a deep learning algorithm excellent in such recognition is used.
  • the stem of the planted culm is shown by a rectangular frame. The size of this rectangular frame and the position of the rectangular frame in the captured image are output.
  • the divider position calculation unit 53 starts from the mounting position of the divider 15C, the position of the stem with respect to the machine body 10, and the target divider position (here, the central position between the strips). ,
  • the divider position shift (indicated by ⁇ in FIG. 6), which is the position shift from the target divider position of the divider 15C, is calculated.
  • the travel control correction unit 65 offset-corrects the steering control signal by the automatic travel control unit 61 so that the divider 15C appropriately enters the gap between the planted culms.
  • the flow of this steering control is shown in FIG.
  • the travel control correction unit 65 includes an offset amount calculation unit 65a.
  • the amount is calculated as an offset amount (indicated by ⁇ in FIG. 7).
  • more appropriate steering control may be realized by weighting either the divider misalignment or the traveling misalignment calculated by the misalignment calculation unit 61a.
  • the offset amount takes a value larger than the divider misalignment
  • This offset amount is added to the traveling position deviation calculated by the position deviation calculation unit 61a, and the mixed value is given to the steering control amount calculation unit 61b.
  • the mixed value is indicated by “ ⁇ d + ⁇ ”, but the method for calculating the mixed value is not necessarily limited to addition.
  • the mixed value may be calculated by using a weighting operation or the like.
  • the steering control amount calculation unit 61b calculates the steering control amount (indicated by S in FIG. 7) using PI control or the like, converts it into a steering control signal, and sends it to the vehicle traveling equipment group 7A. ..
  • the steering control amount calculation unit 61b can also use the directional deviation (direction of the traveling route, the direction of the aircraft, and the deviation) as a control parameter.
  • the travel control correction unit 65 includes a route correction amount calculation unit 65b instead of the offset amount calculation unit 65a.
  • the route correction amount calculation unit 65b issues a route displacement command for displacing the travel route set by the travel route setting unit 64 so that the divider 15C appropriately enters the gap between the planted culms.
  • the divider 15C is the target divider by laterally displacing the travel path by a distance of the displacement of the divider 15C from the target divider position (indicated by ⁇ in FIG. 8). It will approach the position.
  • the lateral displacement amount of this traveling path is referred to as a path correction amount (indicated by ⁇ in FIG. 8).
  • This function g may also be a linear function or a non-linear function.
  • This route correction amount is sent to the traveling route setting unit 64 in the form of a route displacement command.
  • the travel route setting unit 64 corrects the travel route currently set by using the route correction amount included in the route displacement command, and sends the corrected travel route to the position deviation calculation unit 61a.
  • the tablet computer 85 is provided with a touch panel 85a (touch panel type display device), and various control commands can be given to the control unit 6 by an operation by an operator.
  • the operator can manually input (manually input) the row direction of the planted culm using the touch panel 85a.
  • the operator manually inputs the row direction (planting direction, cutting direction) on the touch panel 85a showing the outer shape of the field.
  • the travel route setting unit 64 creates and sets a travel route so as to follow the input strip direction.
  • control functional elements such as the travel control module 60, the travel route setting unit 64, the travel control correction unit 65, and the planted crop detection unit 50 shown in FIG. 4 are mainly separated for explanatory purposes, and the control thereof.
  • the integration of functional elements and the division of the control functional elements may be freely performed.
  • the photographing unit 21 may be a black-and-white camera, an infrared light camera, or a hybrid camera including a visible light camera and an infrared light camera.
  • the photographing unit 21 is attached to the upper surface of the divider 15C.
  • the photographing unit 21 may be attached to other parts as long as the stem portion of the planted grain culm is within the photographing field of view of the photographing unit 21.
  • the machine learning unit 52 is composed of a neural network machine-learned by using a deep learning algorithm, but of course, a neural network using an algorithm other than the deep learning algorithm, for example, recurrent. It may be composed of a neural network. Furthermore, an image recognition technique other than the machine-learned neural network may be adopted.
  • a machine learning unit 52 that uses a photographed image as an input image is used in the planted crop detection unit 50 for non-contact detection of the stem of the planted culm.
  • the planted crop detection unit 50 may be composed of a scanning sensor using an ultrasonic beam, a light beam, an electromagnetic wave beam, or the like.
  • the shape of the reflector can be evaluated and the position of the planted crop can be calculated from the three-dimensional point cloud data of the traveling front region obtained by the scanning sensor.
  • a head-feeding combine has been described as an example of an agricultural work machine.
  • the agricultural work machine may be a conventional combine.
  • the agricultural work machine may be a corn harvester.
  • FIG. 10 shows a corn harvester as an example of an agricultural work machine.
  • the header (cutting section) of the ordinary combine is replaced with the pre-harvest processing apparatus 115.
  • This corn harvester separates tufts from the corn to be planted, separates grains from tufts, and stores the grains.
  • This corn harvester includes a crawler type traveling device (not shown), an operating unit 112, a threshing device 113, a grain tank 114, a harvesting pretreatment device 115 as a working unit, a transport device 116, a grain discharging device 118, and a satellite. It includes components such as a positioning module 180.
  • the body 110 of the corn harvester means a collection of components, but in some cases may mean individual components such as a traveling device or a pre-harvesting device 115.
  • the pre-harvest treatment device 115 separates the tufts from the corn to be planted and sends the tufts to the transport device 116.
  • the threshing device 113 separates the grains from the tufts transported by the transport device 116.
  • the pre-harvest treatment apparatus 115 includes a divider 115C, a scraping auger 115D, and the like as specific parts.
  • a photographing unit 121 is provided on the upper surface of the divider 115C at the right end.
  • FIG. 11 shows another form of corn harvester. This corn harvester separates tufts from the corn to be planted, removes the bracts from the tufts, and stores the tufts.
  • This corn harvester has components such as a wheel-type traveling device (not shown), a driving unit 212, a leaflet removing unit 213, a storage tank 214, a harvesting unit 215 as a working unit, a transport device 216, and a satellite positioning module 280. It has.
  • the body 210 of the corn harvester means a collection of components, but in some cases, it may mean individual components such as a traveling device and a harvesting unit 215.
  • the harvesting unit 215 separates the tufts from the corn to be planted and sends the tufts to the transport device 216.
  • the bract removing unit 213 removes the bracts from the tufts transported by the transport device 216.
  • the harvesting unit 215 includes a divider 215C and the like as a specific part.
  • An imaging unit 221 is provided on the upper surface of the rightmost divider 215C.
  • the agricultural work machine may be a sugar cane harvester.
  • FIG. 12 shows a sugar cane harvester as an example of an agricultural work machine. This sugar cane harvester harvests the sugar cane to be planted, separates the sugar cane from impurities, and discharges the sugar cane to the rear of the machine.
  • This sugar cane harvester is equipped with components such as a wheel-type traveling device 311, a driving unit 312, a separating device 313, a harvesting unit 315 as a working unit, a transport device 316, a discharge device 318, and a satellite positioning module 380.
  • the body 310 of the sugar cane harvester means a collection of components, but in some cases, it may mean individual components such as a traveling device 311 and a harvesting unit 315.
  • the harvesting unit 315 cuts the sugar cane to be planted and sends the sugar cane to the transport device 316.
  • the separation device 313 separates impurities from the sugar cane transported by the transfer device 316.
  • the discharge device 318 discharges sugar cane separated from impurities by the separation device 313 to the rear of the machine body 310.
  • the harvesting unit 315 is provided with a divider 315C or the like as a specific part.
  • An imaging unit 321 is provided on the upper surface of the rightmost divider 315C.
  • the agricultural work machine may be a passenger type management machine.
  • the specific portion may be a traveling wheel provided on the airframe.
  • the travel control correction unit offset-corrects the steering control signal by the automatic travel control unit so that the traveling wheels enter between the planted crops.
  • the travel control correction unit corrects the travel route so that the traveling wheels enter between the planted crops.
  • FIG. 13 shows a passenger-type management machine as an example of an agricultural work machine.
  • This passenger-type management machine performs spraying work of spraying chemicals (agricultural chemicals, fertilizers, etc.) on planted crops while traveling in the field.
  • spraying chemicals agricultural chemicals, fertilizers, etc.
  • This passenger-type management machine includes components such as a traveling wheel 411 (wheel-type traveling device), a driving unit 412, a chemical spraying unit 415 as a working unit, a chemical tank 425, a broadcaster 426, and a satellite positioning module 480.
  • the body 410 of the passenger-type management machine means a collection of components, but in some cases, it may mean individual components such as a traveling wheel 411 and a chemical spraying unit 415.
  • the drug spraying unit 415 sprays the drug stored in the drug tank 425 to the field.
  • the chemical spraying portion 415 includes a center boom 415D and left and right side booms 415E.
  • An imaging unit 421 is provided on the upper surface of the right end of the center boom 415D.
  • the passenger-type management machine includes a control unit 6 having the same configuration as that of the above-described embodiment (illustrated examples of FIGS. 4 and 7).
  • the control unit 6 includes a traveling wheel position calculation unit instead of the divider position calculation unit 53.
  • the traveling wheel position calculation unit calculates the traveling wheel position deviation ( ⁇ in FIG. 14) instead of the divider position deviation ( ⁇ in FIG. 6).
  • the traveling wheel position calculation unit includes the mounting position of the traveling wheel 411, the position of the stem portion with respect to the machine body 410, and the target traveling wheel position (here, the inter-row space).
  • the traveling wheel position deviation ( ⁇ in FIG. 14) which is the displacement of the traveling wheel 411 from the target traveling wheel position, is calculated from the center position of the traveling wheel 411.
  • the traveling control correction unit 65 offset-corrects the steering control signal by the automatic traveling control unit 61 so that the traveling wheels 411 properly enter the gaps between the planted culms.
  • the traveling control correction unit 65 offset-corrects the steering control signal by the same processing as in the illustrated example of FIG. 7 by using the traveling wheel position deviation ( ⁇ ) instead of the divider position deviation ( ⁇ ).
  • the passenger-type management machine may include a travel control correction unit 65 according to another embodiment shown in FIGS. 8 and 9.
  • the travel control correction unit 65 includes a route correction amount calculation unit 65b instead of the offset amount calculation unit 65a.
  • the route correction amount calculation unit 65b sets a travel route by setting a route displacement command that displaces the travel route set by the travel route setting unit 64 so that the traveling wheels 411 appropriately enter between the rows of the planted culms. Give to part 64.
  • the traveling wheel 411 is displaced laterally by the distance of the displacement of the traveling wheel 411 from the target traveling wheel position (indicated by ⁇ in FIG. 15). Will approach the target running wheel position.
  • the amount of lateral displacement of this traveling path is called the path correction amount ( ⁇ ).
  • the agricultural work machine may be a vegetable harvester.
  • the vegetable harvester harvests vegetables (carrots, radishes, cabbage, Chinese cabbage, etc.) as planting crops while traveling in the field.
  • the vegetable harvester is provided with a divider (an example of a specific part)
  • the vegetable harvester is provided with a control unit 6 having the same configuration as the illustrated example of FIG.
  • the travel control correction unit 65 offset-corrects the steering control signal by the automatic travel control unit 61 so that the divider appropriately enters between the planted crops (vegetables).
  • the travel control correction unit 65 includes a route correction amount calculation unit 65b instead of the offset amount calculation unit 65a.
  • the route correction amount calculation unit 65b displaces the travel route set by the travel route setting unit 64 so that the divider can appropriately enter between the planted crops. Is given to the traveling route setting unit 64.
  • the vegetable harvester does not have to be equipped with a divider.
  • the travel control correction unit 65 uses the automatic travel control unit 61 so that the traveling wheels (an example of a specific part) can appropriately enter between the planted crops (vegetables). Offset correct the steering control signal.
  • the route correction amount calculation unit 65b issues a route displacement command that displaces the travel route set by the travel route setting unit 64 so that the traveling wheels appropriately enter between the planted crops. Give to.
  • the photographing unit 21 may be used to detect crops around the divider 15C.
  • the planted crop detection unit 50 may detect that the divider 15C is in a state of being thrust into the row of the planted crop based on the image captured by the photographing unit 21.
  • the travel control module 60 stops and reverses the aircraft 10 so that the divider 15C passes between the planted crops, and then advances the aircraft 10 along an appropriate travel route to continue automatic traveling.
  • the planted crop detection unit 50 may detect that the divider 15C is in a state of dragging the cut crop based on the image captured by the photographing unit 21. Based on the detection result, the travel control module 60 stops and reverses the aircraft 10 so that the cut crop is separated from the divider 15C, and then advances again.
  • the present invention is applicable to agricultural work machines, automatic driving systems, programs, recording media on which programs are recorded, and methods for working on planted crops in fields.
  • Aircraft 15 Cutting part (working part) 15C: Divider (specific part) 21: Photographing unit 50: Planted crop detection unit 61: Automatic travel control unit 64: Travel route setting unit 65: Travel control correction unit 66: Aircraft position calculation unit 80: Satellite positioning module 85a: Touch panel 110: Aircraft 115: Before harvest Processing equipment (working unit) 115C: Divider (specific part) 121: Imaging unit 180: Satellite positioning module 210: Aircraft 215: Harvesting unit (working unit) 215C: Divider (specific part) 221: Imaging unit 280: Satellite positioning module 310: Aircraft 315: Harvesting unit (working unit) 315C: Divider (specific part) 321 : Imaging unit 380 : Satellite positioning module 410 : Airframe 411 : Traveling wheel (specific part) 415: Chemical spraying part (working part) 421: Imaging unit 480: Satellite positioning module

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Soil Sciences (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Guiding Agricultural Machines (AREA)

Abstract

This farm operation machine comprises: an operation unit that performs an operation on crops in a field; a machine body position calculation unit 66 that calculates a machine body position on the basis of positioning data from a satellite positioning module; a travel route setting unit 64 that sets a travel route for autonomously traveling through the field; an autonomous travel control unit 61 that performs autonomous travel control so that the machine body position follows the travel route; a crop detection unit 51 that detects a crop interval, which is the interval between adjacent crops in the operation width direction; and a travel control correction unit 65 that corrects the offset of a steering control signal from the autonomous travel control unit 61 so that a specified area (divider) of the machine body enters between the crops.

Description

農作業機、自動走行システム、プログラム、プログラムを記録した記録媒体、及び方法Agricultural work machines, automated driving systems, programs, recording media on which programs are recorded, and methods
 本発明は、農作業機、自動走行システム、プログラム、プログラムを記録した記録媒体、及び方法に関する。 The present invention relates to an agricultural work machine, an automatic driving system, a program, a recording medium on which a program is recorded, and a method.
 特許文献1によるコンバインは、自動操向制御装置を備えている。この自動操向制御装置は、刈取部の分草板(デバイダの一種)の先端近傍に設けられた操向センサにより未刈り穀桿を検出して、自動的に条合わせを行う。操向センサは、リミットスイッチからなる左右一対の操向センサからなり、左操向センサが「OFF」で右操向センサが「ON」の時は左旋回走行が行われ、左操向センサが「ON」で右操向センサが「OFF」の時は右旋回走行が行われる。左操向センサと右操向センサの両方が「OFF」又は「ON」の時は、分草体が条と呼ばれる穀稈列の中央に位置しているとみなして、直進走行が行われる。この構成により、コンバインは、手動操作によってコンバインを未刈り穀桿領域に達すると、あとは、分草板がほぼ条の間に進入するように自動操向制御が行われる。 The combine according to Patent Document 1 is equipped with an automatic steering control device. This automatic steering control device detects uncut grain rods by a steering sensor provided near the tip of a weed board (a type of divider) in the cutting section, and automatically adjusts the rods. The steering sensor consists of a pair of left and right steering sensors consisting of limit switches. When the left steering sensor is "OFF" and the right steering sensor is "ON", left turning is performed and the left steering sensor is When it is "ON" and the right steering sensor is "OFF", a right turn is performed. When both the left steering sensor and the right steering sensor are "OFF" or "ON", it is considered that the cursive script is located in the center of the culm row called the strip, and the straight running is performed. With this configuration, when the combine reaches the uncut grain rod region by manual operation, the combine is automatically steered so that the weed board enters approximately between the rows.
 特許文献2には、自動走行可能な圃場作業車のための走行経路を生成する走行経路生成装置が開示されている。この走行経路生成装置は、タッチパネルを通じて手書き入力された手書き軌跡に基づいて、圃場における自動走行のための走行経路を生成する。これにより、圃場作業車は、ユーザのイメージに合致した走行経路に沿った自動走行が可能となる。しかしながら、この走行経路生成装置では、穀稈列(条)の方向と走行方向との関係は考慮されていない。 Patent Document 2 discloses a traveling route generating device that generates a traveling route for a field work vehicle capable of automatically traveling. This traveling route generation device generates a traveling route for automatic traveling in the field based on the handwritten locus input by handwriting through the touch panel. As a result, the field work vehicle can automatically travel along the travel route that matches the user's image. However, in this traveling route generating device, the relationship between the direction of the grain culm (row) and the traveling direction is not taken into consideration.
特開2003-180130号公報Japanese Unexamined Patent Publication No. 2003-180130 特開2018-093799号公報Japanese Unexamined Patent Publication No. 2018-03799
 特許文献1によるコンバインは、分草板が条間の中央に収まるように操向制御されるので、刈取り作業の途中で分草板が植立穀稈の茎部に衝突するような問題は解決される。しかしながら、操向センサが植立穀稈の茎部との接当によるリミットスイッチの変位を検出するように構成されているので、太い茎部又は細い茎部によって検出タイミングが異なることになり、その結果、操向制御が不正確になるという問題がある。 Since the combine harvester according to Patent Document 1 is steered so that the harvester fits in the center of the interrows, the problem that the harvester collides with the stem of the planted culm during the cutting operation is solved. Will be done. However, since the steering sensor is configured to detect the displacement of the limit switch due to the contact with the stem of the planted culm, the detection timing differs depending on the thick or thin stem. As a result, there is a problem that the steering control becomes inaccurate.
 本発明の課題は、特定部位を植立作物の間に進入させながら、前もって設定された走行経路に沿って自動走行することができる農作業機を提供することである。 An object of the present invention is to provide an agricultural work machine capable of automatically traveling along a preset travel path while allowing a specific site to enter between planted crops.
 本発明による第1の農作業機は、圃場の植立作物に対して作業を行う作業部と、衛星測位モジュールからの測位データに基づいて機体位置を算出する機体位置算出部と、前記圃場を自動走行するための走行経路を設定する走行経路設定部と、前記機体位置が前記走行経路に沿うように自動走行制御を行う自動走行制御部と、作業幅方向にて隣接する前記植立作物の間隔である作物間隔を検知する植立作物検知ユニットと、機体における特定部位が前記植立作物の間に進入するように、前記自動走行制御部による操向制御信号をオフセット補正する走行制御補正部と、を備える。 The first agricultural work machine according to the present invention has a working unit that performs work on planted crops in the field, an airframe position calculation unit that calculates the airframe position based on positioning data from a satellite positioning module, and an automatic field. The distance between the traveling route setting unit that sets the traveling route for traveling, the automatic traveling control unit that automatically controls the traveling so that the machine position follows the traveling route, and the adjacent planted crops in the working width direction. A planted crop detection unit that detects the crop interval, and a travel control correction unit that offset-corrects the steering control signal by the automatic travel control unit so that a specific part of the aircraft enters between the planted crops. , Equipped with.
 この構成によれば、植立作物検知ユニットによって植立作物の間隔が非接触で検知されるので、機体から離れている植立作物の間隔も迅速に検知することができる。さらに、走行制御補正部は、走行経路設定部によって設定された走行経路を基準として、特定部位が作物の間に進入するために要求されるオフセット量を算出する。つまり、制御目標となる走行経路に沿うように操向制御されるので、特許文献1のように制御目標が1つの植立穀稈の茎部に対する左右のずれに即座に反応して操向制御する形態に比べて、安定した操向制御が可能となる。 According to this configuration, the planted crop detection unit detects the distance between the planted crops in a non-contact manner, so that the distance between the planted crops away from the aircraft can be detected quickly. Further, the travel control correction unit calculates the offset amount required for the specific part to enter between the crops with reference to the travel route set by the travel route setting unit. That is, since the steering control is performed along the traveling path that is the control target, the control target immediately reacts to the left-right deviation of one planted culm with respect to the stem portion as in Patent Document 1, and the steering control is performed. Stable steering control is possible compared to the above-mentioned form.
 本発明による第2の農作業機は、圃場の植立作物に対して作業を行う作業部と、衛星測位モジュールからの測位データに基づいて機体位置を算出する機体位置算出部と、前記圃場を自動走行するための走行経路を設定する走行経路設定部と、前記機体位置が前記走行経路に沿うように自動走行制御を行う自動走行制御部と、作業幅方向にて隣接する前記植立作物の間隔である作物間隔を検知する植立作物検知ユニットと、機体における特定部位が前記植立作物の間に進入するように、前記走行経路を補正する走行制御補正部と、を備える。 The second agricultural work machine according to the present invention automatically performs the work unit for working on the planted crops in the field, the machine position calculation unit for calculating the machine position based on the positioning data from the satellite positioning module, and the field. The distance between the traveling route setting unit that sets the traveling route for traveling, the automatic traveling control unit that automatically controls the traveling so that the machine position follows the traveling route, and the adjacent planted crops in the working width direction. It is provided with a planted crop detection unit that detects the crop interval, and a travel control correction unit that corrects the travel route so that a specific part of the machine enters between the planted crops.
 この第2の農作業機は、上述の第1の農作業機に比べて、特定部位が作物の間に進入するための位置ずれ補正の方法が異なっている。第1の農作業機では、位置ずれ補正は、制御基準としての走行経路からのオフセット量で行われるのに対して、この第2の農作業機では、位置ずれ補正は、走行経路設定部によって設定されている走行経路自体を補正(変位)させることになる。この方法では、補正された走行経路が新たな走行目標となるので、上述の第1の農作業機と同様に、特許文献1によるコンバインの操向制御に比べて、安定した操向制御が可能となる。 This second agricultural work machine is different from the above-mentioned first agricultural work machine in the method of correcting the misalignment for the specific part to enter between the crops. In the first agricultural work machine, the displacement correction is performed by the offset amount from the traveling path as a control reference, whereas in the second agricultural working machine, the displacement correction is set by the traveling path setting unit. The traveling path itself is corrected (displaced). In this method, since the corrected travel path becomes a new travel target, stable steering control is possible as compared with the steering control of the combine according to Patent Document 1, as in the case of the first agricultural work machine described above. Become.
 植立作物の間隔を非接触で検知するために適した検知方法の1つは、撮影画像を用いて、植立作物を画像認識することである。撮影部の位置及び撮影部の撮影画角を考慮することで、撮影画像において認識された作物と特定部位との位置関係が正確に算出可能である。このことから、本発明の好適な実施形態の1つでは、前記植立作物を撮影して、撮影画像を出力する撮影部が備えられ、前記植立作物検知ユニットは、前記撮影画像と、前記機体位置から算出される前記撮影部の位置と、前記撮影部の撮影画角とに基づいて、前記植立作物の位置を検知する。その際、走行方向前方の植立作物を明確に撮影するためには、撮影部が、作業部の前部に配置されることが好ましい。 One of the detection methods suitable for detecting the distance between planted crops in a non-contact manner is to recognize the planted crops using a photographed image. By considering the position of the photographing unit and the angle of view of the photographing unit, the positional relationship between the crop recognized in the photographed image and the specific part can be accurately calculated. For this reason, in one of the preferred embodiments of the present invention, a photographing unit that photographs the planted crop and outputs a captured image is provided, and the planted crop detection unit includes the captured image and the photographed image. The position of the planted crop is detected based on the position of the photographing unit calculated from the position of the machine body and the photographing angle of view of the photographing unit. At that time, in order to clearly photograph the planted crops in front of the traveling direction, it is preferable that the photographing section is arranged in the front part of the working section.
 撮影画像を入力データとして、植立作物を検知するためには、パターンマッチングを用いた画像認識が好適である。しかしながら、近年、画像認識の分野において、機械学習されたニューラルネットワークを用いることで、良好な結果が得られており、これを利用することにより、雑草が混在している植立作物や倒伏した作物でも検知可能となる。このことから、本発明の好適な実施形態の1つでは、前記植立作物検知ユニットは、前記撮影画像を入力画像として前記作物間隔を検知するように機械学習されたニューラルネットワークを含んでいる。なお、経時的に取得した撮影画像に対してエピポーラ画像処理を施すことで、特定部位から植立作物までの正確な距離も算出可能である。 Image recognition using pattern matching is preferable in order to detect planted crops using captured images as input data. However, in recent years, in the field of image recognition, good results have been obtained by using machine-learned neural networks, and by using this, planted crops in which weeds are mixed and crops that have fallen down. But it can be detected. For this reason, in one of the preferred embodiments of the present invention, the planted crop detection unit includes a neural network machine-learned to detect the crop interval using the captured image as an input image. It is possible to calculate the accurate distance from a specific site to the planted crop by performing epipolar image processing on the captured image acquired over time.
 植立作物を非接触で検知するために適した検知方法の他の1つは、超音波ビーム、光ビーム、電磁波ビームなどを用いた走査型センサを用いて、走査位置毎の反射ビームの伝播時間を解析することである。これにより、走行前方領域の三次元点群データ(レーダスキャン画像又は距離画像とも呼ばれる)が生成されるので、この三次元点群データから植立作物の位置を算出することができる。このことから、本発明の好適な実施形態の1つでは、前記植立作物検知ユニットは、超音波ビーム、光ビーム、電磁波ビームなどを用いた走査型センサで構成されている。 Another detection method suitable for non-contact detection of planted crops is the propagation of the reflected beam at each scanning position using a scanning sensor using an ultrasonic beam, a light beam, an electromagnetic wave beam, or the like. It is to analyze the time. As a result, three-dimensional point cloud data (also called a radar scan image or a distance image) of the traveling forward region is generated, so that the position of the planted crop can be calculated from the three-dimensional point cloud data. For this reason, in one of the preferred embodiments of the present invention, the planted crop detection unit is composed of a scanning sensor using an ultrasonic beam, a light beam, an electromagnetic wave beam, or the like.
 植立作物が並ぶ方向は、最初に走行経路を設定する際の重要な条件の一つとなる。このことから、本発明の好適な実施形態の1つでは、前記走行経路を表示するタッチパネルが備えられ、前記タッチパネルを用いて前記植立作物が並ぶ方向が手動入力される。これにより、植立作物が並ぶ方向を条件として、走行経路が設定される。 The direction in which the planted crops are lined up is one of the important conditions when setting the travel route for the first time. For this reason, in one of the preferred embodiments of the present invention, a touch panel for displaying the traveling route is provided, and the direction in which the planted crops are lined up is manually input using the touch panel. As a result, the traveling route is set on the condition that the planted crops are lined up.
 作業部がデバイダを備える場合、デバイダが作物の間に進入するように、機体が制御されると好ましい。本発明の好適な実施形態の1つでは、前記特定部位が、前記作業部に設けられたデバイダである。 When the working unit is equipped with a divider, it is preferable that the aircraft is controlled so that the divider enters between the crops. In one of the preferred embodiments of the present invention, the specific portion is a divider provided in the working portion.
 機体が走行車輪を備える場合、走行車輪が作物の間に進入するように、機体が制御されると好ましい。本発明の好適な実施形態の1つでは、前記特定部位が、前記機体に設けられた走行車輪である。 When the aircraft is equipped with traveling wheels, it is preferable that the aircraft is controlled so that the traveling wheels enter between the crops. In one of the preferred embodiments of the present invention, the specific portion is a traveling wheel provided on the airframe.
 また、本発明による自動走行システムは、圃場の植立作物に対して作業を行う作業部を備える農作業機と、衛星測位モジュールからの測位データに基づいて前記農作業機の機体位置を算出する機体位置算出部と、前記農作業機が行う自動作業走行のための走行経路を設定する走行経路設定部と、前記機体位置が前記走行経路に沿うように前記農作業機を自動作業走行させる自動走行制御部と、作業幅方向にて隣接する前記植立作物の間隔である作物間隔を検知する植立作物検知ユニットと、前記農作業機の機体における特定部位が前記植立作物の間に進入するように、前記自動走行制御部による操向制御信号をオフセット補正する走行制御補正部と、を備える。 Further, the automatic traveling system according to the present invention includes an agricultural work machine provided with a work unit for working on planted crops in a field, and an aircraft position for calculating the aircraft position of the agricultural work machine based on positioning data from a satellite positioning module. A calculation unit, a travel route setting unit that sets a travel route for automatic work travel performed by the agricultural work machine, and an automatic travel control unit that automatically runs the agricultural work machine so that the machine position follows the travel route. The planted crop detection unit that detects the crop interval, which is the interval between the planted crops adjacent to each other in the work width direction, and the planted crop so that a specific part of the machine of the agricultural work machine enters between the planted crops. It is provided with a travel control correction unit that offset-corrects the steering control signal by the automatic travel control unit.
 また、本発明によるプログラムは、圃場の植立作物に対して作業を行う作業部と衛星測位モジュールとを備える農作業機のためのプログラムであって、衛星測位モジュールからの測位データに基づいて機体位置を算出する機体位置算出機能と、前記圃場を自動走行するための走行経路を設定する走行経路設定機能と、前記機体位置が前記走行経路に沿うように自動走行制御を行う自動走行制御機能と、作業幅方向にて隣接する前記植立作物の間隔である作物間隔を検知する植立作物検知機能と、機体における特定部位が前記植立作物の間に進入するように、前記自動走行制御部による操向制御信号をオフセット補正する走行制御補正機能と、をコンピュータに実現させる。 Further, the program according to the present invention is a program for an agricultural work machine provided with a working unit for performing work on planted crops in a field and a satellite positioning module, and the aircraft position is based on positioning data from the satellite positioning module. A machine position calculation function for calculating, a travel route setting function for setting a travel route for automatically traveling in the field, an automatic travel control function for performing automatic travel control so that the aircraft position follows the travel route, and an automatic travel control function. The planted crop detection function that detects the crop interval, which is the interval between the planted crops adjacent in the work width direction, and the automatic travel control unit so that a specific part of the aircraft enters between the planted crops. The computer realizes a driving control correction function that offset-corrects the steering control signal.
 また、本発明によるプログラムを記録した記録媒体は、圃場の植立作物に対して作業を行う作業部と衛星測位モジュールとを備える農作業機のためのプログラムを記録した記録媒体であって、衛星測位モジュールからの測位データに基づいて機体位置を算出する機体位置算出機能と、前記圃場を自動走行するための走行経路を設定する走行経路設定機能と、前記機体位置が前記走行経路に沿うように自動走行制御を行う自動走行制御機能と、作業幅方向にて隣接する前記植立作物の間隔である作物間隔を検知する植立作物検知機能と、機体における特定部位が前記植立作物の間に進入するように、前記自動走行制御部による操向制御信号をオフセット補正する走行制御補正機能と、をコンピュータに実現させるプログラムを記録している。 Further, the recording medium on which the program according to the present invention is recorded is a recording medium on which a program for an agricultural work machine including a working unit for performing work on planted crops in a field and a satellite positioning module is recorded, and is used for satellite positioning. An aircraft position calculation function that calculates the aircraft position based on the positioning data from the module, a travel route setting function that sets a travel route for automatically traveling in the field, and an automatic operation so that the aircraft position follows the travel route. An automatic travel control function that controls travel, a planted crop detection function that detects the crop interval that is the interval between adjacent planted crops in the work width direction, and a specific part of the aircraft that enters between the planted crops. As described above, a program for realizing a travel control correction function for offset-correcting the steering control signal by the automatic travel control unit and a computer is recorded.
 また、本発明による方法は、圃場の植立作物に対して作業を行う作業部と衛星測位モジュールとを備える農作業機に自動作業走行を行わせる方法であって、衛星測位モジュールからの測位データに基づいて機体位置を算出する機体位置算出ステップと、前記圃場を自動走行するための走行経路を設定する走行経路設定ステップと、前記機体位置が前記走行経路に沿うように自動走行制御を行う自動走行制御ステップと、作業幅方向にて隣接する前記植立作物の間隔である作物間隔を検知する植立作物検知ステップと、機体における特定部位が前記植立作物の間に進入するように、前記自動走行制御部による操向制御信号をオフセット補正する走行制御補正ステップと、を含んでいる。 Further, the method according to the present invention is a method of causing an agricultural work machine equipped with a working unit for working on planted crops in a field and a satellite positioning module to perform automatic work running, and using positioning data from the satellite positioning module. An aircraft position calculation step that calculates the aircraft position based on the vehicle position, a travel route setting step that sets a travel route for automatically traveling in the field, and automatic travel that automatically controls the aircraft position so as to follow the travel route. The control step, the planted crop detection step that detects the crop interval that is the interval between the planted crops adjacent in the working width direction, and the automatic operation so that a specific part of the machine enters between the planted crops. It includes a travel control correction step for offset-correcting the steering control signal by the travel control unit.
 また、本発明による自動走行システムは、圃場の植立作物に対して作業を行う作業部を備える農作業機と、衛星測位モジュールからの測位データに基づいて前記農作業機の機体位置を算出する機体位置算出部と、前記農作業機が行う自動作業走行のための走行経路を設定する走行経路設定部と、前記機体位置が前記走行経路に沿うように前記農作業機を自動作業走行させる自動走行制御部と、作業幅方向にて隣接する前記植立作物の間隔である作物間隔を検知する植立作物検知ユニットと、前記農作業機の機体における特定部位が前記植立作物の間に進入するように、前記走行経路を補正する走行制御補正部と、を備える。 Further, the automatic traveling system according to the present invention includes an agricultural work machine provided with a work unit for working on planted crops in a field, and an aircraft position for calculating the aircraft position of the agricultural work machine based on positioning data from a satellite positioning module. A calculation unit, a travel route setting unit that sets a travel route for automatic work travel performed by the agricultural work machine, and an automatic travel control unit that automatically runs the agricultural work machine so that the machine position follows the travel route. The planted crop detection unit that detects the crop interval, which is the interval between the planted crops adjacent to each other in the work width direction, and the planted crop so that a specific part of the machine of the agricultural work machine enters between the planted crops. It is provided with a travel control correction unit that corrects the travel route.
 また、本発明によるプログラムは、圃場の植立作物に対して作業を行う作業部と衛星測位モジュールとを備える農作業機のためのプログラムであって、衛星測位モジュールからの測位データに基づいて機体位置を算出する機体位置算出機能と、前記圃場を自動走行するための走行経路を設定する走行経路設定機能と、前記機体位置が前記走行経路に沿うように自動走行制御を行う自動走行制御機能と、作業幅方向にて隣接する前記植立作物の間隔である作物間隔を検知する植立作物検知機能と、機体における特定部位が前記植立作物の間に進入するように、前記走行経路を補正する走行制御補正機能と、をコンピュータに実現させる。 Further, the program according to the present invention is a program for an agricultural work machine including a working unit for performing work on planted crops in a field and a satellite positioning module, and the machine position is based on the positioning data from the satellite positioning module. A machine position calculation function for calculating, a travel route setting function for setting a travel route for automatically traveling in the field, an automatic travel control function for performing automatic travel control so that the aircraft position follows the travel route, and an automatic travel control function. The planted crop detection function that detects the crop interval, which is the interval between the planted crops adjacent in the work width direction, and the traveling route are corrected so that a specific part of the aircraft enters between the planted crops. The driving control correction function is realized in the computer.
 また、本発明によるプログラムを記録した記録媒体は、圃場の植立作物に対して作業を行う作業部と衛星測位モジュールとを備える農作業機のためのプログラムを記録した記録媒体であって、衛星測位モジュールからの測位データに基づいて機体位置を算出する機体位置算出機能と、前記圃場を自動走行するための走行経路を設定する走行経路設定機能と、前記機体位置が前記走行経路に沿うように自動走行制御を行う自動走行制御機能と、作業幅方向にて隣接する前記植立作物の間隔である作物間隔を検知する植立作物検知機能と、機体における特定部位が前記植立作物の間に進入するように、前記走行経路を補正する走行制御補正機能と、をコンピュータに実現させるプログラムを記録している。 Further, the recording medium on which the program according to the present invention is recorded is a recording medium on which a program for an agricultural work machine including a working unit for performing work on planted crops in a field and a satellite positioning module is recorded, and is used for satellite positioning. An aircraft position calculation function that calculates the aircraft position based on the positioning data from the module, a travel route setting function that sets a travel route for automatically traveling in the field, and an automatic operation so that the aircraft position follows the travel route. An automatic travel control function that controls travel, a planted crop detection function that detects the crop interval that is the interval between adjacent planted crops in the work width direction, and a specific part of the aircraft that enters between the planted crops. As described above, a program for realizing the travel control correction function for correcting the travel path and the computer is recorded.
 また、本発明による方法は、圃場の植立作物に対して作業を行う作業部と衛星測位モジュールとを備える農作業機に自動作業走行を行わせる方法であって、衛星測位モジュールからの測位データに基づいて機体位置を算出する機体位置算出ステップと、前記圃場を自動走行するための走行経路を設定する走行経路設定ステップと、前記機体位置が前記走行経路に沿うように自動走行制御を行う自動走行制御ステップと、作業幅方向にて隣接する前記植立作物の間隔である作物間隔を検知する植立作物検知ステップと、機体における特定部位が前記植立作物の間に進入するように、前記走行経路を補正する走行制御補正ステップと、を含んでいる。 Further, the method according to the present invention is a method of causing an agricultural work machine equipped with a working unit for working on planted crops in a field and a satellite positioning module to perform automatic work running, and using positioning data from the satellite positioning module. An aircraft position calculation step that calculates the aircraft position based on the vehicle position, a travel route setting step that sets a travel route for automatically traveling in the field, and automatic travel that automatically controls the aircraft position so as to follow the travel route. The control step, the planted crop detection step that detects the crop interval that is the interval between the planted crops adjacent in the working width direction, and the traveling so that a specific part of the aircraft enters between the planted crops. It includes a travel control correction step that corrects the route.
農作業機の側面図である。It is a side view of an agricultural work machine. 農作業機の平面図である。It is a top view of an agricultural work machine. 圃場で作業を行うための走行経路を例示する説明図である。It is explanatory drawing which illustrates the traveling route for carrying out work in a field. 農作業機の制御系を示す機能ブロック図である。It is a functional block diagram which shows the control system of an agricultural work machine. 機械学習ユニットにおける植立作物の認識処理を説明する説明図である。It is explanatory drawing explaining the recognition process of a planted crop in a machine learning unit. 作物間隔の検知に伴う操向制御変更の一例を説明するための模式図である。It is a schematic diagram for demonstrating an example of the steering control change accompanying the detection of a crop interval. 図6に示す操向制御変更時の制御の流れを示す説明図である。It is explanatory drawing which shows the flow of control at the time of changing the steering control shown in FIG. 作物間隔の検知に伴う操向制御変更の一例を説明するための模式図である。It is a schematic diagram for demonstrating an example of the steering control change accompanying the detection of a crop interval. 図8に示す操向制御変更時の制御の流れを示す説明図である。It is explanatory drawing which shows the flow of control at the time of changing the steering control shown in FIG. 農作業機の平面図である。It is a top view of an agricultural work machine. 農作業機の平面図である。It is a top view of an agricultural work machine. 農作業機の平面図である。It is a top view of an agricultural work machine. 農作業機の平面図である。It is a top view of an agricultural work machine. 作物間隔の検知に伴う操向制御変更の一例を説明するための模式図である。It is a schematic diagram for demonstrating an example of the steering control change accompanying the detection of a crop interval. 作物間隔の検知に伴う操向制御変更の一例を説明するための模式図である。It is a schematic diagram for demonstrating an example of the steering control change accompanying the detection of a crop interval.
 本発明に係る農作業機の一例である自脱型のコンバインの実施形態が、図面に基づいて以下に記載されている。なお、特に断りがない限り、図1及び図2に示す矢印Fの方向を「前」、矢印Bの方向を「後」とする。また、図2に示す矢印Lの方向を「左」、矢印Rの方向を「右」とする。また、図1に示す矢印Uの方向を「上」、矢印Dの方向を「下」とする。 An embodiment of a head-feeding combine, which is an example of an agricultural work machine according to the present invention, is described below based on drawings. Unless otherwise specified, the direction of the arrow F shown in FIGS. 1 and 2 is defined as “front”, and the direction of arrow B is defined as “rear”. Further, the direction of the arrow L shown in FIG. 2 is "left", and the direction of the arrow R is "right". Further, the direction of the arrow U shown in FIG. 1 is "up", and the direction of the arrow D is "down".
 図1及び図2に示されるように、この自脱型コンバインは、クローラ式の走行装置11、運転部12、脱穀装置13、穀粒タンク14(図2にのみ示されている)、作業部としての刈取部15、搬送装置16、穀粒排出装置18、衛星測位モジュール80を備えている。コンバインの機体10は、コンバインの主な構成要素の集合体を意味するが、場合によっては、走行装置11や刈取部15などの個別の構成要素を意味することがある。 As shown in FIGS. 1 and 2, the head-feeding combine includes a crawler-type traveling device 11, a driving unit 12, a threshing device 13, a grain tank 14 (shown only in FIG. 2), and a working unit. A cutting unit 15, a transport device 16, a grain discharge device 18, and a satellite positioning module 80 are provided. The combine harvester 10 means an aggregate of the main components of the combine, but in some cases, it may mean individual components such as the traveling device 11 and the cutting section 15.
 走行装置11は、コンバインにおける下部に備えられている。また、走行装置11は、エンジン(図示せず)からの動力によって駆動する。そして、コンバインは、走行装置11によって自走可能である。 The traveling device 11 is provided at the lower part of the combine. Further, the traveling device 11 is driven by power from an engine (not shown). Then, the combine can be self-propelled by the traveling device 11.
 また、運転部12、脱穀装置13、穀粒タンク14は、走行装置11よりも上側に備えられている。穀粒排出装置18は、脱穀装置13及び穀粒タンク14よりも上側に設けられている。運転部12には、コンバインの作業を監視するオペレータが搭乗可能である。なお、オペレータは、コンバインの機外からコンバインの作業を監視していてもよい。 Further, the operation unit 12, the threshing device 13, and the grain tank 14 are provided above the traveling device 11. The grain discharge device 18 is provided above the threshing device 13 and the grain tank 14. An operator who monitors the work of the combine can be boarded on the driver unit 12. The operator may monitor the work of the combine from outside the combine.
 刈取部15は機体10の前部に支持されている。搬送装置16は刈取部15よりも後側に隣接して設けられている。この実施形態では、刈取部15は圃場における植立作物としての植立穀稈を刈り取って収穫する。植立穀稈には、稲、小麦、大豆、トウモロコシが含まれる。コンバインは、走行しながら圃場の植立穀稈を収穫する。刈取部15は、植立穀稈の刈取作業を行う。 The cutting section 15 is supported by the front portion of the machine body 10. The transport device 16 is provided adjacent to the rear side of the cutting section 15. In this embodiment, the cutting unit 15 cuts and harvests the planted culm as a planted crop in the field. Planted culms include rice, wheat, soybeans and corn. The combine harvests the planted culms in the field while traveling. The reaping unit 15 performs reaping work on the planted culm.
 図2に示すように、刈取部15には、特定部位としてのデバイダ15Cが備えられている。デバイダ15Cの先端は、刈取対象となる隣接する植立穀稈を分草するため、前方に突き出ている。デバイダ15Cの先端が植立穀稈の茎部の列(条又は条列と呼ばれる)の間に進入するように機体10は操向される。なお、植立穀稈の茎部には、刈り取られた植立穀稈の刈り跡としての茎部もふくまれており、デバイダ15Cが、刈取り前の植立穀稈の茎部と刈り取られた植立穀稈の茎部との間に進入することも少なくない。 As shown in FIG. 2, the cutting section 15 is provided with a divider 15C as a specific portion. The tip of the divider 15C protrudes forward in order to weed the adjacent planted culm to be harvested. The aircraft 10 is steered so that the tip of the divider 15C enters between the rows of stems (called strips or rows) of the planted culm. In addition, the stem of the planted culm also includes a stem as a cut mark of the cut planted culm, and the divider 15C was cut with the stem of the planted culm before cutting. It often enters between the stem of the planted culm.
 刈取部15によって刈り取られた植立穀稈は刈取穀稈として、搬送装置16により脱穀装置13へ搬送される。刈取穀稈は脱穀装置13によって脱穀処理される。脱穀処理により得られた収穫物としての穀粒は、穀粒タンク14に貯留される。穀粒タンク14に貯留された穀粒は、必要に応じて、穀粒排出装置18によって機外に排出される。穀粒排出装置18は機体後部の縦軸芯回りに揺動可能に構成されている。即ち、穀粒排出装置18の排出部が機体10よりも機体横外側へ張り出して作物を排出可能な排出状態と、穀粒排出装置18の排出部が機体10の機体横幅の範囲内に位置する収納状態と、に切換可能なように穀粒排出装置18は構成されている。穀粒排出装置18が収納状態である場合、穀粒排出装置18の排出口部は運転部12よりも前側に位置するとともに刈取部15の上方に位置する。 The planted grain culm cut by the cutting unit 15 is transported to the threshing device 13 by the transport device 16 as a harvested grain culm. The harvested culm is threshed by the threshing device 13. The harvested grains obtained by the threshing treatment are stored in the grain tank 14. The grains stored in the grain tank 14 are discharged to the outside of the machine by the grain discharging device 18 as needed. The grain discharge device 18 is configured to swing around the vertical axis core at the rear of the machine body. That is, the discharge portion of the grain discharge device 18 is located in a discharge state in which the discharge portion of the grain discharge device 18 projects to the lateral outside of the machine body 10 to discharge crops, and the discharge portion of the grain discharge device 18 is located within the range of the machine width of the machine body 10. The grain discharge device 18 is configured so that it can be switched between the stored state and the stored state. When the grain discharge device 18 is in the stored state, the discharge port portion of the grain discharge device 18 is located on the front side of the operation unit 12 and above the cutting unit 15.
 衛星測位モジュール80が、運転部12の天井上面に取り付けられている。衛星測位モジュール80は、人工衛星GSからのGNSS(Global Navigation Satellite System)の信号(GPS信号を含む)を受信して、機体位置を取得する。なお、衛星測位モジュール80による衛星航法を補完するために、ジャイロ加速度センサや磁気方位センサを組み込んだ慣性航法ユニットが衛星測位モジュール80に組み込まれている。もちろん、慣性航法ユニットは、コンバインにおいて衛星測位モジュール80と別の箇所に配置されてもよい。 The satellite positioning module 80 is attached to the upper surface of the ceiling of the driving unit 12. The satellite positioning module 80 receives a GNSS (Global Navigation Satellite System) signal (including a GPS signal) from the artificial satellite GS and acquires the aircraft position. In addition, in order to complement the satellite navigation by the satellite positioning module 80, an inertial navigation unit incorporating a gyro acceleration sensor and a magnetic compass sensor is incorporated in the satellite positioning module 80. Of course, the inertial navigation unit may be arranged at a different location from the satellite positioning module 80 in the combine.
 この実施形態では、右端のデバイダ15Cの上面に、CCDカメラ又はCMOSカメラで構成される撮影部21が設けられている。この撮影部21は、刈取り走行時に、進行方向前方で横方向に並んだ植立穀稈の茎部及び刈り取られた植立穀稈の刈り跡としての茎部あるいはその両方の茎部を撮影できるように設定された撮影画角を有する。撮影画像には、収穫幅方向にて隣接している少なくとも2つの茎部が含まれるので、その撮影画像から、植立穀稈の茎部の間隔、つまり条間を検知することができる。撮影部21は、右端のデバイダ15Cだけでなく、左端のデバイダ15Cやその他のデバイダ15Cに設けることも可能である。 In this embodiment, a photographing unit 21 composed of a CCD camera or a CMOS camera is provided on the upper surface of the divider 15C at the right end. The photographing unit 21 can photograph the stems of the planted culms lined up laterally in the front of the traveling direction and the stalks of the cut culms or both of the cut culms during the cutting run. It has a shooting angle of view set as such. Since the photographed image includes at least two stems that are adjacent to each other in the harvest width direction, the distance between the stems of the planted culm, that is, the interstitial space can be detected from the photographed image. The photographing unit 21 can be provided not only on the rightmost divider 15C but also on the leftmost divider 15C and other dividers 15C.
 この実施形態のコンバインは自動走行と手動走行との両方で走行可能である。自動走行では、コンバインは、圃場に設定される走行経路に沿って自動的に作業走行する。図3には、圃場における標準的な収穫作業の一例が示されている。ここでは、コンバインが圃場に入ると、圃場の境界(畔など)に沿って手動で回り刈り作業走行が行われ、圃場の外周に既作業領域(既刈領域)である外周領域SAが形成される。なお、この周囲刈り走行で形成される外周領域SAがコンバインのアルファ形状ターン走行が可能となる大きさになれば、自動走行での回り刈りが可能である。次に、中央刈り作業走行として、外周領域SAの内側領域CAである未作業領域(未刈領域)に対する自動走行のための走行経路が設定される。図3では、中央刈り作業走行の走行経路として、直線走行とUターン走行とを組み合わせた往復走行経路が用いられている。この直線走行の走行経路には、直線経路だけでなく、大きな湾曲経路や蛇行経路も含まれる。 The combine of this embodiment can run in both automatic running and manual running. In automatic driving, the combine automatically travels along a traveling route set in the field. FIG. 3 shows an example of a standard harvesting operation in the field. Here, when the combine enters the field, the rotary mowing work is manually performed along the boundary (shore, etc.) of the field, and the outer peripheral area SA, which is the already worked area (already mowed area), is formed on the outer periphery of the field. To. If the outer peripheral region SA formed by the peripheral mowing run becomes a size that enables the combine's alpha-shaped turn run, the rotary mowing by the automatic run is possible. Next, as the central mowing work run, a running route for automatic running with respect to the unworked area (uncut area) which is the inner area CA of the outer peripheral area SA is set. In FIG. 3, a reciprocating travel route that combines straight-line travel and U-turn travel is used as the travel route for the central mowing work travel. The traveling route of this straight traveling includes not only a straight route but also a large curved route and a meandering route.
 図4には、コンバインの制御系の機能ブロック図が示されている。この実施形態の制御系は、多数のECUと呼ばれる電子制御ユニットと、各種動作機器、センサ群やスイッチ群、それらの間のデータ伝送を行う車載LANなどの配線網から構成されている。報知デバイス84は、運転者等に障害物の検出結果や作業走行の状態などの警告を報知するためのデバイスであり、ブザー、ランプ、スピーカ、ディスプレイなどである。 FIG. 4 shows a functional block diagram of the combine control system. The control system of this embodiment is composed of a large number of electronic control units called ECUs, various operating devices, sensor groups and switch groups, and a wiring network such as an in-vehicle LAN that transmits data between them. The notification device 84 is a device for notifying the driver or the like of a warning such as an obstacle detection result or a working running state, and is a buzzer, a lamp, a speaker, a display, or the like.
 制御ユニット6は、この制御系の中核要素であり、複数のECUの集合体として示されている。衛星測位モジュール80からの測位データ、撮影部21からの撮影画像、運転部12に設置されているタブレットコンピュータ85からの制御指令は、車載LANなどの配線網を通じて制御ユニット6に入力される。 The control unit 6 is a core element of this control system and is shown as an aggregate of a plurality of ECUs. Positioning data from the satellite positioning module 80, captured images from the photographing unit 21, and control commands from the tablet computer 85 installed in the driving unit 12 are input to the control unit 6 through a wiring network such as an in-vehicle LAN.
 制御ユニット6は、入出力インタフェースとして、出力処理部6Bと入力処理部6Aとを備えている。出力処理部6Bは、車両走行機器群7A及び作業装置機器群7Bと接続している。車両走行機器群7Aには、車両走行に関する制御機器、例えばエンジン制御機器、変速制御機器、制動制御機器、操舵制御機器などが含まれている。作業装置機器群7Bには、刈取部15、搬送装置16、脱穀装置13、穀粒排出装置18における動力制御機器などが含まれている。入力処理部6Aには、走行系検出センサ群8Aや作業系検出センサ群8Bなどが接続されている。走行系検出センサ群8Aには、エンジン回転数調整具、アクセルペダル、ブレーキペダル、変速操作具などの状態を検出するセンサが含まれている。作業系検出センサ群8Bには、刈取部15、搬送装置16、脱穀装置13、穀粒排出装置18における装置状態及び穀稈や穀粒の状態を検出するセンサが含まれている。 The control unit 6 includes an output processing unit 6B and an input processing unit 6A as input / output interfaces. The output processing unit 6B is connected to the vehicle traveling equipment group 7A and the working equipment group 7B. The vehicle traveling device group 7A includes control devices related to vehicle traveling, such as an engine control device, a shift control device, a braking control device, and a steering control device. The working equipment group 7B includes a cutting unit 15, a transporting device 16, a threshing device 13, a power control device in the grain discharging device 18, and the like. A traveling system detection sensor group 8A, a working system detection sensor group 8B, and the like are connected to the input processing unit 6A. The traveling system detection sensor group 8A includes sensors that detect the state of the engine speed adjuster, the accelerator pedal, the brake pedal, the speed change operation tool, and the like. The work system detection sensor group 8B includes a sensor for detecting the device state in the cutting unit 15, the transport device 16, the grain removal device 13, and the grain discharge device 18, and the state of the culm and the grain.
 制御ユニット6には、走行制御モジュール60、走行経路設定部64、走行制御補正部65、機体位置算出部66、報知部67、走行軌跡管理部68、植立作物検知ユニット50が備えられている。具体的には、制御ユニット6は、CPU、通信機能、及びストレージ機能(内部記録媒体並びに外部記録媒体に対するドライブユニット及び/又は入出力インタフェース)を備えたコンピュータ装置と、所定のコンピュータプログラムとで構成される。このコンピュータプログラムは、コンピュータ装置を、走行制御モジュール60、走行経路設定部64、走行制御補正部65、機体位置算出部66、報知部67、走行軌跡管理部68、及び植立作物検知ユニット50として機能させる。このコンピュータプログラムは、コンピュータが読み取り可能な上述の記録媒体に記録されている。このコンピュータプログラムを実行することにより、自動走行システムにおいて、上述の各機能部に対応するステップを含む方法が実行される。 The control unit 6 includes a travel control module 60, a travel route setting unit 64, a travel control correction unit 65, an aircraft position calculation unit 66, a notification unit 67, a travel locus management unit 68, and a planted crop detection unit 50. .. Specifically, the control unit 6 is composed of a computer device having a CPU, a communication function, and a storage function (a drive unit and / or an input / output interface for an internal recording medium and an external recording medium), and a predetermined computer program. To. This computer program uses a computer device as a travel control module 60, a travel route setting unit 64, a travel control correction unit 65, an aircraft position calculation unit 66, a notification unit 67, a travel locus management unit 68, and a planted crop detection unit 50. Make it work. This computer program is recorded on the computer-readable recording medium described above. By executing this computer program, a method including steps corresponding to the above-mentioned functional units is executed in the automatic driving system.
 機体位置算出部66は、衛星測位モジュール80から逐次送られてくる測位データに基づいて、機体10の少なくとも1つの特定箇所、例えば刈取部15などの地図座標(又は圃場座標)である機体位置を算出する。 Based on the positioning data sequentially sent from the satellite positioning module 80, the aircraft position calculation unit 66 determines the aircraft position which is the map coordinates (or field coordinates) of at least one specific location of the aircraft 10, for example, the cutting unit 15. calculate.
 走行制御モジュール60には、自動走行制御部61と手動走行制御部62と作業制御部63とが備えられている。自動操舵で走行する自動走行モードと、手動操舵で走行する手動操舵モードとのいずれかを選択する走行モードスイッチ(非図示)が運転部12内に設けられている。この走行モードスイッチを操作することで、手動操舵走行から自動操舵走行への移行、あるいは自動操舵走行から手動操舵走行への移行が可能である。 The travel control module 60 is provided with an automatic travel control unit 61, a manual travel control unit 62, and a work control unit 63. A traveling mode switch (not shown) for selecting between an automatic traveling mode in which the vehicle travels by automatic steering and a manual steering mode in which the vehicle travels by manual steering is provided in the driving unit 12. By operating this travel mode switch, it is possible to shift from manual steering running to automatic steering running, or from automatic steering running to manual steering running.
 自動走行制御部61及び手動走行制御部62は、エンジン制御機能、操舵制御機能、車速制御機能などを有し、車両走行機器群7Aに走行制御信号を与える。自動走行制御部61は、位置ずれ算出部61aと操向制御量算出部61bとを有する。位置ずれ算出部61aは、走行経路設定部64によって設定された走行経路と、機体位置算出部66によって算出された機体位置との間の走行位置ずれを算出する。操向制御量算出部61bは、機体10が走行位置ずれを解消するように自動操向されるための操向制御量を算出する。自動走行時の車速は、前もって設定されている車速値に基づいて自動走行制御部61によって生成される車速指令に基づいて決まる。手動走行時の操向制御量や車速は、手動操作に基づいて手動走行制御部62により生成される操向制御量や車速指令に基づいて決まる。作業制御部63は、刈取部15、脱穀装置13、穀粒排出装置18などの動きを制御するために、出力処理部6Bを介して作業装置機器群7Bに作業制御信号を与える。 The automatic driving control unit 61 and the manual driving control unit 62 have an engine control function, a steering control function, a vehicle speed control function, and the like, and give a driving control signal to the vehicle traveling equipment group 7A. The automatic traveling control unit 61 includes a position deviation calculation unit 61a and a steering control amount calculation unit 61b. The position deviation calculation unit 61a calculates the travel position deviation between the travel route set by the travel route setting unit 64 and the aircraft position calculated by the aircraft position calculation unit 66. The steering control amount calculation unit 61b calculates the steering control amount for automatically steering the aircraft 10 so as to eliminate the deviation of the traveling position. The vehicle speed during automatic driving is determined based on a vehicle speed command generated by the automatic driving control unit 61 based on a vehicle speed value set in advance. The steering control amount and vehicle speed during manual driving are determined based on the steering control amount and vehicle speed command generated by the manual driving control unit 62 based on the manual operation. The work control unit 63 gives a work control signal to the work equipment group 7B via the output processing unit 6B in order to control the movements of the cutting unit 15, the threshing device 13, the grain discharge device 18, and the like.
 走行経路設定部64は、作成された自動走行のための走行経路をメモリに展開し、順次自動走行における目標走行経路として設定する機能を有する。報知部67は、制御ユニット6の各機能部からの要求に基づいて報知データを生成し、報知デバイス84に与える。走行軌跡管理部68は、機体位置算出部66からの機体位置及び走行制御モジュール60からの作業走行情報に基づいて、圃場における未作業領域と既作業領域とを管理する。 The travel route setting unit 64 has a function of expanding the created travel route for automatic driving in a memory and sequentially setting it as a target travel route in automatic driving. The notification unit 67 generates notification data based on a request from each functional unit of the control unit 6 and gives the notification data to the notification device 84. The travel locus management unit 68 manages an unworked area and an existing work area in the field based on the aircraft position from the aircraft position calculation unit 66 and the work travel information from the travel control module 60.
 植立作物検知ユニット50は、収穫幅方向(作業幅方向)にて隣接する植立穀稈の茎部の間隔である条間(「作物間隔」の一例)を、非接触で検知する。植立穀稈を刈り取った後に残される茎部は、圃場面から数センチ以上の高さを有する。従って、植立穀稈を刈り取った後に残される茎部は、植立作物検知ユニット50によって検知され、植立穀稈の茎部として取り扱われる。 The planted crop detection unit 50 non-contactly detects the inter-row spacing (an example of "crop spacing"), which is the spacing between the stems of adjacent planted culms in the harvest width direction (working width direction). The stems left after cutting the planted culms have a height of several centimeters or more from the field scene. Therefore, the stem portion left after cutting the planted grain culm is detected by the planted crop detection unit 50 and treated as the stem portion of the planted grain culm.
 この実施形態では、植立作物検知ユニット50は、撮影部21からの撮影画像と、機体位置算出部66からの機体位置に基づいて算出される撮影部21の位置と、撮影部21の撮影画角とに基づいて、少なくとも2つの植立穀稈の茎部の位置及び条間を検知し、条間におけるデバイダ15Cの収穫幅方向での位置関係を算出する。 In this embodiment, the planted crop detection unit 50 includes a photographed image from the photographing unit 21, a position of the photographing unit 21 calculated based on the body position from the machine body position calculation unit 66, and a photographed image of the photographing unit 21. Based on the angle of view, the positions of the stems and the inter-rows of at least two planted culms are detected, and the positional relationship of the divider 15C between the inter-rows in the harvest width direction is calculated.
 このため、この実施形態の植立作物検知ユニット50には、画像取得部51、機械学習ユニット52、デバイダ位置算出部53が含まれている。画像取得部51は、撮影部21から所定周期で送られてくる撮影画像を、機体位置算出部66によって算出された自機位置とリンクさせてメモリに格納する。 Therefore, the planted crop detection unit 50 of this embodiment includes an image acquisition unit 51, a machine learning unit 52, and a divider position calculation unit 53. The image acquisition unit 51 stores the photographed image sent from the photographing unit 21 at a predetermined cycle in the memory by linking it with the own machine position calculated by the machine body position calculating unit 66.
 機械学習ユニット52は、機械学習されたニューラルネットワークによって構築されている。この機械学習されたニューラルネットワークでは、図5に模式的に示されているように、撮影部21によって取得された撮影画像を入力画像として、この撮影画像に含まれている植立穀稈の茎部を認識して、茎部の位置を出力する。このため、そのような認識に優れたディープラーニングアルゴリズムが用いられている。図5では、植立穀稈の茎部が矩形枠で示されている。この矩形枠のサイズ及び撮影画像における矩形枠の位置が出力される。 The machine learning unit 52 is constructed by a machine-learned neural network. In this machine-learned neural network, as schematically shown in FIG. 5, the photographed image acquired by the photographing unit 21 is used as an input image, and the stem of the planted culm included in this photographed image is used. It recognizes the part and outputs the position of the stem part. Therefore, a deep learning algorithm excellent in such recognition is used. In FIG. 5, the stem of the planted culm is shown by a rectangular frame. The size of this rectangular frame and the position of the rectangular frame in the captured image are output.
 デバイダ位置算出部53は、図6に模式的に示されているように、デバイダ15Cの取付位置と、機体10に対する茎部の位置と、目標デバイダ位置(ここでは、条間の中央位置)から、デバイダ15Cの目標デバイダ位置からの位置ずれであるデバイダ位置ずれ(図6ではαで示されている)を算出する。 As schematically shown in FIG. 6, the divider position calculation unit 53 starts from the mounting position of the divider 15C, the position of the stem with respect to the machine body 10, and the target divider position (here, the central position between the strips). , The divider position shift (indicated by α in FIG. 6), which is the position shift from the target divider position of the divider 15C, is calculated.
 走行制御補正部65は、デバイダ15Cが植立穀稈の条間に適切に進入するように、自動走行制御部61による操向制御信号をオフセット補正する。この操向制御の流れが図7に示されている。この実施形態では、走行制御補正部65は、オフセット量算出部65aを備えている。オフセット量算出部65a、植立作物検知ユニット50から出力されたデバイダ位置ずれに基づいて、デバイダ15Cが目標デバイダ位置に近づくために必要な機体10の横方向(走行経路に直交する方向)の変位量をオフセット量(図7ではβで示されている)として算出する。簡単には、デバイダ位置ずれがそのままオフセット量として用いられる(β=α)。しかしながら、デバイダ位置ずれと、位置ずれ算出部61aによって算出された走行位置ずれとのどちらかに重みをおくことで、より適切な操向制御が実現できる場合もある。デバイダ位置ずれに重きをおく場合、オフセット量はデバイダ位置ずれより大きな値をとり、走行位置ずれに重きをおく場合、オフセット量はデバイダ位置ずれより小さな値をとる。このことから、デバイダ位置ずれから所定の関数(β=f(α))を用いてオフセット量が算出されてもよい。この関数fは、線形関数でもよいし、非線形関数でもよい。 The travel control correction unit 65 offset-corrects the steering control signal by the automatic travel control unit 61 so that the divider 15C appropriately enters the gap between the planted culms. The flow of this steering control is shown in FIG. In this embodiment, the travel control correction unit 65 includes an offset amount calculation unit 65a. The displacement of the aircraft 10 in the lateral direction (direction orthogonal to the traveling path) required for the divider 15C to approach the target divider position based on the divider misalignment output from the offset amount calculation unit 65a and the planted crop detection unit 50. The amount is calculated as an offset amount (indicated by β in FIG. 7). Simply, the divider misalignment is used as is as the offset amount (β = α). However, more appropriate steering control may be realized by weighting either the divider misalignment or the traveling misalignment calculated by the misalignment calculation unit 61a. When weighting the divider misalignment, the offset amount takes a value larger than the divider misalignment, and when weighting the traveling position shift, the offset amount takes a value smaller than the divider misalignment. From this, the offset amount may be calculated from the divider position shift using a predetermined function (β = f (α)). This function f may be a linear function or a non-linear function.
 このオフセット量は、位置ずれ算出部61aによって算出された走行位置ずれに加えられ、その混合値が操向制御量算出部61bに与えられる。図7において、当該混合値は「Δd+β」で示されているが、混合値の算出手法は必ずしも加算に限られない。例えば、重み演算等を用いて混合値が算出されてもよい。操向制御量算出部61bは、PI制御等を用いて操向制御量(図7ではSで示されている)を算出して、操向制御信号に変換して車両走行機器群7Aに送る。なお、図示されていないが、操向制御量算出部61bは、方位偏差(走行経路の方位と機体方位と偏差)も制御パラメータとして用いることができる。 This offset amount is added to the traveling position deviation calculated by the position deviation calculation unit 61a, and the mixed value is given to the steering control amount calculation unit 61b. In FIG. 7, the mixed value is indicated by “Δd + β”, but the method for calculating the mixed value is not necessarily limited to addition. For example, the mixed value may be calculated by using a weighting operation or the like. The steering control amount calculation unit 61b calculates the steering control amount (indicated by S in FIG. 7) using PI control or the like, converts it into a steering control signal, and sends it to the vehicle traveling equipment group 7A. .. Although not shown, the steering control amount calculation unit 61b can also use the directional deviation (direction of the traveling route, the direction of the aircraft, and the deviation) as a control parameter.
 図8と図9には、走行制御補正部65の別実施形態が示されている。ここでは、走行制御補正部65は、オフセット量算出部65aに代えて経路補正量算出部65bを備えている。この経路補正量算出部65bは、デバイダ15Cが植立穀稈の条間に適切に進入するように、走行経路設定部64によって設定されている走行経路を変位させる経路変位指令を走行経路設定部64に与える。図8に示されているように、デバイダ15Cの目標デバイダ位置からの位置ずれ(図8ではαで示されている)の距離だけ走行経路を横方向に変位させることで、デバイダ15Cは目標デバイダ位置に近づくことになる。この走行経路の横方向の変位量は経路補正量(図8ではγで示されている)と称す。簡単には、デバイダ位置ずれがそのまま経路補正量として用いられる(γ=α)。ここでも、先の実施形態と同様に、デバイダ位置ずれから所定の関数(γ=g(α))を用いて経路補正量を算出してもよい。この関数gも、線形関数でもよいし、非線形関数でもよい。 8 and 9 show another embodiment of the traveling control correction unit 65. Here, the travel control correction unit 65 includes a route correction amount calculation unit 65b instead of the offset amount calculation unit 65a. The route correction amount calculation unit 65b issues a route displacement command for displacing the travel route set by the travel route setting unit 64 so that the divider 15C appropriately enters the gap between the planted culms. Give to 64. As shown in FIG. 8, the divider 15C is the target divider by laterally displacing the travel path by a distance of the displacement of the divider 15C from the target divider position (indicated by α in FIG. 8). It will approach the position. The lateral displacement amount of this traveling path is referred to as a path correction amount (indicated by γ in FIG. 8). Simply, the divider position shift is used as it is as the path correction amount (γ = α). Here, as in the previous embodiment, the path correction amount may be calculated from the divider position shift using a predetermined function (γ = g (α)). This function g may also be a linear function or a non-linear function.
 この経路補正量は、経路変位指令の形で、走行経路設定部64に送られる。走行経路設定部64は、経路変位指令に含まれている経路補正量を用いて、現時点で設定されている走行経路を補正し、補正走行経路として、位置ずれ算出部61aに送られる。 This route correction amount is sent to the traveling route setting unit 64 in the form of a route displacement command. The travel route setting unit 64 corrects the travel route currently set by using the route correction amount included in the route displacement command, and sends the corrected travel route to the position deviation calculation unit 61a.
 タブレットコンピュータ85は、タッチパネル85a(タッチパネル式表示装置)を備えており、オペレータによる操作によって種々の制御指令を制御ユニット6に与えることができる。この実施形態では、オペレータは、タッチパネル85aを用いて植立穀稈の条方向を手書き入力(手動入力)することができる。例えば、圃場の外形が示されたタッチパネル85aに、オペレータが条方向(植付方向、刈取り方向)を手書き入力する。走行経路設定部64は、入力された条方向に沿うように、走行経路の作成や設定を行う。 The tablet computer 85 is provided with a touch panel 85a (touch panel type display device), and various control commands can be given to the control unit 6 by an operation by an operator. In this embodiment, the operator can manually input (manually input) the row direction of the planted culm using the touch panel 85a. For example, the operator manually inputs the row direction (planting direction, cutting direction) on the touch panel 85a showing the outer shape of the field. The travel route setting unit 64 creates and sets a travel route so as to follow the input strip direction.
 なお、図4に示された走行制御モジュール60、走行経路設定部64、走行制御補正部65、植立作物検知ユニット50などの制御機能要素は、主に説明目的で分けられており、当該制御機能要素の統合や、当該制御機能要素の分割は、自由に行われてよい。
〔別実施の形態〕
The control functional elements such as the travel control module 60, the travel route setting unit 64, the travel control correction unit 65, and the planted crop detection unit 50 shown in FIG. 4 are mainly separated for explanatory purposes, and the control thereof. The integration of functional elements and the division of the control functional elements may be freely performed.
[Another Embodiment]
(1)上述した実施形態では、撮影部21として広角レンズを装着した可視光カメラが採用された。撮影部21は、白黒カメラでもよいし、赤外光カメラ、あるいは可視光カメラと赤外光カメラとからなるハイブリッドカメラでもよい。 (1) In the above-described embodiment, a visible light camera equipped with a wide-angle lens is adopted as the photographing unit 21. The photographing unit 21 may be a black-and-white camera, an infrared light camera, or a hybrid camera including a visible light camera and an infrared light camera.
(2)上述した実施形態では、撮影部21は、デバイダ15Cの上面に取り付けられていた。撮影部21は、植立穀稈の茎部が撮影部21の撮影視野に入る限り、その他の部位に取り付けられてもよい。 (2) In the above-described embodiment, the photographing unit 21 is attached to the upper surface of the divider 15C. The photographing unit 21 may be attached to other parts as long as the stem portion of the planted grain culm is within the photographing field of view of the photographing unit 21.
(3)上述した実施形態では、機械学習ユニット52は、ディープラーニングアルゴリズムを用いて機械学習されたニューラルネットワークで構成されていたが、もちろん、ディープラーニングアルゴリズム以外のアルゴリズムを用いたニューラルネットワーク、例えばリカレントニューラルネットワークで構成されてもよい。さらには、機械学習されたニューラルネットワーク以外の画像認識技術が採用されてもよい。 (3) In the above-described embodiment, the machine learning unit 52 is composed of a neural network machine-learned by using a deep learning algorithm, but of course, a neural network using an algorithm other than the deep learning algorithm, for example, recurrent. It may be composed of a neural network. Furthermore, an image recognition technique other than the machine-learned neural network may be adopted.
(4)上述した実施形態では、植立穀稈の茎部の非接触での検知のために、植立作物検知ユニット50において撮影画像を入力画像とする機械学習ユニット52が用いられている。植立作物検知ユニット50が、超音波ビーム、光ビーム、電磁波ビームなどを用いた走査型センサで構成してもよい。走査型センサによって得られる走行前方領域の三次元点群データから、反射体の形状を評価し、植立作物の位置を算出することができる。 (4) In the above-described embodiment, a machine learning unit 52 that uses a photographed image as an input image is used in the planted crop detection unit 50 for non-contact detection of the stem of the planted culm. The planted crop detection unit 50 may be composed of a scanning sensor using an ultrasonic beam, a light beam, an electromagnetic wave beam, or the like. The shape of the reflector can be evaluated and the position of the planted crop can be calculated from the three-dimensional point cloud data of the traveling front region obtained by the scanning sensor.
(5)上述した実施形態では、農作業機の一例として、自脱型のコンバインが説明された。農作業機は、普通型のコンバインであってもよい。 (5) In the above-described embodiment, a head-feeding combine has been described as an example of an agricultural work machine. The agricultural work machine may be a conventional combine.
(6)農作業機は、トウモロコシ収穫機であってもよい。図10には、農作業機の一例としてのトウモロコシ収穫機が示されている。本実施形態のトウモロコシ収穫機は、普通型コンバインのヘッダ(刈取部)を収穫前処理装置115に換装したものである。このトウモロコシ収穫機は、植立するトウモロコシから房状体を分離し、房状体から穀粒を分離し、穀粒を貯留する。 (6) The agricultural work machine may be a corn harvester. FIG. 10 shows a corn harvester as an example of an agricultural work machine. In the corn harvester of the present embodiment, the header (cutting section) of the ordinary combine is replaced with the pre-harvest processing apparatus 115. This corn harvester separates tufts from the corn to be planted, separates grains from tufts, and stores the grains.
 このトウモロコシ収穫機は、クローラ式の走行装置(図示なし)、運転部112、脱穀装置113、穀粒タンク114、作業部としての収穫前処理装置115、搬送装置116、穀粒排出装置118、衛星測位モジュール180等の構成要素を備えている。トウモロコシ収穫機の機体110は、構成要素の集合体を意味するが、場合によっては、走行装置や収穫前処理装置115などの個別の構成要素を意味することがある。 This corn harvester includes a crawler type traveling device (not shown), an operating unit 112, a threshing device 113, a grain tank 114, a harvesting pretreatment device 115 as a working unit, a transport device 116, a grain discharging device 118, and a satellite. It includes components such as a positioning module 180. The body 110 of the corn harvester means a collection of components, but in some cases may mean individual components such as a traveling device or a pre-harvesting device 115.
 収穫前処理装置115は、植立するトウモロコシから房状体を分離させて、房状体を搬送装置116へ送り出す。脱穀装置113は、搬送装置116により搬送された房状体から穀粒を分離する。収穫前処理装置115は、特定部位としてのデバイダ115C、掻込オーガ115D等を備えている。右端のデバイダ115Cの上面に、撮影部121が設けられている。 The pre-harvest treatment device 115 separates the tufts from the corn to be planted and sends the tufts to the transport device 116. The threshing device 113 separates the grains from the tufts transported by the transport device 116. The pre-harvest treatment apparatus 115 includes a divider 115C, a scraping auger 115D, and the like as specific parts. A photographing unit 121 is provided on the upper surface of the divider 115C at the right end.
(7)図11には、別の形態のトウモロコシ収穫機が示されている。このトウモロコシ収穫機は、植立するトウモロコシから房状体を分離し、房状体から包葉を取り除き、房状体を貯留する。 (7) FIG. 11 shows another form of corn harvester. This corn harvester separates tufts from the corn to be planted, removes the bracts from the tufts, and stores the tufts.
 このトウモロコシ収穫機は、車輪式の走行装置(図示なし)、運転部212、包葉除去部213、貯留タンク214、作業部としての収穫部215、搬送装置216、衛星測位モジュール280等の構成要素を備えている。トウモロコシ収穫機の機体210は、構成要素の集合体を意味するが、場合によっては、走行装置や収穫部215などの個別の構成要素を意味することがある。 This corn harvester has components such as a wheel-type traveling device (not shown), a driving unit 212, a leaflet removing unit 213, a storage tank 214, a harvesting unit 215 as a working unit, a transport device 216, and a satellite positioning module 280. It has. The body 210 of the corn harvester means a collection of components, but in some cases, it may mean individual components such as a traveling device and a harvesting unit 215.
 収穫部215は、植立するトウモロコシから房状体を分離させて、房状体を搬送装置216へ送り出す。包葉除去部213は、搬送装置216により搬送された房状体から包葉を取り除く。収穫部215は、特定部位としてのデバイダ215C等を備えている。右端のデバイダ215Cの上面に、撮影部221が設けられている。 The harvesting unit 215 separates the tufts from the corn to be planted and sends the tufts to the transport device 216. The bract removing unit 213 removes the bracts from the tufts transported by the transport device 216. The harvesting unit 215 includes a divider 215C and the like as a specific part. An imaging unit 221 is provided on the upper surface of the rightmost divider 215C.
(8)農作業機は、サトウキビ収穫機であってもよい。図12には、農作業機の一例としてのサトウキビ収穫機が示されている。このサトウキビ収穫機は、植立するサトウキビを収穫し、サトウキビと夾雑物とを分離して、サトウキビを機体後方へ排出する。 (8) The agricultural work machine may be a sugar cane harvester. FIG. 12 shows a sugar cane harvester as an example of an agricultural work machine. This sugar cane harvester harvests the sugar cane to be planted, separates the sugar cane from impurities, and discharges the sugar cane to the rear of the machine.
 このサトウキビ収穫機は、車輪式の走行装置311、運転部312、分離装置313、作業部としての収穫部315、搬送装置316、排出装置318、衛星測位モジュール380等の構成要素を備えている。サトウキビ収穫機の機体310は、構成要素の集合体を意味するが、場合によっては、走行装置311や収穫部315などの個別の構成要素を意味することがある。 This sugar cane harvester is equipped with components such as a wheel-type traveling device 311, a driving unit 312, a separating device 313, a harvesting unit 315 as a working unit, a transport device 316, a discharge device 318, and a satellite positioning module 380. The body 310 of the sugar cane harvester means a collection of components, but in some cases, it may mean individual components such as a traveling device 311 and a harvesting unit 315.
 収穫部315は、植立するサトウキビを刈り取って、サトウキビを搬送装置316へ送り出す。分離装置313は、搬送装置316により搬送されたサトウキビから夾雑物を分離する。排出装置318は、分離装置313により夾雑物から分離されたサトウキビを機体310の後方へ排出する。収穫部315は、特定部位としてのデバイダ315C等を備えている。右端のデバイダ315Cの上面に、撮影部321が設けられている。 The harvesting unit 315 cuts the sugar cane to be planted and sends the sugar cane to the transport device 316. The separation device 313 separates impurities from the sugar cane transported by the transfer device 316. The discharge device 318 discharges sugar cane separated from impurities by the separation device 313 to the rear of the machine body 310. The harvesting unit 315 is provided with a divider 315C or the like as a specific part. An imaging unit 321 is provided on the upper surface of the rightmost divider 315C.
(9)農作業機がデバイダを備えない実施形態も可能である。例えば、農作業機は、乗用型管理機であってもよい。この場合、特定部位が、機体に設けられた走行車輪であってもよい。走行制御補正部は、走行車輪が植立作物の間に進入するように、自動走行制御部による操向制御信号をオフセット補正する。又は、走行制御補正部は、走行車輪が植立作物の間に進入するように、走行経路を補正する。 (9) An embodiment in which the agricultural work machine does not have a divider is also possible. For example, the agricultural work machine may be a passenger type management machine. In this case, the specific portion may be a traveling wheel provided on the airframe. The travel control correction unit offset-corrects the steering control signal by the automatic travel control unit so that the traveling wheels enter between the planted crops. Alternatively, the travel control correction unit corrects the travel route so that the traveling wheels enter between the planted crops.
 図13には、農作業機の一例としての乗用型管理機が示されている。この乗用型管理機は、圃場を走行しながら植立作物へ薬剤(農薬や肥料等)を散布する散布作業を行う。 FIG. 13 shows a passenger-type management machine as an example of an agricultural work machine. This passenger-type management machine performs spraying work of spraying chemicals (agricultural chemicals, fertilizers, etc.) on planted crops while traveling in the field.
 この乗用型管理機は、走行車輪411(車輪式の走行装置)、運転部412、作業部としての薬剤散布部415、薬剤タンク425、ブロードキャスター426、衛星測位モジュール480等の構成要素を備えている。乗用型管理機の機体410は、構成要素の集合体を意味するが、場合によっては、走行車輪411や薬剤散布部415などの個別の構成要素を意味することがある。 This passenger-type management machine includes components such as a traveling wheel 411 (wheel-type traveling device), a driving unit 412, a chemical spraying unit 415 as a working unit, a chemical tank 425, a broadcaster 426, and a satellite positioning module 480. There is. The body 410 of the passenger-type management machine means a collection of components, but in some cases, it may mean individual components such as a traveling wheel 411 and a chemical spraying unit 415.
 薬剤散布部415は、薬剤タンク425に貯留された薬剤を圃場に散布する。薬剤散布部415は、センターブーム415Dと、左右のサイドブーム415Eと、を備えている。センターブーム415Dの右端部の上面に、撮影部421が設けられている。 The drug spraying unit 415 sprays the drug stored in the drug tank 425 to the field. The chemical spraying portion 415 includes a center boom 415D and left and right side booms 415E. An imaging unit 421 is provided on the upper surface of the right end of the center boom 415D.
 乗用型管理機は、上述の実施形態(図4、図7の図示例)と同様の構成の制御ユニット6を備える。本実施形態では、制御ユニット6は、デバイダ位置算出部53に替えて、走行車輪位置算出部を備える。走行車輪位置算出部は、デバイダ位置ずれ(図6におけるα)に替えて、走行車輪位置ずれ(図14におけるδ)を算出する。詳しくは、走行車輪位置算出部は、図14に模式的に示されているように、走行車輪411の取付位置と、機体410に対する茎部の位置と、目標走行車輪位置(ここでは、条間の中央位置)から、走行車輪411の目標走行車輪位置からの位置ずれである走行車輪位置ずれ(図14におけるδ)を算出する。 The passenger-type management machine includes a control unit 6 having the same configuration as that of the above-described embodiment (illustrated examples of FIGS. 4 and 7). In the present embodiment, the control unit 6 includes a traveling wheel position calculation unit instead of the divider position calculation unit 53. The traveling wheel position calculation unit calculates the traveling wheel position deviation (δ in FIG. 14) instead of the divider position deviation (α in FIG. 6). Specifically, as shown schematically in FIG. 14, the traveling wheel position calculation unit includes the mounting position of the traveling wheel 411, the position of the stem portion with respect to the machine body 410, and the target traveling wheel position (here, the inter-row space). The traveling wheel position deviation (δ in FIG. 14), which is the displacement of the traveling wheel 411 from the target traveling wheel position, is calculated from the center position of the traveling wheel 411.
 本実施形態では、走行制御補正部65は、走行車輪411が植立穀稈の条間に適切に進入するように、自動走行制御部61による操向制御信号をオフセット補正する。走行制御補正部65は、デバイダ位置ずれ(α)に替えて走行車輪位置ずれ(δ)を用いて、図7の図示例と同様の処理により、操向制御信号をオフセット補正する。 In the present embodiment, the traveling control correction unit 65 offset-corrects the steering control signal by the automatic traveling control unit 61 so that the traveling wheels 411 properly enter the gaps between the planted culms. The traveling control correction unit 65 offset-corrects the steering control signal by the same processing as in the illustrated example of FIG. 7 by using the traveling wheel position deviation (δ) instead of the divider position deviation (α).
 乗用型管理機が、図8及び図9に示された別実施形態に係る走行制御補正部65を備えてもよい。この場合、走行制御補正部65は、オフセット量算出部65aに代えて経路補正量算出部65bを備えている。この経路補正量算出部65bは、走行車輪411が植立穀稈の条間に適切に進入するように、走行経路設定部64によって設定されている走行経路を変位させる経路変位指令を走行経路設定部64に与える。図15に示されているように、走行車輪411の目標走行車輪位置からの位置ずれ(図15ではδで示されている)の距離だけ走行経路を横方向に変位させることで、走行車輪411は目標走行車輪位置に近づくことになる。この走行経路の横方向の変位量は経路補正量(γ)と称す。簡単には、走行車輪位置ずれがそのまま経路補正量として用いられる(γ=δ)。 The passenger-type management machine may include a travel control correction unit 65 according to another embodiment shown in FIGS. 8 and 9. In this case, the travel control correction unit 65 includes a route correction amount calculation unit 65b instead of the offset amount calculation unit 65a. The route correction amount calculation unit 65b sets a travel route by setting a route displacement command that displaces the travel route set by the travel route setting unit 64 so that the traveling wheels 411 appropriately enter between the rows of the planted culms. Give to part 64. As shown in FIG. 15, the traveling wheel 411 is displaced laterally by the distance of the displacement of the traveling wheel 411 from the target traveling wheel position (indicated by δ in FIG. 15). Will approach the target running wheel position. The amount of lateral displacement of this traveling path is called the path correction amount (γ). Simply, the misalignment of the traveling wheels is used as it is as the path correction amount (γ = δ).
(10)農作業機は、野菜収穫機であってもよい。野菜収穫機は、圃場を走行しながら、植立作物としての野菜(人参、大根、キャベツ、白菜等)を収穫する。野菜収穫機がデバイダ(特定部位の一例)を備える場合は、野菜収穫機は、図4の図示例と同様の構成の制御ユニット6を備える。図7に示される態様にて、走行制御補正部65は、デバイダが植立作物(野菜)の間に適切に進入するように、自動走行制御部61による操向制御信号をオフセット補正する。又は、走行制御補正部65は、オフセット量算出部65aに代えて経路補正量算出部65bを備える。図9に示される態様にて、経路補正量算出部65bは、デバイダが植立作物の間に適切に進入するように、走行経路設定部64によって設定されている走行経路を変位させる経路変位指令を走行経路設定部64に与える。 (10) The agricultural work machine may be a vegetable harvester. The vegetable harvester harvests vegetables (carrots, radishes, cabbage, Chinese cabbage, etc.) as planting crops while traveling in the field. When the vegetable harvester is provided with a divider (an example of a specific part), the vegetable harvester is provided with a control unit 6 having the same configuration as the illustrated example of FIG. In the embodiment shown in FIG. 7, the travel control correction unit 65 offset-corrects the steering control signal by the automatic travel control unit 61 so that the divider appropriately enters between the planted crops (vegetables). Alternatively, the travel control correction unit 65 includes a route correction amount calculation unit 65b instead of the offset amount calculation unit 65a. In the embodiment shown in FIG. 9, the route correction amount calculation unit 65b displaces the travel route set by the travel route setting unit 64 so that the divider can appropriately enter between the planted crops. Is given to the traveling route setting unit 64.
 野菜収穫機は、デバイダを備えていなくてもよい。野菜収穫機がデバイダを備えない場合には、走行制御補正部65が、走行車輪(特定部位の一例)が植立作物(野菜)の間に適切に進入するように、自動走行制御部61による操向制御信号をオフセット補正する。又は、経路補正量算出部65bが、走行車輪が植立作物の間に適切に進入するように、走行経路設定部64によって設定されている走行経路を変位させる経路変位指令を走行経路設定部64に与える。 The vegetable harvester does not have to be equipped with a divider. When the vegetable harvester does not have a divider, the travel control correction unit 65 uses the automatic travel control unit 61 so that the traveling wheels (an example of a specific part) can appropriately enter between the planted crops (vegetables). Offset correct the steering control signal. Alternatively, the route correction amount calculation unit 65b issues a route displacement command that displaces the travel route set by the travel route setting unit 64 so that the traveling wheels appropriately enter between the planted crops. Give to.
(11)撮影部21が、デバイダ15Cの周辺の作物の検出に用いられてもよい。例えば、植立作物検知ユニット50が、撮影部21による撮影画像に基づいて、デバイダ15Cが植立作物の条に突っ込んだ状態になっていることを検知してもよい。当該検知結果に応じて、走行制御モジュール60は、デバイダ15Cが植立作物の間を通るように、機体10を停止及び後進させた後、適切な走行経路にて前進させ自動走行を継続する。例えば、植立作物検知ユニット50が、撮影部21による撮影画像に基づいて、デバイダ15Cが刈取作物を引き摺る状態になっていることを検知してもよい。当該検知結果に基づいて、走行制御モジュール60は、刈取作物がデバイダ15Cから離れるように、機体10を停止及び後進させた後、再度前進させる。 (11) The photographing unit 21 may be used to detect crops around the divider 15C. For example, the planted crop detection unit 50 may detect that the divider 15C is in a state of being thrust into the row of the planted crop based on the image captured by the photographing unit 21. According to the detection result, the travel control module 60 stops and reverses the aircraft 10 so that the divider 15C passes between the planted crops, and then advances the aircraft 10 along an appropriate travel route to continue automatic traveling. For example, the planted crop detection unit 50 may detect that the divider 15C is in a state of dragging the cut crop based on the image captured by the photographing unit 21. Based on the detection result, the travel control module 60 stops and reverses the aircraft 10 so that the cut crop is separated from the divider 15C, and then advances again.
 本発明は、圃場の植立作物に対して作業を行う農作業機、自動走行システム、プログラム、プログラムを記録した記録媒体、及び方法に適用可能である。 The present invention is applicable to agricultural work machines, automatic driving systems, programs, recording media on which programs are recorded, and methods for working on planted crops in fields.
10   :機体
15   :刈取部(作業部)
15C  :デバイダ(特定部位)
21   :撮影部
50   :植立作物検知ユニット
61   :自動走行制御部
64   :走行経路設定部
65   :走行制御補正部
66   :機体位置算出部
80   :衛星測位モジュール
85a  :タッチパネル
110  :機体
115  :収穫前処理装置(作業部)
115C :デバイダ(特定部位)
121  :撮影部
180  :衛星測位モジュール
210  :機体
215  :収穫部(作業部)
215C :デバイダ(特定部位)
221  :撮影部
280  :衛星測位モジュール
310  :機体
315  :収穫部(作業部)
315C :デバイダ(特定部位)
321  :撮影部
380  :衛星測位モジュール
410  :機体
411  :走行車輪(特定部位)
415  :薬剤散布部(作業部)
421  :撮影部
480  :衛星測位モジュール
10: Aircraft 15: Cutting part (working part)
15C: Divider (specific part)
21: Photographing unit 50: Planted crop detection unit 61: Automatic travel control unit 64: Travel route setting unit 65: Travel control correction unit 66: Aircraft position calculation unit 80: Satellite positioning module 85a: Touch panel 110: Aircraft 115: Before harvest Processing equipment (working unit)
115C: Divider (specific part)
121: Imaging unit 180: Satellite positioning module 210: Aircraft 215: Harvesting unit (working unit)
215C: Divider (specific part)
221: Imaging unit 280: Satellite positioning module 310: Aircraft 315: Harvesting unit (working unit)
315C: Divider (specific part)
321 : Imaging unit 380 : Satellite positioning module 410 : Airframe 411 : Traveling wheel (specific part)
415: Chemical spraying part (working part)
421: Imaging unit 480: Satellite positioning module

Claims (17)

  1.  圃場の植立作物に対して作業を行う作業部と、
     衛星測位モジュールからの測位データに基づいて機体位置を算出する機体位置算出部と、
     前記圃場を自動走行するための走行経路を設定する走行経路設定部と、
     前記機体位置が前記走行経路に沿うように自動走行制御を行う自動走行制御部と、
     作業幅方向にて隣接する前記植立作物の間隔である作物間隔を検知する植立作物検知ユニットと、
     機体における特定部位が前記植立作物の間に進入するように、前記自動走行制御部による操向制御信号をオフセット補正する走行制御補正部と、を備えた農作業機。
    A working department that works on planted crops in the field,
    An aircraft position calculation unit that calculates the aircraft position based on the positioning data from the satellite positioning module,
    A travel route setting unit that sets a travel route for automatically traveling in the field,
    An automatic driving control unit that performs automatic driving control so that the position of the aircraft follows the traveling path.
    A planted crop detection unit that detects the crop interval, which is the interval between the planted crops adjacent in the working width direction, and
    An agricultural work machine including a travel control correction unit that offset-corrects a steering control signal by the automatic travel control unit so that a specific part of the machine enters between the planted crops.
  2.  圃場の植立作物に対して作業を行う作業部と、
     衛星測位モジュールからの測位データに基づいて機体位置を算出する機体位置算出部と、
     前記圃場を自動走行するための走行経路を設定する走行経路設定部と、
     前記機体位置が前記走行経路に沿うように自動走行制御を行う自動走行制御部と、
     作業幅方向にて隣接する前記植立作物の間隔である作物間隔を検知する植立作物検知ユニットと、
     機体における特定部位が前記植立作物の間に進入するように、前記走行経路を補正する走行制御補正部と、を備えた農作業機。
    A working department that works on planted crops in the field,
    An aircraft position calculation unit that calculates the aircraft position based on the positioning data from the satellite positioning module,
    A travel route setting unit that sets a travel route for automatically traveling in the field,
    An automatic driving control unit that performs automatic driving control so that the position of the aircraft follows the traveling path.
    A planted crop detection unit that detects the crop interval, which is the interval between the planted crops adjacent in the working width direction, and
    An agricultural work machine provided with a travel control correction unit that corrects the travel path so that a specific part of the aircraft enters between the planted crops.
  3.  前記植立作物を撮影して、撮影画像を出力する撮影部が備えられ、
     前記植立作物検知ユニットは、前記撮影画像と、前記機体位置から算出される前記撮影部の位置と、前記撮影部の撮影画角とに基づいて、前記植立作物の位置を検知する請求項1又は2に記載の農作業機。
    A shooting unit that shoots the planted crop and outputs the shot image is provided.
    The claim that the planted crop detection unit detects the position of the planted crop based on the photographed image, the position of the photographing unit calculated from the position of the machine body, and the angle of view of the photographing unit. Agricultural work machine according to 1 or 2.
  4.  前記撮影部は、前記作業部の前部に配置されている請求項3に記載の農作業機。 The agricultural work machine according to claim 3, wherein the photographing unit is located in front of the work unit.
  5.  前記植立作物検知ユニットは、前記撮影画像を入力画像として前記作物間隔を検知するように機械学習されたニューラルネットワークを含んでいる請求項3又は4に記載の農作業機。 The agricultural work machine according to claim 3 or 4, wherein the planted crop detection unit includes a neural network machine-learned to detect the crop interval using the captured image as an input image.
  6.  前記植立作物検知ユニットは、超音波ビーム、光ビーム、電磁波ビームなどを用いた走査型センサで構成されている請求項1又は2に記載の農作業機。 The agricultural work machine according to claim 1 or 2, wherein the planted crop detection unit is composed of a scanning sensor using an ultrasonic beam, a light beam, an electromagnetic wave beam, or the like.
  7.  前記走行経路を表示するタッチパネルが備えられ、前記タッチパネルを用いて前記植立作物が並ぶ方向が手動入力される請求項1から6のいずれか一項に記載の農作業機。 The agricultural work machine according to any one of claims 1 to 6, which is provided with a touch panel for displaying the traveling route, and the direction in which the planted crops are lined up is manually input using the touch panel.
  8.  前記特定部位が、前記作業部に設けられたデバイダである請求項1から7のいずれか1項に記載の農作業機。 The agricultural work machine according to any one of claims 1 to 7, wherein the specific part is a divider provided in the work part.
  9.  前記特定部位が、前記機体に設けられた走行車輪である請求項1から7のいずれか1項に記載の農作業機。 The agricultural work machine according to any one of claims 1 to 7, wherein the specific part is a traveling wheel provided on the machine body.
  10.  圃場の植立作物に対して作業を行う作業部を備える農作業機と、
     衛星測位モジュールからの測位データに基づいて前記農作業機の機体位置を算出する機体位置算出部と、
     前記農作業機が行う自動作業走行のための走行経路を設定する走行経路設定部と、
     前記機体位置が前記走行経路に沿うように前記農作業機を自動作業走行させる自動走行制御部と、
     作業幅方向にて隣接する前記植立作物の間隔である作物間隔を検知する植立作物検知ユニットと、
     前記農作業機の機体における特定部位が前記植立作物の間に進入するように、前記自動走行制御部による操向制御信号をオフセット補正する走行制御補正部と、を備えた自動走行システム。
    An agricultural work machine equipped with a work unit that works on planted crops in the field,
    An aircraft position calculation unit that calculates the aircraft position of the agricultural work machine based on the positioning data from the satellite positioning module, and
    A travel route setting unit that sets a travel route for automatic work travel performed by the agricultural work machine, and
    An automatic traveling control unit that automatically runs the agricultural work machine so that the machine position follows the traveling path.
    A planted crop detection unit that detects the crop interval, which is the interval between the planted crops adjacent in the working width direction, and
    An automatic traveling system including a traveling control correction unit that offset-corrects a steering control signal by the automatic traveling control unit so that a specific portion of the body of the agricultural work machine enters between the planted crops.
  11.  圃場の植立作物に対して作業を行う作業部と衛星測位モジュールとを備える農作業機のためのプログラムであって、
     衛星測位モジュールからの測位データに基づいて機体位置を算出する機体位置算出機能と、
     前記圃場を自動走行するための走行経路を設定する走行経路設定機能と、
     前記機体位置が前記走行経路に沿うように自動走行制御を行う自動走行制御機能と、
     作業幅方向にて隣接する前記植立作物の間隔である作物間隔を検知する植立作物検知機能と、
     機体における特定部位が前記植立作物の間に進入するように、前記自動走行制御部による操向制御信号をオフセット補正する走行制御補正機能と、をコンピュータに実現させるプログラム。
    A program for agricultural work machines equipped with a work unit that works on planted crops in the field and a satellite positioning module.
    The aircraft position calculation function that calculates the aircraft position based on the positioning data from the satellite positioning module, and
    A travel route setting function for setting a travel route for automatically traveling in the field, and
    An automatic driving control function that performs automatic driving control so that the aircraft position follows the traveling route,
    A planted crop detection function that detects the crop interval, which is the interval between the adjacent planted crops in the work width direction, and
    A program that allows a computer to realize a travel control correction function that offset-corrects a steering control signal by the automatic travel control unit so that a specific part of the aircraft enters between the planted crops.
  12.  圃場の植立作物に対して作業を行う作業部と衛星測位モジュールとを備える農作業機のためのプログラムを記録した記録媒体であって、
     衛星測位モジュールからの測位データに基づいて機体位置を算出する機体位置算出機能と、
     前記圃場を自動走行するための走行経路を設定する走行経路設定機能と、
     前記機体位置が前記走行経路に沿うように自動走行制御を行う自動走行制御機能と、
     作業幅方向にて隣接する前記植立作物の間隔である作物間隔を検知する植立作物検知機能と、
     機体における特定部位が前記植立作物の間に進入するように、前記自動走行制御部による操向制御信号をオフセット補正する走行制御補正機能と、をコンピュータに実現させるプログラムを記録した記録媒体。
    A recording medium that records a program for an agricultural work machine equipped with a work unit that works on planted crops in the field and a satellite positioning module.
    The aircraft position calculation function that calculates the aircraft position based on the positioning data from the satellite positioning module, and
    A travel route setting function for setting a travel route for automatically traveling in the field, and
    An automatic driving control function that performs automatic driving control so that the aircraft position follows the traveling route,
    A planted crop detection function that detects the crop interval, which is the interval between the adjacent planted crops in the work width direction, and
    A recording medium that records a program that enables a computer to realize a travel control correction function that offset-corrects a steering control signal by the automatic travel control unit so that a specific part of the aircraft enters between the planted crops.
  13.  圃場の植立作物に対して作業を行う作業部と衛星測位モジュールとを備える農作業機に自動作業走行を行わせる方法であって、
     衛星測位モジュールからの測位データに基づいて機体位置を算出する機体位置算出ステップと、
     前記圃場を自動走行するための走行経路を設定する走行経路設定ステップと、
     前記機体位置が前記走行経路に沿うように自動走行制御を行う自動走行制御ステップと、
     作業幅方向にて隣接する前記植立作物の間隔である作物間隔を検知する植立作物検知ステップと、
     機体における特定部位が前記植立作物の間に進入するように、前記自動走行制御部による操向制御信号をオフセット補正する走行制御補正ステップと、を含んでいる方法。
    It is a method of having an agricultural work machine equipped with a work unit for working on planted crops in a field and a satellite positioning module perform automatic work running.
    The aircraft position calculation step that calculates the aircraft position based on the positioning data from the satellite positioning module,
    A travel route setting step for setting a travel route for automatically traveling in the field, and
    An automatic driving control step that performs automatic driving control so that the aircraft position follows the traveling path, and
    A planted crop detection step that detects a crop interval that is an interval between adjacent planted crops in the work width direction, and
    A method including a travel control correction step of offset-correcting a steering control signal by the automatic travel control unit so that a specific part of the aircraft enters between the planted crops.
  14.  圃場の植立作物に対して作業を行う作業部を備える農作業機と、
     衛星測位モジュールからの測位データに基づいて前記農作業機の機体位置を算出する機体位置算出部と、
     前記農作業機が行う自動作業走行のための走行経路を設定する走行経路設定部と、
     前記機体位置が前記走行経路に沿うように前記農作業機を自動作業走行させる自動走行制御部と、
     作業幅方向にて隣接する前記植立作物の間隔である作物間隔を検知する植立作物検知ユニットと、
     前記農作業機の機体における特定部位が前記植立作物の間に進入するように、前記走行経路を補正する走行制御補正部と、を備えた自動走行システム。
    An agricultural work machine equipped with a work unit that works on planted crops in the field,
    An aircraft position calculation unit that calculates the aircraft position of the agricultural work machine based on the positioning data from the satellite positioning module, and
    A travel route setting unit that sets a travel route for automatic work travel performed by the agricultural work machine, and
    An automatic traveling control unit that automatically runs the agricultural work machine so that the machine position follows the traveling path.
    A planted crop detection unit that detects the crop interval, which is the interval between the planted crops adjacent in the working width direction, and
    An automatic traveling system including a traveling control correction unit that corrects the traveling path so that a specific portion of the body of the agricultural work machine enters between the planted crops.
  15.  圃場の植立作物に対して作業を行う作業部と衛星測位モジュールとを備える農作業機のためのプログラムであって、
     衛星測位モジュールからの測位データに基づいて機体位置を算出する機体位置算出機能と、
     前記圃場を自動走行するための走行経路を設定する走行経路設定機能と、
     前記機体位置が前記走行経路に沿うように自動走行制御を行う自動走行制御機能と、
     作業幅方向にて隣接する前記植立作物の間隔である作物間隔を検知する植立作物検知機能と、
     機体における特定部位が前記植立作物の間に進入するように、前記走行経路を補正する走行制御補正機能と、をコンピュータに実現させるプログラム。
    A program for agricultural work machines equipped with a work unit that works on planted crops in the field and a satellite positioning module.
    The aircraft position calculation function that calculates the aircraft position based on the positioning data from the satellite positioning module, and
    A travel route setting function for setting a travel route for automatically traveling in the field, and
    An automatic driving control function that performs automatic driving control so that the aircraft position follows the traveling route,
    A planted crop detection function that detects the crop interval, which is the interval between the adjacent planted crops in the work width direction, and
    A program that allows a computer to realize a travel control correction function that corrects the travel route so that a specific part of the aircraft enters between the planted crops.
  16.  圃場の植立作物に対して作業を行う作業部と衛星測位モジュールとを備える農作業機のためのプログラムを記録した記録媒体であって、
     衛星測位モジュールからの測位データに基づいて機体位置を算出する機体位置算出機能と、
     前記圃場を自動走行するための走行経路を設定する走行経路設定機能と、
     前記機体位置が前記走行経路に沿うように自動走行制御を行う自動走行制御機能と、
     作業幅方向にて隣接する前記植立作物の間隔である作物間隔を検知する植立作物検知機能と、
     機体における特定部位が前記植立作物の間に進入するように、前記走行経路を補正する走行制御補正機能と、をコンピュータに実現させるプログラムを記録した記録媒体。
    A recording medium that records a program for an agricultural work machine equipped with a work unit that works on planted crops in the field and a satellite positioning module.
    The aircraft position calculation function that calculates the aircraft position based on the positioning data from the satellite positioning module, and
    A travel route setting function for setting a travel route for automatically traveling in the field, and
    An automatic driving control function that performs automatic driving control so that the aircraft position follows the traveling route,
    A planted crop detection function that detects the crop interval, which is the interval between the adjacent planted crops in the work width direction, and
    A recording medium that records a program that allows a computer to realize a travel control correction function that corrects the travel path so that a specific part of the aircraft enters between the planted crops.
  17.  圃場の植立作物に対して作業を行う作業部と衛星測位モジュールとを備える農作業機に自動作業走行を行わせる方法であって、
     衛星測位モジュールからの測位データに基づいて機体位置を算出する機体位置算出ステップと、
     前記圃場を自動走行するための走行経路を設定する走行経路設定ステップと、
     前記機体位置が前記走行経路に沿うように自動走行制御を行う自動走行制御ステップと、
     作業幅方向にて隣接する前記植立作物の間隔である作物間隔を検知する植立作物検知ステップと、
     機体における特定部位が前記植立作物の間に進入するように、前記走行経路を補正する走行制御補正ステップと、を含んでいる方法。
    It is a method of having an agricultural work machine equipped with a work unit for working on planted crops in a field and a satellite positioning module perform automatic work running.
    The aircraft position calculation step that calculates the aircraft position based on the positioning data from the satellite positioning module,
    A travel route setting step for setting a travel route for automatically traveling in the field, and
    An automatic driving control step that performs automatic driving control so that the aircraft position follows the traveling path, and
    A planted crop detection step that detects a crop interval that is an interval between adjacent planted crops in the work width direction, and
    A method that includes a travel control correction step that corrects the travel path so that a specific part of the airframe enters between the planted crops.
PCT/JP2020/024344 2019-06-28 2020-06-22 Farm operation machine, autonomous travel system, program, recording medium in which program is recorded, and method WO2020262287A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080032318.1A CN113766826A (en) 2019-06-28 2020-06-22 Agricultural working machine, automatic travel system, program, recording medium having program recorded thereon, and method
KR1020217032436A KR20220025701A (en) 2019-06-28 2020-06-22 Agricultural equipment, automatic driving system, program, recording medium recording the program, and method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019-121781 2019-06-28
JP2019121781 2019-06-28
JP2020086287A JP2021007385A (en) 2019-06-28 2020-05-15 Farm implement
JP2020-086287 2020-05-15

Publications (1)

Publication Number Publication Date
WO2020262287A1 true WO2020262287A1 (en) 2020-12-30

Family

ID=74061655

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/024344 WO2020262287A1 (en) 2019-06-28 2020-06-22 Farm operation machine, autonomous travel system, program, recording medium in which program is recorded, and method

Country Status (2)

Country Link
KR (1) KR20220025701A (en)
WO (1) WO2020262287A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024004785A1 (en) * 2022-06-30 2024-01-04 株式会社クボタ Machine body control system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001258310A (en) * 2000-03-22 2001-09-25 Iseki & Co Ltd Unmanned combined harvester
JP2006121952A (en) * 2004-10-27 2006-05-18 Iseki & Co Ltd Combine harvester
JP2010510918A (en) * 2006-11-27 2010-04-08 カール ツアイス マイクロイメージング ゲゼルシャフト ミット ベシュレンクテル ハフツング Method and arrangement for steering a car
JP2018093799A (en) * 2016-12-14 2018-06-21 株式会社クボタ Travel route generating device
JP2019028688A (en) * 2017-07-28 2019-02-21 井関農機株式会社 Harvesting system for autonomously-traveling combine harvester

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003180130A (en) 2001-12-19 2003-07-02 Yanmar Agricult Equip Co Ltd Combined harvester

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001258310A (en) * 2000-03-22 2001-09-25 Iseki & Co Ltd Unmanned combined harvester
JP2006121952A (en) * 2004-10-27 2006-05-18 Iseki & Co Ltd Combine harvester
JP2010510918A (en) * 2006-11-27 2010-04-08 カール ツアイス マイクロイメージング ゲゼルシャフト ミット ベシュレンクテル ハフツング Method and arrangement for steering a car
JP2018093799A (en) * 2016-12-14 2018-06-21 株式会社クボタ Travel route generating device
JP2019028688A (en) * 2017-07-28 2019-02-21 井関農機株式会社 Harvesting system for autonomously-traveling combine harvester

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024004785A1 (en) * 2022-06-30 2024-01-04 株式会社クボタ Machine body control system

Also Published As

Publication number Publication date
KR20220025701A (en) 2022-03-03

Similar Documents

Publication Publication Date Title
EP3841859B1 (en) Harvester, surrounding condition detection system, surrounding condition detection program, recording medium recording the surrounding condition detection program and surrounding condition detection method
US11170547B2 (en) Combine, method of generating field farming map, program for generating the field farming map and storage medium recording the field farming map generating program
US6336051B1 (en) Agricultural harvester with robotic control
WO2016093311A1 (en) Work vehicle
JP7381402B2 (en) automatic driving system
AU2019418079A1 (en) Automatic driving system for grain processing, and automatic driving method and path planning method therefor
JP2021007385A (en) Farm implement
WO2020262287A1 (en) Farm operation machine, autonomous travel system, program, recording medium in which program is recorded, and method
CN209983105U (en) Harvester
JP2024091691A (en) Farm Work Vehicle
JP7149897B2 (en) harvester
WO2020262416A1 (en) Automatic traveling system, agricultural work machine, program, recording medium with program recorded thereon, and method
WO2022123889A1 (en) Work vehicle, object state detection system, object state detection method, object state detection program, and recording medium in which object state detection program is recorded
US20220210971A1 (en) Agricultural Work Machine Such as Harvester
JP7466276B2 (en) Work vehicle coordination system
RU2774651C1 (en) Automatic driving system for grain processing, automatic driving method and trajectory planning method
JP2022131273A (en) Travel route management system
WO2022124001A1 (en) Agricultural work machine, agricultural work machine control program, recording medium on which agricultural work machine control program is recorded, and agricultural work machine control method
JP6919678B2 (en) Work route creation system and combine
WO2024004782A1 (en) Travel route management system
JP2023040743A (en) harvester
JP2024084284A (en) Farm Work Vehicle
JP2024005658A (en) Machine body control system
KR20230074717A (en) harvest

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20832875

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20832875

Country of ref document: EP

Kind code of ref document: A1