JP7534583B2 - Method and device for measuring porosity of material surface - Google Patents
Method and device for measuring porosity of material surface Download PDFInfo
- Publication number
- JP7534583B2 JP7534583B2 JP2021095523A JP2021095523A JP7534583B2 JP 7534583 B2 JP7534583 B2 JP 7534583B2 JP 2021095523 A JP2021095523 A JP 2021095523A JP 2021095523 A JP2021095523 A JP 2021095523A JP 7534583 B2 JP7534583 B2 JP 7534583B2
- Authority
- JP
- Japan
- Prior art keywords
- concrete
- porosity
- cells
- measurement
- data
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 13
- 239000000463 material Substances 0.000 title description 5
- 238000002955 isolation Methods 0.000 claims description 19
- 239000011800 void material Substances 0.000 claims description 11
- 238000000691 measurement method Methods 0.000 claims description 3
- 238000004040 coloring Methods 0.000 claims description 2
- 230000003287 optical effect Effects 0.000 claims description 2
- 238000005259 measurement Methods 0.000 description 22
- 238000010276 construction Methods 0.000 description 10
- 238000012360 testing method Methods 0.000 description 3
- 238000001514 detection method Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000009415 formwork Methods 0.000 description 2
- 230000002787 reinforcement Effects 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 1
- 239000010426 asphalt Substances 0.000 description 1
- 239000011449 brick Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
Landscapes
- Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
Description
本発明は、材料表面の空隙率計測方法及び装置に関し、中でも免振基礎コンクリート表面の空隙率計測方法及び装置に関する。 The present invention relates to a method and device for measuring the porosity of a material surface, and in particular to a method and device for measuring the porosity of the surface of a concrete base for seismic isolation.
近年,建物と基礎との間に積層ゴムなどの免震装置を取り付けることで、地震による揺れが直接建物に伝わらないようにした免震構造のニーズが高まっている。免震装置1は、図1に示すように、ベースプレート2と呼ばれる上下に設置した鋼板を介して上部構造体3および免震基礎4と接合している。
施工においては,ベースプレート26と構造体を一体化させるため、図2のようにベースプレート2を設置した状態でコンクリート512を打ち込む必要がある。このとき、下部側の免震基礎コンクリート4については、ベースプレート下部の免震基礎コンクリート表面4aに空隙ができないよう施工する必要があるが、個々の免震基礎についてベースプレートを取り除いて充填状況を確認することはできない。
そのため,実際の工事に先立って実物大の施工試験を実施し、設計者が定めた充填率目標を満足しているかを確認することで、予定している施工計画に不備がないことを確認している。この施工試験では、試験体からベースプレートを取り除き、下部のコンクリート表層部の空隙率を算出する。ここで空隙率が所定の値未満であれば施工計画の妥当性が確認され、実施工の着手が認められる。
In recent years, there has been an increasing need for seismic isolation structures that prevent earthquake vibrations from being directly transmitted to buildings by installing seismic isolation devices such as laminated rubber between the building and the foundation. As shown in Figure 1, a seismic isolation device 1 is connected to an upper structure 3 and a seismic isolation foundation 4 via steel plates called base plates 2 installed above and below.
During construction, in order to integrate the base plate 26 with the structure, it is necessary to pour concrete 512 with the base plate 2 installed as shown in Figure 2. At this time, the concrete 4 for the lower seismic isolation foundation must be poured so that no gaps are formed on the surface 4a of the concrete for the lower seismic isolation foundation of the base plate, but it is not possible to remove the base plate for each seismic isolation foundation to check the filling status.
Therefore, prior to the actual construction, a full-scale construction test is carried out to check whether the filling rate target set by the designer is met, thereby confirming that there are no flaws in the planned construction plan. In this construction test, the base plate is removed from the test specimen and the void ratio of the surface layer of concrete underneath is calculated. If the void ratio is below the specified value, the validity of the construction plan is confirmed and the start of actual construction is approved.
免振基礎コンクリート4の上に免振装置1を取り付ける場合、該装置を取り付けるためのベースプレート2を免振基礎コンクリート4の上に打ち込む必要がある。実際の工事では、図2ベースプレート下部へのコンクリート打設方法の断面図に示すように 配筋を型枠6で囲み、配筋の上に置いたべースプレート2の中央部に設けた開口部からコンクリート5を流し込む作業を行うが、コンクリート表面4a2の充填率が低いと、鉛直荷重を免振基礎コンクリート4に効率よく伝達できない可能性がある。一般的には90~95%の充填率が必要とされている。充填率を測定するためには、一旦、ベースプレート2を外して、充填漏れ、いわゆる空隙8の全面積を計測しなければならない。
充填率を算出する手法として、従来は、目視による空隙の発見とフェルトペンによる着色、着色した領域を物差しで測る、などの手作業が中心で、例えば1メートル四方の免振基礎コンクリートの計測に数日を要するなど、作業工程上の課題となっていた。
When mounting the vibration isolation device 1 on the concrete base 4, it is necessary to cast the base plate 2 for mounting the device on the concrete base 4. In actual construction, as shown in the cross-sectional view of the method of pouring concrete under the base plate in Figure 2, the reinforcement is surrounded by a formwork 6, and concrete 5 is poured from an opening in the center of the base plate 2 placed on the reinforcement. However, if the filling rate of the concrete surface 4a2 is low, there is a possibility that the vertical load cannot be efficiently transmitted to the concrete base 4. Generally, a filling rate of 90 to 95% is required. In order to measure the filling rate, the base plate 2 must be removed once and the total area of the filling leakage, so-called void 8, must be measured.
Conventional methods for calculating the filling rate have mainly involved manual work, such as visually detecting voids, coloring them with felt-tip pens, and measuring the colored areas with a ruler. This posed challenges to the work process, as it took several days to measure a one-meter square earthquake-resistance foundation concrete structure, for example.
前記課題を解決するために、本発明では以下に示す様な、光による3次元表面形状計測手段を用いる。
まず、計測対象である免振基礎コンクリート表面を光3次元計測装置で計測し、該表面形状をデジタルデータ化する、次に、当該データを専用の解析ソフトで処理し必要とされる空隙率を算出する。その際用いる3次元計測装置は、構造化光法と称される計測原理を採用し、必要十分な計測精度を保証するものである。
In order to solve the above problems, the present invention uses a three-dimensional surface shape measuring means using light as described below.
First, the surface of the concrete base isolation foundation, which is the measurement target, is measured with an optical 3D measurement device, and the surface shape is converted into digital data. Next, the data is processed with dedicated analysis software to calculate the required void ratio. The 3D measurement device used in this case adopts a measurement principle called the structured light method, and guarantees the necessary and sufficient measurement accuracy.
本発明の空隙率計測方法及び装置によれば、免振基礎コンクリート表面の空隙率を数秒から数十分で計測結果が出力できるので、作業効率の大幅な向上に繋がり、その結果、計測作業工程の短縮と経費の削減に寄与する。さらに、空隙率算定基礎データの信頼性の向上により空隙率算定精度も向上し、また、デジタルデータとして可視化や記録性が向上するという効果がある。さらに、本発明の方法及び装置は、計測対象に対して非接触・非侵襲という特徴があるので、被計測面を汚したり傷付けたりすることがないという効果もある。
According to the porosity measurement method and device of the present invention, the measurement results of the porosity of the surface of the concrete base isolation foundation can be output in a few seconds to a few tens of minutes, which leads to a significant improvement in work efficiency, and as a result, contributes to shortening the measurement work process and reducing costs. Furthermore, the accuracy of porosity calculation is improved by improving the reliability of the basic data for porosity calculation, and there is also an effect that visualization and recording as digital data are improved. Furthermore, since the method and device of the present invention are characterized by being non-contact and non-invasive with respect to the measurement object, there is also an effect that the measured surface is not soiled or damaged.
以下、本発明の実施の形態について、図面を参照しながら説明する。なお、以下の説明において、同じ構成には同じ符号を付して説明を省略している。 The following describes an embodiment of the present invention with reference to the drawings. Note that in the following description, the same components are given the same reference numerals and the description is omitted.
図3は本発明による計測方法及び装置3を、図2で示す免振基礎コンクリート表面4aの空隙率の計測に適用した一つの実施例の説明図である。計測作業員9が当該計測装置10を持ち、被計測対象であるコンクリート表面4aをスキャンしていく。該計測装置10の一度のスキャンで計測できる範囲4はA4サイズ程度のため、一般的には、複数回のスキャンデータをPC上で自動的に繋ぎ合わせ、計測を必要とされるコンクリート表面4a全体のデータとして完成させる。図4に本実施例による計測作業の流れ図を示す。 Figure 3 is an explanatory diagram of one embodiment in which the measurement method and device 3 according to the present invention is applied to measuring the porosity of the concrete surface 4a of the seismic isolation foundation shown in Figure 2. A measurement worker 9 holds the measurement device 10 and scans the concrete surface 4a to be measured. Since the range 4 that can be measured in one scan with the measurement device 10 is about A4 size, the data from multiple scans is generally automatically stitched together on a PC to complete the data for the entire concrete surface 4a that needs to be measured. Figure 4 shows a flow chart of the measurement work according to this embodiment.
次に、計測範囲が横400mm、縦150mmのコンクリート表面4aの具体的な計測例について解説する。本例では、深さ0.5mm未満の凹みは無視する設定とした。これは、この種の工事の場合、コンクリート表面4aの平滑度は、通常0.5mm以下に抑えられているからである。また、たとえコンクリート表面4aの平滑度が0.5mm以上であっても、当該空隙を取り囲む局所表面から算出した基準面と比較して、相対的に深さが0.5mm未満の場合は無視することができることにした。 Next, we will explain a specific measurement example of a concrete surface 4a with a measurement range of 400 mm horizontal and 150 mm vertical. In this example, we set it so that dents less than 0.5 mm deep are ignored. This is because in this type of construction, the smoothness of the concrete surface 4a is usually kept to 0.5 mm or less. Also, even if the smoothness of the concrete surface 4a is 0.5 mm or more, it can be ignored if the relative depth is less than 0.5 mm compared to the reference surface calculated from the local surface surrounding the void.
空隙を有するコンクリート表面4aを本実施例の計測装置10でスキャン計測すると、図5で示す3次元表面形状データが得られる。次に、該データをPC搭載のソフトで3次元データ数値処理し、空隙に伴う凹み部の深さをカラーマップ表示したものを図6に示す。本図の右側のカラーバーは、0.5mm以上、3.92mmまでの深さを示している。さらに、本図の空隙深さデータを、縦横2.5mmの格子で区切り、CSVデータとして出力したものに対し、エクセルのVBA機能を使って、深さ0.5mm以上、横方向長さ5mm以上の凹み部を赤で着色した解析結果のマップ表示を図7に示す。有効空隙の具体的な選別方法としては、各行において、左から右へ、深さ0.5mm以上のデータをも持つセルを探し、その右隣りセルが0.5mm以上である場合にのみ該当するセルを赤く染め、該当空隙であるとしてカウントする。一つの行に於いてその作業が完了すると下の行に移り、同じ作業を繰り返す。その結果として、0.5mm以上の深さがあり、かつ長さが5mm以上である空隙のセルの数量、つまり面積を求めることができる。図8は図7の検出結果から空隙率を数値化したものである。 When the concrete surface 4a having voids is scanned and measured by the measuring device 10 of this embodiment, the three-dimensional surface shape data shown in Figure 5 is obtained. Next, the data is numerically processed by the software installed on the PC, and the depth of the recesses due to the voids is displayed as a color map, as shown in Figure 6. The color bar on the right side of this figure indicates depths of 0.5 mm or more to 3.92 mm. Furthermore, the void depth data in this figure is divided into a grid of 2.5 mm vertically and horizontally, and output as CSV data. Figure 7 shows a map display of the analysis results in which recesses with a depth of 0.5 mm or more and a horizontal length of 5 mm or more are colored red using Excel's VBA function. The specific method of selecting effective voids is to search for cells in each row from left to right that also have data of a depth of 0.5 mm or more, and only if the cell to the right of that cell is 0.5 mm or more, the corresponding cell is colored red and counted as the corresponding void. When the work on one row is completed, the work is moved to the row below and the same work is repeated. As a result, the number of void cells with a depth of 0.5 mm or more and a length of 5 mm or more, i.e., the area, can be determined. Figure 8 shows the porosity quantified from the detection results in Figure 7.
なお、上記実施例では、計測対象としてコンクリートの表面の計測について説明しているが、本発明が適用可能な材料表面はコンクリート面に限定されないことは指摘するまでもない。
In the above embodiment, the measurement of the surface of concrete is described as the measurement target, but it goes without saying that the material surface to which the present invention can be applied is not limited to a concrete surface.
本発明の材料表面の空隙率計測方法及び装置によれば、被計測表面の凹み具合と数量を素早く、定量的・客観的に計測できるので、コンクリートを取り扱う場面が多い土木建築分野で有効に利用できる。さらに、本発明の方法及び装置が適用可能な材料表面はコンクリート面に限定されないので、アスファルト道路面の凹み数量計測や、構造体壁面等のレンガの歪みやタイルの剥がれ計測に利用することができる。
According to the method and device for measuring the porosity of a material surface of the present invention, the degree and number of dents on the measured surface can be measured quickly, quantitatively, and objectively, so that it can be effectively used in the civil engineering and construction fields where concrete is often used. Furthermore, since the material surfaces to which the method and device of the present invention can be applied are not limited to concrete surfaces, it can be used to measure the number of dents on asphalt road surfaces, and to measure the distortion of bricks and peeling of tiles on the walls of structures, etc.
1 免振装置
2 ベースプレート
3 上部構造体
4 免振基礎コンクリート
4a 免振基礎コンクリート表面
5 打ち込みコンクリート
5a コンクリートの打ち込み方向
6 型枠
7 ホッパー
8 空隙
9 計測作業員
10 3次元形状計測装置
11 単発スキャンエリア
12 計測用投射光
13 全計測エリア
14 上部構造体
1 Vibration isolation device 2 Base plate 3 Upper structure 4 Vibration isolation foundation concrete 4a Vibration isolation foundation concrete surface 5 Poured concrete 5a Concrete pouring direction 6 Formwork 7 Hopper 8 Gap 9 Measurement worker 10 Three-dimensional shape measurement device 11 Single-shot scan area 12 Measurement projection light 13 Total measurement area 14 Upper structure
Claims (1)
(1) 分解能0.5mm以下の性能を持った、光による3次元形状計測技術を用いて該表面を計測し、3次元座標データを取得する工程と、
(2) 該3次元座標データを解析し、空隙に伴う凹み部の深さ数値を得る工程と、
(3) 該深さ数値を縦横2.5mm格子で区切り、その代表値をCSV書式のデータファイルとして出力する工程と、
(4) 出力されたCSVデータファイルをエクセル等のスプレッドシートソフトウェアに読み込み、VBA機能を使って、深さ0.5mm以上かつ横に2つ以上のセルが続いた場合のみ着色し、そのセル数をカウントする工程と、
(5) CSVデータ全体のセル数(格子数)で前記着色セル数を割ることで、空隙率を算出する工程、
を備えることを特徴とする、免震基礎コンクリート表面の空隙率を算出する方法。 When calculating the porosity of the concrete surface of the seismic isolation foundation,
(1) measuring the surface using an optical three-dimensional shape measurement technique having a resolution of 0.5 mm or less to obtain three-dimensional coordinate data;
(2) analyzing the three-dimensional coordinate data to obtain a depth value of a recess due to a void;
(3) dividing the depth values into a grid of 2.5 mm length and width and outputting representative values as a data file in CSV format;
(4) loading the output CSV data file into spreadsheet software such as Excel, and using a VBA function, coloring only cells that are 0.5 mm deep or more and have two or more adjacent cells in a row, and counting the number of such cells;
(5) A step of calculating the porosity by dividing the number of colored cells by the number of cells (number of grids) in the entire CSV data;
A method for calculating the porosity of a surface of seismic isolation foundation concrete, comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021095523A JP7534583B2 (en) | 2021-06-08 | 2021-06-08 | Method and device for measuring porosity of material surface |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021095523A JP7534583B2 (en) | 2021-06-08 | 2021-06-08 | Method and device for measuring porosity of material surface |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2022187511A JP2022187511A (en) | 2022-12-20 |
JP7534583B2 true JP7534583B2 (en) | 2024-08-15 |
Family
ID=84532027
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021095523A Active JP7534583B2 (en) | 2021-06-08 | 2021-06-08 | Method and device for measuring porosity of material surface |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7534583B2 (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020187274A1 (en) | 2001-06-11 | 2002-12-12 | Parviz Soroushian | Preparation of concrete samples for microscopic analysis |
JP2016024052A (en) | 2014-07-18 | 2016-02-08 | 国立大学法人 鹿児島大学 | Three-dimensional measurement system, three-dimensional measurement method and program |
JP2018071125A (en) | 2016-10-27 | 2018-05-10 | 大成建設株式会社 | Filling state measuring method of steel plate concrete structure and construction method of steel plate concrete structure |
JP2019086294A (en) | 2017-11-01 | 2019-06-06 | オムロン株式会社 | Three-dimensional measurement device, three-dimensional measurement method, and program |
JP2020098108A (en) | 2018-12-17 | 2020-06-25 | 株式会社大林組 | Surface defect inspection method |
WO2020255963A1 (en) | 2019-06-20 | 2020-12-24 | 日本製鉄株式会社 | Titanium material and apparatus |
-
2021
- 2021-06-08 JP JP2021095523A patent/JP7534583B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020187274A1 (en) | 2001-06-11 | 2002-12-12 | Parviz Soroushian | Preparation of concrete samples for microscopic analysis |
JP2016024052A (en) | 2014-07-18 | 2016-02-08 | 国立大学法人 鹿児島大学 | Three-dimensional measurement system, three-dimensional measurement method and program |
JP2018071125A (en) | 2016-10-27 | 2018-05-10 | 大成建設株式会社 | Filling state measuring method of steel plate concrete structure and construction method of steel plate concrete structure |
JP2019086294A (en) | 2017-11-01 | 2019-06-06 | オムロン株式会社 | Three-dimensional measurement device, three-dimensional measurement method, and program |
JP2020098108A (en) | 2018-12-17 | 2020-06-25 | 株式会社大林組 | Surface defect inspection method |
WO2020255963A1 (en) | 2019-06-20 | 2020-12-24 | 日本製鉄株式会社 | Titanium material and apparatus |
Also Published As
Publication number | Publication date |
---|---|
JP2022187511A (en) | 2022-12-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Fayyad et al. | Experimental investigation of crack propagation and crack branching in lightly reinforced concrete beams using digital image correlation | |
WO2021218114A1 (en) | Method for measuring surface roughness of precast composite concrete slab | |
Jiang et al. | Deformation and failure behaviours of rock-concrete interfaces with natural morphology under shear testing | |
Dong et al. | FPZ evolution of mixed mode fracture in concrete: Experimental and numerical | |
Tzortzinis et al. | Using 3D laser scanning for estimating the capacity of corroded steel bridge girders: Experiments, computations and analytical solutions | |
CN104328776B (en) | A kind of method predicting that the soil body and surrounding enviroment are affected by power dynamic compaction tool | |
JP2007277813A (en) | Method and device for changing construction plan using three-dimensional laser scanner | |
CN112325835B (en) | Method for detecting roughness of point-shaped pit joint surface of precast concrete member | |
JP2004325209A (en) | Measuring device and method for structure displacement | |
JP2012057369A (en) | Concrete construction method using thermal image | |
WO2020119250A1 (en) | Surface deformation method for similar material simulation test in underground work using three-dimensional laser scanning | |
JP7534583B2 (en) | Method and device for measuring porosity of material surface | |
JP6805068B2 (en) | Floor subsidence displacement monitoring system and floor subsidence displacement monitoring method | |
Larkela et al. | Determination of distribution of modulus of subgrade reaction | |
CN113420427B (en) | Rock structural surface shearing continuous-discontinuous numerical method under constant rigidity | |
Neza et al. | Surface Waviness Evaluation of Two Different Types of Material of a Multi-Purpose Hall Using Terrestrial Laser Scanner (TLS) | |
RU2392403C1 (en) | Method for detection of changes in deflected mode of building or structure components | |
Westiing et al. | Applications of LiDAR for Productivity Improvement on Construction Projects: Case Studies from Active Sites | |
Sztubecki et al. | A hybrid method of determining deformations of engineering structures with a laser station and a 3D scanner | |
Ravi Kumar et al. | Structural health monitoring: detection of concrete flaws using ultrasonic pulse velocity | |
Pera et al. | An integrated monitoring system through 3d laser scanner and traditional instruments for load test on arch bridge | |
JP4176767B2 (en) | Basic bottom structure calculation method, calculation program thereof, and recording medium for the program | |
Caprili et al. | Numerical modelling, analysis and retrofit of the historical masonry building" La Sapienza" in Pisa | |
CN110158671A (en) | A kind of composite foundation with piles in inhomogeneous strata model assay systems and method | |
JP7538073B2 (en) | Floor construction method and floor inspection device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210719 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210722 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20230421 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20230421 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20240116 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20240326 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20240510 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20240625 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20240709 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7534583 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |