JP7538073B2 - Floor construction method and floor inspection device - Google Patents
Floor construction method and floor inspection device Download PDFInfo
- Publication number
- JP7538073B2 JP7538073B2 JP2021045685A JP2021045685A JP7538073B2 JP 7538073 B2 JP7538073 B2 JP 7538073B2 JP 2021045685 A JP2021045685 A JP 2021045685A JP 2021045685 A JP2021045685 A JP 2021045685A JP 7538073 B2 JP7538073 B2 JP 7538073B2
- Authority
- JP
- Japan
- Prior art keywords
- floor
- inspection device
- foundation slab
- poured
- ruler
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000007689 inspection Methods 0.000 title claims description 32
- 238000010276 construction Methods 0.000 title claims description 16
- 239000000463 material Substances 0.000 claims description 64
- 238000005192 partition Methods 0.000 claims description 9
- 238000009408 flooring Methods 0.000 claims description 8
- 238000000034 method Methods 0.000 claims description 7
- 230000001678 irradiating effect Effects 0.000 claims description 2
- 238000005259 measurement Methods 0.000 description 6
- 230000003014 reinforcing effect Effects 0.000 description 5
- 239000002002 slurry Substances 0.000 description 5
- 239000004570 mortar (masonry) Substances 0.000 description 4
- 241000238633 Odonata Species 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 229910052602 gypsum Inorganic materials 0.000 description 1
- 239000010440 gypsum Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000010079 rubber tapping Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Floor Finish (AREA)
Description
特許法第30条第2項適用 (刊行物1) ▲1▼ 刊行物名 熊谷組技術研究報告 79号/2020 ▲2▼ 発行日 令和3年2月26日 ▲3▼ 発行所 福井県福井市大手三丁目2番1号 株式会社熊谷組 ▲4▼ 公開者 株式会社熊谷組 ▲5▼ 公開の内容 「床面の施工方法、及び床面の検査装置」 (刊行物2) ▲1▼ 開催日 令和2年11月13日 ▲2▼ 集会名、開催場所 熊谷組第84期全国建築技術発表会 株式会社熊谷組本社内 東京都新宿区津久戸町2番1号 ▲3▼ 公開者 阿部 高広 ▲4▼ 公開の内容 「床面の施工方法、及び床面の検査装置」Application of Article 30, Paragraph 2 of the Patent Act (Publication 1) ▲1▼ Publication name Kumagai Gumi Technical Research Report No. 79/2020 ▲2▼ Publication date February 26, 2021 ▲3▼ Publisher Kumagai Gumi Co., Ltd., 2-1 Ote 3-chome, Fukui City, Fukui Prefecture ▲4▼ Disclosed by Kumagai Gumi Co., Ltd. ▲5▼ Disclosed content "Floor construction method and floor inspection device" (Publication 2) ▲1▼ Date held November 13, 2020 ▲2▼ Meeting name and location Kumagai Gumi 84th National Construction Technology Presentation Inside Kumagai Gumi Co., Ltd. Headquarters 2-1 Tsukudo-cho, Shinjuku-ku, Tokyo ▲3▼ Disclosed by Abe Takahiro ▲4▼ Disclosed content "Floor construction method and floor inspection device"
本発明は、床面の施工方法等に関し、特に高い表面精度が要求される床面の施工に好適な床面の施工方法等に関する。 The present invention relates to a floor construction method, etc., and particularly to a floor construction method, etc. that is suitable for construction of floor surfaces that require high surface accuracy.
従来、例えばRC構造物における床スラブは、鉄筋を配筋した後にコンクリートを打設し、その表面をトンボ等の治具を用いて均すことにより、ある程度の表面精度を確保する。
一方、特許文献に示すように、当該構造物のフロアの用途によっては、床面の表面について極めて高い精度が要求される場合があり、このような場合には上記スラブを基礎(下地)として、その表面にセルフレベリング床材とも称される流動性の高いスラリーを流し込むことにより、その自己平滑性によって精度の高い床面を得ることが知られている。
Conventionally, for example, in the case of a floor slab in an RC structure, concrete is poured after reinforcing bars are arranged, and the surface is leveled using a tool such as a drawstring to ensure a certain degree of surface precision.
On the other hand, as shown in the patent documents, depending on the use of the floor of the structure, extremely high precision may be required for the floor surface. In such cases, it is known to use the above-mentioned slab as a base (substrate) and pour a highly fluid slurry, also known as a self-leveling floor material, onto the surface, thereby obtaining a highly precise floor surface due to its self-smoothness.
しかしながら、上記特許文献に係る施工方法にあっては、下地上に配設された仕切り材によって画定された範囲内にスラリーを打設した後に、仕切り材を取り外す作業を要することから、当該取り外しによって僅かながらスラリーが流動し、フロア全体の表面精度が低下する懸念がある。特に±1mm単位の極めて高い表面精度が要求されるフロアにおいては、スラリーの事後的な流動を含む上記工法は俄かに採用し難い。 However, the construction method described in the above patent document requires the removal of the partition material after pouring the slurry into the area defined by the partition material placed on the base, which may cause the slurry to flow slightly when removed, resulting in a concern that the surface accuracy of the entire floor may decrease. In particular, for floors that require extremely high surface accuracy in the order of ±1 mm, the above construction method, which involves the subsequent flow of the slurry, is difficult to adopt.
本発明は、上記課題を解決すべくなされたものであり、極めて高い表面精度を実現可能な床面の施工方法等を提供することを目的とする。 The present invention was made to solve the above problems, and aims to provide a floor construction method that can achieve extremely high surface accuracy.
上記課題を解決するための本発明の態様として、 コンクリート構造物の床面の施工方法であって、床材の表面と平行に延長する定形材と、当該定形材に沿って延長し、床材の表面に光を照射する光源とを備えた検査装置を床材打設後の表面に沿って接地させながら一方向に走査し、定形材の接地面と床材の表面との間からの露光有無により床材表面の不陸を把握する検査工程を含む態様とした。
本態様によれば、定形材の接地面と床材の表面との間からの露光有無により不陸を把握可能であるため、不陸の発生が一定幅を有する面として認識可能となり、その後の補修作業によって表面精度を容易に向上させることができる。
また、他の態様として、床材は、既設の基礎スラブ上に打設されるSL材であって、SL材の打設に際して、基礎スラブ上に当該基礎スラブの表面を複数範囲に区画する区画材を設置し、形成された区画ごとにSL材を打設して硬化後のSL材中に各区画材を埋め殺しの状態とする床材打設工程を含む形態であっても良い。
本態様によれば、硬化後のSL材中に各区画材を埋め殺しの状態とすることから、SL材の事後的な流動がなく、表面精度を向上させることができる。
また、他の構成として、コンクリート構造物の床面の不陸検査装置であって、床面と平行に延長し、床面と接地可能な接地面を有する所定長の定形材と、定形材に沿って延長し、床材の表面に向けて光を照射可能な光源とを備えた構成とした。
本構成によれば、定形材の接地面と床面との間からの露光有無により不陸を把握可能となる。
One aspect of the present invention for solving the above problems is a method for constructing the floor surface of a concrete structure, which includes an inspection step in which an inspection device equipped with a shaped member extending parallel to the surface of the floor material and a light source extending along the shaped member and irradiating light onto the surface of the floor material is grounded along the surface of the floor material after it has been poured, while scanning in one direction, and unevenness in the surface of the floor material is detected based on the presence or absence of light exposure between the ground surface of the shaped member and the surface of the floor material.
According to this embodiment, unevenness can be detected based on the presence or absence of exposure between the contact surface of the shaped material and the surface of the flooring material, making it possible to recognize the occurrence of unevenness as a surface having a certain width, and making it easy to improve the surface accuracy through subsequent repair work.
In another embodiment, the flooring material may be a SL material poured on an existing foundation slab, and the pouring of the SL material may include a flooring pouring process in which partition materials are placed on the foundation slab to divide the surface of the foundation slab into multiple areas, and the SL material is poured into each of the formed partitions, so that each partition material is buried and immobilized in the hardened SL material.
According to this embodiment, each partition material is embedded in the hardened SL material, so there is no subsequent flow of the SL material, and surface precision can be improved.
As another configuration, there is provided an unevenness inspection device for the floor surface of a concrete structure, which is configured to include a shaped member of a predetermined length that extends parallel to the floor surface and has a contact surface that can contact the floor surface, and a light source that extends along the shaped member and can irradiate light toward the surface of the floor material.
According to this configuration, unevenness can be detected based on the presence or absence of exposure between the contact surface of the shaped material and the floor surface.
以下、図1,図2を参照して、コンクリート構造物の床面施工までの全体工程を説明する。図1のS1に示すように鉄骨注及び鉄骨梁等のコンクリート構造物の躯体となる建て込みの完了後には、基礎スラブ1となる鉄筋3が配筋される。S2に示すように、鉄筋3の配筋後には基礎スラブ1となるコンクリートC1が打設される。
Below, the entire process up to the construction of the floor surface of a concrete structure will be explained with reference to Figures 1 and 2. As shown in S1 of Figure 1, after the construction of the concrete structure's framework, such as steel beams and steel frames, is completed, reinforcing
S3に示すように、コンクリートC1の打設に際しては、打設後の全範囲を含むように、コンクリートC1内のエア抜きを目的として、例えば長さ3m程度の振動タッピングを用いて、コンクリート表面のタッピングを行う。これにより、基礎スラブ自体を平滑化し、表面精度の向上を図る。なお、後工程のセルフレベリング材(以下、SL材とも言う。)の打設を前提とすれば、基礎スラブ1自体の表面精度を向上させる必要はないとの検討もあり得るが、±1mmの要求精度を満足するためには、基礎スラブ1自体の不陸がSL材の流動性を阻害し、SL材硬化後の表面精度に影響を及ぼすことから、基礎スラブ1自体の表面精度を当該打設時に高く設定するのが望ましい。
As shown in S3, when pouring concrete C1, the concrete surface is tapped using a vibrating tapping tool, for example, about 3 m long, to remove air from within the concrete C1, so as to include the entire area after pouring. This smoothes the foundation slab itself and improves surface accuracy. Note that, assuming the pouring of a self-leveling material (hereinafter also referred to as SL material) in a subsequent process, it may be considered that there is no need to improve the surface accuracy of the
図1のS4及び図2(b)に示すように、コンクリートC1の硬化後にはその表面に例えば1m幅の格子状となるように墨打ちを行うと共に、例えばレーザー測定器を用いてコンクリートC1表面のレベル測定を行う。当該レベル測定にあっては、墨打ちにより形成された格子(以下、グリッドと言う場合がある)の交点Pを複数の測定点として設定し、レーザー測定器から各測定点の相対的なレベルを測定する。このとき、コンクリートC1表面における許容し得るレベル差は±8mm程度であって、当該範囲以内のレベル差であれば、SL材の自己平滑性によってレベル差を充分に吸収することが可能となる。なお、より精密なレベル測定を行う場合には、観測点及び測定点を増加させることによりレベル差を減少させることが可能である。また、許容以上のレベル差が存在する場合、その範囲において補修作業を行う。 As shown in S4 of FIG. 1 and FIG. 2(b), after the concrete C1 hardens, the surface is marked out in a grid pattern of, for example, 1 m width, and the level of the concrete C1 surface is measured using, for example, a laser measuring device. In this level measurement, the intersection points P of the grid (hereinafter sometimes referred to as a grid) formed by marking out are set as multiple measurement points, and the relative level of each measurement point is measured using the laser measuring device. At this time, the allowable level difference on the surface of the concrete C1 is about ±8 mm, and if the level difference is within this range, the self-smoothness of the SL material makes it possible to fully absorb the level difference. Note that, when performing more precise level measurement, the level difference can be reduced by increasing the number of observation points and measurement points. Also, if there is a level difference that is greater than the allowable level difference, repair work is performed within that range.
S5に示すように、基礎スラブ1の形成後には、基礎スラブ1上に例えば5mm角のアルミ製の定規Dを所定間隔(本例では2m)で配置する。定規Dは1本辺りの長さが例えば3mであって、図2に示すように、基礎スラブ1上にモルタルを介して互いに平行となるように複数配置される。定規Dの表面D1の高さは、床面の設定厚を考慮して規定される。
As shown in S5, after the
図2に示すように、本例においては、基礎スラブ1の表面からの設定厚を10mmとしているため、基礎スラブ1の表面に厚さが5mmとなるようにモルタル打設し、当該モルタル上に定規Dを設置することにより、定規Dの表面D1を基礎スラブ1の表面から10mmの位置に設定する。なお、定規Dの高さ設定においては、平行に配列された複数の定規D同士の高さをレーザー測定器等により測定し、モルタルの増加、或いは切削により互いの高さを厳密に調整するのが望ましい。図2(b)に示すように、基礎スラブ1上に互いに平行に配列された複数の定規Dによって、基礎スラブ1の表面に定規Dの長さ方向に沿った複数の区画Rが形成され、当該各区画R内にSL材が打設される。
As shown in FIG. 2, in this example, the set thickness from the surface of the
S6に示すように、区画Rの形成後にはSL材のフロー試験を実行する。SL材は、例えば石膏系やセメント系のSL材であって、上記区画への打設に要する時間(可使時間)や材料種類、組成、水比、気温等の条件を加味して、必要なフロー値が設定される。 As shown in S6, after the formation of the section R, a flow test of the SL material is carried out. The SL material is, for example, a gypsum-based or cement-based SL material, and the required flow value is set taking into account the time required for pouring into the section (potable time), the type of material, composition, water ratio, temperature, and other conditions.
S7に示すように、フロー試験の完了後には、上記区画RごとにSL材を打設する。具体的には、1の区画の容積に概ね対応する量のSL材を基礎スラブ1上に流し込むと共に、少なくとも定規Dの間隔(本例では2m)よりも僅かに長い均し具(トンボ)Tを用いてSL材表面を定規Dの表面D1と面一となる位置において平滑化する。図2(a)に示すように、上記均し作業においては、トンボTの両端部を定規D間に架け渡し、定規Dの表面D1をガイドとしてSL材の表面高さがD1と面一となるように平滑化する。以後、全ての区画について同様にSL材を打設することにより、基礎スラブ1上の全領域にSL材の打設が完了する。また、このとき、隣り合う区画Rを区切る定規Dは、除去されることなくSL材の硬化と共に埋め殺しとなる。このように、本例では定規Dを除去することなく埋め殺しにするため、除去後の空隙に対してSL材が流動することを防止でき、表面精度を向上可能となる。
As shown in S7, after the flow test is completed, the SL material is poured for each of the above sections R. Specifically, an amount of SL material roughly corresponding to the volume of
S8に示すように、全ての区画Rに対するSL材の打設,硬化完了後には、表面精度の検査作業が行われる。なお、当該検査に先立っては、再度墨打ちによりグリッドを形成しておくことが望ましい。 As shown in S8, after the SL material has been poured and hardened for all sections R, an inspection of the surface accuracy is carried out. Prior to this inspection, it is advisable to again mark out the grid.
図3は、当該検査作業に好適な検査装置10の概要を示す図である。同図に示すように検査装置10は、定形性を有する定規(本例では左官用定規)12と、当該定規12の側面に沿って取り付けられたアングル14と、アングル14の底面に配設された光源16とを備える。定規12は、長さが例えば3mに設定されているが、検査対象となる床面の寸法に応じて適宜変更可能である。アングル14は、定規12の側面と平行な取り付け面14aと取り付け面14aに対して直交する底面14bとを有するL字状であって、定規12の長さに対応して、又は所定を有して延長する。光源16は、蛍光管型の照明であって、定規12の長さに概ね対応する寸法に設定される。なお、光源16を長さ方向に複数接続しても良い。光源16は、例えばLEDを内蔵しており、作業性、携帯性を考慮して充電地式のものが好ましい。
Figure 3 is a diagram showing an overview of an
図3に示すように、上記検査装置10による検査作業は、検査装置10の光源16をSL材の打設により形成された床面20側に向け、定規12の接地面としての底面12cを床面20に接した状態で一方向に走査するように摺動させることにより行われる。このように、床面20に対して検査装置10を接地させた場合、床面20の表面精度が担保されている範囲においては、光源16からの光が床面20と定規12によって遮られるため、操作方向側から検査装置10側を視認すると光源16から照射された光は視認できないこととなる。
As shown in FIG. 3, the inspection operation by the
一方、床面20の表面精度が悪く、所謂不陸が発生している範囲では、光源16からの光が床面20と定規12の底面12cとの間から露光する状態となるため、検査装置10側を視認すると、光源16から照射された光が不陸の範囲に渡って一定の長さを有する帯状の光として認識可能となる。
On the other hand, in areas where the surface accuracy of the
図2(b)に示すように、上記検査装置10を用いて、床面20のX方向及びY方向に向けて走査することにより、床面20の全範囲における不陸を精密に把握することが可能となる。
即ち、従来型のレーザー測定器による検査工程にあっては、±1mmの要求精度を満たそうとすると、膨大な数の測定点を設け、かつ、複数の観測点からの観測を行う必要があり、また、得られるレベル差は相対的であるため、その処理業務が過度な負担となり得る。
一方、上記検査装置10によれば、一方向への走査によって、連続的或いは局所的に発生したごく僅かな不陸を連続した帯状の光、或いは、光点として一括して認識可能となるため、光が露光した箇所と対応するグリッドを記録するのみで不陸の補正作業が容易に可能となる。つまり、検査装置10によれば、不陸の発生を点として把握するのではなく、一定の幅を有する面として把握できることから、検査業務を極めて効率的に行うことが可能となる。
なお、検査作業の結果、不陸を把握した場合には、その地点のグリッドを座標等として記録しておき、後に補修作業を行うことにより、露光が生じない極めて表面精度の高い床面20を形成することができる。また、床面20の形成後には、例えば仕上げ材としてのフロアタイル等が敷設される。
As shown in FIG. 2B, by scanning the
That is, in an inspection process using a conventional laser measuring instrument, in order to meet the required accuracy of ±1 mm, it is necessary to set up a huge number of measurement points and to conduct observations from multiple observation points. Furthermore, since the level difference obtained is relative, the processing work can become an excessive burden.
On the other hand, the
If any unevenness is found as a result of the inspection work, the grid of that point is recorded as coordinates or the like, and repair work can be carried out later to form a
以上の通り、本例における床面の施工方法は、基礎スラブを形成する工程(S1~S4)、基礎スラブ1上にSL材を打設し、床面20を形成する工程(S5~S7)、及び床面20の表面精度を担保する検査工程(S8)からなり、定規Dを除却することなく埋め殺し、さらに、検査装置10の露光による検査を行うことによって、極めて表面精度の高い床面20を得ることが可能となる。
As described above, the floor construction method in this example consists of the steps of forming a foundation slab (S1-S4), pouring SL material onto the
なお、上述の例では、基礎コンクリートC1の打設によって基礎スラブ1を形成後、基礎スラブ1上にスラリーとしてのSL材を打設することによって表面精度の高い床面20を得るものとしたが、SL材を打設することなく基礎コンクリートC1自体の表面精度を向上させても良い。具体的には、基礎スラブ1の鉄筋3の配筋時に例えばL字のアングル等の治具によって定規Dを配列し、コンクリートC1を定規Dの表面D1と同一高さとなるまで打設して床面を形成しても良い。この場合、コンクリートC1自体が床材となり、コンクリートC1の表面を検査装置10によって検査し、把握された不陸を補修することにより、別途SL材を用いずとも極めて表面精度の高い床面を得ることが可能となる。
In the above example, the
以上、本発明を実施形態を通じて説明したが、本発明の技術的範囲は上記実施の形態に限定されるものではない。上記実施の形態に多様な変更、改良を加え得ることは当業者にとって明らかであり、そのような変更又は改良を加えた形態も本発明の技術的範囲に含まれ得ることが、特許請求の範囲の記載から明らかである。 Although the present invention has been described above through the embodiments, the technical scope of the present invention is not limited to the above embodiments. It is clear to those skilled in the art that various modifications and improvements can be made to the above embodiments, and it is clear from the claims that forms incorporating such modifications or improvements can also be included within the technical scope of the present invention.
1 基礎スラブ,1C コンクリート,3 鉄筋,10 検査装置,16 光源,
20 床面,D 定規,D1 表面,R 区画
1 foundation slab, 1C concrete, 3 reinforcing bar, 10 inspection device, 16 light source,
20 Floor surface, D Ruler, D1 Surface, R Section
Claims (3)
床材の表面と平行に延長する定形材と、当該定形材に沿って延長し、床材の表面に光を照射する光源とを備えた検査装置を床材打設後の表面に沿って接地させながら一方向に走査し、
前記定形材の接地面と前記床材の表面との間からの露光有無により床材表面の不陸を把握する検査工程を含むことを特徴とする床面の施工方法。 A method for constructing a floor surface of a concrete structure, comprising the steps of:
An inspection device having a shaped bar extending parallel to the surface of the flooring material and a light source extending along the shaped bar and irradiating light onto the surface of the flooring material is grounded along the surface of the flooring material after it has been poured and scanned in one direction;
A floor construction method comprising an inspection step of determining unevenness in the surface of the flooring material based on the presence or absence of exposure between the contact surface of the shaped material and the surface of the flooring material.
前記SL材の打設に際して、前記基礎スラブ上に当該基礎スラブの表面を複数範囲に区画する区画材を設置し、形成された区画ごとに前記SL材を打設して硬化後のSL材中に前記各区画材を埋め殺しの状態とする床材打設工程を含むことを特徴とする請求項1記載の床面の施工方法。 The floor material is a SL material to be poured on an existing foundation slab,
A floor construction method as described in claim 1, characterized in that when pouring the SL material, a floor material pouring process is included, in which partition materials are placed on the foundation slab to divide the surface of the foundation slab into multiple areas, and the SL material is poured into each of the formed partitions, so that each partition material is buried and killed in the hardened SL material.
前記床面と平行に延長し、前記床面と接地可能な接地面を有する所定長の定形材と、
前記定形材に沿って延長し、床材の表面に向けて光を照射可能な光源と、
を備えたことを特徴とする検査装置。
An inspection device for a floor surface of a concrete structure, comprising:
A shaped member of a predetermined length extending parallel to the floor surface and having a contact surface that can contact the floor surface;
A light source that extends along the shaped material and can irradiate light toward a surface of the floor material;
An inspection device comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021045685A JP7538073B2 (en) | 2021-03-19 | 2021-03-19 | Floor construction method and floor inspection device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021045685A JP7538073B2 (en) | 2021-03-19 | 2021-03-19 | Floor construction method and floor inspection device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2022144609A JP2022144609A (en) | 2022-10-03 |
JP7538073B2 true JP7538073B2 (en) | 2024-08-21 |
Family
ID=83454833
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021045685A Active JP7538073B2 (en) | 2021-03-19 | 2021-03-19 | Floor construction method and floor inspection device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7538073B2 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006098194A (en) | 2004-09-29 | 2006-04-13 | Yamashin Seikyo Kk | Laser marker |
JP2016176203A (en) | 2015-03-19 | 2016-10-06 | 株式会社フジタ | Unevenness adjustment robot for concrete floor surface |
JP2017014860A (en) | 2015-07-06 | 2017-01-19 | 株式会社大林組 | Joint formation method |
JP2020013659A (en) | 2018-07-13 | 2020-01-23 | 大日本印刷株式会社 | Lighting device and lighting device unit |
-
2021
- 2021-03-19 JP JP2021045685A patent/JP7538073B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006098194A (en) | 2004-09-29 | 2006-04-13 | Yamashin Seikyo Kk | Laser marker |
JP2016176203A (en) | 2015-03-19 | 2016-10-06 | 株式会社フジタ | Unevenness adjustment robot for concrete floor surface |
JP2017014860A (en) | 2015-07-06 | 2017-01-19 | 株式会社大林組 | Joint formation method |
JP2020013659A (en) | 2018-07-13 | 2020-01-23 | 大日本印刷株式会社 | Lighting device and lighting device unit |
Also Published As
Publication number | Publication date |
---|---|
JP2022144609A (en) | 2022-10-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102691401B (en) | Construction method for large-area concrete weighbridge | |
Wang et al. | Determination of residual cross-sectional areas of corroded bars in reinforced concrete structures using easy-to-measure variables | |
JP5681581B2 (en) | Concrete floor slab finish height management method | |
CN102094532B (en) | Measurement control method for building construction horizontal component size | |
CN105986676B (en) | Large-span concrete floor flatness control system and use method | |
WO2021087842A1 (en) | Method for measuring three-dimensional roughness on surface of concrete | |
Grigoriadis | Use of laser interferometry for measuring concrete substrate roughness in patch repairs | |
JP4855916B2 (en) | Evaluation method, evaluation apparatus and computer program for concrete joint surface | |
JP7538073B2 (en) | Floor construction method and floor inspection device | |
CN106988533A (en) | A kind of construction method of concrete staircase tiling dual side-edge wall not lattice side's centering | |
US20180073260A1 (en) | Hardscape stringline holder | |
JP6420734B2 (en) | Road auxiliary equipment construction method and moving direction instruction program | |
CN207114364U (en) | A kind of detection means of slump and divergence | |
CN106225654A (en) | A kind of concrete surface roughness measuring device and measuring method thereof | |
CN110195410A (en) | The construction method of bridge deck pavement | |
CN102061753B (en) | Method for controlling thickness of cast-in-place concrete floor slab by point-line-plane control method | |
KR101934319B1 (en) | Method and apparatus for survey | |
KR101234372B1 (en) | Method of Perpendicularity Supervising Survey using Totalstation | |
CN205857744U (en) | Large-span concrete floor flatness control system | |
CN115749193A (en) | Flatness and anti-cracking control construction method for super-large-area terrace | |
KR100917867B1 (en) | Method and system for measuring compaction density of asphalt pavement, pavement method using the system | |
CN108487064B (en) | Separate installment main cable saddle of suspension bridge seat construction method | |
CN107476327A (en) | Narrow base list column step foundation construction method | |
JP7534583B2 (en) | Method and device for measuring porosity of material surface | |
Garg et al. | Rectification of a large vertical wall surface for flatness |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A80 | Written request to apply exceptions to lack of novelty of invention |
Free format text: JAPANESE INTERMEDIATE CODE: A80 Effective date: 20210331 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20231204 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20240625 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20240806 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20240808 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7538073 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |