JP7526958B2 - Refrigeration Cycle Equipment - Google Patents
Refrigeration Cycle Equipment Download PDFInfo
- Publication number
- JP7526958B2 JP7526958B2 JP2020182013A JP2020182013A JP7526958B2 JP 7526958 B2 JP7526958 B2 JP 7526958B2 JP 2020182013 A JP2020182013 A JP 2020182013A JP 2020182013 A JP2020182013 A JP 2020182013A JP 7526958 B2 JP7526958 B2 JP 7526958B2
- Authority
- JP
- Japan
- Prior art keywords
- expansion device
- refrigeration cycle
- compression
- discharge
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000005057 refrigeration Methods 0.000 title claims description 51
- 239000003507 refrigerant Substances 0.000 claims description 116
- 238000007906 compression Methods 0.000 claims description 86
- 230000006835 compression Effects 0.000 claims description 84
- 238000001514 detection method Methods 0.000 claims description 10
- 238000010586 diagram Methods 0.000 description 10
- 230000007423 decrease Effects 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 230000002528 anti-freeze Effects 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B49/00—Arrangement or mounting of control or safety devices
- F25B49/02—Arrangement or mounting of control or safety devices for compression type machines, plants or systems
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2400/00—General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
- F25B2400/13—Economisers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2500/00—Problems to be solved
- F25B2500/07—Exceeding a certain pressure value in a refrigeration component or cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2500/00—Problems to be solved
- F25B2500/08—Exceeding a certain temperature value in a refrigeration component or cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2600/00—Control issues
- F25B2600/25—Control of valves
- F25B2600/2509—Economiser valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2600/00—Control issues
- F25B2600/25—Control of valves
- F25B2600/2513—Expansion valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2700/00—Sensing or detecting of parameters; Sensors therefor
- F25B2700/19—Pressures
- F25B2700/193—Pressures of the compressor
- F25B2700/1931—Discharge pressures
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2700/00—Sensing or detecting of parameters; Sensors therefor
- F25B2700/21—Temperatures
- F25B2700/2115—Temperatures of a compressor or the drive means therefor
- F25B2700/21152—Temperatures of a compressor or the drive means therefor at the discharge side of the compressor
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
- Air Conditioning Control Device (AREA)
Description
本開示は、冷凍サイクル装置に関する。 This disclosure relates to a refrigeration cycle device.
特許文献1は、冷媒を圧縮する直列多段に配置された複数の圧縮機と、循環する主冷媒回路の冷媒の一部を複数の圧縮機の間にバイパスするバイパス冷媒回路とを備えた冷凍装置を開示する。 Patent Document 1 discloses a refrigeration system equipped with multiple compressors arranged in series to compress a refrigerant, and a bypass refrigerant circuit that bypasses a portion of the refrigerant in the circulating main refrigerant circuit between the multiple compressors.
主冷媒回路の冷媒の一部は、バイパス冷媒回路内に配置された電子膨張弁にて膨張され、主冷媒回路を流れる冷媒と熱交換を行った後、複数の圧縮機の間にバイパスされ、複数の圧縮機の内の低段圧縮機から吐出された冷媒と合流し、高段圧縮機に吸入される。 A portion of the refrigerant in the main refrigerant circuit is expanded by an electronic expansion valve located in the bypass refrigerant circuit, and after heat exchange with the refrigerant flowing through the main refrigerant circuit, it is bypassed between the multiple compressors, merges with the refrigerant discharged from the low-stage compressor among the multiple compressors, and is sucked into the high-stage compressor.
高段圧縮機の吐出温度を常時検出し、高段圧縮機の吐出温度が上限を超えると予想された場合は、バイパス冷媒回路内電子膨張弁の開度を一時的に大きくし、吐出温度を下げる制御を行う。 The discharge temperature of the high-stage compressor is constantly detected, and if it is predicted that the discharge temperature of the high-stage compressor will exceed the upper limit, the opening of the electronic expansion valve in the bypass refrigerant circuit is temporarily increased to lower the discharge temperature.
本開示は、吐出温度と吐出圧力が上昇し、運転範囲の上限となる値に近づいた場合においても、その値を超えることなく、吐出温度と吐出圧力の上昇を抑制できる信頼性の高い冷凍サイクル装置を提供する。 This disclosure provides a highly reliable refrigeration cycle device that can suppress increases in discharge temperature and discharge pressure without exceeding the upper limit of the operating range, even when the discharge temperature and discharge pressure increase and approach the upper limit of the operating range.
本開示における冷凍サイクル装置は、圧縮回転要素から構成される圧縮機構、前記圧縮回転要素から吐出された冷媒により利用側熱媒体を加熱する利用側熱交換器、中間熱交換器、第1膨張装置、及び熱源側熱交換器が配管で順次接続されて形成される主冷媒回路と、前記利用側熱交換器から前記第1膨張装置までの間の前記配管から分岐された冷媒が、第2膨張装置により減圧された後に、前記中間熱交換器で前記主冷媒回路を流れる前記冷媒と熱交換され、前記圧縮回転要素の圧縮途中の前記冷媒に合流されるバイパス冷媒回路と、前記圧縮回転要素の吐出温度を検出する吐出温度検出手段と、前記圧縮回転要素の吐出圧力を検出する吐出圧力検出手段と、制御装置と、を備え、前記圧縮回転要素の吐出圧力が所定圧力よりも高く、かつ、前記圧縮回転要素の吐出温度が所定温度よりも高い場合には、前記制御装置は、前記第1膨張装置と前記第2膨張装置の両方の開度を大きくすることを特徴とする。 The refrigeration cycle device disclosed herein includes a compression mechanism composed of a compression rotating element, a utilization side heat exchanger that heats a utilization side heat medium with the refrigerant discharged from the compression rotating element, an intermediate heat exchanger, a first expansion device, and a heat source side heat exchanger, which are connected in sequence by piping, a bypass refrigerant circuit in which the refrigerant branched from the piping between the utilization side heat exchanger and the first expansion device is decompressed by a second expansion device, and then heat exchanged with the refrigerant flowing through the main refrigerant circuit in the intermediate heat exchanger, and is merged with the refrigerant being compressed by the compression rotating element, a discharge temperature detection means for detecting the discharge temperature of the compression rotating element, a discharge pressure detection means for detecting the discharge pressure of the compression rotating element, and a control device, and is characterized in that when the discharge pressure of the compression rotating element is higher than a predetermined pressure and the discharge temperature of the compression rotating element is higher than a predetermined temperature, the control device increases the opening degree of both the first expansion device and the second expansion device.
本開示によれば、吐出温度と吐出圧力が上昇し、運転範囲の上限となる値に近づいた場合においても、その値を超えることなく、吐出温度と吐出圧力の上昇を抑制できる信頼性の高い冷凍サイクル装置を提供できる。 According to the present disclosure, it is possible to provide a highly reliable refrigeration cycle device that can suppress increases in the discharge temperature and discharge pressure without exceeding the upper limit of the operating range, even when the discharge temperature and discharge pressure increase and approach the upper limit of the operating range.
以下、図面を参照しながら実施の形態を詳細に説明する。但し、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明、または、実質的に同一の構成に対する重複説明を省略する場合がある。 Below, the embodiments will be described in detail with reference to the drawings. However, more detailed explanation than necessary may be omitted. For example, detailed explanation of already well-known matters or duplicate explanation of substantially the same configuration may be omitted.
なお、添付図面および以下の説明は、当業者が本開示を十分に理解するために提供されるのであって、これらにより特許請求の範囲に記載の主題を限定することを意図していない。 The accompanying drawings and the following description are provided to enable those skilled in the art to fully understand the present disclosure, and are not intended to limit the subject matter described in the claims.
(実施の形態1)
以下、図1~図3を用いて、実施の形態1を説明する。
(Embodiment 1)
Hereinafter, the first embodiment will be described with reference to FIGS. 1 to 3. FIG.
[1-1.構成]
図1において、冷凍サイクル装置は、主冷媒回路8、バイパス冷媒回路6を備える。
[1-1. Configuration]
In FIG. 1 , the refrigeration cycle device includes a main refrigerant circuit 8 and a bypass refrigerant circuit 6 .
主冷媒回路8は、圧縮回転要素から構成される圧縮機構1、放熱器である利用側熱交換器2、中間熱交換器5、第1膨張装置3、及び蒸発器である熱源側熱交換器4が配管で順次接続されて形成され、冷媒として二酸化炭素(CO2)を用いている。 The main refrigerant circuit 8 is formed by sequentially connecting a compression mechanism 1 composed of a compression rotating element, a utilization side heat exchanger 2 which serves as a radiator, an intermediate heat exchanger 5, a first expansion device 3, and a heat source side heat exchanger 4 which serves as an evaporator with piping, and uses carbon dioxide ( CO2 ) as the refrigerant.
圧縮機構1は、高段圧縮部11と低段圧縮部12とで構成される。利用側熱交換器2において、圧縮機構1から吐出された冷媒により、利用側熱媒体を加熱する。 The compression mechanism 1 is composed of a high-stage compression section 11 and a low-stage compression section 12. In the user-side heat exchanger 2, the user-side heat medium is heated by the refrigerant discharged from the compression mechanism 1.
なお、図1では、圧縮回転要素を、低段圧縮部12と高段圧縮部11とで構成される二段圧縮機構を図示しているが、単一の圧縮機構においても適用でき、単一の圧縮機構の場合には、バイパス冷媒回路6からの冷媒が吸入される位置を圧縮回転要素の圧縮途中とし、主冷媒回路8からの冷媒とバイパス冷媒回路6からの冷媒が合流する位置までの圧縮回転要素を低段圧縮部12とし、バイパス冷媒回路6からの冷媒が合流する位置以降の圧縮回転要素を高段圧縮部11として適用することができる。 In FIG. 1, the compression rotating element is shown as a two-stage compression mechanism consisting of a low-stage compression section 12 and a high-stage compression section 11, but it can also be applied to a single compression mechanism. In the case of a single compression mechanism, the position where the refrigerant from the bypass refrigerant circuit 6 is sucked in can be midway through the compression of the compression rotating element, the compression rotating element up to the position where the refrigerant from the main refrigerant circuit 8 and the refrigerant from the bypass refrigerant circuit 6 join can be the low-stage compression section 12, and the compression rotating element after the position where the refrigerant from the bypass refrigerant circuit 6 joins can be the high-stage compression section 11.
バイパス冷媒回路6は、利用側熱交換器2と中間熱交換器5の間の配管で主冷媒回路8から分岐され、低段圧縮部12と高段圧縮部11との間の圧縮途中まで配管にて接続されている。 The bypass refrigerant circuit 6 is branched off from the main refrigerant circuit 8 by piping between the user side heat exchanger 2 and the intermediate heat exchanger 5, and is connected by piping up to the middle of the compression process between the low stage compression section 12 and the high stage compression section 11.
バイパス冷媒回路6には、第2膨張装置7が設けられている。利用側熱交換器2を通過した一部の高圧冷媒は、第2膨張装置7により減圧され中間圧冷媒となり、中間熱交換器5で主冷媒回路8を流れる高圧冷媒と熱交換し、低段圧縮部12と高段圧縮部11との間の圧縮途中にて主冷媒回路8を流れる冷媒と合流する。 The bypass refrigerant circuit 6 is provided with a second expansion device 7. A portion of the high-pressure refrigerant that has passed through the user-side heat exchanger 2 is decompressed by the second expansion device 7 to become an intermediate-pressure refrigerant, which exchanges heat with the high-pressure refrigerant flowing through the main refrigerant circuit 8 in the intermediate heat exchanger 5, and merges with the refrigerant flowing through the main refrigerant circuit 8 during compression between the low-stage compression section 12 and the high-stage compression section 11.
利用側熱交換器2で加熱された利用側熱媒体は、利用側端末(図示せず)で、暖房等に利用される。利用側熱媒体として水又は不凍液を用いる。 The user-side heat medium heated in the user-side heat exchanger 2 is used for heating and the like at a user-side terminal (not shown). Water or antifreeze is used as the user-side heat medium.
主冷媒回路8は、圧縮機構1の吐出配管には、吐出温度検出手段である吐出温度センサ15と吐出圧力検出手段である吐出圧力センサ16が設けられており、吐出温度センサ15が検出した吐出温度および吐出圧力センサ16が検出した吐出圧力は、データとして制御装置20に取り込まれる。 In the main refrigerant circuit 8, a discharge temperature sensor 15, which is a discharge temperature detection means, and a discharge pressure sensor 16, which is a discharge pressure detection means, are provided in the discharge piping of the compression mechanism 1. The discharge temperature detected by the discharge temperature sensor 15 and the discharge pressure detected by the discharge pressure sensor 16 are input as data into the control device 20.
制御装置20には、冷凍サイクル装置の運転範囲の上限となる吐出温度の値より第1所定値低い値である所定温度、冷凍サイクル装置の運転範囲の上限となる吐出圧力の値より第2所定値低い値である所定圧力が、それぞれ閾値として予め設定されている。 The control device 20 is preset with a threshold value of a predetermined temperature that is a first predetermined value lower than the discharge temperature value that is the upper limit of the operating range of the refrigeration cycle device, and a predetermined pressure that is a second predetermined value lower than the discharge pressure value that is the upper limit of the operating range of the refrigeration cycle device.
なお、冷凍サイクル装置の運転範囲の上限となる吐出温度の値、冷凍サイクル装置の運転範囲の上限となる吐出圧力の値とは、それぞれ、制御装置20が冷凍サイクル装置の運転を停止する値である。 The discharge temperature value that is the upper limit of the operating range of the refrigeration cycle device, and the discharge pressure value that is the upper limit of the operating range of the refrigeration cycle device, are values at which the control device 20 stops operating the refrigeration cycle device.
制御装置20は、吐出温度センサ15が検出した吐出温度と吐出圧力センサ16が検出した吐出圧力とがそれぞれ閾値を超えると、第1膨張装置3の開度および第2膨張装置7の開度を大きくするように制御する。 When the discharge temperature detected by the discharge temperature sensor 15 and the discharge pressure detected by the discharge pressure sensor 16 exceed their respective threshold values, the control device 20 controls the opening degree of the first expansion device 3 and the opening degree of the second expansion device 7 to be increased.
なお、吐出圧力センサ16は、圧縮機構1の吐出側から第1膨張装置3の上流側までの、主冷媒回路8に設けられていて、主冷媒回路8の高圧冷媒の圧力を検出できればよい。 The discharge pressure sensor 16 is provided in the main refrigerant circuit 8 from the discharge side of the compression mechanism 1 to the upstream side of the first expansion device 3, and is capable of detecting the pressure of the high-pressure refrigerant in the main refrigerant circuit 8.
図2~図4は、本実施の形態1における冷凍サイクル装置において、第1膨張装置の開度や第2膨張装置の開度を大きくした場合の圧力―エンタルピー線図(P-h線図)の変化を示している。 Figures 2 to 4 show the change in pressure-enthalpy diagram (P-h diagram) when the opening degree of the first expansion device or the opening degree of the second expansion device is increased in the refrigeration cycle device of this embodiment 1.
図2は、第2膨張装置7のみの開度を大きくした時の冷凍サイクルの変化を示し、開度を大きくする前の状態は実線、開度を大きくした後の状態は破線で示している。 Figure 2 shows the change in the refrigeration cycle when the opening of only the second expansion device 7 is increased, with the solid line showing the state before the opening is increased and the dashed line showing the state after the opening is increased.
図3は、第1膨張装置3のみの開度を大きくした時の冷凍サイクルの変化を示し、開度を大きくする前の状態は実線、開度を大きくした後の状態は破線で示している。 Figure 3 shows the change in the refrigeration cycle when the opening of only the first expansion device 3 is increased, with the solid line showing the state before the opening is increased and the dashed line showing the state after the opening is increased.
図4は、第1膨張装置3の開度、および、第2膨張装置7の開度を大きくした時の冷凍サイクルの変化を示し、開度を大きくする前の状態は実線、開度を大きくした後の状態は破線で示している。 Figure 4 shows the change in the refrigeration cycle when the opening of the first expansion device 3 and the opening of the second expansion device 7 are increased, with the solid line showing the state before the opening is increased and the dashed line showing the state after the opening is increased.
図2~図4において、吐出温度および吐出圧力とも冷凍サイクル装置の運転範囲の上限となる値を破線にて示し、a~e点、および、A~B点は、図1に示す冷凍サイクル装置の構成図における各ポイントに相当する。 In Figures 2 to 4, the upper limits of the operating range of the refrigeration cycle device for both discharge temperature and discharge pressure are indicated by dashed lines, and points a to e and points A to B correspond to the respective points in the configuration diagram of the refrigeration cycle device shown in Figure 1.
[1-2.動作]
以上のように構成された冷凍サイクル装置について、以下その動作、作用を説明する。
[1-2. Operation]
The operation and function of the refrigeration cycle apparatus constructed as above will now be described.
まず、図1と図2に基づいて、冷凍サイクル装置の動作を説明する。 First, the operation of the refrigeration cycle device will be explained based on Figures 1 and 2.
第2膨張装置7の開度を大きくする前(実線)の冷凍サイクル装置では、高段圧縮部11で圧縮され圧縮機構1から吐出される高圧冷媒(a点)は、利用側熱交換器2で放熱した後に冷媒分岐点Aで主冷媒回路8から分岐し、第2膨張装置7により中間圧まで減圧されて中間圧冷媒(e点)となり、中間熱交換器5にて熱交換し、高段圧縮部11と低段圧縮部12の間に位置する圧縮途中で、低段圧縮部12で圧縮された主冷媒回路8の冷媒と合流する(B点)。 In the refrigeration cycle device before the opening of the second expansion device 7 is increased (solid line), the high-pressure refrigerant (point a) compressed in the high-stage compression section 11 and discharged from the compression mechanism 1 dissipates heat in the user-side heat exchanger 2, branches off from the main refrigerant circuit 8 at the refrigerant branching point A, is decompressed to an intermediate pressure by the second expansion device 7 to become an intermediate-pressure refrigerant (point e), exchanges heat in the intermediate heat exchanger 5, and merges with the refrigerant in the main refrigerant circuit 8 compressed in the low-stage compression section 12 during the compression process located between the high-stage compression section 11 and the low-stage compression section 12 (point B).
利用側熱交換器2で放熱した後の主冷媒回路8を流れる高圧冷媒は、バイパス冷媒回路6を流れる中間圧冷媒(e点)と熱交換を行い冷却され、エンタルピーが低減された状態(b点)で第1膨張装置3にて減圧される。 The high-pressure refrigerant flowing through the main refrigerant circuit 8 after dissipating heat in the user-side heat exchanger 2 is cooled by heat exchange with the intermediate-pressure refrigerant (point e) flowing through the bypass refrigerant circuit 6, and is depressurized in the first expansion device 3 in a state in which the enthalpy has been reduced (point b).
第1膨張装置3にて減圧され、気液二相状態となった主冷媒回路8の冷媒は、蒸発器4において外気からの吸熱により蒸発し気相となって、圧縮機構1の吸入側(d点)に戻り、圧縮機構1の低段圧縮部12にて圧縮される。 The refrigerant in the main refrigerant circuit 8, which has been decompressed by the first expansion device 3 and is in a two-phase gas-liquid state, evaporates in the evaporator 4 by absorbing heat from the outside air and becomes gaseous, returns to the suction side (point d) of the compression mechanism 1, and is compressed in the low-stage compression section 12 of the compression mechanism 1.
加熱能力を必要とする低外気温時に、高温水を出水する必要があるような運転条件下では、圧縮機構1の回転周波数を高くする必要があり、圧縮機構1の吐出温度は閾値を超えているだけでなく、圧縮機構1の吐出圧力もほぼ閾値に近い状態での運転となっている。 Under operating conditions where high-temperature water needs to be discharged when the outside air temperature is low and heating capacity is required, the rotation frequency of the compression mechanism 1 needs to be increased, and not only does the discharge temperature of the compression mechanism 1 exceed the threshold value, but the discharge pressure of the compression mechanism 1 is also operating at a state close to the threshold value.
ここで、第2膨張装置7の開度を大きくした際の冷凍サイクルの変化を破線で示す。 The dashed line shows the change in the refrigeration cycle when the opening of the second expansion device 7 is increased.
第2膨張装置7の開度を大きくすると、バイパス冷媒回路6を流れる温度の低い冷媒量が増加し、バイパス冷媒回路6を流れる冷媒と主冷媒回路8を流れる冷媒が合流する圧縮途中(B点)の温度は低下する。 When the opening degree of the second expansion device 7 is increased, the amount of low-temperature refrigerant flowing through the bypass refrigerant circuit 6 increases, and the temperature during compression (point B) where the refrigerant flowing through the bypass refrigerant circuit 6 and the refrigerant flowing through the main refrigerant circuit 8 merge decreases.
温度が低下し合流した冷媒は、高段圧縮部11にて圧縮され圧縮機構1から吐出される。吐出された冷媒の吐出温度(a点)は低下し、閾値以下の温度にすることができ、吐出温度の上昇を抑制することができる。 The refrigerant whose temperature has dropped and merged is compressed in the high-stage compression section 11 and discharged from the compression mechanism 1. The discharge temperature (point a) of the discharged refrigerant drops and can be made below a threshold temperature, suppressing an increase in the discharge temperature.
しかしながら、バイパス冷媒回路6を流れる冷媒量が増加するので、圧縮機構1への流入冷媒量が増加し吐出圧力は上昇する。従って、吐出圧力は閾値を超えてしまう。 However, because the amount of refrigerant flowing through the bypass refrigerant circuit 6 increases, the amount of refrigerant flowing into the compression mechanism 1 increases and the discharge pressure rises. As a result, the discharge pressure exceeds the threshold value.
次に、図1と図3に基づいて、冷凍サイクル装置の動作を説明する。 Next, the operation of the refrigeration cycle device will be explained based on Figures 1 and 3.
第1膨張装置3の開度を大きくする前(実線)の冷凍サイクル装置の動作は、図2における第2膨張装置7の開度を大きくする前の動作と同様であるので説明を省略する。 The operation of the refrigeration cycle device before the opening of the first expansion device 3 is increased (solid line) is the same as the operation before the opening of the second expansion device 7 in Figure 2 is increased, so a description is omitted.
加熱能力を必要とする低外気温時に、高温水を出水する必要があるような運転条件では、圧縮機構1の回転周波数を高くする必要があり、圧縮機構1の吐出圧力は閾値を超えているだけでなく、圧縮機構1の吐出温度もほぼ閾値に近い状態での運転となっている。 When the outside air temperature is low and heating capacity is required, and operating conditions require high-temperature water to be discharged, the rotation frequency of the compression mechanism 1 must be increased, and not only does the discharge pressure of the compression mechanism 1 exceed the threshold value, but the discharge temperature of the compression mechanism 1 is also operating at a temperature close to the threshold value.
ここで、第1膨張装置3の開度を大きくした際の冷凍サイクルの変化を破線で示す。第1膨張装置3の開度を大きくすると、主冷媒回路8を流れる冷媒量は増加し、バイパス冷媒回路6を流れる冷媒量は低下する。従って、圧縮機構1の吐出圧力は低下し、閾値以下にすることができる。 The broken line shows the change in the refrigeration cycle when the opening degree of the first expansion device 3 is increased. When the opening degree of the first expansion device 3 is increased, the amount of refrigerant flowing through the main refrigerant circuit 8 increases, and the amount of refrigerant flowing through the bypass refrigerant circuit 6 decreases. Therefore, the discharge pressure of the compression mechanism 1 decreases, and can be reduced below the threshold value.
しかしながら、バイパス冷媒回路6を流れる冷媒量が低下するので、バイパス冷媒回路6を流れる冷媒と主冷媒回路8を流れる冷媒が合流する圧縮途中(B点)の温度は上昇する。 However, because the amount of refrigerant flowing through the bypass refrigerant circuit 6 decreases, the temperature rises midway through compression (point B) when the refrigerant flowing through the bypass refrigerant circuit 6 and the refrigerant flowing through the main refrigerant circuit 8 join together.
従って、高段圧縮部11にて圧縮され、圧縮機構1から吐出される冷媒の吐出温度(a点)は上昇し、閾値を超えてしまう。 As a result, the discharge temperature (point a) of the refrigerant compressed in the high-stage compression section 11 and discharged from the compression mechanism 1 rises and exceeds the threshold value.
このように、第2膨張装置7だけの開度を大きくすると、吐出温度は低下するが吐出圧力が上昇する。また、第1膨張装置3だけの開度を大きくすると、吐出圧力は低下するが吐出温度が上昇する。 In this way, when the opening degree of only the second expansion device 7 is increased, the discharge temperature decreases but the discharge pressure increases. Also, when the opening degree of only the first expansion device 3 is increased, the discharge pressure decreases but the discharge temperature increases.
加熱能力を必要とする低外気温時に高温水を出水する必要があるような運転条件では、吐出温度および吐出圧力ともに、冷凍サイクル装置の運転範囲の上限となる値に近い値、すなわち、吐出温度および吐出圧力ともに、それぞれの閾値を超えた状態での運転となる。 Under operating conditions where it is necessary to discharge high-temperature water at low outside temperatures that require heating capacity, both the discharge temperature and discharge pressure are close to the upper limits of the operating range of the refrigeration cycle device, i.e., both the discharge temperature and discharge pressure exceed their respective threshold values.
しかしながら、冷凍サイクル装置の周囲環境が変化し、吐出温度が閾値を超えたときに、第2膨張装置7の開度を大きくするだけでは、吐出圧力が閾値を超えてしまい、適切な冷凍サイクルでの運転を実現できない。 However, when the ambient environment of the refrigeration cycle device changes and the discharge temperature exceeds a threshold value, simply increasing the opening of the second expansion device 7 will cause the discharge pressure to exceed the threshold value, making it impossible to achieve proper operation of the refrigeration cycle.
また、冷凍サイクル装置の周囲環境が変化し、吐出圧力が閾値を超えたときに、第1膨張装置3の開度を大きくするだけでは、吐出温度が閾値を超えてしまい、適切な冷凍サイクルでの運転が実現できない。 In addition, when the ambient environment of the refrigeration cycle device changes and the discharge pressure exceeds the threshold, simply increasing the opening of the first expansion device 3 will cause the discharge temperature to exceed the threshold, making it impossible to operate the refrigeration cycle appropriately.
そのため、制御装置20が、第1膨張装置3および第2膨張装置7の両方の開度を大きくする制御を行うことで、図4に示すように、冷凍サイクルは実線から破線の状態に変化する。 Therefore, when the control device 20 controls the opening of both the first expansion device 3 and the second expansion device 7 to be larger, the refrigeration cycle changes from the solid line to the dashed line as shown in Figure 4.
すなわち、吐出圧力と吐出温度とがそれぞれ閾値以下、すなわち、運転範囲の上限となる値を超えることなく、吐出温度と吐出圧力の上昇を抑制できる信頼性の高い冷凍サイクル装置を提供できる。 In other words, it is possible to provide a highly reliable refrigeration cycle device that can suppress increases in discharge temperature and discharge pressure without causing the discharge pressure and discharge temperature to exceed their respective threshold values, i.e., without exceeding the upper limit of the operating range.
制御装置20には、冷凍サイクル装置の運転範囲の上限となる吐出温度の値より第1所定値低い値である所定温度、冷凍サイクル装置の運転範囲の上限となる吐出圧力の値より第2所定値低い値である所定圧力が、それぞれ閾値として予め設定されている。 The control device 20 is preset with a threshold value of a predetermined temperature that is a first predetermined value lower than the discharge temperature value that is the upper limit of the operating range of the refrigeration cycle device, and a predetermined pressure that is a second predetermined value lower than the discharge pressure value that is the upper limit of the operating range of the refrigeration cycle device.
そして、制御装置20は、吐出温度センサ15が検出した吐出温度および吐出圧力センサ16が検出した吐出圧力がそれぞれ閾値を超えると、第1膨張装置3および第2膨張装置7の開度を大きくするように制御する。 Then, when the discharge temperature detected by the discharge temperature sensor 15 and the discharge pressure detected by the discharge pressure sensor 16 exceed their respective threshold values, the control device 20 controls the first expansion device 3 and the second expansion device 7 to increase their opening.
これにより、吐出温度を下げるために、第2膨張弁の開度を大きくし、温度の低い冷媒の合流量を増加させ、その際に圧縮機構1への流入冷媒流量が増加して吐出圧力が上昇しても、第1膨張弁の開度を大きくして、主冷媒回路8を流れる冷媒量は増加させることで、上昇した吐出圧力を低下させることができる。 As a result, in order to lower the discharge temperature, the opening of the second expansion valve is increased and the amount of low-temperature refrigerant mixed in is increased. Even if the amount of refrigerant flowing into the compression mechanism 1 increases and the discharge pressure rises, the opening of the first expansion valve is increased to increase the amount of refrigerant flowing through the main refrigerant circuit 8, thereby reducing the increased discharge pressure.
さらに、制御装置20は、第2膨張装置7の開度を大きくした後に、第1膨張装置3の開度を大きくするように制御を行う。 Furthermore, the control device 20 controls the opening of the first expansion device 3 to be increased after increasing the opening of the second expansion device 7.
これにより、バイパス冷媒回路6から合流する低温の冷媒量を増加させてから、主冷媒回路8の減圧量を減少させることになり、主冷媒回路8の減圧量を減少させることによるバイパス冷媒回路6の冷媒流量の減少に伴う吐出温度の上昇も、吐出温度センサ15で検出しながら、主冷媒回路8の減圧量を制御することができる。 As a result, the amount of low-temperature refrigerant merging from the bypass refrigerant circuit 6 is increased, and then the amount of pressure reduction in the main refrigerant circuit 8 is reduced. The amount of pressure reduction in the main refrigerant circuit 8 can be controlled while detecting the increase in discharge temperature caused by the decrease in the refrigerant flow rate in the bypass refrigerant circuit 6 by reducing the amount of pressure reduction in the main refrigerant circuit 8 with the discharge temperature sensor 15.
さらに、制御装置20は、第2膨張装置7の開度の変化量を、圧縮機構1の吐出温度が高いほど大きくする制御を行う。 Furthermore, the control device 20 controls the change in the opening degree of the second expansion device 7 so that the higher the discharge temperature of the compression mechanism 1, the greater the change in the opening degree.
これにより、圧縮機構1の吐出温度が高いほど、バイパス冷媒回路6から合流する低い温度の冷媒流量をより早く増加させることができる。 As a result, the higher the discharge temperature of the compression mechanism 1, the more quickly the flow rate of low-temperature refrigerant joining from the bypass refrigerant circuit 6 can be increased.
具体的には、制御装置20は、圧縮機構1の吐出温度と閾値との温度差が大きいほど、第2膨張装置7の開度の変化量を大きくする制御を行う。 Specifically, the control device 20 controls the amount of change in the opening degree of the second expansion device 7 to be greater the greater the temperature difference between the discharge temperature of the compression mechanism 1 and the threshold value.
これにより、圧縮機構1の吐出温度を連続的に検出しているので、吐出温度の過昇をより早く確実に検出でき、第2膨張装置7の開度の制御を行うことができる。 As a result, the discharge temperature of the compression mechanism 1 is continuously detected, so that an excessive rise in the discharge temperature can be detected more quickly and reliably, and the opening degree of the second expansion device 7 can be controlled.
[1-3.効果等]
以上のように、本実施の形態1において、冷凍サイクル装置は、圧縮回転要素から構成される圧縮機構1、圧縮回転要素から吐出された冷媒により利用側熱媒体を加熱する利用側熱交換器2、中間熱交換器5、第1膨張装置3、及び熱源側熱交換器4が配管で順次接続されて形成される主冷媒回路8と、利用側熱交換器2から第1膨張装置3までの間の配管から分岐された冷媒が、第2膨張装置7により減圧された後に、中間熱交換器5で主冷媒回路8を流れる冷媒と熱交換され、圧縮回転要素の圧縮途中の冷媒に合流されるバイパス冷媒回路6と、圧縮回転要素の吐出温度を検出する吐出温度検出手段15と、圧縮回転要素の吐出圧力を検出する吐出圧力検出手段16と、制御装置20と、を備え、圧縮回転要素の吐出圧力が所定圧力よりも高く、かつ、圧縮回転要素の吐出温度が所定温度よりも高い場合には、制御装置20は、第1膨張装置3と第2膨張装置7の両方の開度を大きくすることを特徴とする。
[1-3. Effects, etc.]
As described above, in the first embodiment, the refrigeration cycle apparatus includes the compression mechanism 1 composed of a compression rotating element, the utilization side heat exchanger 2 that heats the utilization side heat medium with the refrigerant discharged from the compression rotating element, the intermediate heat exchanger 5, the first expansion device 3, and the heat source side heat exchanger 4, which are sequentially connected by piping, the main refrigerant circuit 8, the bypass refrigerant circuit 6 in which the refrigerant branched from the piping between the utilization side heat exchanger 2 and the first expansion device 3 is decompressed by the second expansion device 7, and then heat exchanged with the refrigerant flowing through the main refrigerant circuit 8 in the intermediate heat exchanger 5, and merges with the refrigerant being compressed by the compression rotating element, the discharge temperature detection means 15 that detects the discharge temperature of the compression rotating element, the discharge pressure detection means 16 that detects the discharge pressure of the compression rotating element, and the control device 20, and is characterized in that when the discharge pressure of the compression rotating element is higher than a predetermined pressure and the discharge temperature of the compression rotating element is higher than a predetermined temperature, the control device 20 increases the opening degree of both the first expansion device 3 and the second expansion device 7.
これにより、吐出温度と吐出圧力が上昇し、運転範囲の上限となる値に近づいた場合においても、その値を超えることなく、吐出温度と吐出圧力の上昇を抑制できる信頼性の高い冷凍サイクル装置を提供できる。 This makes it possible to provide a highly reliable refrigeration cycle device that can suppress increases in discharge temperature and discharge pressure without exceeding these values, even when the discharge temperature and discharge pressure increase and approach the upper limit of the operating range.
また、本実施の形態1において、冷凍サイクル装置は、制御装置20は、第2膨張装置7の開度を大きくした後に、第1膨張装置3の開度を大きくすることを特徴とする。 Furthermore, in this embodiment 1, the refrigeration cycle device is characterized in that the control device 20 increases the opening degree of the first expansion device 3 after increasing the opening degree of the second expansion device 7.
これにより、バイパス冷媒回路6から合流する低温の冷媒量を増加させてから、主冷媒回路8の減圧量を減らすことになる。 This increases the amount of low-temperature refrigerant joining from the bypass refrigerant circuit 6, and then reduces the amount of pressure reduction in the main refrigerant circuit 8.
そのため、主冷媒回路8の減圧量を減少させることによるバイパス冷媒回路6の冷媒流量の減少に伴う吐出温度の過昇も検出しながら、主冷媒回路8の減圧量を制御することができる。 As a result, the amount of pressure reduction in the main refrigerant circuit 8 can be controlled while also detecting an excessive rise in discharge temperature that accompanies a decrease in the refrigerant flow rate in the bypass refrigerant circuit 6 caused by reducing the amount of pressure reduction in the main refrigerant circuit 8.
そのため、吐出温度の上昇速度が速い場合においても、短時間でより効果的に吐出温度の上昇を抑え、信頼性の高い冷凍サイクル装置を提供できる。 As a result, even if the discharge temperature rises quickly, the rise in discharge temperature can be suppressed more effectively in a short period of time, providing a highly reliable refrigeration cycle device.
また、本実施の形態1において、冷凍サイクル装置は、制御装置20は、第2膨張装置7の開度の変化量を、圧縮回転要素の吐出温度が高いほど大きくすることを特徴とする。 In addition, in this embodiment 1, the refrigeration cycle device is characterized in that the control device 20 increases the amount of change in the opening degree of the second expansion device 7 as the discharge temperature of the compression rotating element increases.
これにより、吐出温度が高いほど、バイパス冷媒回路6から合流する低い温度の冷媒流量を早く増加させ、吐出温度をより早く低下させることができる。 As a result, the higher the discharge temperature, the faster the flow rate of low-temperature refrigerant joining from the bypass refrigerant circuit 6 can be increased, and the faster the discharge temperature can be reduced.
そのため、吐出温度が大きく所定温度を超えている場合においても、いち早く吐出温度を下げることができ、より信頼性の高い冷凍サイクル装置を提供できる。 As a result, even if the discharge temperature is high and exceeds a predetermined temperature, the discharge temperature can be quickly lowered, providing a more reliable refrigeration cycle device.
また、本実施の形態1において、冷凍サイクル装置は、制御装置20は、圧縮回転要素の吐出温度と所定温度との温度差に基づいて、第2膨張装置7の開度の変化量を決定することを特徴とする。 In addition, in this embodiment 1, the refrigeration cycle device is characterized in that the control device 20 determines the amount of change in the opening degree of the second expansion device 7 based on the temperature difference between the discharge temperature of the compression rotating element and a predetermined temperature.
これにより、圧縮機構1の吐出冷媒の温度を連続的に検出しているので、吐出温度の過昇をより早く確実に検出し、第2膨張装置7の制御を行うことができる。 As a result, the temperature of the refrigerant discharged from the compression mechanism 1 is continuously detected, so that an excessive rise in the discharge temperature can be detected more quickly and reliably, and the second expansion device 7 can be controlled.
従って、いち早く吐出温度を下げることができ、より信頼性の高い冷凍サイクル装置を提供できる。 This allows the discharge temperature to be lowered quickly, providing a more reliable refrigeration cycle device.
本開示は、吐出温度と吐出圧力が上昇し、運転範囲の上限となる値に近づいた場合においても、その値を超えることなく、吐出温度と吐出圧力の上昇を抑制できる信頼性の高い冷凍サイクル装置を提供できるので、空気調和機や給湯機等に適用可能である。 This disclosure provides a highly reliable refrigeration cycle device that can suppress increases in discharge temperature and discharge pressure without exceeding the upper limit of the operating range, even when the discharge temperature and discharge pressure increase and approach the upper limit of the operating range. Therefore, this disclosure is applicable to air conditioners, water heaters, etc.
1 圧縮機構
2 放熱器(利用側熱交換器)
3 第1膨張装置
4 蒸発器(熱源側熱交換器)
5 中間熱交換器
6 バイパス冷媒回路
7 第2膨張装置
8 主冷媒回路
11 高段圧縮部
12 低段圧縮部
15 吐出温度センサ(吐出温度検出手段)
16 吐出圧力センサ(吐出圧力検出手段)
20 制御装置
1 Compression mechanism 2 Heat radiator (use side heat exchanger)
3 First expansion device 4 Evaporator (heat source side heat exchanger)
5 intermediate heat exchanger 6 bypass refrigerant circuit 7 second expansion device 8 main refrigerant circuit 11 high stage compression section 12 low stage compression section 15 discharge temperature sensor (discharge temperature detection means)
16 Discharge pressure sensor (discharge pressure detection means)
20 Control device
Claims (4)
前記利用側熱交換器から前記第1膨張装置までの間の前記配管から分岐された冷媒が、第2膨張装置により減圧された後に、前記中間熱交換器で前記主冷媒回路を流れる前記冷媒と熱交換され、前記圧縮回転要素の圧縮途中の前記冷媒に合流されるバイパス冷媒回路と、
前記圧縮回転要素の吐出温度を検出する吐出温度検出手段と、
前記圧縮回転要素の吐出圧力を検出する吐出圧力検出手段と、
制御装置と、を備え、
前記圧縮回転要素の吐出圧力が所定圧力よりも高く、かつ、前記圧縮回転要素の吐出温度が所定温度よりも高い場合には、前記制御装置は、前記第1膨張装置と前記第2膨張装置の両方の開度を大きくすることを特徴とする冷凍サイクル装置。 a main refrigerant circuit formed by sequentially connecting a compression mechanism including a compression rotary element, a utilization side heat exchanger that heats a utilization side heat medium with the refrigerant discharged from the compression rotary element, an intermediate heat exchanger, a first expansion device, and a heat source side heat exchanger through piping;
a bypass refrigerant circuit in which a refrigerant branched from the piping between the utilization side heat exchanger and the first expansion device is decompressed by a second expansion device, and then heat-exchanged with the refrigerant flowing through the main refrigerant circuit in the intermediate heat exchanger, and is joined to the refrigerant being compressed in the compression rotary element;
A discharge temperature detection means for detecting a discharge temperature of the compression rotary element;
a discharge pressure detection means for detecting a discharge pressure of the compression rotary element;
A control device,
A refrigeration cycle device characterized in that when the discharge pressure of the compression rotating element is higher than a predetermined pressure and the discharge temperature of the compression rotating element is higher than a predetermined temperature, the control device increases the opening degree of both the first expansion device and the second expansion device.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020182013A JP7526958B2 (en) | 2020-10-30 | 2020-10-30 | Refrigeration Cycle Equipment |
EP21191420.5A EP3992552B1 (en) | 2020-10-30 | 2021-08-16 | Refrigeration cycle device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020182013A JP7526958B2 (en) | 2020-10-30 | 2020-10-30 | Refrigeration Cycle Equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2022072526A JP2022072526A (en) | 2022-05-17 |
JP7526958B2 true JP7526958B2 (en) | 2024-08-02 |
Family
ID=77358126
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020182013A Active JP7526958B2 (en) | 2020-10-30 | 2020-10-30 | Refrigeration Cycle Equipment |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP3992552B1 (en) |
JP (1) | JP7526958B2 (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009186121A (en) | 2008-02-07 | 2009-08-20 | Mitsubishi Electric Corp | Heat pump water heater outdoor unit and heat pump water heater |
JP2009192164A (en) | 2008-02-15 | 2009-08-27 | Mitsubishi Electric Corp | Refrigerating apparatus |
JP2012154574A (en) | 2011-01-27 | 2012-08-16 | Panasonic Corp | Refrigeration cycle apparatus and hydronic heater using the refrigeration cycle apparatus |
WO2014141374A1 (en) | 2013-03-12 | 2014-09-18 | 三菱電機株式会社 | Air conditioner |
JP2017166709A (en) | 2016-03-14 | 2017-09-21 | パナソニックIpマネジメント株式会社 | Refrigeration cycle device and hot water heating device including the same |
WO2019230070A1 (en) | 2018-05-31 | 2019-12-05 | パナソニックIpマネジメント株式会社 | Supercritical steam compression-type refrigeration cycle and liquid heating device |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2843323B1 (en) * | 2012-04-27 | 2020-01-01 | Mitsubishi Electric Corporation | Air conditioning device |
WO2015029223A1 (en) * | 2013-08-30 | 2015-03-05 | 三菱電機株式会社 | Air conditioner |
WO2020071299A1 (en) * | 2018-10-02 | 2020-04-09 | ダイキン工業株式会社 | Refrigeration cycle device |
-
2020
- 2020-10-30 JP JP2020182013A patent/JP7526958B2/en active Active
-
2021
- 2021-08-16 EP EP21191420.5A patent/EP3992552B1/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009186121A (en) | 2008-02-07 | 2009-08-20 | Mitsubishi Electric Corp | Heat pump water heater outdoor unit and heat pump water heater |
JP2009192164A (en) | 2008-02-15 | 2009-08-27 | Mitsubishi Electric Corp | Refrigerating apparatus |
JP2012154574A (en) | 2011-01-27 | 2012-08-16 | Panasonic Corp | Refrigeration cycle apparatus and hydronic heater using the refrigeration cycle apparatus |
WO2014141374A1 (en) | 2013-03-12 | 2014-09-18 | 三菱電機株式会社 | Air conditioner |
JP2017166709A (en) | 2016-03-14 | 2017-09-21 | パナソニックIpマネジメント株式会社 | Refrigeration cycle device and hot water heating device including the same |
WO2019230070A1 (en) | 2018-05-31 | 2019-12-05 | パナソニックIpマネジメント株式会社 | Supercritical steam compression-type refrigeration cycle and liquid heating device |
Also Published As
Publication number | Publication date |
---|---|
EP3992552B1 (en) | 2024-08-14 |
EP3992552A1 (en) | 2022-05-04 |
JP2022072526A (en) | 2022-05-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6479162B2 (en) | Air conditioner | |
WO2011048662A1 (en) | Heat pump device | |
JP5003439B2 (en) | Refrigeration equipment | |
JP2009270748A (en) | Refrigerating device | |
JP2007051825A (en) | Air-conditioner | |
JP2009257706A (en) | Refrigerating apparatus | |
JP2015064169A (en) | Hot water generation device | |
JP2009180427A (en) | Refrigerating device | |
JP2007051841A (en) | Refrigeration cycle device | |
JP4751851B2 (en) | Refrigeration cycle | |
JP7526958B2 (en) | Refrigeration Cycle Equipment | |
JP2009180429A (en) | Refrigerating device | |
JP4687326B2 (en) | Air conditioner | |
JP6964241B2 (en) | Refrigeration cycle device and liquid heating device equipped with it | |
WO2020071300A1 (en) | Refrigeration cycle device | |
JP2009204243A (en) | Refrigerating device | |
JP7496938B2 (en) | Air Conditioning Equipment | |
JP2008209021A (en) | Multi-air conditioner | |
WO2012127834A1 (en) | Refrigeration cycle device | |
JP7571170B2 (en) | Refrigeration Cycle Equipment | |
WO2013073070A1 (en) | Refrigeration cycle device | |
JP2006349297A (en) | Refrigerating cycle device | |
EP3736514A1 (en) | Refrigeration cycle device and liquid heating device having the same | |
WO2023119482A1 (en) | Refrigeration cycle device | |
KR100329269B1 (en) | Device and method for defrosting for inverter cooling and heating system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20221021 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20230705 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20240214 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20240227 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20240311 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20240313 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20240702 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20240711 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7526958 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |