JP7525172B2 - Adsorbent regeneration device and removal system - Google Patents

Adsorbent regeneration device and removal system Download PDF

Info

Publication number
JP7525172B2
JP7525172B2 JP2022025415A JP2022025415A JP7525172B2 JP 7525172 B2 JP7525172 B2 JP 7525172B2 JP 2022025415 A JP2022025415 A JP 2022025415A JP 2022025415 A JP2022025415 A JP 2022025415A JP 7525172 B2 JP7525172 B2 JP 7525172B2
Authority
JP
Japan
Prior art keywords
gas
adsorption
heat exchanger
heat exchange
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022025415A
Other languages
Japanese (ja)
Other versions
JP2023122004A (en
Inventor
英治 高牟禮
孝浩 中根
強志 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Orion Machinery Co Ltd
Original Assignee
Orion Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Orion Machinery Co Ltd filed Critical Orion Machinery Co Ltd
Priority to JP2022025415A priority Critical patent/JP7525172B2/en
Publication of JP2023122004A publication Critical patent/JP2023122004A/en
Application granted granted Critical
Publication of JP7525172B2 publication Critical patent/JP7525172B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Drying Of Gases (AREA)

Description

本発明は、気体に含まれている除去対象を吸着塔内の吸着剤に吸着させて除去する吸着除去処理を実行可能な除去システムにおける吸着剤を加熱再生方式の吸着能力再生処理によって再生可能に構成された吸着剤再生装置、並びにそのような吸着剤再生装置を備えて吸着除去処理および吸着能力再生処理を実行可能に構成された除去システムに関するものである。 The present invention relates to an adsorbent regeneration device configured to regenerate the adsorbent in a removal system capable of performing an adsorption removal process in which the target substance contained in the gas is adsorbed to an adsorbent in an adsorption tower and removed, using an adsorbent regeneration process that uses a heating regeneration method, and to a removal system that is equipped with such an adsorbent regeneration device and is configured to perform the adsorption removal process and the adsorption capacity regeneration process.

例えば、下記の特許文献には、原料ガスに含まれている水分などを除去して精製ガスを製造可能に構成された精製ガスの製造装置(以下、単に「製造装置」ともいう)が開示されている。この製造装置は、原料ガスに含まれている水分等を吸着して除去可能な吸着剤(脱湿剤など)が収容された複数の精製塔(一例として、第1精製塔および第2精製塔)を備えている。また、この製造装置では、各精製塔の一部(第1精製塔および第2精製塔のいずれか一方)において水分等を吸着して除去する処理(以下、「吸着除去処理」ともいう)と、各精製塔の他の一部(第1精製塔および第2精製塔の他方)において吸着剤の吸着能力を再生する処理(以下、「吸着能力再生処理」ともいう)とを並行して実行することができるように構成されている。 For example, the following patent document discloses a refined gas production apparatus (hereinafter, also simply referred to as "production apparatus") configured to produce a refined gas by removing moisture and the like contained in a raw gas. This production apparatus includes a plurality of purification towers (for example, a first purification tower and a second purification tower) that contain an adsorbent (such as a desiccant) capable of adsorbing and removing moisture and the like contained in the raw gas. This production apparatus is also configured to be able to perform in parallel a process of adsorbing and removing moisture and the like in a portion of each purification tower (either the first purification tower or the second purification tower) (hereinafter, also referred to as "adsorption removal process") and a process of regenerating the adsorption capacity of the adsorbent in another portion of each purification tower (the other of the first purification tower and the second purification tower) (hereinafter, also referred to as "adsorption capacity regeneration process").

具体的には、一例として、第1精製塔における吸着除去処理と第2精製塔における吸着能力再生処理とを並行して実行するときには、水分等を含んだガスを第1精製塔に導入すると共に、再生ガス(加熱された窒素など)を第2精製塔に導入する。この際には、第1精製塔に導入された原料ガスに含まれている水分等が第1精製塔内の吸着剤に吸着されて原料ガスから除去される結果、湿度(水分の濃度:水分の含有量)が低下した原料ガスが第1精製塔から精製ガスとして排出される。また、第2精製塔に導入された再生ガスによって第2精製塔内の吸着剤が温度上昇させられる結果、吸着剤に吸着されている水分が離脱させられて吸着剤が再生(吸着能力が復元)される。 Specifically, as an example, when the adsorption removal process in the first purification tower and the adsorption capacity regeneration process in the second purification tower are performed in parallel, a gas containing moisture, etc. is introduced into the first purification tower, and a regeneration gas (heated nitrogen, etc.) is introduced into the second purification tower. At this time, moisture, etc. contained in the raw gas introduced into the first purification tower is adsorbed by the adsorbent in the first purification tower and removed from the raw gas, and the raw gas with a reduced humidity (moisture concentration: moisture content) is discharged from the first purification tower as a purified gas. In addition, the regeneration gas introduced into the second purification tower raises the temperature of the adsorbent in the second purification tower, and the moisture adsorbed on the adsorbent is released and the adsorbent is regenerated (the adsorption capacity is restored).

この場合、この製造装置では、ヒータによって加熱した120℃~220℃程度の高温の再生ガスを吸着能力再生処理対象の精製塔に導入することで吸着剤の温度を上昇させて水分を離脱させる構成が採用されている。これにより、処理対象の精製塔内の吸着剤が好適に再生される。 In this case, this manufacturing device employs a configuration in which high-temperature regeneration gas, approximately 120°C to 220°C, heated by a heater is introduced into the purification tower that is the target of adsorption capacity regeneration treatment, thereby raising the temperature of the adsorbent and removing moisture. This allows the adsorbent in the purification tower that is the target of treatment to be regenerated in an optimal manner.

特開2019-171231号公報(第4-13頁、第1図)JP 2019-171231 A (pages 4-13, Figure 1)

ところが、上記特許文献に開示の製造装置には、以下のような解決すべき課題が存在する。 However, the manufacturing device disclosed in the above patent document has the following problems to be solved:

具体的には、上記の製造装置では、吸着能力再生処理に際して、処理対象の精製塔における吸着剤に吸着されている水分の量に応じて0.5時間~3時間程度に亘って高温の再生ガスを供給することで吸着剤から水分を離脱させる構成が採用されている。この場合、製造装置に導入される原料ガスに含まれている水分の量が多いときには、吸着能力再生処理を行う精製塔(吸着能力再生処理の前に吸着除去処理を行っていた精製塔)の吸着剤が多量の水分を吸着した状態となっている。このため、原料ガスに含まれている水分の量が多いときには、吸着剤の再生に要する時間が長くなる傾向がある。また、原料ガスに含まれている水分の量が多いときには、吸着除去処理を行っている精製塔内の吸着剤の吸着能力が短時間で大きく低下する。 Specifically, in the above manufacturing equipment, a configuration is adopted in which, during the adsorption capacity regeneration process, high-temperature regeneration gas is supplied for about 0.5 to 3 hours depending on the amount of moisture adsorbed to the adsorbent in the purification tower to be treated, thereby removing moisture from the adsorbent. In this case, when the amount of moisture contained in the raw gas introduced into the manufacturing equipment is large, the adsorbent in the purification tower where the adsorption capacity regeneration process is performed (the purification tower where the adsorption removal process was performed before the adsorption capacity regeneration process) is in a state where a large amount of moisture is adsorbed. For this reason, when the amount of moisture contained in the raw gas is large, the time required to regenerate the adsorbent tends to be long. In addition, when the amount of moisture contained in the raw gas is large, the adsorption capacity of the adsorbent in the purification tower where the adsorption removal process is performed decreases significantly in a short period of time.

このため、原料ガスに含まれている水分の量が多いときには、吸着能力再生処理を行っている精製塔内の吸着剤の再生が完了していないにも拘わらず、吸着除去処理を行っている精製塔において水分を好適に除去するのが困難な状態(吸着剤の吸着能力が低下した状態)となることがある。しかしながら、水分を好適に吸着除去するのが困難な状態の精製塔において吸着除去処理を継続したときには、多量の水分が含まれた精製ガスが製造されてしまう。したがって、吸着除去処理を行っている精製塔の吸着能力が低下したときには、例え吸着能力再生処理が完了していなくても、吸着除去処理を行う精製塔と、吸着能力再生処理を行う精製塔とを切り換える必要がある。 For this reason, when the amount of moisture contained in the raw gas is large, it may become difficult to adequately remove moisture in the refining tower where the adsorption removal process is being performed (the adsorption capacity of the adsorbent is reduced) even if the regeneration of the adsorbent in the refining tower where the adsorption capacity regeneration process is being performed is not complete. However, if the adsorption removal process is continued in a refining tower where it is difficult to adequately adsorb and remove moisture, a refined gas containing a large amount of moisture will be produced. Therefore, when the adsorption capacity of the refining tower where the adsorption removal process is being performed is reduced, it is necessary to switch between the refining tower where the adsorption removal process is being performed and the refining tower where the adsorption capacity regeneration process is being performed, even if the adsorption capacity regeneration process is not complete.

この結果、吸着除去処理を開始した精製塔(吸着能力再生処理を完了することができなかった精製塔)において水分を好適に吸着除去するのが困難となるまでの時間がさらに短時間になると共に、次に精製塔を切り換えるときまでに他方の精製塔についての吸着能力再生処理を完了させることも一層困難となる。したがって、最悪の場合には、一方の精製塔についての吸着能力再生処理が完了するまで他方の精製塔における吸着除去処理を停止させたり、吸着除去処理を行っている精製塔に対する単位時間あたりの原料ガスの導入量を減少させたりする必要が生じる。このため、上記特許文献に開示の製造装置では、吸着除去処理と並行して吸着能力再生処理を実行する構成を採用しているにも拘わらず、精製ガスの製造効率の向上が困難となっている現状がある。 As a result, the time until it becomes difficult to adequately adsorb and remove moisture in the purification tower that has started the adsorption removal process (the purification tower that could not complete the adsorption capacity regeneration process) becomes even shorter, and it becomes even more difficult to complete the adsorption capacity regeneration process for the other purification tower by the time the purification tower is next switched. Therefore, in the worst case scenario, it becomes necessary to stop the adsorption removal process in one purification tower until the adsorption capacity regeneration process for the other purification tower is completed, or to reduce the amount of raw material gas introduced per unit time to the purification tower performing the adsorption removal process. For this reason, in the manufacturing apparatus disclosed in the above patent document, even though it employs a configuration that performs the adsorption capacity regeneration process in parallel with the adsorption removal process, it is currently difficult to improve the manufacturing efficiency of purified gas.

一方、出願人は、上記の製造装置と同様の構成の処理装置を用いて原料ガスとしての水素ガスから水分を除去する際にも同様の課題が生じることを確認した。そこで、出願人は、吸着塔(上記の製造装置における精製塔)内の吸着剤が好適な吸着能力を有する状態を長時間に亘って維持できるように、吸着除去処理を行う吸着塔に導入するのに先立ち、処理対象の水素ガスに含まれている水分の一部を除去することで、吸着塔に導入される水素ガスに含まれる水分の量を減少させる構成の処理装置を試作した。 On the other hand, the applicant confirmed that a similar problem occurs when removing moisture from hydrogen gas as a raw material gas using a treatment device with the same configuration as the above manufacturing device. Therefore, the applicant prototyped a treatment device configured to reduce the amount of moisture contained in the hydrogen gas to be treated before being introduced into the adsorption tower where the adsorption removal process is performed, by removing a portion of the moisture contained in the hydrogen gas to be treated, so that the adsorbent in the adsorption tower (the purification tower in the above manufacturing device) can be maintained in a state with suitable adsorption capacity for a long period of time.

具体的には、出願人が試作した処理装置では、水素ガス冷却用の熱交換器が水素ガスの流路における吸着塔の上流側に配設されると共に、冷凍サイクルの蒸発器において冷却した冷却用熱媒液が上記の熱交換器に供給される構成が採用されている。これにより、この処理装置では、熱交換器における冷却用熱媒液との熱交換によって水素ガスが冷却されて相対湿度が上昇し、水素ガスに含まれている水分の一部が熱交換器内において結露する(気相から液相に変化する)ことで水素ガスから除去される。したがって、この処理装置では、吸着塔に導入される水素ガスに含まれる水分が少量となる(水素ガスの絶対湿度が低くなる)ため、吸着塔内の吸着剤が好適な吸着能力を有する状態を長時間に亘って維持することが可能となり、前述のような課題を解決することが可能となった。 Specifically, in the processing device prototyped by the applicant, a heat exchanger for cooling hydrogen gas is disposed upstream of the adsorption tower in the hydrogen gas flow path, and a cooling heat transfer liquid cooled in the evaporator of the refrigeration cycle is supplied to the heat exchanger. As a result, in this processing device, the hydrogen gas is cooled by heat exchange with the cooling heat transfer liquid in the heat exchanger, the relative humidity increases, and some of the moisture contained in the hydrogen gas is condensed (changed from gas phase to liquid phase) in the heat exchanger and removed from the hydrogen gas. Therefore, in this processing device, the hydrogen gas introduced into the adsorption tower contains a small amount of moisture (the absolute humidity of the hydrogen gas is lowered), making it possible to maintain a state in which the adsorbent in the adsorption tower has an appropriate adsorption capacity for a long period of time, and making it possible to solve the above-mentioned problems.

この場合、出願人が試作した処理装置では、吸着除去処理と吸着能力再生処理とを並行して実行することで、吸着除去処理を行っている吸着塔内の吸着剤が好適な吸着能力を有しているうちに他の吸着塔についての吸着能力再生処理を完了させることが可能となっている。しかしながら、この処理装置では、上記の冷却用熱媒液を冷却するための冷凍サイクルと、吸着能力再生処理を行う吸着塔に導入する再生ガスを加熱するためのヒータ(例えば電気ヒータ)とをそれぞれ動作させる必要がある。このため、前述の製造装置と比較して、冷凍サイクルによる電力消費が生じる分だけ、水素ガスから水分を除去する処理のコストが高騰してしまう。したがって、この点を改善するのが好ましい。 In this case, the processing device prototyped by the applicant performs the adsorption removal process and the adsorption capacity regeneration process in parallel, making it possible to complete the adsorption capacity regeneration process for the other adsorption towers while the adsorbent in the adsorption tower undergoing the adsorption removal process still has an appropriate adsorption capacity. However, this processing device requires the operation of a refrigeration cycle for cooling the above-mentioned heat transfer liquid for cooling, and a heater (e.g., an electric heater) for heating the regeneration gas introduced into the adsorption tower where the adsorption capacity regeneration process is performed. For this reason, compared to the above-mentioned manufacturing device, the cost of the process for removing moisture from hydrogen gas rises by the amount of power consumed by the refrigeration cycle. Therefore, it is preferable to improve this point.

本発明は、かかる改善すべき課題に鑑みてなされたものであり、吸着除去処理を短時間で確実に完了可能としつつ、消費エネルギー量を十分に低減し得る吸着剤再生装置および除去システムを提供することを主目的とする。 The present invention was made in consideration of the above-mentioned problems that need to be improved, and its main objective is to provide an adsorbent regeneration device and removal system that can reliably complete the adsorption and removal process in a short time while sufficiently reducing the amount of energy consumed.

上記目的を達成すべく、請求項1記載の吸着剤再生装置は、気体に含まれている除去対象を吸着塔内の吸着剤に吸着させて当該気体から除去する吸着除去処理を実行可能な除去システムにおける当該吸着剤を加熱再生方式の吸着能力再生処理によって再生可能に構成された吸着剤再生装置であって、複数の前記吸着塔を備えて当該各吸着塔の一部を対象とする前記吸着除去処理と当該各吸着塔の他の一部を対象とする前記吸着能力再生処理とを並行して実行可能に構成された前記除去システムにおける前記吸着剤を再生可能に構成され、前記吸着能力再生処理を行う前記吸着塔に流入させる前記気体を加熱する第1の熱交換器と、前記吸着除去処理を行う前記吸着塔および前記第1の熱交換器に流入させられる前記気体を冷却する第2の熱交換器と、前記吸着能力再生処理を行う前記吸着塔を通過させられた前記気体を冷却する第3の熱交換器と、冷凍サイクルを有すると共に当該冷凍サイクルにおける凝縮器からの放熱によって加熱用熱媒液を加熱可能な加熱部、および当該冷凍サイクルにおける蒸発器による吸熱によって冷却用熱媒液を冷却可能な冷却部を備えた温度調整部と、前記吸着除去処理を行う前記吸着塔を通過させられた前記気体を、前記除去対象の除去が完了した前記気体を流入させるべき排出用配管に流入させると共に、前記第1の熱交換器によって加熱された前記気体を、前記吸着能力再生処理を行う前記吸着塔に流入させる第1の流路切替え部と、前記第2の熱交換器によって冷却された前記気体を、前記吸着除去処理を行う前記吸着塔に流入させると共に、前記吸着能力再生処理を行う前記吸着塔を通過させられた前記気体を、前記第3の熱交換器に流入させる第2の流路切替え部と、前記加熱部による前記加熱用熱媒液の加熱、前記第1の熱交換器への当該加熱用熱媒液の供給、前記冷却部による前記冷却用熱媒液の冷却、前記第2の熱交換器への当該冷却用熱媒液の供給、および前記第3の熱交換器への当該冷却用熱媒液の供給を制御する第1の処理と、前記第1の流路切替え部および前記第2の流路切替え部を制御して前記吸着除去処理を行う前記吸着塔および前記吸着能力再生処理を行う前記吸着塔を切り換える第2の処理とを実行する制御部とを備え、前記第3の熱交換器を通過させられた前記気体が、前記第2の熱交換器を通過させられた気体に合流させられて前記第2の流路切替え部を介して前記吸着除去処理を行う前記吸着塔に流入させられると共に、前記第3の熱交換器は、一次熱交換部および二次熱交換部を備え、気体導入口から導入された前記気体が、当該一次熱交換部、当該二次熱交換部および当該一次熱交換部をこの順で通過させられて気体排出口から排出されるように気体流路が形成されると共に、当該二次熱交換部において前記冷却用熱媒液との熱交換によって前記気体に含まれている前記除去対象が液相化されて除去され、かつ、当該一次熱交換部において当該二次熱交換部によって冷却された前記気体との熱交換によって前記気体導入口から導入された前記気体に含まれている前記除去対象が液相化されて除去されるように構成され、かつ当該二次熱交換部を通過させられた前記気体を、当該一次熱交換部を再び通過させずに当該気体排出口から排出させる第1のバイパス流路が設けられると共に、当該第1のバイパス流路を通過させる前記気体の流量を調整可能な第1の流量調整部が配設され、前記制御部は、前記第3の熱交換器における前記気体導入口から導入された前記気体の第1の温度、当該気体導入口から導入されて前記一次熱交換部を通過させられた前記気体の第2の温度、および前記二次熱交換部を通過させられた前記気体の第3の温度を特定すると共に、当該第1の温度および当該第3の温度の第1の温度差と、当該第2の温度および当該第3の温度の第2の温度差との比に基づき、前記第1の流量調整部を制御して前記第1のバイパス流路を通過する前記気体の流量を調整させる第3の処理を実行する。 In order to achieve the above object, the adsorbent regeneration device according to claim 1 is an adsorbent regeneration device configured to regenerate the adsorbent by a heating regeneration type adsorption capacity regeneration process in a removal system capable of performing an adsorption removal process in which a target substance contained in a gas is adsorbed to an adsorbent in an adsorption tower and removed from the gas, the adsorbent regeneration device being configured to regenerate the adsorbent in the removal system that is configured to be equipped with a plurality of adsorption towers and to be capable of performing the adsorption removal process targeting a portion of each of the adsorption towers and the adsorption capacity regeneration process targeting another portion of each of the adsorption towers in parallel, the adsorbent regeneration device being configured to regenerate the adsorbent in the removal system that is configured to be equipped with a plurality of adsorption towers and to be capable of performing the adsorption removal process targeting a portion of each of the adsorption towers in parallel, the adsorbent regeneration device having a first heat exchanger that heats the gas that is caused to flow into the adsorption tower that is subjected to the adsorption capacity regeneration process, a second heat exchanger that cools the gas that is caused to flow into the adsorption tower that is subjected to the adsorption removal process and the first heat exchanger, a third heat exchanger that cools the gas that has passed through the adsorption tower that is subjected to the adsorption capacity regeneration process, and a refrigeration cycle and a heat dissipation from a condenser in the refrigeration cycle. a temperature adjustment unit including a heating unit capable of heating a heating heat transfer liquid and a cooling unit capable of cooling a cooling heat transfer liquid by heat absorption by an evaporator in the refrigeration cycle; a first flow path switching unit that causes the gas that has been passed through the adsorption tower for performing the adsorption and removal treatment to flow into a discharge pipe into which the gas from which the removal target has been completed is to flow, and causes the gas heated by the first heat exchanger to flow into the adsorption tower for performing the adsorption capacity regeneration treatment; a second flow path switching unit that causes the gas that has been cooled by the second heat exchanger to flow into the adsorption tower for performing the adsorption and removal treatment, and causes the gas that has been passed through the adsorption tower for performing the adsorption capacity regeneration treatment to flow into the third heat exchanger; a control unit that executes a first process of controlling the supply of a heat transfer liquid and a second process of controlling the first flow path switching unit and the second flow path switching unit to switch the adsorption tower that performs the adsorption and removal process and the adsorption tower that performs the adsorption capacity regeneration process, wherein the gas that has been passed through the third heat exchanger is merged with the gas that has been passed through the second heat exchanger and is caused to flow into the adsorption tower that performs the adsorption and removal process via the second flow path switching unit, the third heat exchanger includes a primary heat exchange unit and a secondary heat exchange unit, a gas flow path is formed such that the gas introduced from a gas inlet is caused to pass through the primary heat exchange unit, the secondary heat exchange unit and the primary heat exchange unit in this order and is discharged from a gas outlet, and the removal target contained in the gas is liquefied and removed by heat exchange with the cooling heat transfer liquid in the secondary heat exchange unit, and the gas cooled by the secondary heat exchange unit in the primary heat exchange unit is The third heat exchanger is configured so that the target to be removed contained in the gas introduced from the gas inlet is liquefied and removed by the heat exchange of the first and second heat exchangers, and a first bypass flow path is provided for discharging the gas passed through the secondary heat exchanger from the gas outlet without passing it through the primary heat exchanger again, and a first flow rate adjustment unit is disposed for adjusting the flow rate of the gas passing through the first bypass flow path, and the control unit specifies a first temperature of the gas introduced from the gas inlet in the third heat exchanger, a second temperature of the gas introduced from the gas inlet and passed through the primary heat exchanger, and a third temperature of the gas passed through the secondary heat exchanger, and controls the first flow rate adjustment unit to adjust the flow rate of the gas passing through the first bypass flow path based on the ratio between a first temperature difference between the first temperature and the third temperature and a second temperature difference between the second temperature and the third temperature.

請求項2記載の吸着剤再生装置は、気体に含まれている除去対象を吸着塔内の吸着剤に吸着させて当該気体から除去する吸着除去処理を実行可能な除去システムにおける当該吸着剤を加熱再生方式の吸着能力再生処理によって再生可能に構成された吸着剤再生装置であって、複数の前記吸着塔を備えて当該各吸着塔の一部を対象とする前記吸着除去処理と当該各吸着塔の他の一部を対象とする前記吸着能力再生処理とを並行して実行可能に構成された前記除去システムにおける前記吸着剤を再生可能に構成され、前記吸着能力再生処理を行う前記吸着塔に流入させる前記気体を加熱する第1の熱交換器と、前記吸着除去処理を行う前記吸着塔および前記第1の熱交換器に流入させられる前記気体を冷却する第2の熱交換器と、前記吸着能力再生処理を行う前記吸着塔を通過させられた前記気体を冷却する第3の熱交換器と、冷凍サイクルを有すると共に当該冷凍サイクルにおける凝縮器からの放熱によって加熱用熱媒液を加熱可能な加熱部、および当該冷凍サイクルにおける蒸発器による吸熱によって冷却用熱媒液を冷却可能な冷却部を備えた温度調整部と、前記吸着除去処理を行う前記吸着塔を通過させられた前記気体を、前記除去対象の除去が完了した前記気体を流入させるべき排出用配管に流入させると共に、前記第1の熱交換器によって加熱された前記気体を、前記吸着能力再生処理を行う前記吸着塔に流入させる第1の流路切替え部と、前記第2の熱交換器によって冷却された前記気体を、前記吸着除去処理を行う前記吸着塔に流入させると共に、前記吸着能力再生処理を行う前記吸着塔を通過させられた前記気体を、前記第3の熱交換器に流入させる第2の流路切替え部と、前記加熱部による前記加熱用熱媒液の加熱、前記第1の熱交換器への当該加熱用熱媒液の供給、前記冷却部による前記冷却用熱媒液の冷却、前記第2の熱交換器への当該冷却用熱媒液の供給、および前記第3の熱交換器への当該冷却用熱媒液の供給を制御する第1の処理と、前記第1の流路切替え部および前記第2の流路切替え部を制御して前記吸着除去処理を行う前記吸着塔および前記吸着能力再生処理を行う前記吸着塔を切り換える第2の処理とを実行する制御部とを備え、前記第3の熱交換器を通過させられた前記気体が、前記第2の熱交換器を通過させられた気体に合流させられて前記第2の流路切替え部を介して前記吸着除去処理を行う前記吸着塔に流入させられると共に、前記第3の熱交換器は、一次熱交換部および二次熱交換部を備え、気体導入口から導入された前記気体が、当該一次熱交換部、当該二次熱交換部および当該一次熱交換部をこの順で通過させられて気体排出口から排出されるように気体流路が形成されると共に、当該二次熱交換部において前記冷却用熱媒液との熱交換によって前記気体に含まれている前記除去対象が液相化されて除去され、かつ、当該一次熱交換部において当該二次熱交換部によって冷却された前記気体との熱交換によって前記気体導入口から導入された前記気体に含まれている前記除去対象が液相化されて除去されるように構成され、かつ当該気体導入口から導入されて当該一次熱交換部を通過させられた前記気体の一部を、当該二次熱交換部を通過させずに、当該二次熱交換部を通過させられて当該一次熱交換部に流入させられる前記気体に合流させるバイパス流路Aが設けられると共に、当該バイパス流路Aを通過させる前記気体の流量を調整可能な流量調整部Aが配設され、前記制御部は、前記第3の熱交換器における前記気体導入口から導入された前記気体の温度A、当該気体導入口から導入されて前記一次熱交換部を通過させられた前記気体の温度B、および当該第3の熱交換器における前記気体排出口から排出される前記気体の温度Cを特定すると共に、当該温度Aおよび当該温度Bの温度差Aと、当該温度Aおよび当該温度Cの温度差Bとの比に基づき、前記流量調整部Aを制御して前記バイパス流路Aを通過する前記気体の流量を調整させる処理Aを実行する。 The adsorbent regeneration device according to claim 2 is an adsorbent regeneration device configured to regenerate the adsorbent by a heating regeneration type adsorption capacity regeneration process in a removal system capable of performing an adsorption removal process in which a target substance contained in a gas is adsorbed to an adsorbent in an adsorption tower and removed from the gas, and the adsorbent regeneration device is configured to regenerate the adsorbent in the removal system configured to be equipped with a plurality of adsorption towers and to be capable of performing the adsorption removal process targeting a part of each of the adsorption towers and the adsorption capacity regeneration process targeting another part of each of the adsorption towers in parallel, the adsorbent regeneration device has a first heat exchanger for heating the gas flowing into the adsorption tower for the adsorption capacity regeneration process, a second heat exchanger for cooling the gas flowing into the adsorption tower and the first heat exchanger for the adsorption removal process, a third heat exchanger for cooling the gas passed through the adsorption tower for the adsorption capacity regeneration process, and a refrigeration cycle and is capable of heating a heating medium liquid by heat radiation from a condenser in the refrigeration cycle. a temperature adjustment unit having a heating unit and a cooling unit capable of cooling a cooling heat transfer liquid by heat absorption by an evaporator in the refrigeration cycle; a first flow path switching unit that causes the gas passed through the adsorption tower where the adsorption and removal treatment is performed to flow into a discharge pipe into which the gas from which the removal target has been removed is to flow, and causes the gas heated by the first heat exchanger to flow into the adsorption tower where the adsorption capacity regeneration treatment is performed; a second flow path switching unit that causes the gas cooled by the second heat exchanger to flow into the adsorption tower where the adsorption and removal treatment is performed, and causes the gas passed through the adsorption tower where the adsorption capacity regeneration treatment is performed to flow into the third heat exchanger; and a first process that controls heating of the heating heat transfer liquid by the heating unit, supply of the heating heat transfer liquid to the first heat exchanger, cooling of the cooling heat transfer liquid by the cooling unit, supply of the cooling heat transfer liquid to the second heat exchanger, and supply of the cooling heat transfer liquid to the third heat exchanger. and a control unit that controls the first flow path switching unit and the second flow path switching unit to execute a second process of switching between the adsorption tower that performs the adsorption and removal process and the adsorption tower that performs the adsorption capacity regeneration process, wherein the gas that has been passed through the third heat exchanger is merged with the gas that has been passed through the second heat exchanger and is caused to flow into the adsorption tower that performs the adsorption and removal process via the second flow path switching unit, the third heat exchanger includes a primary heat exchange unit and a secondary heat exchange unit, a gas flow path is formed such that the gas introduced from a gas inlet is caused to pass through the primary heat exchange unit, the secondary heat exchange unit and the primary heat exchange unit in this order and is discharged from a gas outlet, and the removal target contained in the gas is liquefied and removed by heat exchange with the cooling heat transfer liquid in the secondary heat exchange unit, and the gas that has been cooled by the secondary heat exchange unit is introduced from the gas inlet by heat exchange with the gas that has been cooled by the secondary heat exchange unit in the primary heat exchange unit. The gas is configured so that the target to be removed is liquefied and removed, and a bypass flow path A is provided to merge a portion of the gas introduced from the gas inlet and passed through the primary heat exchanger with the gas passed through the secondary heat exchanger and flowing into the primary heat exchanger without passing through the secondary heat exchanger, and a flow rate adjustment unit A is arranged to adjust the flow rate of the gas passing through the bypass flow path A, and the control unit specifies the temperature A of the gas introduced from the gas inlet in the third heat exchanger, the temperature B of the gas introduced from the gas inlet and passed through the primary heat exchanger, and the temperature C of the gas discharged from the gas discharge port in the third heat exchanger, and executes a process A to control the flow rate adjustment unit A to adjust the flow rate of the gas passing through the bypass flow path A based on the ratio of the temperature difference A between the temperature A and the temperature B and the temperature difference B between the temperature A and the temperature C.

請求項3記載の吸着剤再生装置は、気体に含まれている除去対象を吸着塔内の吸着剤に吸着させて当該気体から除去する吸着除去処理を実行可能な除去システムにおける当該吸着剤を加熱再生方式の吸着能力再生処理によって再生可能に構成された吸着剤再生装置であって、複数の前記吸着塔を備えて当該各吸着塔の一部を対象とする前記吸着除去処理と当該各吸着塔の他の一部を対象とする前記吸着能力再生処理とを並行して実行可能に構成された前記除去システムにおける前記吸着剤を再生可能に構成され、前記吸着能力再生処理を行う前記吸着塔に流入させる前記気体を加熱する第1の熱交換器と、前記吸着除去処理を行う前記吸着塔および前記第1の熱交換器に流入させられる前記気体を冷却する第2の熱交換器と、前記吸着能力再生処理を行う前記吸着塔を通過させられた前記気体を冷却する第3の熱交換器と、冷凍サイクルを有すると共に当該冷凍サイクルにおける凝縮器からの放熱によって加熱用熱媒液を加熱可能な加熱部、および当該冷凍サイクルにおける蒸発器による吸熱によって冷却用熱媒液を冷却可能な冷却部を備えた温度調整部と、前記吸着除去処理を行う前記吸着塔を通過させられた前記気体を、前記除去対象の除去が完了した前記気体を流入させるべき排出用配管に流入させると共に、前記第1の熱交換器によって加熱された前記気体を、前記吸着能力再生処理を行う前記吸着塔に流入させる第1の流路切替え部と、前記第2の熱交換器によって冷却された前記気体を、前記吸着除去処理を行う前記吸着塔に流入させると共に、前記吸着能力再生処理を行う前記吸着塔を通過させられた前記気体を、前記第3の熱交換器に流入させる第2の流路切替え部と、前記加熱部による前記加熱用熱媒液の加熱、前記第1の熱交換器への当該加熱用熱媒液の供給、前記冷却部による前記冷却用熱媒液の冷却、前記第2の熱交換器への当該冷却用熱媒液の供給、および前記第3の熱交換器への当該冷却用熱媒液の供給を制御する第1の処理と、前記第1の流路切替え部および前記第2の流路切替え部を制御して前記吸着除去処理を行う前記吸着塔および前記吸着能力再生処理を行う前記吸着塔を切り換える第2の処理とを実行する制御部とを備え、前記第3の熱交換器を通過させられた前記気体が、前記第2の熱交換器を通過させられた気体に合流させられて前記第2の流路切替え部を介して前記吸着除去処理を行う前記吸着塔に流入させられると共に、前記第2の熱交換器は、一次熱交換部および二次熱交換部を備え、気体導入口から導入された前記気体が、当該一次熱交換部、当該二次熱交換部および当該一次熱交換部をこの順で通過させられて気体排出口から排出されるように気体流路が形成されると共に、当該二次熱交換部において前記冷却用熱媒液との熱交換によって前記気体に含まれている前記除去対象が液相化されて除去され、かつ、当該一次熱交換部において当該二次熱交換部によって冷却された前記気体との熱交換によって前記気体導入口から導入された前記気体に含まれている前記除去対象が液相化されて除去されるように構成され、かつ当該二次熱交換部を通過させられた前記気体を、当該一次熱交換部を再び通過させずに当該気体排出口から排出させる第2のバイパス流路が設けられると共に、当該第2のバイパス流路を通過させる前記気体の流量を調整可能な第2の流量調整部が配設され、前記制御部は、前記第2の熱交換器における前記気体導入口から導入された前記気体の第4の温度、当該気体導入口から導入されて前記一次熱交換部を通過させられた前記気体の第5の温度、および前記二次熱交換部を通過させられた前記気体の第6の温度を特定すると共に、当該第4の温度および当該第6の温度の第3の温度差と、当該第5の温度および当該第6の温度の第4の温度差との比に基づき、前記第2の流量調整部を制御して前記第2のバイパス流路を通過する前記気体の流量を調整させる第4の処理を実行する。 The adsorbent regeneration device according to claim 3 is an adsorbent regeneration device configured to regenerate the adsorbent by a heating regeneration type adsorption capacity regeneration process in a removal system capable of performing an adsorption removal process in which a target substance contained in a gas is adsorbed to an adsorbent in an adsorption tower and removed from the gas, and the adsorbent regeneration device is configured to regenerate the adsorbent in the removal system configured to be equipped with a plurality of adsorption towers and to be capable of performing the adsorption removal process targeting a part of each of the adsorption towers and the adsorption capacity regeneration process targeting another part of each of the adsorption towers in parallel, the adsorbent regeneration device has a first heat exchanger for heating the gas that is caused to flow into the adsorption tower that is subjected to the adsorption capacity regeneration process, a second heat exchanger for cooling the gas that is caused to flow into the adsorption tower that is subjected to the adsorption removal process and the first heat exchanger, a third heat exchanger for cooling the gas that has passed through the adsorption tower that is subjected to the adsorption capacity regeneration process, and a refrigeration cycle and a heating heat medium that is heated by heat released from a condenser in the refrigeration cycle. a temperature adjustment unit including a heating unit capable of heating a liquid and a cooling unit capable of cooling a cooling heat transfer liquid by heat absorption by an evaporator in the refrigeration cycle; a first flow path switching unit that causes the gas that has been passed through the adsorption tower where the adsorption and removal treatment is performed to flow into a discharge pipe into which the gas from which the removal target has been completed is to flow, and causes the gas heated by the first heat exchanger to flow into the adsorption tower where the adsorption capacity regeneration treatment is performed; a second flow path switching unit that causes the gas that has been cooled by the second heat exchanger to flow into the adsorption tower where the adsorption and removal treatment is performed, and causes the gas that has been passed through the adsorption tower where the adsorption capacity regeneration treatment is performed to flow into the third heat exchanger; and a control unit that executes a first process of controlling the supply of gas to the adsorption tower that performs the adsorption and removal process and the adsorption tower that performs the adsorption capacity regeneration process by controlling the first flow path switching unit and the second flow path switching unit, the gas that has been passed through the third heat exchanger is merged with the gas that has been passed through the second heat exchanger and is caused to flow into the adsorption tower that performs the adsorption and removal process via the second flow path switching unit, the second heat exchanger includes a primary heat exchange unit and a secondary heat exchange unit, a gas flow path is formed such that the gas introduced from a gas inlet is caused to pass through the primary heat exchange unit, the secondary heat exchange unit and the primary heat exchange unit in this order and is discharged from a gas outlet, the removal target contained in the gas is liquefied and removed by heat exchange with the cooling heat transfer liquid in the secondary heat exchange unit, and the removal target is liquefied and removed by heat exchange with the gas cooled by the secondary heat exchange unit in the primary heat exchange unit. The gas introduced from the gas inlet is configured to be liquefied and removed by the exchange, and a second bypass flow path is provided to discharge the gas passed through the secondary heat exchange unit from the gas outlet without passing it through the primary heat exchange unit again, and a second flow rate adjustment unit is disposed to adjust the flow rate of the gas passing through the second bypass flow path, and the control unit specifies a fourth temperature of the gas introduced from the gas inlet in the second heat exchanger, a fifth temperature of the gas introduced from the gas inlet and passed through the primary heat exchange unit, and a sixth temperature of the gas passed through the secondary heat exchange unit, and performs a fourth process of controlling the second flow rate adjustment unit to adjust the flow rate of the gas passing through the second bypass flow path based on a ratio between a third temperature difference between the fourth temperature and the sixth temperature and a fourth temperature difference between the fifth temperature and the sixth temperature.

請求項4記載の吸着剤再生装置は、気体に含まれている除去対象を吸着塔内の吸着剤に吸着させて当該気体から除去する吸着除去処理を実行可能な除去システムにおける当該吸着剤を加熱再生方式の吸着能力再生処理によって再生可能に構成された吸着剤再生装置であって、複数の前記吸着塔を備えて当該各吸着塔の一部を対象とする前記吸着除去処理と当該各吸着塔の他の一部を対象とする前記吸着能力再生処理とを並行して実行可能に構成された前記除去システムにおける前記吸着剤を再生可能に構成され、前記吸着能力再生処理を行う前記吸着塔に流入させる前記気体を加熱する第1の熱交換器と、前記吸着除去処理を行う前記吸着塔および前記第1の熱交換器に流入させられる前記気体を冷却する第2の熱交換器と、前記吸着能力再生処理を行う前記吸着塔を通過させられた前記気体を冷却する第3の熱交換器と、冷凍サイクルを有すると共に当該冷凍サイクルにおける凝縮器からの放熱によって加熱用熱媒液を加熱可能な加熱部、および当該冷凍サイクルにおける蒸発器による吸熱によって冷却用熱媒液を冷却可能な冷却部を備えた温度調整部と、前記吸着除去処理を行う前記吸着塔を通過させられた前記気体を、前記除去対象の除去が完了した前記気体を流入させるべき排出用配管に流入させると共に、前記第1の熱交換器によって加熱された前記気体を、前記吸着能力再生処理を行う前記吸着塔に流入させる第1の流路切替え部と、前記第2の熱交換器によって冷却された前記気体を、前記吸着除去処理を行う前記吸着塔に流入させると共に、前記吸着能力再生処理を行う前記吸着塔を通過させられた前記気体を、前記第3の熱交換器に流入させる第2の流路切替え部と、前記加熱部による前記加熱用熱媒液の加熱、前記第1の熱交換器への当該加熱用熱媒液の供給、前記冷却部による前記冷却用熱媒液の冷却、前記第2の熱交換器への当該冷却用熱媒液の供給、および前記第3の熱交換器への当該冷却用熱媒液の供給を制御する第1の処理と、前記第1の流路切替え部および前記第2の流路切替え部を制御して前記吸着除去処理を行う前記吸着塔および前記吸着能力再生処理を行う前記吸着塔を切り換える第2の処理とを実行する制御部とを備え、前記第3の熱交換器を通過させられた前記気体が、前記第2の熱交換器を通過させられた気体に合流させられて前記第2の流路切替え部を介して前記吸着除去処理を行う前記吸着塔に流入させられると共に、前記第2の熱交換器は、一次熱交換部および二次熱交換部を備え、気体導入口から導入された前記気体が、当該一次熱交換部、当該二次熱交換部および当該一次熱交換部をこの順で通過させられて気体排出口から排出されるように気体流路が形成されると共に、当該二次熱交換部において前記冷却用熱媒液との熱交換によって前記気体に含まれている前記除去対象が液相化されて除去され、かつ、当該一次熱交換部において当該二次熱交換部によって冷却された前記気体との熱交換によって前記気体導入口から導入された前記気体に含まれている前記除去対象が液相化されて除去されるように構成され、かつ当該気体導入口から導入されて当該一次熱交換部を通過させられた前記気体の一部を、当該二次熱交換部を通過させずに、当該二次熱交換部を通過させられて当該一次熱交換部に流入させられる前記気体に合流させるバイパス流路Bが設けられると共に、当該バイパス流路Bを通過させる前記気体の流量を調整可能な流量調整部Bが配設され、前記制御部は、前記第2の熱交換器における前記気体導入口から導入された前記気体の温度D、当該気体導入口から導入されて前記一次熱交換部を通過させられた前記気体の温度E、および当該第2の熱交換器における前記気体排出口から排出される前記気体の温度Fを特定すると共に、当該温度Dおよび当該温度Eの温度差Cと、当該温度Dおよび当該温度Fの温度差Dとの比に基づき、前記流量調整部Bを制御して前記バイパス流路Bを通過する前記気体の流量を調整させる処理Bを実行する。 The adsorbent regeneration device according to claim 4 is an adsorbent regeneration device configured to regenerate the adsorbent by a heating regeneration type adsorption capacity regeneration process in a removal system capable of performing an adsorption removal process in which a target substance contained in a gas is adsorbed to an adsorbent in an adsorption tower and removed from the gas, and the adsorbent regeneration device is configured to regenerate the adsorbent in the removal system that is configured to be equipped with a plurality of adsorption towers and to be capable of performing the adsorption removal process targeting a part of each of the adsorption towers and the adsorption capacity regeneration process targeting another part of each of the adsorption towers in parallel, and includes a first heat exchanger that heats the gas that is caused to flow into the adsorption tower that performs the adsorption removal process and the first heat exchanger, a second heat exchanger that cools the gas that is caused to flow into the adsorption tower that performs the adsorption removal process and the first heat exchanger, a third heat exchanger that cools the gas that has passed through the adsorption tower that performs the adsorption capacity regeneration process, and a refrigeration cycle, and a heating heat transfer liquid that can be heated by heat radiation from a condenser in the refrigeration cycle. a temperature adjustment unit having a heating unit and a cooling unit capable of cooling a cooling heat transfer liquid by heat absorption by an evaporator in the refrigeration cycle; a first flow path switching unit that causes the gas passed through the adsorption tower where the adsorption and removal treatment is performed to flow into a discharge pipe into which the gas from which the removal target has been removed is to flow, and causes the gas heated by the first heat exchanger to flow into the adsorption tower where the adsorption capacity regeneration treatment is performed; a second flow path switching unit that causes the gas cooled by the second heat exchanger to flow into the adsorption tower where the adsorption and removal treatment is performed, and causes the gas passed through the adsorption tower where the adsorption capacity regeneration treatment is performed to flow into the third heat exchanger; and a first process that controls heating of the heating heat transfer liquid by the heating unit, supply of the heating heat transfer liquid to the first heat exchanger, cooling of the cooling heat transfer liquid by the cooling unit, supply of the cooling heat transfer liquid to the second heat exchanger, and supply of the cooling heat transfer liquid to the third heat exchanger. and a control unit that controls the first flow path switching unit and the second flow path switching unit to execute a second process of switching between the adsorption tower that performs the adsorption and removal process and the adsorption tower that performs the adsorption capacity regeneration process, wherein the gas that has been passed through the third heat exchanger is merged with the gas that has been passed through the second heat exchanger and is caused to flow into the adsorption tower that performs the adsorption and removal process via the second flow path switching unit, the second heat exchanger includes a primary heat exchange unit and a secondary heat exchange unit, a gas flow path is formed such that the gas introduced from a gas inlet is caused to pass through the primary heat exchange unit, the secondary heat exchange unit and the primary heat exchange unit in this order and is discharged from a gas outlet, and the removal target contained in the gas is liquefied and removed by heat exchange with the cooling heat transfer liquid in the secondary heat exchange unit, and the gas that has been cooled by the secondary heat exchange unit is introduced from the gas inlet by heat exchange with the gas that has been cooled by the secondary heat exchange unit in the primary heat exchange unit. The gas is configured so that the target to be removed is liquefied and removed, and a bypass flow path B is provided to merge a portion of the gas introduced from the gas inlet and passed through the primary heat exchanger with the gas passed through the secondary heat exchanger and flowing into the primary heat exchanger without passing through the secondary heat exchanger, and a flow rate adjustment unit B is arranged to adjust the flow rate of the gas passing through the bypass flow path B. The control unit specifies the temperature D of the gas introduced from the gas inlet in the second heat exchanger, the temperature E of the gas introduced from the gas inlet and passed through the primary heat exchanger, and the temperature F of the gas discharged from the gas discharge port in the second heat exchanger, and executes a process B to control the flow rate adjustment unit B to adjust the flow rate of the gas passing through the bypass flow path B based on the ratio of the temperature difference C between the temperature D and the temperature E and the temperature difference D between the temperature D and the temperature F.

請求項5記載の吸着剤再生装置は、請求項1から4のいずれかに記載の吸着剤再生装置において、前記第3の熱交換器を通過させられる前記気体の流量を調整する第3の流量調整部を備え、前記制御部は、前記第3の熱交換器を通過させられた前記気体の温度に基づいて前記第3の流量調整部を制御して当該第3の熱交換器を通過する当該気体の流量を調整させる第5の処理を実行する。 The adsorbent regeneration device according to claim 5 is an adsorbent regeneration device according to any one of claims 1 to 4, further comprising a third flow rate adjustment unit that adjusts the flow rate of the gas passing through the third heat exchanger, and the control unit executes a fifth process that controls the third flow rate adjustment unit based on the temperature of the gas passed through the third heat exchanger to adjust the flow rate of the gas passing through the third heat exchanger.

請求項6記載の吸着剤再生装置は、請求項1から5のいずれかに記載の吸着剤再生装置において、前記気体としての水素ガスから前記除去対象としての水分を除去可能に構成された前記除去システムにおける前記吸着剤の吸着能力を再生可能に構成されている。 The adsorbent regeneration device according to claim 6 is an adsorbent regeneration device according to any one of claims 1 to 5, which is configured to regenerate the adsorption capacity of the adsorbent in the removal system configured to be able to remove moisture as the removal target from hydrogen gas as the gas.

請求項7記載の除去システムは、請求項1から6のいずれかに記載の吸着剤再生装置と前記各吸着塔とを備えて前記気体から前記除去対象を除去可能に構成されている。 The removal system described in claim 7 is configured to remove the removal target from the gas by including the adsorbent regeneration device described in any one of claims 1 to 6 and each of the adsorption towers.

請求項1~4記載の吸着剤再生装置では、複数の吸着塔を備えて各吸着塔の一部を対象とする吸着除去処理と各吸着塔の他の一部を対象とする加熱再生方式の吸着能力再生処理とを並行して実行可能に構成された除去システムにおける吸着剤を再生可能に構成され、吸着能力再生処理を行う吸着塔に流入させる気体を加熱する第1の熱交換器と、吸着除去処理を行う吸着塔および第1の熱交換器に流入させられる気体を冷却する第2の熱交換器と、吸着能力再生処理を行う吸着塔を通過させられた気体を冷却する第3の熱交換器と、冷凍サイクルにおける凝縮器からの放熱によって加熱用熱媒液を加熱可能な加熱部、および冷凍サイクルにおける蒸発器による吸熱によって冷却用熱媒液を冷却可能な冷却部を備えた温度調整部と、吸着除去処理を行う吸着塔を通過させられた気体を、除去対象の除去が完了した気体を流入させるべき排出用配管に流入させると共に、第1の熱交換器によって加熱された気体を、吸着能力再生処理を行う吸着塔に流入させる第1の流路切替え部と、第2の熱交換器によって冷却された気体を、吸着除去処理を行う吸着塔に流入させると共に、吸着能力再生処理を行う吸着塔を通過させられた気体を、第3の熱交換器に流入させる第2の流路切替え部と、加熱部による加熱用熱媒液の加熱、第1の熱交換器への加熱用熱媒液の供給、冷却部による冷却用熱媒液の冷却、第2の熱交換器への冷却用熱媒液の供給、および第3の熱交換器への冷却用熱媒液の供給を制御する第1の処理と、第1の流路切替え部および第2の流路切替え部を制御して吸着除去処理を行う吸着塔および吸着能力再生処理を行う吸着塔を切り換える第2の処理とを実行する制御部とを備え、第3の熱交換器を通過させられた気体が、第2の熱交換器を通過させられた気体に合流させられて第2の流路切替え部を介して吸着除去処理を行う吸着塔に流入させられる。また、請求項6記載の吸着剤再生装置では、気体としての水素ガスから除去対象としての水分を除去可能に構成された除去システムにおける吸着剤の吸着能力を再生可能に構成されている。さらに、請求項7記載の除去システムでは、上記の吸着剤再生装置と各吸着塔とを備えて気体から除去対象を除去可能に構成されている。 The adsorbent regeneration device according to claims 1 to 4 is configured to regenerate an adsorbent in a removal system that is equipped with a plurality of adsorption towers and is configured to be able to execute an adsorption removal process for a portion of each adsorption tower and an adsorption capacity regeneration process by a heating regeneration method for another portion of each adsorption tower in parallel, and includes a first heat exchanger that heats the gas that is to be flowed into the adsorption tower that performs the adsorption removal process and the first heat exchanger, a second heat exchanger that cools the gas that is to be flowed into the adsorption tower that performs the adsorption removal process and the first heat exchanger, a third heat exchanger that cools the gas that has passed through the adsorption tower that performs the adsorption capacity regeneration process, a temperature adjustment unit that includes a heating unit that can heat a heating heat transfer liquid by heat radiation from a condenser in a refrigeration cycle and a cooling unit that can cool a cooling heat transfer liquid by heat absorption by an evaporator in the refrigeration cycle, and a temperature adjustment unit that causes the gas that has passed through the adsorption tower that performs the adsorption removal process to flow into a discharge pipe into which gas from which removal of the removal target has been completed should flow, and a temperature adjustment unit that adjusts the temperature of the first heat exchanger. the first flow path switching unit that causes the gas heated by the second heat exchanger to flow into the adsorption tower that performs the adsorption capacity regeneration treatment, a second flow path switching unit that causes the gas cooled by the second heat exchanger to flow into the adsorption tower that performs the adsorption capacity regeneration treatment, and causes the gas that has passed through the adsorption tower that performs the adsorption capacity regeneration treatment to flow into the third heat exchanger, and a control unit that executes a first process that controls heating of the heating heat transfer liquid by the heating unit, supply of the heating heat transfer liquid to the first heat exchanger, cooling of the cooling heat transfer liquid by the cooling unit, supply of the cooling heat transfer liquid to the second heat exchanger, and supply of the cooling heat transfer liquid to the third heat exchanger, and a second process that controls the first flow path switching unit and the second flow path switching unit to switch the adsorption tower that performs the adsorption removal treatment and the adsorption tower that performs the adsorption capacity regeneration treatment, and the gas that has passed through the third heat exchanger is merged with the gas that has passed through the second heat exchanger and is caused to flow via the second flow path switching unit into the adsorption tower that performs the adsorption removal treatment. In addition, the adsorbent regeneration device described in claim 6 is configured to regenerate the adsorption capacity of the adsorbent in a removal system configured to remove moisture as a removal target from hydrogen gas as a gas. Furthermore, the removal system described in claim 7 is configured to remove the removal target from the gas by including the above-mentioned adsorbent regeneration device and each adsorption tower.

したがって、請求項1~4,6記載の吸着剤再生装置、および請求項7記載の除去システムによれば、気体(水素ガス等)を冷却することで気体から除去対象(水分等)を除去するための冷熱源(例えば、単独で動作する冷凍サイクル)と、加熱再生方式の吸着能力再生処理のために気体を加熱するための温熱源(例えば電気ヒータ)とを別個に動作させなくても、温度調整部を動作させるだけで、気体を冷却するための冷却用熱媒液を冷却部において冷却し、同時に気体を加熱するための加熱用熱媒液を加熱部において加熱することができる。これにより、気体からの除去対象の除去および吸着剤の再生のために消費されるエネルギー量を十分に低減することができる。また、吸着除去処理を行う吸着塔に気体を流入させる前に第2の熱交換器において気体に含まれる除去対象の一部を除去する分だけ、吸着除去処理を行う吸着塔内の吸着剤の吸着能力の低下を抑制できるため、吸着除去処理を行う吸着塔に流入させる気体の量を減少させたり、吸着除去処理を一時的に停止させたりする必要がなくなることから、導入される気体についての吸着除去処理を短時間で確実に完了させることができる。 Therefore, according to the adsorbent regeneration device described in claims 1 to 4 and 6, and the removal system described in claim 7, it is possible to cool the cooling heat transfer liquid for cooling the gas in the cooling section and heat the heating heat transfer liquid for heating the gas in the heating section, without separately operating a cold heat source (e.g., a refrigeration cycle that operates independently) for cooling the gas (hydrogen gas, etc.) to remove the target to be removed (moisture, etc.) from the gas, and to operate the heat transfer liquid for heating the gas in the heating section, simply by operating the temperature adjustment section. This makes it possible to sufficiently reduce the amount of energy consumed for removing the target to be removed from the gas and regenerating the adsorbent. In addition, since the second heat exchanger removes a portion of the target to be removed contained in the gas before the gas is introduced into the adsorption tower that performs the adsorption removal process, the adsorption removal process of the adsorbent in the adsorption tower that performs the adsorption removal process can be suppressed from decreasing in adsorption capacity, and there is no need to reduce the amount of gas introduced into the adsorption tower that performs the adsorption removal process or to temporarily stop the adsorption removal process, so that the adsorption removal process for the introduced gas can be completed reliably in a short time.

また、請求項1,3記載の吸着剤再生装置では、第3の熱交換器が、一次熱交換部および二次熱交換部を備え、気体導入口から導入された気体が、一次熱交換部、二次熱交換部および一次熱交換部をこの順で通過させられて気体排出口から排出されるように気体流路が形成されると共に、二次熱交換部において冷却用熱媒液との熱交換によって気体に含まれている除去対象が液相化されて除去され、かつ、一次熱交換部において二次熱交換部によって冷却された気体との熱交換によって気体導入口から導入された気体に含まれている除去対象が液相化されて除去されるように構成されている。したがって、請求項1,3,6記載の吸着剤再生装置、および請求項7記載の除去システムによれば、第3の熱交換器における二次熱交換部において冷却用熱媒液との熱交換によって気体を冷却しつつ、一次熱交換部において気体導入口から導入される気体を気体排出口から排出される気体(すなわち、二次熱交換部において冷却された気体)との熱交換によって冷却することで、気体を効率よく冷却して除去対象を除去することができる。これにより、多量の除去対象を含んだ気体が吸着除去処理を行う吸着塔に流入する事態を回避することができると共に、一次熱交換部および二次熱交換部を備えない構成の熱交換器を使用するのと比較して、気体からの除去対象を除去するのに消費されるエネルギー量を一層低減することができる。 In the adsorbent regeneration device described in claims 1 and 3, the third heat exchanger is provided with a primary heat exchange section and a secondary heat exchange section, and a gas flow path is formed so that the gas introduced from the gas inlet is passed through the primary heat exchange section, the secondary heat exchange section and the primary heat exchange section in this order and discharged from the gas outlet, and the target to be removed contained in the gas is liquefied and removed by heat exchange with the cooling heat transfer liquid in the secondary heat exchange section, and the target to be removed contained in the gas introduced from the gas inlet is liquefied and removed by heat exchange with the gas cooled by the secondary heat exchange section in the primary heat exchange section. Therefore, according to the adsorbent regeneration device of claims 1, 3, and 6 and the removal system of claim 7, the gas is cooled by heat exchange with the cooling heat transfer liquid in the secondary heat exchange section of the third heat exchanger, while the gas introduced from the gas inlet in the primary heat exchange section is cooled by heat exchange with the gas discharged from the gas outlet (i.e., the gas cooled in the secondary heat exchange section), thereby efficiently cooling the gas and removing the target. This makes it possible to avoid a situation in which gas containing a large amount of the target flows into the adsorption tower where the adsorption and removal process is performed, and further reduces the amount of energy consumed to remove the target from the gas, compared to using a heat exchanger configured without a primary heat exchange section and a secondary heat exchange section.

また、請求項2,4記載の吸着剤再生装置では、第2の熱交換器が、一次熱交換部および二次熱交換部を備え、気体導入口から導入された気体が、一次熱交換部、二次熱交換部および一次熱交換部をこの順で通過させられて気体排出口から排出されるように気体流路が形成されると共に、二次熱交換部において冷却用熱媒液との熱交換によって気体に含まれている除去対象が液相化されて除去され、かつ、一次熱交換部において二次熱交換部によって冷却された気体との熱交換によって気体導入口から導入された気体に含まれている除去対象が液相化されて除去されるように構成されている。したがって、請求項2,4,6記載の吸着剤再生装置、および請求項7記載の除去システムによれば、第2の熱交換器における二次熱交換部において冷却用熱媒液との熱交換によって気体を冷却しつつ、一次熱交換部において気体導入口から導入される気体を気体排出口から排出される気体(すなわち、二次熱交換部において冷却された気体)との熱交換によって冷却することで、気体を効率よく冷却して除去対象を除去することができる。これにより、多量の除去対象を含んだ気体が吸着除去処理を行う吸着塔に流入する事態を回避することができると共に、一次熱交換部および二次熱交換部を備えない構成の熱交換器を使用するのと比較して、気体からの除去対象を除去するのに消費されるエネルギー量を一層低減することができる。 In the adsorbent regeneration device described in claims 2 and 4, the second heat exchanger is provided with a primary heat exchange section and a secondary heat exchange section, and a gas flow path is formed so that the gas introduced from the gas inlet is passed through the primary heat exchange section, the secondary heat exchange section and the primary heat exchange section in this order and discharged from the gas outlet, and the target to be removed contained in the gas is liquefied and removed by heat exchange with the cooling heat transfer liquid in the secondary heat exchange section, and the target to be removed contained in the gas introduced from the gas inlet is liquefied and removed by heat exchange with the gas cooled by the secondary heat exchange section in the primary heat exchange section. Therefore, according to the adsorbent regeneration device described in claims 2, 4, and 6, and the removal system described in claim 7, the gas is cooled by heat exchange with the cooling heat transfer liquid in the secondary heat exchange section of the second heat exchanger, while the gas introduced from the gas inlet in the primary heat exchange section is cooled by heat exchange with the gas discharged from the gas outlet (i.e., the gas cooled in the secondary heat exchange section), thereby efficiently cooling the gas and removing the target. This makes it possible to avoid a situation in which gas containing a large amount of the target flows into the adsorption tower where the adsorption and removal process is performed, and further reduces the amount of energy consumed to remove the target from the gas, compared to using a heat exchanger configured without a primary heat exchange section and a secondary heat exchange section.

また、請求項1記載の吸着剤再生装置では、二次熱交換部を通過させられた気体を、一次熱交換部を再び通過させずに気体排出口から排出させる第1のバイパス流路が第3の熱交換器に設けられると共に、第1のバイパス流路を通過させる気体の流量を調整可能な第1の流量調整部が配設され、制御部が、第3の熱交換器における気体導入口から導入された気体の第1の温度、気体導入口から導入されて一次熱交換部を通過させられた気体の第2の温度、および二次熱交換部を通過させられた気体の第3の温度をそれぞれ特定すると共に、第1の温度および第3の温度の第1の温度差と、第2の温度および第3の温度の第2の温度差との比に基づき、第1の流量調整部を制御して第1のバイパス流路を通過する気体の流量を調整させる第3の処理を実行する。また、請求項2記載の吸着剤再生装置では、気体導入口から導入されて一次熱交換部を通過させられた気体の一部を、二次熱交換部を通過させずに、二次熱交換部を通過させられて一次熱交換部に流入させられる気体に合流させるバイパス流路Aが第3の熱交換器に設けられると共に、バイパス流路Aを通過する気体の流量を調整可能な流量調整部Aが配設され、制御部が、第3の熱交換器における気体導入口から導入された気体の温度A、気体導入口から導入されて一次熱交換部を通過させられた気体の温度B、および第3の熱交換器における気体排出口から排出される気体の温度Cをそれぞれ特定すると共に、温度Aおよび温度Bの温度差Aと、温度Aおよび温度Cの温度差Bとの比に基づき、流量調整部Aを制御してバイパス流路Aを通過する気体の流量を調整する処理Aを実行する。 In the adsorbent regeneration device described in claim 1, a first bypass flow path is provided in the third heat exchanger, which discharges the gas that has passed through the secondary heat exchange section from a gas outlet without passing it through the primary heat exchange section again, and a first flow rate adjustment unit is provided that can adjust the flow rate of the gas that passes through the first bypass flow path. The control unit respectively identifies a first temperature of the gas introduced from the gas inlet in the third heat exchanger, a second temperature of the gas introduced from the gas inlet and passed through the primary heat exchange section, and a third temperature of the gas that has passed through the secondary heat exchange section, and controls the first flow rate adjustment unit to adjust the flow rate of the gas passing through the first bypass flow path based on the ratio between a first temperature difference between the first temperature and the third temperature and a second temperature difference between the second temperature and the third temperature. In addition, in the adsorbent regeneration device described in claim 2, a bypass flow path A is provided in the third heat exchanger, which merges a portion of the gas introduced from the gas inlet and passed through the primary heat exchange section with the gas that is passed through the secondary heat exchange section and flows into the primary heat exchange section without passing through the secondary heat exchange section, and a flow rate adjustment unit A is provided that can adjust the flow rate of the gas passing through the bypass flow path A. The control unit specifies the temperature A of the gas introduced from the gas inlet in the third heat exchanger, the temperature B of the gas introduced from the gas inlet and passed through the primary heat exchange section, and the temperature C of the gas discharged from the gas discharge port in the third heat exchanger, and performs a process A to control the flow rate adjustment unit A to adjust the flow rate of the gas passing through the bypass flow path A based on the ratio of the temperature difference A between the temperature A and the temperature B and the temperature difference B between the temperature A and the temperature C.

したがって、請求項1,2,6記載の吸着剤再生装置、および請求項7記載の除去システムによれば、過剰に低い温度の気体が吸着除去処理を行う吸着塔などを通過させられる事態が回避されるため、吸着除去処理を行う吸着塔と吸着能力再生処理を行う吸着塔とを切り換えたときに、吸着除去処理を行っていた吸着塔内等で結露が生じる事態を回避することができる。 Therefore, according to the adsorbent regeneration device described in claims 1, 2, and 6, and the removal system described in claim 7, a situation in which excessively low-temperature gas is passed through an adsorption tower or the like that performs the adsorption removal process can be avoided, so that when switching between an adsorption tower that performs the adsorption removal process and an adsorption tower that performs the adsorption capacity regeneration process, a situation in which condensation occurs in the adsorption tower that was performing the adsorption removal process can be avoided.

また、請求項3記載の吸着剤再生装置では、二次熱交換部を通過させられた気体を、一次熱交換部を再び通過させずに気体排出口から排出させる第2のバイパス流路が第2の熱交換器に設けられると共に、第2のバイパス流路を通過させる気体の流量を調整可能な第2の流量調整部が配設され、制御部が、第2の熱交換器における気体導入口から導入された気体の第4の温度、気体導入口から導入されて一次熱交換部を通過させられた気体の第5の温度、および二次熱交換部を通過させられた気体の第6の温度を特定すると共に、第4の温度および第6の温度の第3の温度差と、第5の温度および第6の温度の第4の温度差との比に基づき、第2の流量調整部を制御して第2のバイパス流路を通過する気体の流量を調整させる第4の処理を実行する。また、請求項4記載の吸着剤再生装置では、気体導入口から導入されて一次熱交換部を通過させられた気体の一部を、二次熱交換部を通過させずに、二次熱交換部を通過させられて一次熱交換部に流入させられる気体に合流させるバイパス流路Bが第2の熱交換器に設けられると共に、バイパス流路Bを通過する気体の流量を調整可能な流量調整部Bが配設され、制御部が、第2の熱交換器における気体導入口から導入された気体の温度D、気体導入口から導入されて一次熱交換部を通過させられた気体の温度E、および第2の熱交換器における気体排出口から排出される気体の温度Fをそれぞれ特定すると共に、温度Dおよび温度Eの温度差Cと、温度Dおよび温度Fの温度差Dとの比に基づき、流量調整部Bを制御してバイパス流路Bを通過する気体の流量を調整する処理Bを実行する。 In addition, in the adsorbent regeneration device described in claim 3, a second bypass flow path is provided in the second heat exchanger, which discharges the gas that has passed through the secondary heat exchange section from the gas outlet without passing it through the primary heat exchange section again, and a second flow rate adjustment unit is provided that can adjust the flow rate of the gas that passes through the second bypass flow path. The control unit identifies a fourth temperature of the gas introduced from the gas inlet in the second heat exchanger, a fifth temperature of the gas introduced from the gas inlet and passed through the primary heat exchange section, and a sixth temperature of the gas that has passed through the secondary heat exchange section, and performs a fourth process of controlling the second flow rate adjustment unit to adjust the flow rate of the gas passing through the second bypass flow path based on the ratio of a third temperature difference between the fourth temperature and the sixth temperature to a fourth temperature difference between the fifth temperature and the sixth temperature. In addition, in the adsorbent regeneration device described in claim 4, a bypass flow path B is provided in the second heat exchanger to merge a portion of the gas introduced from the gas inlet and passed through the primary heat exchange section with the gas that is passed through the secondary heat exchange section and flows into the primary heat exchange section without passing through the secondary heat exchange section, and a flow rate adjustment unit B is provided that can adjust the flow rate of the gas passing through the bypass flow path B. The control unit specifies the temperature D of the gas introduced from the gas inlet in the second heat exchanger, the temperature E of the gas introduced from the gas inlet and passed through the primary heat exchange section, and the temperature F of the gas discharged from the gas discharge port in the second heat exchanger, and executes a process B to control the flow rate adjustment unit B to adjust the flow rate of the gas passing through the bypass flow path B based on the ratio of the temperature difference C between the temperature D and the temperature E and the temperature difference D between the temperature D and the temperature F.

したがって、請求項3,4,6記載の吸着剤再生装置、および請求項7記載の除去システムによれば、過剰に低い温度の気体が吸着除去処理を行う吸着塔などを通過させられる事態が回避されるため、吸着除去処理を行う吸着塔と吸着能力再生処理を行う吸着塔とを切り換えたときに、吸着除去処理を行っていた吸着塔内等で結露が生じる事態を回避することができる。 Therefore, according to the adsorbent regeneration device described in claims 3, 4, and 6, and the removal system described in claim 7, a situation in which excessively low-temperature gas is passed through an adsorption tower or the like that performs the adsorption removal process can be avoided, so that when switching between an adsorption tower that performs the adsorption removal process and an adsorption tower that performs the adsorption capacity regeneration process, a situation in which condensation occurs in the adsorption tower that was performing the adsorption removal process can be avoided.

また、請求項5記載の吸着剤再生装置では、第3の熱交換器を通過させられる気体の流量を調整する第3の流量調整部を備え、制御部が、第3の熱交換器を通過させられた気体の温度に基づいて第3の流量調整部を制御して第3の熱交換器を通過する気体の流量を調整させる第5の処理を実行する。したがって、請求項5記載の吸着剤再生装置、およびそのような吸着剤再生装置を備えた除去システムによれば、過剰に低い温度の気体が吸着除去処理を行う吸着塔などを通過させられる事態が回避されるため、吸着除去処理を行う吸着塔と吸着能力再生処理を行う吸着塔とを切り換えたときに、吸着除去処理を行っていた吸着塔内等で結露が生じる事態を回避することができる。 The adsorbent regeneration device according to claim 5 is provided with a third flow rate adjustment unit that adjusts the flow rate of the gas passing through the third heat exchanger, and the control unit executes a fifth process in which the control unit controls the third flow rate adjustment unit based on the temperature of the gas passed through the third heat exchanger to adjust the flow rate of the gas passing through the third heat exchanger. Therefore, according to the adsorbent regeneration device according to claim 5 and the removal system equipped with such an adsorbent regeneration device, a situation in which excessively low-temperature gas is passed through an adsorption tower or the like that performs an adsorption removal process can be avoided, and therefore, when switching between the adsorption tower that performs the adsorption removal process and the adsorption tower that performs the adsorption capacity regeneration process, condensation can be avoided in the adsorption tower that was performing the adsorption removal process.

除去システム1の構成を示す構成図である。FIG. 1 is a diagram showing a configuration of a removal system 1. 除去システム1におけるヒートポンプユニット3の構成を示す構成図である。2 is a configuration diagram showing the configuration of a heat pump unit 3 in the removal system 1. FIG. 除去システム1における熱交換器4aの構成を示す構成図である。2 is a diagram showing the configuration of a heat exchanger 4a in the removal system 1. FIG. 除去システム1における熱交換器4cの構成を示す構成図である。4 is a diagram showing the configuration of a heat exchanger 4c in the removal system 1. FIG. 他の実施の形態に係る熱交換器54aの構成を示す構成図である。FIG. 11 is a diagram showing the configuration of a heat exchanger 54a according to another embodiment. 他の実施の形態に係る熱交換器54cの構成を示す構成図である。FIG. 13 is a diagram showing the configuration of a heat exchanger 54c according to another embodiment.

以下、添付図面を参照して、吸着剤再生装置および除去システムの実施の形態について説明する。 Below, an embodiment of the adsorbent regeneration device and removal system will be described with reference to the attached drawings.

最初に、除去システム1の構成について、添付図面を参照して説明する。 First, the configuration of the removal system 1 will be described with reference to the attached drawings.

図1に示す除去システム1は、「除去システム」の一例であって、処理対象の水素ガスGに含まれている水分を後述する吸着除去処理によって除去する(水素ガスGの湿度を低下させる)ことができるように構成されている。また、本例の除去システム1は、後述するように、吸着除去処理と並行して、吸着塔2a,2b内の吸着剤を加熱再生方式の吸着能力再生処理によって再生する(吸着能力を復元する)ことができるように構成さている(「複数の吸着塔を備えて各吸着塔の一部を対象とする吸着除去処理と各吸着塔の他の一部を対象とする吸着能力再生処理とを並行して実行可能」との構成の一例)。 The removal system 1 shown in FIG. 1 is an example of a "removal system" and is configured to be able to remove moisture contained in the hydrogen gas G to be treated (reduce the humidity of the hydrogen gas G) by an adsorption removal process described below. In addition, as described below, the removal system 1 of this example is configured to be able to regenerate (restore the adsorption capacity) the adsorbent in the adsorption towers 2a and 2b by an adsorption capacity regeneration process using a thermal regeneration method in parallel with the adsorption removal process (an example of a configuration in which "multiple adsorption towers are provided and an adsorption removal process targeting a portion of each adsorption tower and an adsorption capacity regeneration process targeting another portion of each adsorption tower can be performed in parallel").

この場合、本例の除去システム1は、一例として、図示しない外部装置において実行された電気分解処理や改質処理によって製造された水素ガスGや、図示しないガスタンクに貯留されている水素ガスGなどが同図に破線で示す圧縮機によって圧送されたときに、この水素ガスG(「気体」の一例)を処理対象として水分(「除去対象」の一例)を除去する構成が採用されている。具体的には、本例の除去システム1は、吸着塔2a,2b、ヒートポンプユニット3、熱交換器4a~4c、流路切換え弁5a,5b、流量調整弁6、流量調整弁7a,7b、貯水部8a,8b、温度センサ9および湿度センサ10を備えている。なお、本例の除去システム1では、上記の各構成要素のうちの吸着塔2a,2bを除く各構成要素3,4a~4c,5a,5b,6,7a,7b,8a,8b,9,10によって「吸着剤再生装置」が構成されている。 In this case, the removal system 1 of this example is configured to remove moisture (an example of a "removal target") from hydrogen gas G (an example of a "gas") produced by electrolysis or reforming performed in an external device (not shown) or hydrogen gas G stored in a gas tank (not shown) when the hydrogen gas G (an example of a "gas") is compressed by a compressor shown by a dashed line in the figure. Specifically, the removal system 1 of this example includes adsorption towers 2a and 2b, a heat pump unit 3, heat exchangers 4a to 4c, flow path switching valves 5a and 5b, flow rate control valve 6, flow rate control valves 7a and 7b, water storage units 8a and 8b, a temperature sensor 9, and a humidity sensor 10. In the removal system 1 of this example, the components 3, 4a to 4c, 5a, 5b, 6, 7a, 7b, 8a, 8b, 9, and 10, excluding the adsorption towers 2a and 2b, form an "adsorbent regeneration device."

吸着塔2a,2b(以下、区別しないときには「吸着塔2」ともいう)は、「吸着塔」の一例であって、水素ガスGの導入/排出が可能な2つの入出口が設けられた耐圧容器で構成されると共に、両入出口の間に水素ガスGの通過が可能な吸着剤の層が設けられている。この場合、「気体」としての水素ガスGから「除去対象」としての水分を吸着除去する本例の除去システム1では、ゼオライト(合成ゼオライト)などの吸着剤が耐圧容器内に収容されて吸着塔2が構成されている。 The adsorption towers 2a and 2b (hereinafter, referred to as "adsorption tower 2" when there is no need to distinguish between them) are an example of an "adsorption tower" and are composed of a pressure-resistant container with two inlets and outlets through which hydrogen gas G can be introduced/discharged, and a layer of adsorbent through which hydrogen gas G can pass is provided between the inlets and outlets. In this case, in the removal system 1 of this example, which adsorbs and removes moisture as a "removal target" from hydrogen gas G as a "gas," the adsorption tower 2 is composed of an adsorbent such as zeolite (synthetic zeolite) housed in a pressure-resistant container.

ヒートポンプユニット3は、「温度調整部」の一例である「冷温同時温度調整装置」であって、熱媒液循環路LC1,LC2を介して低温の熱媒液Wc(「冷却用熱媒液」の一例)を熱交換器4a,4cに供給する処理と、熱媒液循環路LHを介して高温の熱媒液Wh(「加熱用熱媒液」の一例)を熱交換器4bに供給する処理とを並行して実行可能に構成されている。このヒートポンプユニット3は、図2に示すように、冷凍サイクル11、ポンプ12a,12b、操作部13、表示部14、制御部15および記憶部16を備えている。 The heat pump unit 3 is a "simultaneous hot and cold temperature adjustment device" that is an example of a "temperature adjustment unit" and is configured to be capable of simultaneously supplying low-temperature heat transfer fluid Wc (an example of a "heat transfer fluid for cooling") to the heat exchangers 4a and 4c via the heat transfer fluid circulation paths LC1 and LC2 and supplying high-temperature heat transfer fluid Wh (an example of a "heat transfer fluid for heating") to the heat exchanger 4b via the heat transfer fluid circulation path LH. As shown in FIG. 2, the heat pump unit 3 includes a refrigeration cycle 11, pumps 12a and 12b, an operation unit 13, a display unit 14, a control unit 15, and a memory unit 16.

冷凍サイクル11は、圧縮機21、凝縮器22、膨張弁23および蒸発器24を備え、制御部15の制御下で、熱媒液Whを加熱したり熱媒液Wcを冷却したりする。この場合、本例のヒートポンプユニット3では、凝縮器22からの放熱(凝縮器22における冷媒との熱交換)によって熱媒液Whを加熱可能に加熱部3h(熱媒液Whを加熱する温熱源:「加熱部」の一例)が構成されている。また、本例のヒートポンプユニット3では、蒸発器24による吸熱(蒸発器24における冷媒との熱交換)によって熱媒液Wcを冷却可能に冷却部3c(熱媒液Wcを冷却する冷熱源:「冷却部」の一例)が構成されている。さらに、図示および詳細な説明を省略するが、本例のヒートポンプユニット3では、外気の熱を吸熱して熱媒液Whを温度上昇させる熱交換器などの補助的な温熱源が加熱部3hに配設されると共に、熱媒液Wcの熱を外気に放熱して熱媒液Wcを温度低下させる熱交換器などの補助的な冷熱源が冷却部3cに配設されている。 The refrigeration cycle 11 includes a compressor 21, a condenser 22, an expansion valve 23, and an evaporator 24, and heats the heat transfer liquid Wh and cools the heat transfer liquid Wc under the control of the control unit 15. In this case, in the heat pump unit 3 of this example, a heating unit 3h (a hot heat source that heats the heat transfer liquid Wh: an example of a "heating unit") is configured to be able to heat the heat transfer liquid Wh by heat release from the condenser 22 (heat exchange with the refrigerant in the condenser 22). In addition, in the heat pump unit 3 of this example, a cooling unit 3c (a cold heat source that cools the heat transfer liquid Wc: an example of a "cooling unit") is configured to be able to cool the heat transfer liquid Wc by heat absorption by the evaporator 24 (heat exchange with the refrigerant in the evaporator 24). Furthermore, although illustrations and detailed explanations are omitted, in the heat pump unit 3 of this example, an auxiliary hot heat source such as a heat exchanger that absorbs heat from the outside air to increase the temperature of the heat transfer liquid Wh is arranged in the heating section 3h, and an auxiliary cold heat source such as a heat exchanger that dissipates heat from the heat transfer liquid Wc to the outside air to lower the temperature of the heat transfer liquid Wc is arranged in the cooling section 3c.

また、加熱部3hには、熱交換器4bとの間で熱媒液Whを循環させる熱媒液循環路LHが接続され、冷却部3cには、熱交換器4aとの間で熱媒液Wcを循環させる熱媒液循環路LC1、および熱交換器4cとの間で熱媒液Wcを循環させる熱媒液循環路LC2が接続されている。なお、図1に示すように、本例の除去システム1では、一例として、ヒートポンプユニット3(冷却部3c)側において上記の熱媒液循環路LC1用の配管と熱媒液循環路LC2用の配管とが共用されている。つまり、本例の除去システム1では、ヒートポンプユニット3(冷却部3c)から供給する熱媒液Wcをヒートポンプユニット3の外部で分流させて熱交換器4a,4cに供給すると共に、熱交換器4a,4cを通過させた熱媒液Wcをヒートポンプユニット3の外部で合流させて冷却部3cに流入させる構成が採用されている。 The heating section 3h is connected to a heat transfer fluid circulation path LH for circulating the heat transfer fluid Wh between the heat exchanger 4b, and the cooling section 3c is connected to a heat transfer fluid circulation path LC1 for circulating the heat transfer fluid Wc between the heat exchanger 4a and the heat exchanger 4c, and a heat transfer fluid circulation path LC2 for circulating the heat transfer fluid Wc between the heat exchanger 4c and the heat exchanger 4c. As shown in FIG. 1, in the removal system 1 of this example, as an example, the piping for the heat transfer fluid circulation path LC1 and the piping for the heat transfer fluid circulation path LC2 are shared on the heat pump unit 3 (cooling section 3c) side. In other words, in the removal system 1 of this example, the heat transfer fluid Wc supplied from the heat pump unit 3 (cooling section 3c) is split outside the heat pump unit 3 and supplied to the heat exchangers 4a and 4c, and the heat transfer fluid Wc that has passed through the heat exchangers 4a and 4c is merged outside the heat pump unit 3 and flows into the cooling section 3c.

ポンプ12aは、一例として、上記の熱媒液循環路LC1,LC2における冷却部3cの上流側(上記の合流後の配管)に配設され、制御部15の制御下で熱媒液Wcを冷却部3cに圧送することによって熱媒液循環路LC1,LC2内で熱媒液Wcを循環させる。ポンプ12bは、一例として、上記の熱媒液循環路LHにおける加熱部3hの上流側に配設され、制御部15の制御下で熱媒液Whを加熱部3hに圧送することによって熱媒液循環路LH内で熱媒液Whを循環させる。なお、本例の除去システム1(ヒートポンプユニット3)では、一例として、ポンプ12a,12b(以下、区別しないときには「ポンプ12」ともいう)が圧送量可変型の液送ポンプでそれぞれ構成されている。操作部13は、除去システム1の動作条件などを指示するための複数の操作スイッチを備え、スイッチ操作に応じた操作信号を制御部15に出力する。表示部14は、制御部15の制御下で除去システム1の動作条件を設定するための表示画面や、除去システム1の動作状態を示す表示画面などを表示する。 As an example, the pump 12a is disposed upstream of the cooling section 3c in the heat transfer liquid circulation paths LC1 and LC2 (the piping after the above-mentioned junction), and circulates the heat transfer liquid Wc in the heat transfer liquid circulation paths LC1 and LC2 by pumping the heat transfer liquid Wc to the cooling section 3c under the control of the control unit 15. As an example, the pump 12b is disposed upstream of the heating section 3h in the heat transfer liquid circulation path LH, and circulates the heat transfer liquid Wh in the heat transfer liquid circulation path LH by pumping the heat transfer liquid Wh to the heating section 3h under the control of the control unit 15. In addition, in the removal system 1 (heat pump unit 3) of this example, as an example, the pumps 12a and 12b (hereinafter, when not distinguished, they are also referred to as "pump 12") are each configured as a variable pressure-feed type liquid feed pump. The operation unit 13 has a plurality of operation switches for instructing the operating conditions of the removal system 1, and outputs an operation signal according to the switch operation to the control unit 15. The display unit 14 displays a display screen for setting the operating conditions of the removal system 1 under the control of the control unit 15, a display screen showing the operating status of the removal system 1, and the like.

制御部15は、「制御部」の一例であって、除去システム1を総括的に制御する。具体的には、制御部15は、ヒートポンプユニット3の各構成要素の動作を制御すると共に、流路切換え弁5a,5bや流量調整弁6,7a,7bおよび後述の流量調整弁33a,33b,43a,43bの動作を制御する。より具体的には、制御部15は、加熱部3hによる熱媒液Whの加熱および冷却部3cによる熱媒液Wcの冷却(冷凍サイクル11の動作)の制御、熱交換器4a,4cへの熱媒液Wcの供給(ポンプ12aによる熱媒液Wcの圧送)の制御、並びに熱交換器4bへの熱媒液Whの供給(ポンプ12bによる熱媒液Whの圧送)の制御などを実行する(「第1の処理」の一例)。また、制御部15は、流路切換え弁5a,5bを制御して、吸着除去処理を行う吸着塔2と、吸着能力再生処理を行う吸着塔2とを切り換える処理(吸着塔2a,2bのいずれにおいて吸着除去処理を行い、いずれにおいて吸着能力再生処理を行うかを変更する処理:「第2の処理」の一例)を実行する。 The control unit 15 is an example of a "control unit" and controls the removal system 1 as a whole. Specifically, the control unit 15 controls the operation of each component of the heat pump unit 3, as well as the operation of the flow path switching valves 5a, 5b, the flow rate control valves 6, 7a, 7b, and the flow rate control valves 33a, 33b, 43a, 43b described below. More specifically, the control unit 15 controls the heating of the heat transfer liquid Wh by the heating unit 3h and the cooling of the heat transfer liquid Wc by the cooling unit 3c (the operation of the refrigeration cycle 11), the supply of the heat transfer liquid Wc to the heat exchangers 4a, 4c (the pump 12a pumps the heat transfer liquid Wc), and the supply of the heat transfer liquid Wh to the heat exchanger 4b (the pump 12b pumps the heat transfer liquid Wh) (an example of a "first process"). The control unit 15 also controls the flow path switching valves 5a and 5b to perform a process of switching between the adsorption tower 2 performing the adsorption removal process and the adsorption tower 2 performing the adsorption capacity regeneration process (a process of changing which of the adsorption towers 2a and 2b performs the adsorption removal process and which performs the adsorption capacity regeneration process: an example of a "second process").

この場合、制御部15は、後述するように、吸着除去処理を行っている吸着塔2を通過させられた水素ガスGに含まれている水分の量に応じて変化する「第1のパラメータ」が「予め規定された第1の範囲」を外れたときに、吸着除去処理を行っている吸着塔2内の吸着剤の吸着能力が「予め規定された第1の能力」を下回る「第1の条件」が満たされたと判別して上記の「第2の処理」を実行する。また、制御部15は、後述するように、吸着能力再生処理を行っている吸着塔2を通過させられた水素ガスGに含まれている水分の量に応じて変化する「第2のパラメータ」が「予め規定された第2の範囲」を外れたときに、吸着能力再生処理を行っている吸着塔2内の吸着剤の吸着能力が「予め規定された第2の能力」を超える「第2の条件」が満たされたと判別して上記の「第2の処理」を実行する。 In this case, when the "first parameter" that changes depending on the amount of moisture contained in the hydrogen gas G passed through the adsorption tower 2 undergoing the adsorption and removal process falls outside the "predefined first range", the control unit 15 determines that the "first condition" that the adsorption capacity of the adsorbent in the adsorption tower 2 undergoing the adsorption and removal process falls below the "predefined first capacity" is satisfied, and executes the above-mentioned "second process". Also, when the "second parameter" that changes depending on the amount of moisture contained in the hydrogen gas G passed through the adsorption tower 2 undergoing the adsorption and removal process falls outside the "predefined second range", the control unit 15 determines that the "second condition" that the adsorption capacity of the adsorbent in the adsorption tower 2 undergoing the adsorption and removal process exceeds the "predefined second capacity" is satisfied, and executes the above-mentioned "second process".

さらに、制御部15は、後述するように、熱交換器4c内の各部における水素ガスGの温度に応じて熱交換器4c内における水素ガスGの流れ方を調整する「第3の処理」や、熱交換器4a内の各部における水素ガスGの温度に応じて熱交換器4a内における水素ガスGの流れ方を調整する「第4の処理」を実行する。また、制御部15は、後述するように、熱交換器4cを通過させられた水素ガスGの温度に基づいて流量調整弁6を制御して熱交換器4cを通過する水素ガスGの流量を調整させ、熱交換器4cを通過させられた水素ガスGの温度が、予め規定された温度範囲内の温度となるようにする「第5の処理」を実行する。なお、制御部15によって実行される上記の各処理については、後に詳細に説明する。記憶部16は、制御部15の動作プログラムや、除去システム1の動作条件についての各種データなどを記憶する。 Furthermore, the control unit 15 executes a "third process" for adjusting the flow of hydrogen gas G in the heat exchanger 4c according to the temperature of hydrogen gas G in each part of the heat exchanger 4c, as described later, and a "fourth process" for adjusting the flow of hydrogen gas G in the heat exchanger 4a according to the temperature of hydrogen gas G in each part of the heat exchanger 4a, as described later. The control unit 15 also executes a "fifth process" for controlling the flow rate control valve 6 based on the temperature of hydrogen gas G passed through the heat exchanger 4c to adjust the flow rate of hydrogen gas G passing through the heat exchanger 4c, so that the temperature of hydrogen gas G passed through the heat exchanger 4c is within a predetermined temperature range, as described later. The above processes executed by the control unit 15 will be described in detail later. The memory unit 16 stores the operation program of the control unit 15 and various data on the operating conditions of the removal system 1.

なお、上記のヒートポンプユニット3は、実際には、冷凍サイクル11内の冷媒の圧力や温度、冷却部3cに流入する熱媒液Wcの温度、冷却部3cから排出される熱媒液Wcの温度、加熱部3hに流入する熱媒液Whの温度、加熱部3hから排出される熱媒液Whの温度、および外気温などを検出する各種センサが配設されているが、除去システム1の構成および動作に関する理解を容易とするために、これらのセンサについての図示や説明を省略する。 The heat pump unit 3 is actually equipped with various sensors to detect the pressure and temperature of the refrigerant in the refrigeration cycle 11, the temperature of the heat transfer liquid Wc flowing into the cooling section 3c, the temperature of the heat transfer liquid Wc discharged from the cooling section 3c, the temperature of the heat transfer liquid Wh flowing into the heating section 3h, the temperature of the heat transfer liquid Wh discharged from the heating section 3h, and the outside air temperature, but illustrations and explanations of these sensors are omitted to facilitate understanding of the configuration and operation of the removal system 1.

熱交換器4aは、「第2の熱交換器」の一例であって、ヒートポンプユニット3(冷却部3c)から熱媒液循環路LC1を介して供給される熱媒液Wcとの熱交換によって、吸着除去処理を行う吸着塔2や熱交換器4bに流入させられる水素ガスGを冷却可能に構成されている。熱交換器4bは、「第1の熱交換器」の一例であって、ヒートポンプユニット3(加熱部3h)から熱媒液循環路LHを介して供給される熱媒液Whとの熱交換によって、吸着能力再生処理を行う吸着塔2に流入させる水素ガスGを加熱可能に構成されている。熱交換器4cは、「第3の熱交換器」の一例であって、ヒートポンプユニット3(冷却部3c)から熱媒液循環路LC2を介して供給される熱媒液Wcとの熱交換によって、吸着能力再生処理を行っている吸着塔2を通過させられた水素ガスGを冷却可能に構成されている。 The heat exchanger 4a is an example of a "second heat exchanger" and is configured to be able to cool the hydrogen gas G that is made to flow into the adsorption tower 2 performing the adsorption removal process and the heat exchanger 4b by heat exchange with the heat transfer liquid Wc supplied from the heat pump unit 3 (cooling section 3c) via the heat transfer liquid circulation path LC1. The heat exchanger 4b is an example of a "first heat exchanger" and is configured to be able to heat the hydrogen gas G that is made to flow into the adsorption tower 2 performing the adsorption capacity regeneration process by heat exchange with the heat transfer liquid Wh supplied from the heat pump unit 3 (heating section 3h) via the heat transfer liquid circulation path LH. The heat exchanger 4c is an example of a "third heat exchanger" and is configured to be able to cool the hydrogen gas G that is made to pass through the adsorption tower 2 performing the adsorption capacity regeneration process by heat exchange with the heat transfer liquid Wc supplied from the heat pump unit 3 (cooling section 3c) via the heat transfer liquid circulation path LC2.

この場合、図1に示すように、本例の除去システム1では、熱交換器4aが処理対象の水素ガスGを導入する導入用配管Piに配設されると共に、熱交換器4aを通過させられた水素ガスGの流路が、流路切換え弁5aを介して吸着塔2a,2bのいずれか(吸着除去処理を行う吸着塔2)に流入させられる流路と、熱交換器4bに流入させられる流路とに分岐点P1において分岐されている。なお、上記の導入用配管Piには、同図に破線で示すように、水素ガスGを除去システム1に向けて圧送する外部装置としての圧縮機が接続されている。 In this case, as shown in FIG. 1, in the removal system 1 of this example, a heat exchanger 4a is disposed in the inlet pipe Pi that introduces the hydrogen gas G to be treated, and the flow path of the hydrogen gas G that has passed through the heat exchanger 4a is branched at a branch point P1 into a flow path that flows into either the adsorption tower 2a or 2b (the adsorption tower 2 that performs the adsorption removal process) via a flow path switching valve 5a, and a flow path that flows into the heat exchanger 4b. Note that a compressor is connected to the inlet pipe Pi as an external device that pressurizes the hydrogen gas G toward the removal system 1, as shown by the dashed line in the figure.

また、本例の除去システム1では、流路切換え弁5aを介して吸着塔2a,2bのいずれか(吸着除去処理を行う吸着塔2)に流入させられた水素ガスGが流路切換え弁5bを介して排出用配管Poに流入させられる流路が形成されている。また、本例の除去システム1では、熱交換器4bを通過させられた水素ガスGが、流路切換え弁5bを介して吸着塔2a,2bのいずれか(吸着能力再生処理を行う吸着塔2)に流入させられた後に、流路切換え弁5aを介して熱交換器4cに流入させられる流路が形成されている。 In addition, in the removal system 1 of this example, a flow path is formed in which hydrogen gas G, which is made to flow into either of the adsorption towers 2a, 2b (adsorption tower 2 performing adsorption removal processing) via the flow path switching valve 5a, flows into the discharge pipe Po via the flow path switching valve 5b. In addition, in the removal system 1 of this example, a flow path is formed in which hydrogen gas G, which has been passed through the heat exchanger 4b, is made to flow into either of the adsorption towers 2a, 2b (adsorption tower 2 performing adsorption capacity regeneration processing) via the flow path switching valve 5b, and then flows into the heat exchanger 4c via the flow path switching valve 5a.

また、本例の除去システム1では、熱交換器4aから流路切換え弁5bに向かう水素ガスGの流路に合流点P2が設けられており、熱交換器4cを通過させられた水素ガスGが、熱交換器4aから流路切換え弁5aに向かう水素ガスGに合流点P2において合流させられる構成が採用されている。なお、本例の除去システム1では、同図に示すように、一例として、合流点P2が分岐点P1よりも下流側に設けられている。 In addition, in the removal system 1 of this example, a junction P2 is provided in the flow path of hydrogen gas G from the heat exchanger 4a to the flow path switching valve 5b, and a configuration is adopted in which hydrogen gas G passed through the heat exchanger 4c is merged at the junction P2 with hydrogen gas G flowing from the heat exchanger 4a to the flow path switching valve 5a. In addition, in the removal system 1 of this example, as shown in the same figure, as an example, the junction P2 is provided downstream of the branch point P1.

また、図3に示すように、本例の除去システム1における熱交換器4aは、一次熱交換部31および二次熱交換部32を備え、導入口30i(「気体導入口」の一例)から導入された水素ガスGが、一次熱交換部31、二次熱交換部32および一次熱交換部31をこの順で通過させられて排出口30o(「気体排出口」の一例)から排出されるように気体流路が形成されている。また、熱交換器4aは、二次熱交換部32において、熱媒液Wcとの熱交換(本冷)によって水素ガスGに含まれている水分が液相化されて除去されると共に、一次熱交換部31において、二次熱交換部32によって冷却された水素ガスGとの熱交換(二次熱交換部32における本冷に先立つ水素ガスGの予冷)によって導入口30iから導入された水素ガスGに含まれている水分が液相化されて除去されるように構成されている。 As shown in FIG. 3, the heat exchanger 4a in the removal system 1 of this example includes a primary heat exchange section 31 and a secondary heat exchange section 32, and a gas flow path is formed so that hydrogen gas G introduced from an inlet 30i (an example of a "gas inlet") passes through the primary heat exchange section 31, the secondary heat exchange section 32, and the primary heat exchange section 31 in this order and is discharged from an outlet 30o (an example of a "gas outlet"). In addition, the heat exchanger 4a is configured so that moisture contained in the hydrogen gas G is liquefied and removed by heat exchange with the heat transfer liquid Wc (main cooling) in the secondary heat exchange section 32, and moisture contained in the hydrogen gas G introduced from the inlet 30i is liquefied and removed by heat exchange with the hydrogen gas G cooled by the secondary heat exchange section 32 in the primary heat exchange section 31 (pre-cooling of the hydrogen gas G prior to main cooling in the secondary heat exchange section 32).

また、熱交換器4aには、導入口30iから導入されて一次熱交換部31および二次熱交換部32をこの順で通過させられた水素ガスGを、一次熱交換部31を再び通過させずに排出口30oから排出させるバイパス流路33(「第2のバイパス流路」の一例)が設けられると共に、このバイパス流路33を通過させる水素ガスGの流量を調整可能な流量調整弁33a,33b(「第2の流量調整部」の一例)が配設されている。この場合、本例の熱交換器4aでは、両流量調整弁33a,33bが開口率可変型の開閉弁でそれぞれ構成されており、流量調整弁33aが、二次熱交換部32から一次熱交換部31に向かう水素ガスGの流路に配設されると共に、流量調整弁33bが、上記のバイパス流路33に配設されている。これにより、流量調整弁33aの開口率を小さくしつつ流量調整弁33bの開口率を大きくすることでバイパス流路33を通過させる水素ガスGの流量を増加させ、流量調整弁33aの開口率を大きくしつつ流量調整弁33bの開口率を小さくすることでバイパス流路33を通過させる水素ガスGの流量を減少させることが可能となっている。 In addition, the heat exchanger 4a is provided with a bypass flow path 33 (an example of a "second bypass flow path") that allows the hydrogen gas G introduced from the inlet 30i and passed through the primary heat exchange section 31 and the secondary heat exchange section 32 in this order to be discharged from the outlet 30o without passing through the primary heat exchange section 31 again, and is provided with flow control valves 33a, 33b (an example of a "second flow control section") that can adjust the flow rate of the hydrogen gas G passing through the bypass flow path 33. In this case, in the heat exchanger 4a of this example, both flow control valves 33a, 33b are each configured as an opening rate variable opening/closing valve, and the flow control valve 33a is provided in the flow path of the hydrogen gas G from the secondary heat exchange section 32 toward the primary heat exchange section 31, and the flow control valve 33b is provided in the bypass flow path 33. This makes it possible to increase the flow rate of hydrogen gas G passing through the bypass flow path 33 by decreasing the opening rate of the flow rate adjustment valve 33a while increasing the opening rate of the flow rate adjustment valve 33b, and to decrease the flow rate of hydrogen gas G passing through the bypass flow path 33 by increasing the opening rate of the flow rate adjustment valve 33a while decreasing the opening rate of the flow rate adjustment valve 33b.

また、熱交換器4aには、導入口30iから導入された水素ガスGの温度(「第4の温度」の一例)を検出可能な温度センサ34a、導入口30iから導入されて一次熱交換部31を通過させられた水素ガスGの温度(「第5の温度」の一例)を検出可能な温度センサ34b、および二次熱交換部32を通過させられた水素ガスGの温度(「第6の温度」の一例)を検出可能な温度センサ34cが配設されている。 The heat exchanger 4a is also provided with a temperature sensor 34a capable of detecting the temperature of the hydrogen gas G introduced from the inlet 30i (an example of the "fourth temperature"), a temperature sensor 34b capable of detecting the temperature of the hydrogen gas G introduced from the inlet 30i and passed through the primary heat exchange section 31 (an example of the "fifth temperature"), and a temperature sensor 34c capable of detecting the temperature of the hydrogen gas G passed through the secondary heat exchange section 32 (an example of the "sixth temperature").

また、図4に示すように、本例の除去システム1における熱交換器4cは、一次熱交換部41および二次熱交換部42を備え、導入口40i(「気体導入口」の一例)から導入された水素ガスGが、一次熱交換部41、二次熱交換部42および一次熱交換部41をこの順で通過させられて排出口40o(「気体排出口」の一例)から排出されるように気体流路が形成されている。また、熱交換器4cは、二次熱交換部42において、熱媒液Wcとの熱交換(本冷)によって水素ガスGに含まれている水分が液相化されて除去されると共に、一次熱交換部41において、二次熱交換部42によって冷却された水素ガスGとの熱交換(二次熱交換部42における本冷に先立つ水素ガスGの予冷)によって導入口40iから導入された水素ガスGに含まれている水分が液相化されて除去されるように構成されている。 As shown in FIG. 4, the heat exchanger 4c in the removal system 1 of this example includes a primary heat exchanger 41 and a secondary heat exchanger 42, and a gas flow path is formed so that hydrogen gas G introduced from an inlet 40i (an example of a "gas inlet") passes through the primary heat exchanger 41, the secondary heat exchanger 42, and the primary heat exchanger 41 in this order and is discharged from an outlet 40o (an example of a "gas outlet"). In addition, the heat exchanger 4c is configured so that moisture contained in the hydrogen gas G is liquefied and removed by heat exchange with the heat transfer liquid Wc (main cooling) in the secondary heat exchanger 42, and moisture contained in the hydrogen gas G introduced from the inlet 40i is liquefied and removed by heat exchange with the hydrogen gas G cooled by the secondary heat exchanger 42 in the primary heat exchanger 41 (pre-cooling of the hydrogen gas G prior to main cooling in the secondary heat exchanger 42).

また、熱交換器4cには、導入口40iから導入されて一次熱交換部41および二次熱交換部42をこの順で通過させられた水素ガスGを、一次熱交換部41を再び通過させずに排出口40oから排出させるバイパス流路43(「第1のバイパス流路」の一例)が設けられると共に、このバイパス流路43を通過させる水素ガスGの流量を調整可能な流量調整弁43a、43b(「第1の流量調整部」の一例)が配設されている。この場合、本例の熱交換器4cでは、両流量調整弁43a,43bが開口率可変型の開閉弁でそれぞれ構成されており、流量調整弁43aが、二次熱交換部42から一次熱交換部41に向かう水素ガスGの流路に配設されると共に、流量調整弁43bが、上記のバイパス流路43に配設されている。これにより、流量調整弁43aの開口率を小さくしつつ流量調整弁43bの開口率を大きくすることでバイパス流路43を通過させる水素ガスGの流量を増加させ、流量調整弁43aの開口率を大きくしつつ流量調整弁43bの開口率を小さくすることでバイパス流路43を通過させる水素ガスGの流量を減少させることが可能となっている。 In addition, the heat exchanger 4c is provided with a bypass flow path 43 (an example of a "first bypass flow path") that allows the hydrogen gas G introduced from the inlet 40i and passed through the primary heat exchange section 41 and the secondary heat exchange section 42 in this order to be discharged from the outlet 40o without passing through the primary heat exchange section 41 again, and is provided with flow control valves 43a and 43b (an example of a "first flow control section") that can adjust the flow rate of the hydrogen gas G passing through the bypass flow path 43. In this case, in the heat exchanger 4c of this example, both flow control valves 43a and 43b are each configured as an opening rate variable opening/closing valve, and the flow control valve 43a is provided in the flow path of the hydrogen gas G from the secondary heat exchange section 42 toward the primary heat exchange section 41, and the flow control valve 43b is provided in the bypass flow path 43. This makes it possible to increase the flow rate of hydrogen gas G passing through the bypass flow path 43 by decreasing the opening rate of the flow rate adjustment valve 43a while increasing the opening rate of the flow rate adjustment valve 43b, and to decrease the flow rate of hydrogen gas G passing through the bypass flow path 43 by increasing the opening rate of the flow rate adjustment valve 43a while decreasing the opening rate of the flow rate adjustment valve 43b.

また、熱交換器4cには、導入口40iから導入された水素ガスGの温度(「第1の温度」の一例)を検出可能な温度センサ44a、導入口40iから導入されて一次熱交換部41を通過させられた水素ガスGの温度(「第2の温度」の一例)を検出可能な温度センサ44b、および二次熱交換部42を通過させられた水素ガスGの温度(「第3の温度」の一例)を検出可能な温度センサ44cが配設されている。 The heat exchanger 4c is also provided with a temperature sensor 44a capable of detecting the temperature of the hydrogen gas G introduced from the inlet 40i (an example of a "first temperature"), a temperature sensor 44b capable of detecting the temperature of the hydrogen gas G introduced from the inlet 40i and passed through the primary heat exchange section 41 (an example of a "second temperature"), and a temperature sensor 44c capable of detecting the temperature of the hydrogen gas G passed through the secondary heat exchange section 42 (an example of a "third temperature").

流路切換え弁5aは、「第2の流路切替え部」の一例であって、制御部15の制御に従い、熱交換器4aにおいて冷却された水素ガスGを、吸着塔2a,2bのうちの吸着除去処理を行っている吸着塔2に流入させると共に、吸着塔2a,2bのうちの吸着能力再生処理を行っている吸着塔2を通過させられた水素ガスGを、熱交換器4cに流入させる。流路切換え弁5bは、「第1の流路切替え部」の一例であって、制御部15の制御に従い、吸着塔2a,2bのうちの吸着除去処理を行っている吸着塔2を通過させられた水素ガスGを、水分の除去が完了した水素ガスG流入させるべき排出用配管Poに流入させると共に、熱交換器4bにおいて加熱された水素ガスGを、吸着塔2a,2bのうちの吸着能力再生処理を行っている吸着塔2に流入させる。 The flow path switching valve 5a is an example of a "second flow path switching unit" and, under the control of the control unit 15, causes hydrogen gas G cooled in the heat exchanger 4a to flow into the adsorption tower 2 of the adsorption towers 2a and 2b that is undergoing adsorption removal processing, and causes hydrogen gas G that has passed through the adsorption tower 2 of the adsorption towers 2a and 2b that is undergoing adsorption capacity regeneration processing to flow into the heat exchanger 4c. The flow path switching valve 5b is an example of a "first flow path switching unit" and, under the control of the control unit 15, causes hydrogen gas G that has passed through the adsorption tower 2 of the adsorption towers 2a and 2b that is undergoing adsorption removal processing to flow into the exhaust pipe Po into which hydrogen gas G from which moisture removal has been completed should flow, and causes hydrogen gas G heated in the heat exchanger 4b to flow into the adsorption tower 2 of the adsorption towers 2a and 2b that is undergoing adsorption capacity regeneration processing.

流量調整弁6は、「第3の流量調整部」の一例であって、図1に示すように、一例として、水素ガスGの流路における熱交換器4cの下流側に配設され、制御部15の制御下で熱交換器4cを通過させられる水素ガスGの流量を調整する。なお、「第3の流量調整部」については、本例の除去システム1における流量調整弁6の配設位置に限定されず、分岐点P1から、熱交換器4b、流路切換え弁5b、吸着塔2、流路切換え弁5aおよび熱交換器4cを経て合流点P2に至るまでの水素ガスGの流路内における任意の位置に配設することができる。 The flow rate control valve 6 is an example of a "third flow rate control unit" and, as shown in FIG. 1, is disposed downstream of the heat exchanger 4c in the flow path of hydrogen gas G, and adjusts the flow rate of hydrogen gas G passing through the heat exchanger 4c under the control of the control unit 15. Note that the "third flow rate control unit" is not limited to the location of the flow rate control valve 6 in the removal system 1 of this example, and can be disposed at any position in the flow path of hydrogen gas G from the branch point P1 through the heat exchanger 4b, flow path switching valve 5b, adsorption tower 2, flow path switching valve 5a, and heat exchanger 4c to the junction point P2.

流量調整弁7aは、ヒートポンプユニット3(冷却部3c)において冷却されて熱媒液循環路LC1を熱交換器4aに向かって圧送される熱媒液Wcの一部が熱交換器4aを通過せずにヒートポンプユニット3(冷却部3c)に回収されるように制御部15によって開度が変更されることにより、熱交換器4aを通過させられる熱媒液Wcの流量を調整する(「第2の熱交換器を通過させられる冷却用熱媒液の流量を調整する流量調整部」の一例)。流量調整弁7bは、ヒートポンプユニット3(冷却部3c)において冷却されて熱媒液循環路LC2を熱交換器4cに向かって圧送される熱媒液Wcの一部が熱交換器4cを通過せずにヒートポンプユニット3(冷却部3c)に回収されるように制御部15によって開度が変更されることにより、熱交換器4cを通過させられる熱媒液Wcの流量を調整する(「第3の熱交換器を通過させられる冷却用熱媒液の流量を調整する流量調整部」の一例)。 The flow rate adjustment valve 7a adjusts the flow rate of the heat transfer liquid Wc passing through the heat exchanger 4a by changing the opening degree by the control unit 15 so that a part of the heat transfer liquid Wc cooled in the heat pump unit 3 (cooling unit 3c) and pressure-fed through the heat transfer liquid circulation path LC1 toward the heat exchanger 4a is recovered in the heat pump unit 3 (cooling unit 3c) without passing through the heat exchanger 4a (an example of a "flow rate adjustment unit that adjusts the flow rate of the cooling heat transfer liquid that is passed through the second heat exchanger"). The flow rate adjustment valve 7b adjusts the flow rate of the heat transfer liquid Wc passing through the heat exchanger 4c by changing the opening degree by the control unit 15 so that a part of the heat transfer liquid Wc cooled in the heat pump unit 3 (cooling unit 3c) and pressure-fed through the heat transfer liquid circulation path LC2 toward the heat exchanger 4c is recovered in the heat pump unit 3 (cooling unit 3c) without passing through the heat exchanger 4c (an example of a "flow rate adjustment unit that adjusts the flow rate of the cooling heat transfer liquid that is passed through the third heat exchanger").

貯水部8aは、熱交換器4aにおいて水素ガスGから除去されて熱交換器4aから排水された水分を貯留可能に構成され、一例として、貯留した水分の量が予め規定された量(以下、「第1の規定量」ともいう)に達したときに、その一部の予め規定された量(「第1の規定量」よりも少量:以下、「第2の規定量」ともいう)を外部に排出(排水)すると共に、排出したことを報知する信号を制御部15に出力する。貯水部8bは、熱交換器4cにおいて水素ガスGから除去されて熱交換器4cから排水された水分を貯留可能に構成され、一例として、貯留した水分の量が予め規定された量(以下、「第3の規定量」ともいう)に達したときに、その一部の予め規定された量(「第3の規定量」よりも少量:以下、「第4の規定量」ともいう)を外部に排出(排水)すると共に、排出したことを報知する信号を制御部15に出力する。 The water storage unit 8a is configured to store the moisture removed from the hydrogen gas G in the heat exchanger 4a and drained from the heat exchanger 4a. As an example, when the amount of stored moisture reaches a predetermined amount (hereinafter also referred to as the "first specified amount"), it discharges (drains) a part of the stored moisture (less than the "first specified amount": hereinafter also referred to as the "second specified amount") to the outside and outputs a signal to the control unit 15 to notify the control unit 15 that the moisture has been discharged. The water storage unit 8b is configured to store the moisture removed from the hydrogen gas G in the heat exchanger 4c and drained from the heat exchanger 4c. As an example, when the amount of stored moisture reaches a predetermined amount (hereinafter also referred to as the "third specified amount"), it discharges (drains) a part of the stored moisture (less than the "third specified amount": hereinafter also referred to as the "fourth specified amount") to the outside and outputs a signal to the control unit 15 to notify the control unit 15 that the moisture has been discharged.

温度センサ9は、流路切換え弁5aの上流側に配設されており、熱交換器4aや熱交換器4cを通過させられた後に吸着塔2a,2bのうちの吸着除去処理を行っている吸着塔2に流入させられる水素ガスGの温度を検出する。湿度センサ10は、排出用配管Poに配設されており、吸着除去処理を行っている吸着塔2を通過させられて排出用配管Poに流入させられた水素ガスGの湿度を検出する。 The temperature sensor 9 is disposed upstream of the flow path switching valve 5a and detects the temperature of the hydrogen gas G that is passed through the heat exchanger 4a and the heat exchanger 4c and then flows into the adsorption tower 2 that is performing the adsorption removal process among the adsorption towers 2a and 2b. The humidity sensor 10 is disposed in the discharge pipe Po and detects the humidity of the hydrogen gas G that is passed through the adsorption tower 2 that is performing the adsorption removal process and flows into the discharge pipe Po.

次に、除去システム1による吸着除去処理および吸着能力再生処理の基本的な動作について説明する。 Next, we will explain the basic operations of the adsorption removal process and adsorption capacity regeneration process performed by the removal system 1.

操作部13の電源スイッチが投入されたときに、制御部15は、ヒートポンプユニット3の各構成要素を動作させることにより、冷却部3cからの熱媒液Wcの供給、および加熱部3hからの熱媒液Whの供給を開始させる。この際には、冷却部3cによる熱媒液Wcの冷却、および加熱部3hによる熱媒液Whの加熱が行われると共に、ポンプ12aによって熱媒液循環路LC1,LC2内を熱媒液Wcが循環させられ、かつポンプ12bによって熱媒液循環路LH内を熱媒液Whが循環させられる。 When the power switch of the operation unit 13 is turned on, the control unit 15 operates each component of the heat pump unit 3 to start the supply of heat transfer liquid Wc from the cooling unit 3c and the supply of heat transfer liquid Wh from the heating unit 3h. At this time, the heat transfer liquid Wc is cooled by the cooling unit 3c and the heat transfer liquid Wh is heated by the heating unit 3h, and the heat transfer liquid Wc is circulated in the heat transfer liquid circulation paths LC1 and LC2 by the pump 12a, and the heat transfer liquid Wh is circulated in the heat transfer liquid circulation path LH by the pump 12b.

具体的には、冷凍サイクル11内における冷媒の循環に伴い、冷却部3cの蒸発器24における冷媒と熱媒液Wcとの熱交換(蒸発器24における熱媒液Wcから冷媒への吸熱)によって熱媒液Wcが冷却されると共に、低温の熱媒液Wcが、熱媒液循環路LC1を介して熱交換器4aに供給され、かつ熱媒液循環路LC2を介して熱交換器4cに供給される。また、冷凍サイクル11内における冷媒の循環に伴い、加熱部3hの凝縮器22内における冷媒と熱媒液Whとの熱交換(凝縮器22における冷媒から熱媒液Whへの放熱)によって熱媒液Whが加熱されると共に、高温の熱媒液Whが熱媒液循環路LHを介して熱交換器4bに供給される。 Specifically, as the refrigerant circulates in the refrigeration cycle 11, the heat transfer liquid Wc is cooled by heat exchange between the refrigerant and the heat transfer liquid Wc in the evaporator 24 of the cooling unit 3c (heat absorption from the heat transfer liquid Wc to the refrigerant in the evaporator 24), and the low-temperature heat transfer liquid Wc is supplied to the heat exchanger 4a via the heat transfer liquid circulation path LC1 and to the heat exchanger 4c via the heat transfer liquid circulation path LC2. In addition, as the refrigerant circulates in the refrigeration cycle 11, the heat transfer liquid Wh is heated by heat exchange between the refrigerant and the heat transfer liquid Wh in the condenser 22 of the heating unit 3h (heat dissipation from the refrigerant to the heat transfer liquid Wh in the condenser 22), and the high-temperature heat transfer liquid Wh is supplied to the heat exchanger 4b via the heat transfer liquid circulation path LH.

なお、処理開始直後のこの時点において、制御部15は、一例として、流量調整弁7a,7bをそれぞれ最小の開度となる開弁状態(全閉可能な弁構造の場合には全閉状態)に制御する。これにより、冷却部3cから熱媒液循環路LC1に流入した熱媒液Wcの大半(流量調整弁7aが全閉状態の場合には、流入した熱媒液Wcのすべて)が導入口30iから熱交換器4a内に流入させられると共に、冷却部3cから熱媒液循環路LC2に流入した熱媒液Wcの大半(流量調整弁7bが全閉状態の場合には、流入した熱媒液Wcのすべて)が導入口40iから熱交換器4c内に流入させられる。したがって、後述するように除去システム1に水素ガスGが導入されたときに、熱交換器4a,4cにおいて水素ガスGを速やかに冷却する(水素ガスGの熱を熱交換器4a,4cにおいて熱媒液Wcに速やかに吸熱させる)ことが可能となる。また、加熱部3hから熱媒液循環路LHに流入した熱媒液Whが熱交換器4b内に流入させられることにより、後述するように除去システム1に水素ガスGが導入されたときに、好適な吸着能力再生処理が可能な十分に高い温度まで水素ガスGを熱交換器4bにおいて速やかに加熱することが可能となる。 At this time point immediately after the start of the process, the control unit 15, for example, controls the flow control valves 7a and 7b to the open state (fully closed state in the case of a valve structure that can be fully closed) with the minimum opening. As a result, most of the heat transfer liquid Wc that flows into the heat transfer liquid circulation path LC1 from the cooling unit 3c (when the flow control valve 7a is fully closed, all of the heat transfer liquid Wc that flows in) flows into the heat exchanger 4a from the inlet 30i, and most of the heat transfer liquid Wc that flows into the heat transfer liquid circulation path LC2 from the cooling unit 3c (when the flow control valve 7b is fully closed, all of the heat transfer liquid Wc that flows in) flows into the heat exchanger 4c from the inlet 40i. Therefore, when hydrogen gas G is introduced into the removal system 1 as described later, it is possible to quickly cool the hydrogen gas G in the heat exchangers 4a and 4c (to quickly absorb the heat of the hydrogen gas G into the heat transfer liquid Wc in the heat exchangers 4a and 4c). In addition, the heat transfer liquid Wh that flows from the heating section 3h into the heat transfer liquid circulation path LH is caused to flow into the heat exchanger 4b, so that when hydrogen gas G is introduced into the removal system 1 as described below, the hydrogen gas G can be quickly heated in the heat exchanger 4b to a sufficiently high temperature that allows for suitable adsorption capacity regeneration processing.

次いで、処理対象の水素ガスGを除去システム1に導入する。この際に、本例の除去システム1では、前述したように、吸着塔2a,2bのいずれか一方における吸着除去処理と、吸着塔2a,2bの他方における吸着能力再生処理とを並行して実行することができるように構成されている。この場合、一例として、前回稼働時に、吸着塔2bにおいて吸着除去処理を実行しつつ、吸着塔2aにおいて吸着能力再生処理を実行していた場合には、吸着塔2b内の吸着剤に多量の水分が吸着されて吸着塔2bの吸着除去能力が低下した状態となっており、吸着塔2a内の吸着剤が吸着能力再生処理によって水分を除去されて吸着塔2aの吸着除去能力が向上した状態となっている。したがって、そのような稼働状態の後に処理を開始したこの時点においては、一例として、前回稼働時に吸着能力再生処理が実行されていたことで吸着処理能力が高い吸着塔2aにおいて吸着除去処理を実行しつつ、前回稼働時に吸着除去処理が実行されていたことで吸着処理能力が低下している吸着塔2bにおいて吸着能力再生処理を実行する。 Next, the hydrogen gas G to be treated is introduced into the removal system 1. At this time, as described above, the removal system 1 of this example is configured to be able to perform the adsorption removal process in one of the adsorption towers 2a and 2b and the adsorption capacity regeneration process in the other of the adsorption towers 2a and 2b in parallel. In this case, as an example, if the adsorption removal process was performed in the adsorption tower 2b while the adsorption capacity regeneration process was performed in the adsorption tower 2a during the previous operation, a large amount of moisture is adsorbed by the adsorbent in the adsorption tower 2b, resulting in a reduced adsorption removal capacity of the adsorption tower 2b, and moisture is removed from the adsorbent in the adsorption tower 2a by the adsorption capacity regeneration process, resulting in an improved adsorption removal capacity of the adsorption tower 2a. Therefore, at this point in time when the process is started after such an operation state, as an example, the adsorption removal process is performed in the adsorption tower 2a, which has a high adsorption processing capacity due to the adsorption capacity regeneration process performed during the previous operation, while the adsorption capacity regeneration process is performed in the adsorption tower 2b, which has a reduced adsorption processing capacity due to the adsorption removal process performed during the previous operation.

具体的には、制御部15は、導入用配管Piから導入されて熱交換器4aを通過させられた水素ガスGの一部が分岐点P1を通過して吸着塔2aに流入し、かつ吸着塔2bを通過させられた水素ガスGが熱交換器4cに流入するように流路切換え弁5aを制御する。また、制御部15は、吸着塔2aを通過させられた水素ガスGが排出用配管Poに流入し、かつ分岐点P1および熱交換器4bをこの順で通過させられた水素ガスGが吸着塔2bに流入するように流路切換え弁5bを制御する。これにより、導入用配管Piから導入されて熱交換器4aを通過させられた水素ガスGの一部が、分岐点P1、流路切換え弁5a、吸着塔2aおよび流路切換え弁5bをこの順で通過して排出用配管Poに流入する流路(吸着塔2aにおける吸着除去処理を主目的とする流路)と、熱交換器4aを通過させられた水素ガスGの他の一部が、分岐点P1、熱交換器4b、流路切換え弁5b、吸着塔2b、流路切換え弁5a、熱交換器4c、流量調整弁6および合流点P2をこの順で通過させられて流路切換え弁5aを介して吸着塔2aに流入させられる流路(吸着塔2bにおける吸着能力再生処理を主目的とする流路)とが形成される。 Specifically, the control unit 15 controls the flow path switching valve 5a so that a portion of the hydrogen gas G introduced from the inlet pipe Pi and passed through the heat exchanger 4a passes through the branch point P1 and flows into the adsorption tower 2a, and the hydrogen gas G passed through the adsorption tower 2b flows into the heat exchanger 4c. The control unit 15 also controls the flow path switching valve 5b so that the hydrogen gas G passed through the adsorption tower 2a flows into the exhaust pipe Po, and the hydrogen gas G passed through the branch point P1 and the heat exchanger 4b in this order flows into the adsorption tower 2b. As a result, a flow path (a flow path mainly intended for adsorption removal processing in the adsorption tower 2a) is formed in which a portion of the hydrogen gas G introduced from the inlet pipe Pi and passed through the heat exchanger 4a passes through the branch point P1, the flow path switching valve 5a, the adsorption tower 2a, and the flow path switching valve 5b in this order and flows into the discharge pipe Po, and another portion of the hydrogen gas G passed through the heat exchanger 4a passes through the branch point P1, the heat exchanger 4b, the flow path switching valve 5b, the adsorption tower 2b, the flow path switching valve 5a, the heat exchanger 4c, the flow rate adjustment valve 6, and the junction point P2 in this order and flows into the adsorption tower 2a via the flow path switching valve 5a (a flow path mainly intended for adsorption capacity regeneration processing in the adsorption tower 2b).

この際に、熱交換器4aの二次熱交換部32では、導入口30iから導入されて後述するように一次熱交換部31を通過させられた水素ガスGと、ヒートポンプユニット3(冷却部3c)から供給された熱媒液Wcとの熱交換によって水素ガスGが冷却される。これにより、熱交換器4a内において水素ガスGの相対湿度が上昇するため、水素ガスGに含まれている気相の水分の一部が液相に変化して水素ガスGから離脱させられる(除去される)。この結果、二次熱交換部32を通過させられた水素ガスGの絶対湿度が十分に低下させられる(水素ガスGに含まれる水分の量が十分に減少させられる)。 At this time, in the secondary heat exchange section 32 of the heat exchanger 4a, the hydrogen gas G is cooled by heat exchange between the hydrogen gas G introduced from the inlet 30i and passed through the primary heat exchange section 31 as described below, and the heat transfer liquid Wc supplied from the heat pump unit 3 (cooling section 3c). As a result, the relative humidity of the hydrogen gas G increases in the heat exchanger 4a, and some of the moisture in the gas phase contained in the hydrogen gas G changes to the liquid phase and is separated (removed) from the hydrogen gas G. As a result, the absolute humidity of the hydrogen gas G passed through the secondary heat exchange section 32 is sufficiently reduced (the amount of moisture contained in the hydrogen gas G is sufficiently reduced).

この場合、制御部15は、処理開始直後のこの時点において、熱交換器4a内の流量調整弁33aを最大の開度となる開弁状態(全開可能な弁構造の場合には全開状態)に制御すると共に、流量調整弁33bを最小の開度となる開弁状態(全閉可能な弁構造の場合には全閉状態)に制御する。これにより、導入口30iから熱交換器4aに導入されて一次熱交換部31および二次熱交換部32をこの順で通過させられた水素ガスGの大半(流量調整弁33bが全閉の場合には、二次熱交換部32を通過させられた水素ガスGのすべて)が一次熱交換部31を再び通過させられる状態となる。 In this case, at this point immediately after the start of processing, the control unit 15 controls the flow rate control valve 33a in the heat exchanger 4a to an open state with a maximum opening degree (fully open state if the valve structure can be fully opened), and controls the flow rate control valve 33b to an open state with a minimum opening degree (fully closed state if the valve structure can be fully closed). As a result, most of the hydrogen gas G introduced into the heat exchanger 4a from the inlet 30i and passed through the primary heat exchange unit 31 and the secondary heat exchange unit 32 in this order (if the flow rate control valve 33b is fully closed, all of the hydrogen gas G passed through the secondary heat exchange unit 32) is made to pass through the primary heat exchange unit 31 again.

この際には、二次熱交換部32における熱媒液Wcとの熱交換によって冷却された水素ガスG(排出口30oに向かって一次熱交換部31を通過させられる水素ガスG)と、導入口30iから一次熱交換部31に新たに導入された水素ガスGとの一次熱交換部31における熱交換によって、新たに導入された水素ガスGが冷却される。これにより、新たに導入された水素ガスGの相対湿度が上昇するため、水素ガスGに含まれている気相の水分の一部が一次熱交換部31において液相に変化して水素ガスGから離脱させられる(除去される)。この結果、一次熱交換部31から二次熱交換部32に流入する水素ガスGの絶対湿度が十分に低下させられる(水素ガスGに含まれる水分の量が十分に減少させられる)ため、前述した二次熱交換部32における水分の除去と相俟って、水素ガスGに含まれていた水分が熱交換器4aにおいて十分に除去される。 At this time, the newly introduced hydrogen gas G is cooled by heat exchange in the primary heat exchange section 31 between the hydrogen gas G (hydrogen gas G passing through the primary heat exchange section 31 toward the exhaust port 30o) cooled by heat exchange with the heat transfer liquid Wc in the secondary heat exchange section 32 and the hydrogen gas G newly introduced into the primary heat exchange section 31 from the inlet 30i. As a result, the relative humidity of the newly introduced hydrogen gas G increases, and a part of the moisture in the gas phase contained in the hydrogen gas G changes to a liquid phase in the primary heat exchange section 31 and is separated (removed) from the hydrogen gas G. As a result, the absolute humidity of the hydrogen gas G flowing from the primary heat exchange section 31 to the secondary heat exchange section 32 is sufficiently reduced (the amount of moisture contained in the hydrogen gas G is sufficiently reduced), and thus, in combination with the removal of moisture in the secondary heat exchange section 32 described above, the moisture contained in the hydrogen gas G is sufficiently removed in the heat exchanger 4a.

また、排出口30oに向かって一次熱交換部31を通過させられる水素ガスGは、一次熱交換部31に新たに導入された水素ガスGとの熱交換によって温度上昇させられる。この場合、二次熱交換部32から一次熱交換部31に流入する水素ガスGは、二次熱交換部32における冷却(温度低下)によって相対湿度が100%程度となっている。したがって、排出口30oから排出されるのに先立って水素ガスGを温度上昇させて相対湿度を低下させることにより、熱交換器4aから吸着塔2aや熱交換器4bに向かう流路内等で水素ガスGに含まれている水分が結露する事態を好適に回避することが可能となる。 The hydrogen gas G passing through the primary heat exchange section 31 toward the exhaust port 30o is heated by heat exchange with the hydrogen gas G newly introduced into the primary heat exchange section 31. In this case, the hydrogen gas G flowing from the secondary heat exchange section 32 into the primary heat exchange section 31 has a relative humidity of about 100% due to cooling (temperature reduction) in the secondary heat exchange section 32. Therefore, by raising the temperature of the hydrogen gas G and reducing the relative humidity before it is exhausted from the exhaust port 30o, it is possible to preferably avoid a situation in which the moisture contained in the hydrogen gas G condenses in the flow path from the heat exchanger 4a toward the adsorption tower 2a or the heat exchanger 4b.

また、一次熱交換部31および二次熱交換部32において水素ガスGから離脱させられた液相の水分は、貯水部8aに貯留されると共に、予め規定された量の水分が貯水部8aに貯留される都度、貯水部8aから所定の排水場所に排水される。この際には、前述したように、貯水部8a(貯水部8aに配設されているセンサ)からヒートポンプユニット3の制御部15に排水を報知する信号が出力される。したがって、この信号の出力頻度、すなわち、貯水部8aからの排水の頻度に基づき、熱交換器4aにおいて単位時間当りに水素ガスGから除去される水分の量を特定することができる。 The liquid phase moisture removed from the hydrogen gas G in the primary heat exchange section 31 and the secondary heat exchange section 32 is stored in the water storage section 8a, and is drained from the water storage section 8a to a predetermined drainage location each time a predetermined amount of moisture is stored in the water storage section 8a. At this time, as described above, a signal is output from the water storage section 8a (a sensor disposed in the water storage section 8a) to notify the control section 15 of the heat pump unit 3 of drainage. Therefore, based on the frequency of output of this signal, i.e., the frequency of drainage from the water storage section 8a, the amount of moisture removed from the hydrogen gas G per unit time in the heat exchanger 4a can be determined.

また、除去システム1に対して水素ガスGを圧送する圧縮機の回転数(すなわち、単位時間あたりの水素ガスGの導入量)、各温度センサ34によって検出される水素ガスGの温度、ヒートポンプユニット3(冷却部3c)の動作状態および流量調整弁7aの開度(すなわち、熱交換器4aに供給される冷熱の熱量)、並びに熱交換器4aにおいて単位時間当りに水素ガスGから除去される水分の量などに基づき、導入用配管Piを介して熱交換器4aに流入する水素ガスGに含まれている水分の量(湿度)や、熱交換器4aから排出される水素ガスGに含まれている水分の量(湿度)を特定することができる。 In addition, the amount of moisture (humidity) contained in the hydrogen gas G flowing into the heat exchanger 4a via the inlet pipe Pi and the amount of moisture (humidity) contained in the hydrogen gas G discharged from the heat exchanger 4a can be determined based on the rotation speed of the compressor that pumps hydrogen gas G to the removal system 1 (i.e., the amount of hydrogen gas G introduced per unit time), the temperature of the hydrogen gas G detected by each temperature sensor 34, the operating state of the heat pump unit 3 (cooling section 3c) and the opening degree of the flow control valve 7a (i.e., the amount of cold heat supplied to the heat exchanger 4a), and the amount of moisture removed from the hydrogen gas G per unit time in the heat exchanger 4a.

一方、熱交換器4a(排出口30o)から排出された水素ガスG(冷却によって水分の一部を除去された水素ガスG)の一部は、分岐点P1および流路切換え弁5aをこの順で通過して吸着塔2aに流入する。この際に、吸着塔2aに流入した水素ガスGに含まれている水分が吸着塔2a内の吸着剤に吸着されて水素ガスGから除去される(吸着塔2aにおける吸着除去処理の実行)。これにより、吸着塔2aを通過させられた水素ガスGの絶対湿度が十分に低下させられる(水素ガスGに含まれる水分の量が十分に減少させられる)。 Meanwhile, a portion of the hydrogen gas G (hydrogen gas G from which some of the moisture has been removed by cooling) discharged from the heat exchanger 4a (exhaust port 30o) passes through branch point P1 and flow path switching valve 5a in this order and flows into the adsorption tower 2a. At this time, the moisture contained in the hydrogen gas G that has flowed into the adsorption tower 2a is adsorbed by the adsorbent in the adsorption tower 2a and removed from the hydrogen gas G (the adsorption and removal process is executed in the adsorption tower 2a). This sufficiently reduces the absolute humidity of the hydrogen gas G that has passed through the adsorption tower 2a (the amount of moisture contained in the hydrogen gas G is sufficiently reduced).

この場合、本例の除去システム1では、導入用配管Piに導入された水素ガスGに含まれる水分の一部が熱交換器4aにおいて除去されるため、吸着除去処理を行う吸着塔2aに流入する水素ガスGの絶対湿度は、導入用配管Piに導入された水素ガスGの絶対湿度よりも低くなっている。したがって、熱交換器4aを通過させずに導入用配管Piから吸着塔2aに水素ガスGを直接流入させる構成(導入用配管Piに導入される水素ガスGに含まれている水分を吸着塔2aによる吸着除去処理だけで除去する構成)とは異なり、吸着除去処理を行っている吸着塔2a内の吸着剤の吸着除去能力が短時間で大きく低下する事態が回避される。この後、吸着塔2aにおいて水分を十分に吸着除去された水素ガスGは、流路切換え弁5bを介して排出用配管Poに流入し、図示しない水素ガスGの供給先に排出される。 In this case, in the removal system 1 of this example, a part of the moisture contained in the hydrogen gas G introduced into the introduction pipe Pi is removed in the heat exchanger 4a, so that the absolute humidity of the hydrogen gas G flowing into the adsorption tower 2a performing the adsorption removal process is lower than the absolute humidity of the hydrogen gas G introduced into the introduction pipe Pi. Therefore, unlike a configuration in which the hydrogen gas G flows directly from the introduction pipe Pi into the adsorption tower 2a without passing through the heat exchanger 4a (a configuration in which the moisture contained in the hydrogen gas G introduced into the introduction pipe Pi is removed only by the adsorption removal process by the adsorption tower 2a), a situation in which the adsorption removal ability of the adsorbent in the adsorption tower 2a performing the adsorption removal process is significantly reduced in a short period of time is avoided. After this, the hydrogen gas G from which the moisture has been sufficiently adsorbed and removed in the adsorption tower 2a flows into the discharge pipe Po via the flow path switching valve 5b and is discharged to the supply destination of the hydrogen gas G (not shown).

また、熱交換器4a(排出口30o)から排出された水素ガスG(冷却によって水分の一部を除去された水素ガスG)の他の一部は、分岐点P1を通過して熱交換器4bに流入する。この際に、熱交換器4bでは、流入させられた水素ガスGが、ヒートポンプユニット3(加熱部3h)から供給された熱媒液Whとの熱交換によって加熱され、その相対湿度が大きく低下させられる。また、熱交換器4bにおいて加熱された水素ガスGは、流路切換え弁5bを介して吸着塔2bに流入する。 In addition, another portion of the hydrogen gas G (hydrogen gas G from which some of the moisture has been removed by cooling) discharged from the heat exchanger 4a (exhaust port 30o) passes through the branch point P1 and flows into the heat exchanger 4b. At this time, in the heat exchanger 4b, the hydrogen gas G that has flowed in is heated by heat exchange with the heat transfer liquid Wh supplied from the heat pump unit 3 (heating section 3h), and its relative humidity is greatly reduced. In addition, the hydrogen gas G heated in the heat exchanger 4b flows into the adsorption tower 2b via the flow path switching valve 5b.

この場合、吸着塔2bに流入させる水素ガスGの温度が高いほど、吸着塔2b内の吸着剤を好適に温度上昇させて吸着剤から水分を好適に離脱させることができる。したがって、熱交換器4bにおいて十分に温度上昇させられた水素ガスGが吸着塔2bに流入させられる本例の除去システム1では、流入した水素ガスGによって吸着塔2b内の吸着剤が十分に温度上昇させられるため、この吸着剤に吸着されている水分が吸着剤から好適に離脱させられる。また、吸着塔2bに流入させる水素ガスGに含まれる水分が少ないほど(水素ガスGの相対湿度が低いほど)、吸着塔2b内の吸着剤から水素ガスGに水分を好適に離脱させる(吸着剤から離脱する水分を水素ガスGに取り込む)ことができる。したがって、熱交換器4a,4cにおいて水分を除去され、かつ熱交換器4bにおいて加熱されることでその相対湿度が十分に低くなっている水素ガスGが吸着塔2bに流入させられる本例の除去システム1では、このような水素ガスGに接することで、吸着剤に吸着されている水分が一層好適に離脱させられる。これにより、吸着塔2b内の吸着剤が再生されて吸着塔2bの吸着除去能力が復元される。 In this case, the higher the temperature of the hydrogen gas G flowing into the adsorption tower 2b, the more the adsorbent in the adsorption tower 2b can be appropriately increased in temperature, and the moisture can be appropriately removed from the adsorbent. Therefore, in the removal system 1 of this example in which the hydrogen gas G whose temperature has been sufficiently increased in the heat exchanger 4b is flowed into the adsorption tower 2b, the temperature of the adsorbent in the adsorption tower 2b is sufficiently increased by the flowing hydrogen gas G, so that the moisture adsorbed in the adsorbent is appropriately removed from the adsorbent. In addition, the less moisture contained in the hydrogen gas G flowing into the adsorption tower 2b (the lower the relative humidity of the hydrogen gas G), the more moisture can be appropriately removed from the adsorbent in the adsorption tower 2b into the hydrogen gas G (the moisture desorbed from the adsorbent can be taken into the hydrogen gas G). Therefore, in the removal system 1 of this example in which the hydrogen gas G whose relative humidity has been sufficiently reduced by being heated in the heat exchangers 4a and 4c is flowed into the adsorption tower 2b, the moisture adsorbed in the adsorbent is more appropriately removed by contacting such hydrogen gas G. This regenerates the adsorbent in adsorption tower 2b and restores the adsorption and removal capacity of adsorption tower 2b.

また、吸着塔2bにおいて吸着剤から離脱した水分を含む水素ガスGは、流路切換え弁5aを介して熱交換器4cに流入する。この際に、熱交換器4cの二次熱交換部42では、導入口40iから導入されて後述するように一次熱交換部41を通過させられた水素ガスGと、ヒートポンプユニット3(冷却部3c)から供給された熱媒液Wcとの熱交換によって水素ガスGが冷却される。これにより、熱交換器4c内において水素ガスGの相対湿度が上昇するため、水素ガスGに含まれている気相の水分の一部が液相に変化して水素ガスGから離脱させられる(除去される)。この結果、二次熱交換部42を通過させられた水素ガスGの絶対湿度が十分に低下させられる(水素ガスGに含まれる水分の量が十分に減少させられる)。 Hydrogen gas G containing moisture released from the adsorbent in the adsorption tower 2b flows into the heat exchanger 4c through the flow path switching valve 5a. At this time, in the secondary heat exchange section 42 of the heat exchanger 4c, the hydrogen gas G is cooled by heat exchange between the hydrogen gas G introduced from the inlet 40i and passed through the primary heat exchange section 41 as described below, and the heat transfer liquid Wc supplied from the heat pump unit 3 (cooling section 3c). As a result, the relative humidity of the hydrogen gas G increases in the heat exchanger 4c, and some of the moisture in the gas phase contained in the hydrogen gas G changes to a liquid phase and is released (removed) from the hydrogen gas G. As a result, the absolute humidity of the hydrogen gas G passed through the secondary heat exchange section 42 is sufficiently reduced (the amount of moisture contained in the hydrogen gas G is sufficiently reduced).

この場合、制御部15は、処理開始直後のこの時点において、熱交換器4c内の流量調整弁43aを最大の開度となる開弁状態(全開可能な弁構造の場合には全閉状態)に制御すると共に、流量調整弁43bを最小の開度となる開弁状態(全閉可能な弁構造の場合には全閉状態)に制御する。これにより、導入口40iから熱交換器4cに導入されて一次熱交換部41および二次熱交換部42を通過させられた水素ガスGの大半(流量調整弁43bが全閉の場合には、二次熱交換部42を通過させられた水素ガスGのすべて)が一次熱交換部41を再び通過させられる状態となる。 In this case, at this point immediately after the start of processing, the control unit 15 controls the flow rate control valve 43a in the heat exchanger 4c to the open state with the maximum opening degree (fully closed state in the case of a valve structure that can be fully opened), and controls the flow rate control valve 43b to the open state with the minimum opening degree (fully closed state in the case of a valve structure that can be fully closed). As a result, most of the hydrogen gas G introduced into the heat exchanger 4c from the inlet 40i and passed through the primary heat exchange unit 41 and the secondary heat exchange unit 42 (if the flow rate control valve 43b is fully closed, all of the hydrogen gas G passed through the secondary heat exchange unit 42) is made to pass through the primary heat exchange unit 41 again.

この際には、二次熱交換部42における熱媒液Wcとの熱交換によって冷却された水素ガスG(排出口40oに向かって一次熱交換部41を通過させられる水素ガスG)と、導入口40iから一次熱交換部41に新たに導入された水素ガスGとの一次熱交換部41における熱交換によって、新たに導入された水素ガスGが冷却される。これにより、新たに導入された水素ガスGの相対湿度が上昇するため、水素ガスGに含まれている気相の水分の一部が一次熱交換部41において液相に変化して水素ガスGから離脱させられる(除去される)。この結果、一次熱交換部41から二次熱交換部42に流入する水素ガスGの絶対湿度が十分に低下させられる(水素ガスGに含まれる水分の量が十分に減少させられる)ため、前述した二次熱交換部42における水分の除去と相俟って、水素ガスGに含まれていた水分が熱交換器4cにおいて十分に除去される。 At this time, the newly introduced hydrogen gas G is cooled by heat exchange in the primary heat exchange section 41 between the hydrogen gas G (hydrogen gas G passed through the primary heat exchange section 41 toward the exhaust port 40o) cooled by heat exchange with the heat transfer liquid Wc in the secondary heat exchange section 42 and the hydrogen gas G newly introduced into the primary heat exchange section 41 from the inlet 40i. As a result, the relative humidity of the newly introduced hydrogen gas G increases, and a part of the moisture in the gas phase contained in the hydrogen gas G changes to a liquid phase in the primary heat exchange section 41 and is separated (removed) from the hydrogen gas G. As a result, the absolute humidity of the hydrogen gas G flowing from the primary heat exchange section 41 to the secondary heat exchange section 42 is sufficiently reduced (the amount of moisture contained in the hydrogen gas G is sufficiently reduced), and thus, in combination with the removal of moisture in the secondary heat exchange section 42 described above, the moisture contained in the hydrogen gas G is sufficiently removed in the heat exchanger 4c.

また、排出口40oに向かって一次熱交換部41を通過させられる水素ガスGは、一次熱交換部41に新たに導入された水素ガスGとの熱交換によって温度上昇させられる。この場合、二次熱交換部42から一次熱交換部41に流入する水素ガスGは、二次熱交換部42における冷却(温度低下)によって相対湿度が100%程度となっている。したがって、排出口40oから排出されるのに先立って水素ガスGを温度上昇させて相対湿度を低下させることにより、熱交換器4cから吸着塔2aに向かう流路内等で水素ガスGに含まれている水分が結露する事態を好適に回避することが可能となる。 The hydrogen gas G passing through the primary heat exchange section 41 toward the exhaust port 40o is heated by heat exchange with the hydrogen gas G newly introduced into the primary heat exchange section 41. In this case, the hydrogen gas G flowing from the secondary heat exchange section 42 into the primary heat exchange section 41 has a relative humidity of about 100% due to cooling (temperature reduction) in the secondary heat exchange section 42. Therefore, by raising the temperature of the hydrogen gas G and reducing the relative humidity before it is exhausted from the exhaust port 40o, it is possible to preferably avoid a situation in which the moisture contained in the hydrogen gas G condenses in the flow path from the heat exchanger 4c toward the adsorption tower 2a, etc.

また、一次熱交換部41および二次熱交換部42において水素ガスGから離脱させられた液相の水分は、貯水部8bに貯留されると共に、予め規定された量の水分が貯水部8bに貯留される都度、貯水部8bから所定の排水場所に排水される。この際には、前述したように、貯水部8b(貯水部8bに配設されているセンサ)からヒートポンプユニット3の制御部15に排水を報知する信号が出力される。したがって、この信号の出力頻度、すなわち、貯水部8bからの排水の頻度に基づき、熱交換器4cにおいて単位時間当りに水素ガスGから除去される水分の量を特定することができる。 The liquid phase moisture removed from the hydrogen gas G in the primary heat exchange section 41 and the secondary heat exchange section 42 is stored in the water storage section 8b, and is drained from the water storage section 8b to a predetermined drainage location each time a predetermined amount of moisture is stored in the water storage section 8b. At this time, as described above, a signal is output from the water storage section 8b (a sensor disposed in the water storage section 8b) to notify the control section 15 of the heat pump unit 3 of drainage. Therefore, based on the frequency of output of this signal, i.e., the frequency of drainage from the water storage section 8b, the amount of moisture removed from the hydrogen gas G per unit time in the heat exchanger 4c can be determined.

また、除去システム1に対して水素ガスGを圧送する圧縮機の回転数(すなわち、単位時間あたりの水素ガスGの導入量)、分岐点P1における水素ガスGの分流比、各温度センサ44によって検出される水素ガスGの温度、ヒートポンプユニット3(冷却部3c)の動作状態および流量調整弁7bの開度(すなわち、熱交換器4cに供給される冷熱の熱量)、並びに熱交換器4cにおいて単位時間当りに水素ガスGから除去される水分の量などに基づき、吸着塔2bを通過して熱交換器4cに流入する水素ガスGに含まれている水分の量(すなわち、吸着塔2bにおいて吸着剤から離脱した水分の量)や、熱交換器4cから排出される水素ガスGに含まれている水分の量(湿度)を特定することができる。 In addition, based on the rotation speed of the compressor that pumps hydrogen gas G to the removal system 1 (i.e., the amount of hydrogen gas G introduced per unit time), the branch flow ratio of hydrogen gas G at branch point P1, the temperature of hydrogen gas G detected by each temperature sensor 44, the operating state of the heat pump unit 3 (cooling section 3c) and the opening degree of the flow control valve 7b (i.e., the amount of cold heat supplied to the heat exchanger 4c), and the amount of moisture removed from hydrogen gas G per unit time in the heat exchanger 4c, it is possible to determine the amount of moisture contained in the hydrogen gas G that passes through the adsorption tower 2b and flows into the heat exchanger 4c (i.e., the amount of moisture released from the adsorbent in the adsorption tower 2b) and the amount of moisture (humidity) contained in the hydrogen gas G discharged from the heat exchanger 4c.

一方、熱交換器4c(排出口40o)から排出された水素ガスGは、合流点P2において吸着塔2aに向かって流動している水素ガスGに合流させられ、流路切換え弁5aを通過して吸着塔2aに流入する。この際に、前述したように、吸着塔2aに流入した水素ガスGに含まれている水分が吸着塔2a内の吸着剤に吸着されて水素ガスGから除去されるため、熱交換器4cにおいて除去し切れなかった水分が水素ガスGから確実に除去される。したがって、水分を除去すべき水素ガスGを用いて吸着塔2bの吸着能力を再生しているにも拘わらず、多量の水分が含まれた水素ガスGが排出用配管Poに流入する事態が好適に回避される。 Meanwhile, the hydrogen gas G discharged from the heat exchanger 4c (exhaust port 40o) is merged with the hydrogen gas G flowing toward the adsorption tower 2a at the junction P2, passes through the flow path switching valve 5a, and flows into the adsorption tower 2a. At this time, as described above, the moisture contained in the hydrogen gas G that flows into the adsorption tower 2a is adsorbed by the adsorbent in the adsorption tower 2a and removed from the hydrogen gas G, so that the moisture that was not completely removed by the heat exchanger 4c is reliably removed from the hydrogen gas G. Therefore, even though the adsorption capacity of the adsorption tower 2b is regenerated using the hydrogen gas G from which moisture should be removed, a situation in which hydrogen gas G containing a large amount of moisture flows into the discharge pipe Po is preferably avoided.

このように、本例の除去システム1では、吸着塔2aにおける吸着除去処理と、吸着塔2bにおける吸着能力再生処理とが並行して実行される。したがって、例えば、吸着塔2a内の吸着剤が水分を好適に除去することが困難な状態となったときに、制御部15流路切換え弁5a,5bを制御することにより、吸着能力が再生された吸着塔2bにおいて吸着除去処理を実行し、吸着能力が低下した吸着塔2aにおいて吸着能力再生処理を実行することで、再び吸着塔2bの吸着能力が低下したときに、吸着塔2aにおける吸着除去処理を実行することが可能となっている。 In this way, in the removal system 1 of this example, the adsorption removal process in the adsorption tower 2a and the adsorption capacity regeneration process in the adsorption tower 2b are performed in parallel. Therefore, for example, when it becomes difficult for the adsorbent in the adsorption tower 2a to adequately remove moisture, the control unit 15 controls the flow path switching valves 5a and 5b to perform the adsorption removal process in the adsorption tower 2b whose adsorption capacity has been regenerated, and to perform the adsorption capacity regeneration process in the adsorption tower 2a whose adsorption capacity has decreased, so that when the adsorption capacity of the adsorption tower 2b decreases again, the adsorption removal process in the adsorption tower 2a can be performed.

続いて、制御部15による各部の制御態様の一例について説明する。 Next, we will explain an example of how the control unit 15 controls each part.

本例の除去システム1では、上記したように、水素ガスGを加熱するための温熱源として加熱部3hを備えると共に、水素ガスGを冷却するための冷熱源として冷却部3cを備えて構成されている。この場合、加熱部3hは、冷凍サイクル11の凝縮器22における冷媒からの放熱によって熱媒液Whを加熱可能に構成され、冷却部3cは、冷凍サイクル11の蒸発器24における冷媒への吸熱によって熱媒液Wcを冷却可能に構成されている。したがって、本例の除去システム1では、前述したように、ヒートポンプユニット3(冷凍サイクル11)を動作させることで、熱交換器4a,4cにおける水素ガスGの冷却と、熱交換器4bにおける水素ガスGの加熱とを同時に行うことが可能となっている。 As described above, the removal system 1 of this example is configured to include a heating unit 3h as a hot heat source for heating the hydrogen gas G, and a cooling unit 3c as a cold heat source for cooling the hydrogen gas G. In this case, the heating unit 3h is configured to be able to heat the heat transfer liquid Wh by heat radiation from the refrigerant in the condenser 22 of the refrigeration cycle 11, and the cooling unit 3c is configured to be able to cool the heat transfer liquid Wc by heat absorption by the refrigerant in the evaporator 24 of the refrigeration cycle 11. Therefore, in the removal system 1 of this example, as described above, by operating the heat pump unit 3 (refrigeration cycle 11), it is possible to simultaneously cool the hydrogen gas G in the heat exchangers 4a and 4c and heat the hydrogen gas G in the heat exchanger 4b.

しかしながら、ヒートポンプユニット3を構成する冷凍サイクル11では、蒸発器24において冷媒に吸熱することなく凝縮器22において冷媒から放熱したり、凝縮器22において冷媒から放熱することなく蒸発器24において冷媒に吸熱したりすることができず、凝縮器22における冷媒からの放熱と、蒸発器24における冷媒への吸熱とを同時に行う必要がある。このため、ヒートポンプユニット3を温熱源および冷熱源として使用する本例の除去システム1では、加熱部3hにおいて熱媒液Whを加熱するときに、その加熱の度合いに応じて冷却部3cにおいて熱媒液Wcが冷却され、冷却部3cにおいて熱媒液Wcを冷却するときに、その冷却の度合いに応じて加熱部3hにおいて熱媒液Whが加熱される。言い換えれば、本例の除去システム1では、加熱部3hにおいて熱媒液Whを加熱する必要があるときに、その加熱の度合いに応じて冷却部3cにおいて熱媒液Wcを冷却する必要があり、冷却部3cにおいて熱媒液Wcを冷却する必要があるときに、その冷却の度合いに応じて加熱部3hにおいて熱媒液Whを加熱する必要がある。 However, in the refrigeration cycle 11 constituting the heat pump unit 3, it is not possible to dissipate heat from the refrigerant in the condenser 22 without absorbing heat into the refrigerant in the evaporator 24, or to absorb heat into the refrigerant in the evaporator 24 without dissipating heat from the refrigerant in the condenser 22, and it is necessary to simultaneously dissipate heat from the refrigerant in the condenser 22 and absorb heat into the refrigerant in the evaporator 24. For this reason, in the removal system 1 of this example which uses the heat pump unit 3 as a hot heat source and a cold heat source, when the heat transfer liquid Wh is heated in the heating section 3h, the heat transfer liquid Wc is cooled in the cooling section 3c according to the degree of heating, and when the heat transfer liquid Wc is cooled in the cooling section 3c, the heat transfer liquid Wh is heated in the heating section 3h according to the degree of cooling. In other words, in the removal system 1 of this example, when it is necessary to heat the heat transfer liquid Wh in the heating section 3h, it is necessary to cool the heat transfer liquid Wc in the cooling section 3c according to the degree of heating, and when it is necessary to cool the heat transfer liquid Wc in the cooling section 3c, it is necessary to heat the heat transfer liquid Wh in the heating section 3h according to the degree of cooling.

なお、本例の除去システム1では、前述したように、加熱部3hが、大気からの吸熱によって熱媒液Whを加熱する補助的な温熱源を備え、冷却部3cが、大気への放熱によって熱媒液Wcを冷却する補助的な冷熱源を備えている。しかしながら、蒸発器24における冷媒への吸熱を行うことなく補助的な冷熱源だけで熱媒液Wcを冷却しようとしても、凝縮器22における冷媒からの放熱によって熱媒液Whを加熱することができず、凝縮器22における冷媒からの放熱を行うことなく補助的な温熱源だけで熱媒液Whを加熱しようとしても、蒸発器24における冷媒への吸熱によって熱媒液Wcを冷却することができない。したがって、上記の補助的な熱源は、あくまでも、凝縮器22において冷媒から放熱する熱量と、蒸発器24において冷媒に吸熱する熱量とが僅かに相違したときに、この差を補うことができる程度の熱源として利用されるものとなっている。 In the removal system 1 of this example, as described above, the heating unit 3h is provided with an auxiliary hot heat source that heats the heat transfer liquid Wh by absorbing heat from the atmosphere, and the cooling unit 3c is provided with an auxiliary cold heat source that cools the heat transfer liquid Wc by dissipating heat to the atmosphere. However, even if the heat transfer liquid Wc is cooled only by the auxiliary cold heat source without absorbing heat into the refrigerant in the evaporator 24, the heat transfer liquid Wh cannot be heated by heat dissipation from the refrigerant in the condenser 22, and even if the heat transfer liquid Wh is heated only by the auxiliary hot heat source without dissipating heat from the refrigerant in the condenser 22, the heat transfer liquid Wc cannot be cooled by heat absorption into the refrigerant in the evaporator 24. Therefore, the above-mentioned auxiliary heat source is used only as a heat source that can compensate for the difference when the amount of heat dissipated from the refrigerant in the condenser 22 and the amount of heat absorbed by the refrigerant in the evaporator 24 are slightly different.

一方、吸着塔2a,2bのいずれか一方における吸着除去処理と吸着塔2a,2bの他方における吸着能力再生処理とを並行して実行する本例の除去システム1において、導入用配管Piに導入される水素ガスGの量を減少させることなく吸着除去処理を継続的に実行するには、吸着除去処理を行っている吸着塔2において水素ガスGに含まれる水分を好適に吸着除去するのが困難となったときに、吸着能力再生処理によって吸着能力が再生された吸着塔2において吸着除去処理を継続する(吸着除去処理を行っている吸着塔2と吸着能力再生処理を行っている吸着塔2とを切り換える:以下、単に「吸着塔2を切り換える」ともいう)必要がある。このため、本例の除去システム1のような構成を採用したときには、吸着除去処理を行っている吸着塔2が、水素ガスGに含まれる水分を好適に吸着除去することが可能な状態のうちに、吸着能力再生処理を行っている吸着塔2の吸着除去能力が十分に再生される(吸着剤の吸着能力が十分に復元される)ように吸着能力再生処理を行うのが好ましい。 On the other hand, in the removal system 1 of this example, which performs the adsorption removal process in one of the adsorption towers 2a and 2b in parallel with the adsorption capacity regeneration process in the other of the adsorption towers 2a and 2b, in order to continuously perform the adsorption removal process without reducing the amount of hydrogen gas G introduced into the introduction pipe Pi, when it becomes difficult to suitably adsorb and remove the moisture contained in the hydrogen gas G in the adsorption tower 2 performing the adsorption removal process, it is necessary to continue the adsorption removal process in the adsorption tower 2 whose adsorption capacity has been regenerated by the adsorption capacity regeneration process (switching between the adsorption tower 2 performing the adsorption removal process and the adsorption tower 2 performing the adsorption capacity regeneration process: hereinafter, also simply referred to as "switching the adsorption tower 2"). For this reason, when a configuration such as that of the removal system 1 of this example is adopted, it is preferable to perform the adsorption capacity regeneration process so that the adsorption removal capacity of the adsorption tower 2 performing the adsorption capacity regeneration process is sufficiently regenerated (the adsorption capacity of the adsorbent is sufficiently restored) while the adsorption tower 2 performing the adsorption removal process is in a state in which it is possible to suitably adsorb and remove the moisture contained in the hydrogen gas G.

この場合、吸着能力再生処理を行う吸着塔2は、除去システム1が停止状態であったり、直前まで吸着除去処理が行われていたりすることで、耐圧容器や吸着剤の温度が、吸着剤から水分を好適に離脱させ得る温度よりも低くなっている。したがって、吸着除去処理および吸着能力再生処理を開始した直後(除去システム1の起動直後や、両吸着塔2を切り換えた直後)には、熱交換器4bにおいて加熱された水素ガスGによって吸着能力再生処理の対象とする吸着塔2の耐圧容器や吸着剤を効率よく加熱して吸着剤から水分を好適に離脱させることができるように、加熱部3hにおいて熱媒液Whを短時間で十分に加熱する必要がある。 In this case, the temperature of the pressure vessel and adsorbent in the adsorption tower 2 performing the adsorption capacity regeneration process is lower than the temperature at which moisture can be suitably removed from the adsorbent because the removal system 1 is stopped or the adsorption removal process was performed until just before. Therefore, immediately after the adsorption removal process and the adsorption capacity regeneration process are started (immediately after the removal system 1 is started or immediately after switching between the two adsorption towers 2), it is necessary to sufficiently heat the heat transfer liquid Wh in a short time in the heating section 3h so that the hydrogen gas G heated in the heat exchanger 4b can efficiently heat the pressure vessel and adsorbent of the adsorption tower 2 that is the target of the adsorption capacity regeneration process and suitably remove moisture from the adsorbent.

また、吸着除去処理を行っている吸着塔2に水分を多量に含んだ水素ガスGが流入したときには、その吸着塔2内の吸着剤の吸着能力が短時間で大きく低下してしまう。このため、吸着能力再生処理を行っている吸着塔2が十分に再生される前に、吸着除去処理を行っている吸着塔2において水素ガスGから水分を好適に吸着除去するのが困難となるおそれがある。 In addition, when hydrogen gas G containing a large amount of moisture flows into the adsorption tower 2 undergoing the adsorption removal process, the adsorption capacity of the adsorbent in the adsorption tower 2 drops significantly in a short period of time. Therefore, it may become difficult for the adsorption tower 2 undergoing the adsorption removal process to adequately adsorb and remove moisture from the hydrogen gas G before the adsorption tower 2 undergoing the adsorption capacity regeneration process is fully regenerated.

ここで、吸着能力再生処理の開始直後は、吸着剤が多量の水分を吸着した状態となっているため、熱交換器4bによって加熱された高温の水素ガスGに接した吸着剤から多量の水分が離脱させられる結果、熱交換器4cに流入する水素ガスGに多量の水分が含まれた水素ガスGが流入することとなる。このため、この水分を熱交換器4cにおいて好適に除去することができなかった場合には、吸着除去処理を行っている吸着塔2に合流点P2を経て水分を多量に含んだ水素ガスGが流入してしまう。また、導入用配管Piに導入される水素ガスGに多量の水分が含まれているときに、この水分を熱交換器4aにおいて好適に除去することができなかった場合には、吸着除去処理を行っている吸着塔2に水分を多量に含んだ水素ガスGが流入してしまう。 Here, immediately after the start of the adsorption capacity regeneration process, the adsorbent has adsorbed a large amount of moisture, and as a result, a large amount of moisture is released from the adsorbent in contact with the high-temperature hydrogen gas G heated by the heat exchanger 4b, and the hydrogen gas G that flows into the heat exchanger 4c contains a large amount of moisture. Therefore, if this moisture cannot be properly removed in the heat exchanger 4c, the hydrogen gas G containing a large amount of moisture will flow through the junction P2 into the adsorption tower 2 where the adsorption removal process is being performed. Also, when the hydrogen gas G introduced into the introduction pipe Pi contains a large amount of moisture, if this moisture cannot be properly removed in the heat exchanger 4a, the hydrogen gas G containing a large amount of moisture will flow into the adsorption tower 2 where the adsorption removal process is being performed.

そこで、本例の除去システム1では、吸着除去処理および吸着能力再生処理を開始した直後に、ヒートポンプユニット3(冷凍サイクル11)を最大限の処理能力で動作させる(具体的には、圧縮機21の回転数を上昇させる)ことで、十分に高温の熱媒液Whが加熱部3hから熱交換器4bに供給されて水素ガスGが十分に温度上昇させられ、この高温の水素ガスGが吸着能力再生処理を行う吸着塔2に供給されると共に、凝縮器22において冷媒から放熱される大量の熱量に対応して蒸発器24において冷媒に大量の熱量が吸熱される結果、十分に低温の熱媒液Wcが熱交換器4a,4cに供給されるように構成されている。 Therefore, in the removal system 1 of this example, immediately after starting the adsorption removal process and the adsorption capacity regeneration process, the heat pump unit 3 (refrigeration cycle 11) is operated at maximum processing capacity (specifically, the rotation speed of the compressor 21 is increased), so that a sufficiently high-temperature heat transfer liquid Wh is supplied from the heating section 3h to the heat exchanger 4b, and the temperature of the hydrogen gas G is sufficiently raised. This high-temperature hydrogen gas G is then supplied to the adsorption tower 2 that performs the adsorption capacity regeneration process, and a large amount of heat is absorbed by the refrigerant in the evaporator 24 in response to the large amount of heat released from the refrigerant in the condenser 22, so that a sufficiently low-temperature heat transfer liquid Wc is supplied to the heat exchangers 4a and 4c.

この際に、本例の除去システム1では、前述したように、流量調整弁7aが最小の開度となる開弁状態(または全閉状態)に制御されることで、冷却部3cから熱媒液循環路LC1に流入した熱媒液Wcの大半(または全て)が熱交換器4a(二次熱交換部32)を通過させられる。また、熱交換器4a内の流量調整弁33aが最大の開度となる開弁状態(または全開状態)に制御されると共に、流量調整弁33bが最小の開度となる開弁状態(または全閉状態)に制御されることで、導入用配管Piに導入された水素ガスGの大半(または全て)が二次熱交換部32を通過させられた後に一次熱交換部31を再び通過させられる。これにより、熱媒液Wcとの熱交換によって二次熱交換部32において水素ガスGが十分に冷却されて(水素ガスGの熱が熱媒液Wcに好適に吸熱されて)水素ガスGに含まれている水分が好適に除去されると共に、二次熱交換部32を通過させられた水素ガスGとの熱交換によって一次熱交換部31において水素ガスGが十分に冷却されて(一次熱交換部31を通過している水素ガスGの熱が排出口30oから排出される水素ガスGに好適に吸熱されて)水分が好適に除去される結果、多量の水分を含んだ水素ガスGが吸着除去処理を行っている吸着塔2に流入する事態が好適に回避される。 At this time, in the removal system 1 of this example, as described above, the flow control valve 7a is controlled to an open state (or fully closed state) with a minimum opening, so that most (or all) of the heat transfer liquid Wc flowing from the cooling section 3c into the heat transfer liquid circulation path LC1 passes through the heat exchanger 4a (secondary heat exchange section 32). In addition, the flow control valve 33a in the heat exchanger 4a is controlled to an open state (or fully open state) with a maximum opening, and the flow control valve 33b is controlled to an open state (or fully closed state) with a minimum opening, so that most (or all) of the hydrogen gas G introduced into the introduction pipe Pi passes through the secondary heat exchange section 32 and then passes through the primary heat exchange section 31 again. As a result, the hydrogen gas G is sufficiently cooled in the secondary heat exchange section 32 by heat exchange with the heat transfer liquid Wc (the heat of the hydrogen gas G is preferably absorbed by the heat transfer liquid Wc), and the moisture contained in the hydrogen gas G is preferably removed, and the hydrogen gas G is sufficiently cooled in the primary heat exchange section 31 by heat exchange with the hydrogen gas G that has passed through the secondary heat exchange section 32 (the heat of the hydrogen gas G passing through the primary heat exchange section 31 is preferably absorbed by the hydrogen gas G discharged from the exhaust port 30o), and the moisture is preferably removed. As a result, a situation in which hydrogen gas G containing a large amount of moisture flows into the adsorption tower 2 where the adsorption and removal process is being performed is preferably avoided.

さらに、本例の除去システム1では、前述したように、流量調整弁7bが最小の開度となる開弁状態(または全閉状態)に制御されることで、冷却部3cから熱媒液循環路LC2に流入した熱媒液Wcの大半(または全て)が熱交換器4c(二次熱交換部42)を通過させられる。また、熱交換器4c内の流量調整弁43aが最大の開度となる開弁状態(または全開状態)に制御されると共に、流量調整弁43bが最小の開度となる開弁状態(または全閉状態)に制御されることで、吸着能力再生処理の対象の吸着塔2を通過させられた水素ガスGの大半(または全て)が二次熱交換部42を通過させられた後に一次熱交換部41を再び通過させられる。これにより、熱媒液Wcとの熱交換によって二次熱交換部42において水素ガスGが十分に冷却されて(水素ガスGの熱が熱媒液Wcに好適に吸熱されて)水素ガスGに含まれている水分が好適に除去されると共に、二次熱交換部42を通過させられた水素ガスGとの熱交換によって一次熱交換部41において水素ガスGが十分に冷却されて(一次熱交換部41を通過している水素ガスGの熱が排出口40oから排出される水素ガスGに好適に吸熱されて)水分が好適に除去される結果、多量の水分を含んだ水素ガスGが吸着除去処理を行っている吸着塔2に流入する事態が好適に回避される。 Furthermore, in the removal system 1 of this example, as described above, the flow control valve 7b is controlled to an open state (or fully closed state) with a minimum opening, so that most (or all) of the heat transfer liquid Wc flowing from the cooling section 3c into the heat transfer liquid circulation path LC2 is passed through the heat exchanger 4c (secondary heat exchange section 42). In addition, the flow control valve 43a in the heat exchanger 4c is controlled to an open state (or fully open state) with a maximum opening, and the flow control valve 43b is controlled to an open state (or fully closed state) with a minimum opening, so that most (or all) of the hydrogen gas G passed through the adsorption tower 2 that is the target of the adsorption capacity regeneration process is passed through the secondary heat exchange section 42 and then passed through the primary heat exchange section 41 again. As a result, the hydrogen gas G is sufficiently cooled in the secondary heat exchange section 42 by heat exchange with the heat transfer liquid Wc (the heat of the hydrogen gas G is preferably absorbed by the heat transfer liquid Wc), and the moisture contained in the hydrogen gas G is preferably removed, and the hydrogen gas G is sufficiently cooled in the primary heat exchange section 41 by heat exchange with the hydrogen gas G that has passed through the secondary heat exchange section 42 (the heat of the hydrogen gas G passing through the primary heat exchange section 41 is preferably absorbed by the hydrogen gas G discharged from the exhaust port 40o), and the moisture is preferably removed. As a result, a situation in which hydrogen gas G containing a large amount of moisture flows into the adsorption tower 2 where the adsorption and removal process is being performed is preferably avoided.

これにより、ヒートポンプユニット3(冷凍サイクル11)を最大限の処理能力で動作させることで得られる温熱(凝縮器22において冷媒から放熱される熱)および冷熱(蒸発器24において冷媒に吸熱される熱)の均衡を保ちつつ、吸着能力再生処理の対象の吸着塔2を短時間で効率良く再生し、かつ吸着除去処理の対象の吸着塔2の吸着能力が短時間で大きく低下する事態を好適に回避することが可能となっている。 This makes it possible to efficiently regenerate the adsorption tower 2 that is the target of the adsorption capacity regeneration process in a short time while maintaining a balance between the hot heat (heat dissipated from the refrigerant in the condenser 22) and the cold heat (heat absorbed by the refrigerant in the evaporator 24) obtained by operating the heat pump unit 3 (refrigeration cycle 11) at maximum processing capacity, and to effectively avoid a situation in which the adsorption capacity of the adsorption tower 2 that is the target of the adsorption removal process drops significantly in a short time.

一方、吸着能力再生処理を継続することによって吸着剤に吸着された状態の水分が徐々に減少する。また、高温の水素ガスGに接している耐圧容器や吸着剤の温度も十分に高い温度となる。したがって、処理開始からある程度経過したときには、吸着能力再生処理を行っている吸着塔2に供給する水素ガスGの温度をある程度低下させても、吸着剤から水分を十分に離脱させることが可能となる。このため、加熱部3hから熱交換器4bに供給する熱媒液Whの温度を処理開始直後よりも低下させたり、単位時間当りの熱媒液Whの供給量を減少させたりすることが可能となり、これに応じて、ヒートポンプユニット3(冷凍サイクル11)やポンプ12a,12bの処理能力を低下させて電力消費量を低減することが可能となる。 On the other hand, by continuing the adsorption capacity regeneration process, the moisture adsorbed in the adsorbent gradually decreases. In addition, the temperature of the pressure vessel and the adsorbent in contact with the high-temperature hydrogen gas G also becomes sufficiently high. Therefore, after a certain amount of time has passed since the start of the process, even if the temperature of the hydrogen gas G supplied to the adsorption tower 2 undergoing the adsorption capacity regeneration process is lowered to a certain extent, it becomes possible to sufficiently remove moisture from the adsorbent. For this reason, it becomes possible to lower the temperature of the heat transfer liquid Wh supplied from the heating section 3h to the heat exchanger 4b compared to immediately after the start of the process, or to reduce the amount of heat transfer liquid Wh supplied per unit time, and accordingly, it becomes possible to reduce the processing capacity of the heat pump unit 3 (refrigeration cycle 11) and the pumps 12a and 12b to reduce power consumption.

この際に、ヒートポンプユニット3(冷凍サイクル11)を温熱源および冷熱源とする本例の除去システム1では、前述したように、加熱部3hにおいて熱媒液Whを加熱する度合いに応じて冷却部3cにおいて熱媒液Wcが冷却される。言い換えれば、加熱部3hにおいて熱媒液Whを加熱する熱量を減少させるときには、冷却部3cにおいて熱媒液Wcを冷却する熱量、すなわち、熱交換器4a,4cにおいて水素ガスGから熱媒液Wcに吸熱する熱量を減少させる必要がある。したがって、本例の除去システム1では、制御部15が、ヒートポンプユニット3(冷凍サイクル11)の処理能力を低下させる(具体的には、圧縮機21の回転数を低下させる)制御と相俟って、流量調整弁7aの開度を大きくする制御、および流量調整弁7bの開度を大きくする制御を実行する。 In this case, in the removal system 1 of this example, in which the heat pump unit 3 (refrigeration cycle 11) is used as a hot and cold heat source, as described above, the heat transfer liquid Wc is cooled in the cooling section 3c according to the degree to which the heat transfer liquid Wh is heated in the heating section 3h. In other words, when the amount of heat used to heat the heat transfer liquid Wh in the heating section 3h is reduced, it is necessary to reduce the amount of heat used to cool the heat transfer liquid Wc in the cooling section 3c, that is, the amount of heat absorbed from the hydrogen gas G to the heat transfer liquid Wc in the heat exchangers 4a and 4c. Therefore, in the removal system 1 of this example, the control section 15 executes control to increase the opening degree of the flow rate control valve 7a and control to increase the opening degree of the flow rate control valve 7b in conjunction with control to reduce the processing capacity of the heat pump unit 3 (refrigeration cycle 11) (specifically, to reduce the rotation speed of the compressor 21).

この際に、流量調整弁7aの開度が大きくなることで、冷却部3cから熱媒液循環路LC1に流入した熱媒液Wcの一部が熱交換器4a(二次熱交換部32)を通過させずに冷却部3cに戻ることとなる。したがって、流量調整弁7aの開度が大きくなることで、熱交換器4aにおいて水素ガスGから熱媒液Wcに吸熱される熱量が減少する。また、流量調整弁7bの開度が大きくなることで、冷却部3cから熱媒液循環路LC2に流入した熱媒液Wcの一部が熱交換器4c(二次熱交換部42)を通過させずに冷却部3cに戻ることとなる。したがって、流量調整弁7bの開度が大きくなることで、熱交換器4cにおいて水素ガスGから熱媒液Wcに吸熱される熱量が減少する。 At this time, as the opening of the flow rate control valve 7a increases, a portion of the heat transfer liquid Wc that has flowed from the cooling section 3c into the heat transfer liquid circulation path LC1 returns to the cooling section 3c without passing through the heat exchanger 4a (secondary heat exchange section 32). Therefore, as the opening of the flow rate control valve 7a increases, the amount of heat absorbed from the hydrogen gas G to the heat transfer liquid Wc in the heat exchanger 4a decreases. Also, as the opening of the flow rate control valve 7b increases, a portion of the heat transfer liquid Wc that has flowed from the cooling section 3c into the heat transfer liquid circulation path LC2 returns to the cooling section 3c without passing through the heat exchanger 4c (secondary heat exchange section 42). Therefore, as the opening of the flow rate control valve 7b increases, the amount of heat absorbed from the hydrogen gas G to the heat transfer liquid Wc in the heat exchanger 4c decreases.

この場合、前述したように、吸着能力再生処理を継続することによって吸着剤に吸着されている水分が徐々に減少するため、熱交換器4cに流入する水素ガスGに含まれる水分、すなわち、熱交換器4cにおいて水素ガスGから除去可能な水分が徐々に減少する。このため、熱交換器4cにおいて水素ガスGを冷却するのに必要となる冷熱の熱量が徐々に低下する。その一方では、導入用配管Piに導入される水素ガスGに含まれる水分の量は、吸着能力再生処理の進捗状況とは無関係であるため、熱交換器4aにおいて水素ガスGから水分を除去するのに必要となる冷熱の熱量は大きく変化しないものの、導入される水素ガスGに含まれる水分の量が多いときには、熱交換器4aにおいて必要となる冷熱の熱量が多くなり、導入される水素ガスGに含まれる水分の量が少ないときには、熱交換器4aにおいて必要となる冷熱の熱量が少なくなる。 In this case, as described above, the moisture adsorbed by the adsorbent gradually decreases as the adsorption capacity regeneration process continues, so the moisture contained in the hydrogen gas G flowing into the heat exchanger 4c, i.e., the moisture that can be removed from the hydrogen gas G in the heat exchanger 4c, gradually decreases. Therefore, the amount of cold heat required to cool the hydrogen gas G in the heat exchanger 4c gradually decreases. On the other hand, since the amount of moisture contained in the hydrogen gas G introduced into the introduction pipe Pi is unrelated to the progress of the adsorption capacity regeneration process, the amount of cold heat required to remove moisture from the hydrogen gas G in the heat exchanger 4a does not change significantly, but when the amount of moisture contained in the introduced hydrogen gas G is large, the amount of cold heat required in the heat exchanger 4a increases, and when the amount of moisture contained in the introduced hydrogen gas G is small, the amount of cold heat required in the heat exchanger 4a decreases.

したがって、本例の除去システム1では、熱交換器4aにおいて必要とされる冷熱の熱量(熱交換器4aに流入する水素ガスGに含まれている水分の量)、および熱交換器4cにおいて必要とされる冷熱の熱量(熱交換器4cに流入する水素ガスGに含まれている水分の量)に応じて、制御部15が流量調整弁7a,7bの開度を調整する。 Therefore, in this example of the removal system 1, the control unit 15 adjusts the opening degree of the flow control valves 7a and 7b according to the amount of cold heat required in the heat exchanger 4a (the amount of moisture contained in the hydrogen gas G flowing into the heat exchanger 4a) and the amount of cold heat required in the heat exchanger 4c (the amount of moisture contained in the hydrogen gas G flowing into the heat exchanger 4c).

この場合、前述したように、熱交換器4aでは、導入口30iから導入された水素ガスGと、排出口30oから排出される水素ガスGとの一次熱交換部31における熱交換(一次熱交換:予冷)によって水素ガスGから水分が除去されると共に、一次熱交換部31を通過させられた水素ガスGと熱媒液Wcとの二次熱交換部32における熱交換(二次熱交換:本冷)によって水素ガスGから水分がさらに除去される。 In this case, as described above, in the heat exchanger 4a, moisture is removed from the hydrogen gas G by heat exchange (primary heat exchange: pre-cooling) in the primary heat exchange section 31 between the hydrogen gas G introduced from the inlet 30i and the hydrogen gas G discharged from the outlet 30o, and moisture is further removed from the hydrogen gas G by heat exchange (secondary heat exchange: main cooling) in the secondary heat exchange section 32 between the hydrogen gas G passed through the primary heat exchange section 31 and the heat transfer liquid Wc.

この際に、前述の流量調整弁33aの開度が大きく、かつ流量調整弁33bの開度が小さいとき(二次熱交換部32を通過させられた後に一次熱交換部31を再び通過させられる水素ガスGの量が多いとき)には、一次熱交換部31における予冷の熱交換量が増加して一次熱交換部31において水素ガスGから水分が好適に除去される。しかしながら、排出口30oから排出される水素ガスGの温度が低くなるため、この水素ガスGが吸着除去処理を行う吸着塔2を通過させられることで、吸着塔2(耐圧容器や吸着剤)や流路切換え弁5bの温度が低下する結果、吸着塔2を切り換えたときに、温度低下した状態の吸着塔2や流路切換え弁5bに高温の吸着塔2が接することで結露が生じることがある。このような状態では、吸着塔2を再び切り換えたときに、結露水が排出用配管Poに流入するおそれがある。また、排出口30oから排出される水素ガスGの温度が低い状態では、吸着能力再生処理のために熱交換器4bにおいて水素ガスGを好適な温度まで加熱するのに必要となる温熱の熱量が増加する。 At this time, when the opening degree of the flow rate control valve 33a is large and the opening degree of the flow rate control valve 33b is small (when the amount of hydrogen gas G that is passed through the primary heat exchanger 31 again after passing through the secondary heat exchanger 32 is large), the amount of pre-cooling heat exchange in the primary heat exchanger 31 increases, and moisture is suitably removed from the hydrogen gas G in the primary heat exchanger 31. However, since the temperature of the hydrogen gas G discharged from the exhaust port 30o is low, the hydrogen gas G is passed through the adsorption tower 2 that performs the adsorption removal process, and the temperature of the adsorption tower 2 (pressure-resistant container and adsorbent) and the flow path switching valve 5b decreases. As a result, when the adsorption tower 2 is switched, the high-temperature adsorption tower 2 comes into contact with the adsorption tower 2 and flow path switching valve 5b in a temperature-reduced state, and condensation may occur. In such a state, when the adsorption tower 2 is switched again, condensed water may flow into the discharge pipe Po. In addition, when the temperature of the hydrogen gas G discharged from the outlet 30o is low, the amount of heat required to heat the hydrogen gas G to a suitable temperature in the heat exchanger 4b for the adsorption capacity regeneration process increases.

一方、流量調整弁33aの開度が小さく、かつ流量調整弁33bの開度が大きいとき(二次熱交換部32を通過させられた後に一次熱交換部31を再び通過させられる水素ガスGの量が少ないとき)には、一次熱交換部31における予冷の熱交換量が減少するため、一次熱交換部31において水素ガスGから水分を好適に除去するのが困難となる。したがって、結露水が排出用配管Poに流入したり、熱交換器4bにおいて必要となる温熱の熱量が過剰に多くなったりする事態を招くことなく、一次熱交換部31および二次熱交換部32の双方において水素ガスGから水分を好適に除去することができるように、流量調整弁33a,33bの開度(すなわち、一次熱交換部31における水素ガスGの冷却の度合い)を調整するのが好ましい。 On the other hand, when the opening degree of the flow rate control valve 33a is small and the opening degree of the flow rate control valve 33b is large (when the amount of hydrogen gas G that is passed through the primary heat exchange section 31 again after passing through the secondary heat exchange section 32 is small), the amount of pre-cooling heat exchange in the primary heat exchange section 31 decreases, making it difficult to suitably remove moisture from the hydrogen gas G in the primary heat exchange section 31. Therefore, it is preferable to adjust the opening degrees of the flow rate control valves 33a and 33b (i.e., the degree of cooling of the hydrogen gas G in the primary heat exchange section 31) so that moisture can be suitably removed from the hydrogen gas G in both the primary heat exchange section 31 and the secondary heat exchange section 32 without causing a situation in which condensation water flows into the exhaust pipe Po or the amount of heat required for the warm heat in the heat exchanger 4b becomes excessively large.

この場合、熱交換器4aにおける流量調整弁33a,33bの開度の調整(一次熱交換部31における水素ガスGの冷却の度合いの調整)については、熱交換器4a内における水素ガスGの温度変化に基づいて制御される。具体的には、導入口30iから導入された水素ガスGの温度(温度センサ34aによって検出される温度:「第4の温度」の一例)、導入口30iから導入されて一次熱交換部31を通過させられた水素ガスGの温度(温度センサ34bによって検出される温度:「第5の温度」の一例)、および二次熱交換部32を通過させられた水素ガスGの温度(温度センサ34cによって検出される温度:「第6の温度」の一例)をそれぞれ特定する。 In this case, the adjustment of the opening degree of the flow rate control valves 33a, 33b in the heat exchanger 4a (adjustment of the degree of cooling of the hydrogen gas G in the primary heat exchange section 31) is controlled based on the temperature change of the hydrogen gas G in the heat exchanger 4a. Specifically, the temperature of the hydrogen gas G introduced from the inlet 30i (temperature detected by the temperature sensor 34a: an example of the "fourth temperature"), the temperature of the hydrogen gas G introduced from the inlet 30i and passed through the primary heat exchange section 31 (temperature detected by the temperature sensor 34b: an example of the "fifth temperature"), and the temperature of the hydrogen gas G passed through the secondary heat exchange section 32 (temperature detected by the temperature sensor 34c: an example of the "sixth temperature") are respectively specified.

次いで、上記の「第4の温度」および「第6の温度」の温度差(「第3の温度差」の一例)と、「第5の温度」および「第6の温度」の温度差(「第4の温度差」の一例)とを特定すると共に、「第3の温度差」と「第4の温度差」との比が予め規定された目標範囲内の比となるように、流量調整弁33a,33bを制御してバイパス流路33を通過する水素ガスGの流量を調整する(「第4の処理」の一例)。なお、上記の「目標範囲」については、除去システム1の使用環境下に応じて、結露水が排出用配管Poに流入したり、熱交換器4bにおいて必要となる温熱の熱量が過剰に多くなったりする事態を招くことなく、一次熱交換部31において水素ガスGから水分を好適に除去することができる状態となる「第3の温度差と第4の温度差との比」を予め特定することで、各処理の開始に先立って規定される。 Next, the temperature difference between the above-mentioned "fourth temperature" and "sixth temperature" (an example of the "third temperature difference") and the temperature difference between the "fifth temperature" and "sixth temperature" (an example of the "fourth temperature difference") are specified, and the flow rate of the hydrogen gas G passing through the bypass flow path 33 is adjusted by controlling the flow control valves 33a and 33b so that the ratio of the "third temperature difference" to the "fourth temperature difference" is within a predetermined target range (an example of the "fourth process"). Note that the above-mentioned "target range" is specified prior to the start of each process by specifying in advance the "ratio between the third temperature difference and the fourth temperature difference" that allows moisture to be suitably removed from the hydrogen gas G in the primary heat exchange unit 31 without causing a situation in which condensation water flows into the discharge pipe Po or the amount of heat required in the heat exchanger 4b becomes excessively large, depending on the usage environment of the removal system 1.

また、本例の除去システム1では、制御部15が、流量調整弁33a,33bの開度を調整する制御と並行して、流量調整弁7aの開度を調整する制御を実行する。具体的には、制御部15は、吸着除去処理を行う吸着塔2に流入させられる水素ガスGの温度(温度センサ9によって検出される温度)に基づき、流量調整弁7aを制御して、水素ガスGの温度が高いときに熱交換器4aを通過させられる熱媒液Wcの流量を増加させ、水素ガスGの温度が低いときに熱交換器4aを通過させられる熱媒液Wcの流量を減少させる。これにより、吸着除去処理を行う吸着塔2に対して過剰に低い温度の水素ガスGが流入する事態が回避され、結露水が排出用配管Poに流入する事態を好適に回避することが可能となる。 In addition, in the removal system 1 of this example, the control unit 15 executes control to adjust the opening degree of the flow rate control valve 7a in parallel with control to adjust the opening degree of the flow rate control valves 33a and 33b. Specifically, the control unit 15 controls the flow rate control valve 7a based on the temperature (temperature detected by the temperature sensor 9) of the hydrogen gas G flowing into the adsorption tower 2 performing the adsorption removal process, to increase the flow rate of the heat transfer liquid Wc that is passed through the heat exchanger 4a when the temperature of the hydrogen gas G is high, and to decrease the flow rate of the heat transfer liquid Wc that is passed through the heat exchanger 4a when the temperature of the hydrogen gas G is low. This makes it possible to avoid a situation in which hydrogen gas G with an excessively low temperature flows into the adsorption tower 2 performing the adsorption removal process, and to preferably avoid a situation in which condensation water flows into the discharge pipe Po.

また、本例の除去システム1では、制御部15が、熱交換器4c内における水素ガスGの温度変化の状態に応じて流量調整弁43a,43bの開度を調整する制御を実行する。この場合、流量調整弁43aの開度が大きく、かつ流量調整弁43bの開度が小さいとき(二次熱交換部42の後に一次熱交換部41を再び通過させられる水素ガスGの量が多いとき)には、導入口40iから導入された水素ガスGと二次熱交換部42において冷却された水素ガスGとの一次熱交換部41における熱交換量が多くなる。このため、一次熱交換部41において水素ガスGから水分を好適に除去することが可能となるものの、熱交換器4cにおいて必要とされる冷熱の熱量が増加することとなる。また、流量調整弁43aの開度が小さく、かつ流量調整弁43bの開度が大きいとき(二次熱交換部42の後に一次熱交換部41を再び通過させられる水素ガスGの量が少ないとき)には、導入口40iから導入された水素ガスGと二次熱交換部42において冷却された水素ガスGとの一次熱交換部41における熱交換量が少なくなる。このため、熱交換器4cにおいて必要とされる冷熱の熱量が減少するものの、一次熱交換部41において水素ガスGから水分を好適に除去するのが困難となる。 In addition, in the removal system 1 of this example, the control unit 15 executes control to adjust the opening of the flow rate control valves 43a and 43b according to the state of the temperature change of the hydrogen gas G in the heat exchanger 4c. In this case, when the opening of the flow rate control valve 43a is large and the opening of the flow rate control valve 43b is small (when the amount of hydrogen gas G that is passed through the primary heat exchanger 41 again after the secondary heat exchanger 42 is large), the amount of heat exchange in the primary heat exchanger 41 between the hydrogen gas G introduced from the inlet 40i and the hydrogen gas G cooled in the secondary heat exchanger 42 increases. Therefore, although it is possible to preferably remove moisture from the hydrogen gas G in the primary heat exchanger 41, the amount of heat required for cold heat in the heat exchanger 4c increases. In addition, when the opening degree of the flow rate control valve 43a is small and the opening degree of the flow rate control valve 43b is large (when the amount of hydrogen gas G that is passed through the primary heat exchange section 41 again after the secondary heat exchange section 42 is small), the amount of heat exchanged in the primary heat exchange section 41 between the hydrogen gas G introduced from the inlet 40i and the hydrogen gas G cooled in the secondary heat exchange section 42 decreases. Therefore, although the amount of cold heat required in the heat exchanger 4c decreases, it becomes difficult to suitably remove moisture from the hydrogen gas G in the primary heat exchange section 41.

したがって、流量調整弁7bの開度調整に応じて熱交換器4cに供給される熱媒液Wcの量(すなわち、熱交換器4cに供給される冷熱の熱量)に応じて、一次熱交換部41および二次熱交換部42の双方において水素ガスGから水分を好適に除去することができるように、流量調整弁43,43bの開度(すなわち、導入口40iから導入された水素ガスGと二次熱交換部42において冷却された水素ガスGとの一次熱交換部41における冷却の度合い)を調整するのが好ましい。 Therefore, it is preferable to adjust the opening of the flow control valves 43, 43b (i.e., the degree of cooling in the primary heat exchange section 41 between the hydrogen gas G introduced from the inlet 40i and the hydrogen gas G cooled in the secondary heat exchange section 42) so that moisture can be suitably removed from the hydrogen gas G in both the primary heat exchange section 41 and the secondary heat exchange section 42 according to the amount of heat transfer liquid Wc supplied to the heat exchanger 4c in response to the adjustment of the opening of the flow control valve 7b (i.e., the amount of cold heat supplied to the heat exchanger 4c).

この場合、熱交換器4cにおける流量調整弁43a,43bの開度の調整については、熱交換器4c内における水素ガスGの温度変化に基づいて制御される。具体的には、導入口40iから導入された水素ガスGの温度(温度センサ44aによって検出される温度:「第1の温度」の一例)、導入口40iから導入されて一次熱交換部41を通過させられた水素ガスGの温度(温度センサ44bによって検出される温度:「第2の温度」の一例)、および二次熱交換部42から排出される水素ガスGの温度(温度センサ44cによって検出される温度:「第3の温度」の一例)をそれぞれ特定する。 In this case, the opening of the flow rate control valves 43a and 43b in the heat exchanger 4c is adjusted based on the temperature change of the hydrogen gas G in the heat exchanger 4c. Specifically, the temperature of the hydrogen gas G introduced from the inlet 40i (temperature detected by the temperature sensor 44a: an example of the "first temperature"), the temperature of the hydrogen gas G introduced from the inlet 40i and passed through the primary heat exchange section 41 (temperature detected by the temperature sensor 44b: an example of the "second temperature"), and the temperature of the hydrogen gas G discharged from the secondary heat exchange section 42 (temperature detected by the temperature sensor 44c: an example of the "third temperature") are respectively specified.

次いで、上記の「第1の温度」および「第3の温度」の温度差(「第1の温度差」の一例)、および「第2の温度」および「第3の温度」の温度差(「第2の温度差」の一例)「それぞれ特定すると共に、「第1の温度差」と「第2の温度差」との比が予め規定された目標範囲内の比となるように、流量調整弁43a,43bを制御してバイパス流路43を通過する水素ガスGの流量を調整する(「第3の処理」の一例)。なお、上記の「目標範囲」については、除去システム1の使用環境下に応じて、熱交換器4cに供給される冷熱の熱量に応じて、一次熱交換部41および二次熱交換部42の双方において水素ガスGから水分を好適に除去することができる状態となる「第1の温度差と第2の温度差との比」を予め特定することで、各処理の開始に先立って規定される。 Next, the temperature difference between the above-mentioned "first temperature" and "third temperature" (an example of the "first temperature difference"), and the temperature difference between the "second temperature" and "third temperature" (an example of the "second temperature difference") are respectively specified, and the flow rate of the hydrogen gas G passing through the bypass flow path 43 is adjusted by controlling the flow control valves 43a and 43b so that the ratio of the "first temperature difference" to the "second temperature difference" is within a predetermined target range (an example of the "third process"). Note that the above-mentioned "target range" is specified prior to the start of each process by specifying in advance the "ratio between the first temperature difference and the second temperature difference" that allows moisture to be suitably removed from the hydrogen gas G in both the primary heat exchange unit 41 and the secondary heat exchange unit 42 according to the amount of cold heat supplied to the heat exchanger 4c in accordance with the usage environment of the removal system 1.

また、本例の除去システム1では、制御部15が、上記のように流量調整弁43a,43bの開度を調整する制御と並行して、流量調整弁7bの開度を調整する制御を実行する。具体的には、制御部15は、吸着除去処理を行う吸着塔2に流入させられる水素ガスGの温度(温度センサ9によって検出される温度)に応じて制御する。この場合、熱交換器4cにおいて冷却された水素ガスGの温度が低いときには、そのような水素ガスGが合流点P2において合流させられた後に吸着除去処理を行う吸着塔2を通過させられることで、吸着塔2(耐圧容器や吸着剤)や流路切換え弁5bの温度が低下することとなる。この結果、吸着塔2を切り換えたときに、温度低下した状態の吸着塔2や流路切換え弁5bに高温の水素ガスGが接することで結露が生じることがある。このような状態では、吸着塔2を再び切り換えたときに、結露水が排出用配管Poに流入するおそれがある。 In addition, in the removal system 1 of this example, the control unit 15 executes control to adjust the opening degree of the flow rate control valve 7b in parallel with the control to adjust the opening degree of the flow rate control valves 43a and 43b as described above. Specifically, the control unit 15 controls according to the temperature (temperature detected by the temperature sensor 9) of the hydrogen gas G to be flowed into the adsorption tower 2 where the adsorption and removal process is performed. In this case, when the temperature of the hydrogen gas G cooled in the heat exchanger 4c is low, the hydrogen gas G is passed through the adsorption tower 2 where the adsorption and removal process is performed after being merged at the junction P2, so that the temperature of the adsorption tower 2 (pressure-resistant container and adsorbent) and the flow path switching valve 5b decreases. As a result, when the adsorption tower 2 is switched, the high-temperature hydrogen gas G may come into contact with the adsorption tower 2 and the flow path switching valve 5b in a temperature-reduced state, causing condensation. In such a state, when the adsorption tower 2 is switched again, there is a risk that the condensed water will flow into the discharge pipe Po.

したがって、制御部15は、温度センサ9によって検出される水素ガスGの温度が高いときには、流量調整弁7bの開度を小さくして熱交換器4cを通過させられる熱媒液Wcの流量を増加させ、水素ガスGの温度が低いときには、流量調整弁7bの開度を大きくして熱交換器4cを通過させられる熱媒液Wcの流量を減少させる。これにより、吸着除去処理を行う吸着塔2に対して過剰に低い温度の水素ガスGが流入する事態が回避され、結露水が排出用配管Poに流入する事態を好適に回避することが可能となる。 Therefore, when the temperature of the hydrogen gas G detected by the temperature sensor 9 is high, the control unit 15 reduces the opening of the flow rate control valve 7b to increase the flow rate of the heat transfer liquid Wc passed through the heat exchanger 4c, and when the temperature of the hydrogen gas G is low, the control unit 15 increases the opening of the flow rate control valve 7b to decrease the flow rate of the heat transfer liquid Wc passed through the heat exchanger 4c. This makes it possible to avoid a situation in which hydrogen gas G with an excessively low temperature flows into the adsorption tower 2 performing the adsorption and removal process, and to preferably avoid a situation in which condensation water flows into the discharge pipe Po.

一方、吸着能力再生処理をさらに継続したときには、吸着剤に吸着された状態の水分がさらに少量となり、高温の水素ガスGに接することで吸着剤から離脱する水分の量が極く少量となる。このような状態において、吸着剤に多量の水分が吸着されていたときと同様に加熱部3hから高温の熱媒液Whを供給したときには、熱交換器4bにおいて水素ガスGが同様に加熱されるのにも拘わらず、吸着能力再生処理を行っている吸着塔2において吸着剤から水分を離脱させるのに消費される温熱の量が減少するため、結果として、吸着塔2から排出される水素ガスGの温度が高温となる。この際には、吸着塔2から排出された水素ガスGが熱交換器4cにおける冷却の分だけ温度低下するものの、熱交換器4cから排出される水素ガスGの温度が高温となる。このため、吸着除去処理を行っている吸着塔2に流入する水素ガスGの温度が高温となり、その相対湿度が低くなることで吸着剤に水分を好適に吸着させるのが困難になると共に、最終的に排出用配管Poに排出される水素ガスGの温度が高温となる。 On the other hand, when the adsorption capacity regeneration process is further continued, the amount of moisture adsorbed in the adsorbent becomes even smaller, and the amount of moisture released from the adsorbent by contact with the high-temperature hydrogen gas G becomes very small. In this state, when a high-temperature heat transfer liquid Wh is supplied from the heating section 3h in the same manner as when a large amount of moisture is adsorbed in the adsorbent, the amount of heat consumed to release moisture from the adsorbent in the adsorption tower 2 performing the adsorption capacity regeneration process decreases, even though the hydrogen gas G is heated in the heat exchanger 4b in the same manner. As a result, the temperature of the hydrogen gas G discharged from the adsorption tower 2 becomes high. At this time, although the temperature of the hydrogen gas G discharged from the adsorption tower 2 decreases by the amount of cooling in the heat exchanger 4c, the temperature of the hydrogen gas G discharged from the heat exchanger 4c becomes high. For this reason, the temperature of the hydrogen gas G flowing into the adsorption tower 2 performing the adsorption removal process becomes high, and the relative humidity becomes low, making it difficult to properly adsorb moisture to the adsorbent, and the temperature of the hydrogen gas G finally discharged to the discharge pipe Po becomes high.

したがって、本例の除去システム1では、制御部15が、温度センサ9によって検出される水素ガスGの温度が許容範囲を超えて高い温度に変化したときに、熱交換器4cと合流点P2との間に配設されている流量調整弁6の開度を小さくする制御(水素ガスGの通過量を減少させる制御:「第3の熱交換器を通過させられた気体の温度に基づいて第3の流量調整部を制御して第3の熱交換器を通過する気体の流量を調整させる第5の処理」の一例)を実行する。これにより、吸着除去処理を行っている吸着塔2に流入する水素ガスGが過剰に高温となる事態が回避される。 Therefore, in the removal system 1 of this example, when the temperature of the hydrogen gas G detected by the temperature sensor 9 changes to a high temperature exceeding the allowable range, the control unit 15 executes control to reduce the opening of the flow control valve 6 disposed between the heat exchanger 4c and the junction P2 (control to reduce the amount of hydrogen gas G passing through: an example of the "fifth process of controlling the third flow control unit based on the temperature of the gas passed through the third heat exchanger to adjust the flow rate of the gas passing through the third heat exchanger"). This prevents the hydrogen gas G flowing into the adsorption tower 2 performing the adsorption removal process from becoming excessively hot.

また、本例の除去システム1では、前述したように、導入用配管Piに導入される水素ガスGに含まれている水分の量や、吸着能力再生処理の進捗状況などに応じてヒートポンプユニット3(冷凍サイクル11)の動作状態や各流量調整弁7a,7b,33a,33b,43a,43bの開度の調整が行われる。この場合、導入用配管Piに導入される水素ガスGに含まれている水分の量については、一例として、単位時間当りに導入用配管Piに導入される水素ガスGの量およびその温度、単位時間当りに熱交換器4aに供給される熱媒液Wcの量およびその温度、並びに単位時間当りに熱交換器4aから排水された水分の量に基づいて特定することができる。 In addition, in the removal system 1 of this example, as described above, the operating state of the heat pump unit 3 (refrigeration cycle 11) and the opening degree of each flow control valve 7a, 7b, 33a, 33b, 43a, 43b are adjusted according to the amount of moisture contained in the hydrogen gas G introduced into the introduction pipe Pi and the progress of the adsorption capacity regeneration process. In this case, the amount of moisture contained in the hydrogen gas G introduced into the introduction pipe Pi can be determined based on, for example, the amount and temperature of the hydrogen gas G introduced into the introduction pipe Pi per unit time, the amount and temperature of the heat transfer liquid Wc supplied to the heat exchanger 4a per unit time, and the amount of moisture drained from the heat exchanger 4a per unit time.

また、単位時間当りに導入用配管Piに導入された水素ガスGの量は、圧縮機の回転数に基づいて特定することができる。また、本例の除去システム1では、前述したように、貯水部8aが、熱交換器4aにおいて水素ガスGから除去されて熱交換器4aから排水された水分が「第1の規定量」に達したときに、その一部の「第2の規定量」を外部に排出(排水)すると共に、排出したことを報知する信号を制御部15に出力する構成が採用されている。したがって、貯水部8aからの信号の出力頻度に基づき、貯水部8aから単位時間当りに排出された水分の量(第2の規定量)を特定することができる。また、単位時間当りに熱交換器4aに供給される熱媒液Wcの量は、ポンプ12aの回転数、流量調整弁7a,7bの開度に基づいて特定することができ、熱媒液Wcの温度は、ヒートポンプユニット3(冷却部3c)に設けられている図示しない温度センサによって検出することができる。 The amount of hydrogen gas G introduced into the introduction pipe Pi per unit time can be determined based on the rotation speed of the compressor. As described above, in the removal system 1 of this example, when the moisture removed from the hydrogen gas G in the heat exchanger 4a and drained from the heat exchanger 4a reaches the "first specified amount", the water storage section 8a discharges (drains) a part of the moisture, "a second specified amount", to the outside and outputs a signal to the control section 15 to notify the control section 15 of the discharge. Therefore, the amount of moisture discharged from the water storage section 8a per unit time (the second specified amount) can be determined based on the frequency of output of the signal from the water storage section 8a. The amount of the heat transfer liquid Wc supplied to the heat exchanger 4a per unit time can be determined based on the rotation speed of the pump 12a and the opening degree of the flow rate control valves 7a and 7b, and the temperature of the heat transfer liquid Wc can be detected by a temperature sensor (not shown) provided in the heat pump unit 3 (cooling section 3c).

また、吸着能力再生処理の進捗状況については、一例として、吸着塔2内の吸着剤が吸着可能な水分の量と、熱交換器4cから排出された水分の量(すなわち、吸着塔2において水素ガスGから除去された水分の量)とに基づいて特定することができる。具体的には、本例の除去システム1では、前述したように、 貯水部8bが、熱交換器4cにおいて水素ガスGから除去されて熱交換器4cから排水された水分が「第3の規定量」に達したときに、その一部の「第4の規定量」を外部に排出(排水)すると共に、排出したことを報知する信号を制御部15に出力する構成が採用されている。 The progress of the adsorption capacity regeneration process can be determined, for example, based on the amount of moisture that the adsorbent in the adsorption tower 2 can adsorb and the amount of moisture discharged from the heat exchanger 4c (i.e., the amount of moisture removed from the hydrogen gas G in the adsorption tower 2). Specifically, in the removal system 1 of this example, as described above, the water storage unit 8b is configured to discharge (drain) a portion of the moisture removed from the hydrogen gas G in the heat exchanger 4c and drained from the heat exchanger 4c to the outside (drain) a "fourth specified amount" when the moisture reaches the "third specified amount," and to output a signal to the control unit 15 to notify the control unit 15 of the discharge.

したがって、貯水部8bから出力される信号に基づき、貯水部8bから排出された水分の量(第4の規定量の積算量)を特定することができ、特定した量に基づいて、吸着能力再生処理が行われている吸着塔2において吸着剤から離脱させられた水分の量を推定することができる。また、各吸着塔2内の吸着剤が吸着可能な水分の量が既知であるため、この既知の水分の量と、吸着剤から離脱させられたと推定される水分の量とに基づき、吸着能力再生処理の進捗状況、すなわち、吸着能力再生処理を行っている吸着塔2内の吸着剤がどの程度の水分を吸着している状態であるか(どの程度の水分を吸着可能な状態であるか)を特定することができる。 Therefore, based on the signal output from the water storage section 8b, the amount of moisture discharged from the water storage section 8b (the cumulative amount of the fourth specified amount) can be determined, and based on the determined amount, the amount of moisture that has been removed from the adsorbent in the adsorption tower 2 where the adsorption capacity regeneration process is being performed can be estimated. In addition, since the amount of moisture that the adsorbent in each adsorption tower 2 can adsorb is known, the progress of the adsorption capacity regeneration process, that is, the amount of moisture that the adsorbent in the adsorption tower 2 where the adsorption capacity regeneration process is being performed has adsorbed (the amount of moisture that can be adsorbed) can be determined based on this known amount of moisture and the amount of moisture that is estimated to have been removed from the adsorbent.

これにより、本例の除去システム1では、吸着能力再生処理に必要な温熱の熱量(加熱部3hにおいて熱媒液Whを加熱すべき熱量)や、熱交換器4a,4cにおける水素ガスGの冷却に必要な冷熱の熱量(冷却部3cにおいて熱媒液Wcを冷却すべき熱量)に応じてヒートポンプユニット3(冷凍サイクル11)の動作状態や各流量調整弁7a,7b,33a,33b,43a,43bの開度を調整することができるため、ヒートポンプユニット3(冷凍サイクル11)やポンプ12a,12bを不必要に高い処理能力で動作させることなく、吸着除去処理および吸着能力再生処理を実行することが可能となっている。 As a result, in the removal system 1 of this example, the operating state of the heat pump unit 3 (refrigeration cycle 11) and the opening degree of each flow control valve 7a, 7b, 33a, 33b, 43a, 43b can be adjusted according to the amount of hot heat required for the adsorption capacity regeneration process (the amount of heat to heat the heat transfer liquid Wh in the heating section 3h) and the amount of cold heat required to cool the hydrogen gas G in the heat exchangers 4a, 4c (the amount of heat to cool the heat transfer liquid Wc in the cooling section 3c), making it possible to perform the adsorption removal process and the adsorption capacity regeneration process without operating the heat pump unit 3 (refrigeration cycle 11) and the pumps 12a, 12b at unnecessarily high processing capacity.

なお、本例の除去システム1では、制御部15が、吸着除去処理を行う吸着塔2および吸着能力再生処理を行う吸着塔2を切り換える「第2の処理」を実行する条件として、次に説明する4つの切換え条件のうちから除去システム1の使用環境に応じて任意の条件を選択することが可能となっている。 In addition, in the removal system 1 of this example, the control unit 15 can select any condition from the four switching conditions described below as a condition for executing the "second process" of switching between the adsorption tower 2 that performs the adsorption removal process and the adsorption tower 2 that performs the adsorption capacity regeneration process, depending on the usage environment of the removal system 1.

具体的には、第1の切換え条件(「第1の条件」の一例)が選択されているときに、制御部15は、吸着除去処理を行う吸着塔2を通過させられた水素ガスGに含まれている水分の量に応じて変化するパラメータ(一例として、湿度センサ10によって検出される水素ガスGの湿度:「第1のパラメータ」の一例)が、予め規定された許容範囲(排出用配管Poに排出される水素ガスGに含まれる水分の量として許容されている範囲:「第1の範囲」の一例)の上限に達したときに、吸着除去処理を行う吸着塔2内の吸着剤の吸着能力が予め規定された能力(水素ガスGに含まれる水分を好適に吸着することが可能な吸着能力:「第1の能力」の一例)を下回る状態になったと判別して吸着塔2を切り換える。 Specifically, when the first switching condition (an example of the "first condition") is selected, the control unit 15 determines that the adsorption capacity of the adsorbent in the adsorption tower 2 performing the adsorption and removal process falls below a predetermined capacity (adsorption capacity capable of suitably adsorbing moisture contained in the hydrogen gas G: an example of the "first capacity") when a parameter (for example, the humidity of the hydrogen gas G detected by the humidity sensor 10: an example of the "first parameter") that changes depending on the amount of moisture contained in the hydrogen gas G passed through the adsorption tower 2 performing the adsorption and removal process reaches the upper limit of a predetermined allowable range (a range allowed for the amount of moisture contained in the hydrogen gas G discharged to the discharge pipe Po: an example of the "first range"), and switches the adsorption tower 2.

また、第2の切換え条件(「第2の条件」の一例)が選択されているときに、制御部15は、吸着能力再生処理を行う吸着塔2を通過させられた水素ガスGに含まれている水分の量に応じて変化するパラメータ(一例として、吸着能力再生処理を行う吸着塔2において水素ガスGから除去された水分の量:単位時間当りに貯水部8bから排出される水分の量:「第2のパラメータ」の一例)が、予め規定された許容範囲(合流点P2において合流させられる水素ガスGに含まれる水分の量として許容されている範囲:「第2の範囲」の一例)の上限に達したときに、吸着能力再生処理を行う吸着塔2内の吸着剤の吸着能力が予め規定された能力(水素ガスGに含まれる水分を好適に吸着することが可能な吸着能力:「第2の能力」の一例)を超える状態になったと判別して吸着塔2を切り換える。 When the second switching condition (an example of the "second condition") is selected, the control unit 15 determines that the adsorption capacity of the adsorbent in the adsorption tower 2 performing the adsorption capacity regeneration process exceeds a predetermined capacity (adsorption capacity capable of suitably adsorbing moisture contained in the hydrogen gas G: an example of the "second capacity") when a parameter (for example, the amount of moisture removed from the hydrogen gas G in the adsorption tower 2 performing the adsorption capacity regeneration process: the amount of moisture discharged from the water storage section 8b per unit time: an example of the "second parameter") that changes depending on the amount of moisture contained in the hydrogen gas G passed through the adsorption tower 2 performing the adsorption capacity regeneration process reaches the upper limit of a predetermined allowable range (a range allowed for the amount of moisture contained in the hydrogen gas G that is joined at the joining point P2: an example of the "second range"), and switches the adsorption tower 2.

また、第3の切換え条件(「第3の条件」の一例)が選択されているときに、制御部15は、吸着除去処理を開始してからの経過時間が予め規定された時間(吸着除去処理を行っている吸着塔2の吸着除去能力が水分を好適に吸着することが困難となるまでの時間:「第1の時間」の一例)に達したときに吸着塔2を切り換える。また、第4の切換え条件(「第4の条件」の一例)が選択されているときに、制御部15は、吸着能力再生処理を開始してからの経過時間が予め規定された時間(吸着能力再生処理を行っている吸着塔2が水分を好適に吸着除去可能な状態に再生されるまでの時間:「第2の時間」の一例)に達したときに吸着塔2を切り換える。 When the third switching condition (an example of the "third condition") is selected, the control unit 15 switches the adsorption tower 2 when the time elapsed since the start of the adsorption removal process reaches a predetermined time (the time until the adsorption removal capacity of the adsorption tower 2 performing the adsorption removal process becomes difficult to suitably adsorb moisture: an example of the "first time"). When the fourth switching condition (an example of the "fourth condition") is selected, the control unit 15 switches the adsorption tower 2 when the time elapsed since the start of the adsorption capacity regeneration process reaches a predetermined time (the time until the adsorption tower 2 performing the adsorption capacity regeneration process is regenerated to a state where it can suitably adsorb and remove moisture: an example of the "second time").

この場合、吸着能力再生処理を行っている吸着塔2における吸着剤の吸着能力がどの程度再生されたかを問わず、吸着除去処理を行っている吸着塔2における吸着剤の吸着能力が限界に達するまで処理を継続させるときには、切換え条件1、または切換え条件3を選択する。また、吸着除去処理を行っている吸着塔2における吸着剤の吸着能力がどの程度であるかを問わず、吸着能力再生処理を行っている吸着塔2における吸着剤の吸着能力が十分に再生されたときに吸着塔2を切り換えるときには、切換え条件2、または切換え条件4を選択する。なお、この場合、本例の除去システム1では、上記の各切換え条件を単独で選択するだけでなく、2つ、または3つを任意に組み合わせて選択したり、4つすべてを選択したりすることが可能となっている。この場合、複数の切換え条件が選択されているときに、制御部15は、選択された各条件のうちのいずれかが満たされたときに吸着塔2を切り換える。 In this case, regardless of the extent to which the adsorption capacity of the adsorbent in the adsorption tower 2 undergoing the adsorption capacity regeneration process has been regenerated, when the process is to be continued until the adsorption capacity of the adsorbent in the adsorption tower 2 undergoing the adsorption removal process reaches its limit, switching condition 1 or switching condition 3 is selected. In addition, regardless of the extent to which the adsorption capacity of the adsorbent in the adsorption tower 2 undergoing the adsorption removal process has been fully regenerated, switching condition 2 or switching condition 4 is selected when the adsorption tower 2 is to be switched. In this case, in the removal system 1 of this example, it is possible to select not only each of the above switching conditions alone, but also two or three of them in any combination, or all four of them. In this case, when multiple switching conditions are selected, the control unit 15 switches the adsorption tower 2 when any of the selected conditions is satisfied.

以上の説明のように、本例の除去システム1では、2つの吸着塔2を備えて吸着除去処理および吸着能力再生処理を並行して実行し、選択された切換え条件が満たされたときに吸着塔2を切り換えることで、順次導入される水素ガスGから継続的に水分を除去することが可能となっている。 As explained above, the removal system 1 of this example is equipped with two adsorption towers 2, and performs the adsorption removal process and the adsorption capacity regeneration process in parallel. By switching between the adsorption towers 2 when the selected switching conditions are met, it is possible to continuously remove moisture from the hydrogen gas G that is introduced sequentially.

このように、この「吸着剤再生装置(除去システム1における吸着塔2a,2bを除く構成要素からなる装置)」では、複数の吸着塔2(本例では、吸着塔2a,2bの2つ)を備えて各吸着塔2の一部を対象とする吸着除去処理と各吸着塔2の他の一部を対象とする加熱再生方式の吸着能力再生処理とを並行して実行可能に構成された除去システム1における吸着剤を再生可能に構成され、吸着能力再生処理を行う吸着塔2に流入させる水素ガスGを加熱する熱交換器4bと、吸着除去処理を行う吸着塔2および熱交換器4bに流入させられる水素ガスGを冷却する熱交換器4aと、吸着能力再生処理を行う吸着塔2を通過させられた水素ガスGを冷却する熱交換器4cと、冷凍サイクル11における凝縮器22からの放熱によって熱媒液Whを加熱可能な加熱部3h、および冷凍サイクル11における蒸発器24による吸熱によって熱媒液Wcを冷却可能な冷却部3cを備えたヒートポンプユニット3と、吸着除去処理を行う吸着塔2を通過させられた水素ガスGを、水分の除去が完了した水素ガスGを流入させるべき排出用配管Poに流入させると共に、熱交換器4bによって加熱された水素ガスGを、吸着能力再生処理を行う吸着塔2に流入させる流路切換え弁5bと、熱交換器4aによって冷却された水素ガスGを、吸着除去処理を行う吸着塔2に流入させると共に、吸着能力再生処理を行う吸着塔2を通過させられた水素ガスGを、熱交換器4cに流入させる流路切換え弁5aと、加熱部3hによる熱媒液Whの加熱、熱交換器4bへの熱媒液Whの供給、冷却部3cによる熱媒液Wcの冷却、熱交換器4aへの熱媒液Wcの供給、および熱交換器4cへの熱媒液Wcの供給を制御する「第1の処理」と、流路切換え弁5a,5bを制御して吸着除去処理を行う吸着塔2および吸着能力再生処理を行う吸着塔2を切り換える「第2の処理」とを実行する制御部15とを備え、熱交換器4cを通過させられた水素ガスGが、熱交換器4aを通過させられた水素ガスGに合流させられて流路切換え弁5aを介して吸着除去処理を行う吸着塔2に流入させられると共に、熱交換器4a,4cが、一次熱交換部31,41および二次熱交換部32,42を備え、導入口30i,40iから導入された水素ガスGが、一次熱交換部31,41、二次熱交換部32,42および一次熱交換部31,41をこの順で通過させられて排出口30o,40oから排出されるように水素ガスGの流路が形成されると共に、二次熱交換部32,42において熱媒液Wcとの熱交換によって水素ガスGに含まれている水分が液相化されて除去され、かつ、一次熱交換部31,41において二次熱交換部32,42によって冷却された水素ガスGとの熱交換によって導入口30i,40iから導入された水素ガスGに含まれている水分が液相化されて除去されるようにそれぞれ構成されている。また、この「吸着剤再生装置」では、「気体」としての水素ガスから「除去対象」としての水分を除去可能に構成された除去システム1における吸着剤の吸着能力を再生可能に構成されている。さらに、この除去システム1では、上記の「吸着剤再生装置」と各吸着塔2とを備えて水素ガスGから水分を除去可能に構成されている。 In this way, this "adsorbent regeneration device (a device consisting of components other than the adsorption towers 2a and 2b in the removal system 1)" is configured to be able to regenerate the adsorbent in the removal system 1, which is configured to be able to execute in parallel an adsorption removal process for a part of each adsorption tower 2 and an adsorption capacity regeneration process by a heating regeneration method for another part of each adsorption tower 2, by using a heat exchanger 4b that heats the hydrogen gas G that is to be flowed into the adsorption tower 2 that performs the adsorption removal process and a heat exchanger 4a that cools the hydrogen gas G that is to be flowed into the adsorption tower 2 that performs the adsorption removal process and the heat exchanger 4b, and a heat exchanger 4b that cools the hydrogen gas G that has passed through the adsorption tower 2 that performs the adsorption capacity regeneration process. a heat pump unit 3 including a heating section 3h capable of heating a heat transfer liquid Wh by heat radiation from a condenser 22 in the refrigeration cycle 11, and a cooling section 3c capable of cooling a heat transfer liquid Wc by heat absorption by an evaporator 24 in the refrigeration cycle 11; a flow path switching valve 5b for allowing the hydrogen gas G passed through an adsorption tower 2 performing an adsorption and removal treatment to flow into a discharge pipe Po into which hydrogen gas G from which moisture has been removed is to flow, and allowing the hydrogen gas G heated by a heat exchanger 4b to flow into the adsorption tower 2 performing an adsorption capacity regeneration treatment; The system further includes a flow path switching valve 5a for causing the heat transfer liquid Wh to flow into the heat exchanger 4c, a control unit 15 for executing a "first process" for controlling the heating of the heat transfer liquid Wh by the heating unit 3h, the supply of the heat transfer liquid Wh to the heat exchanger 4b, the cooling of the heat transfer liquid Wc by the cooling unit 3c, the supply of the heat transfer liquid Wc to the heat exchanger 4a, and the supply of the heat transfer liquid Wc to the heat exchanger 4c, and a "second process" for controlling the flow path switching valves 5a and 5b to switch between the adsorption tower 2 for performing the adsorption removal process and the adsorption tower 2 for performing the adsorption capacity regeneration process. The hydrogen gas G passed through the heat exchanger 4c is merged with the hydrogen gas G passed through the heat exchanger 4a and is caused to flow into the adsorption tower 2 for performing the adsorption removal process via the flow path switching valve 5a, and the heat exchangers 4a and 4c are connected to the adsorption tower 2 for performing the adsorption removal process. The hydrogen gas G is provided with a primary heat exchanger 31, 41 and a secondary heat exchanger 32, 42, and a flow path of the hydrogen gas G is formed so that the hydrogen gas G introduced from the inlet 30i, 40i is passed through the primary heat exchanger 31, 41, the secondary heat exchanger 32, 42, and the primary heat exchanger 31, 41 in this order and discharged from the outlet 30o, 40o, and the moisture contained in the hydrogen gas G is liquidized and removed by heat exchange with the heat transfer liquid Wc in the secondary heat exchanger 32, 42, and the moisture contained in the hydrogen gas G introduced from the inlet 30i, 40i is liquidized and removed by heat exchange with the hydrogen gas G cooled by the secondary heat exchanger 32, 42 in the primary heat exchanger 31, 41. In addition, this "adsorbent regeneration device" is configured to be able to regenerate the adsorption capacity of the adsorbent in the removal system 1 configured to be able to remove moisture as a "removal target" from hydrogen gas as a "gas". Furthermore, this removal system 1 is equipped with the above-mentioned "adsorbent regeneration device" and each adsorption tower 2, and is configured to be able to remove moisture from hydrogen gas G.

したがって、この「吸着剤再生装置」および除去システム1によれば、水素ガスGを冷却することで水素ガスGから水分を除去するための冷熱源(例えば、単独で動作する冷凍サイクル)と、加熱再生方式の吸着能力再生処理のために水素ガスGを加熱するための温熱源(例えば電気ヒータ)とを別個に動作させなくても、ヒートポンプユニット3を動作させるだけで、水素ガスGを冷却するための熱媒液Wcを冷却部3cにおいて冷却し、同時に水素ガスGを加熱するための熱媒液Whを加熱部3hにおいて加熱することができる。これにより、水素ガスGからの水分の除去および吸着剤の再生のために消費されるエネルギー量を十分に低減することができる。また、吸着除去処理を行う吸着塔2に水素ガスGを流入させる前に熱交換器4aにおいて水素ガスGに含まれる水分の一部を除去する分だけ、吸着除去処理を行う吸着塔2内の吸着剤の吸着能力の低下を抑制できるため、吸着除去処理を行う吸着塔2に流入させる水素ガスGの量を減少させたり、吸着除去処理を一時的に停止させたりする必要がなくなることから、導入される水素ガスGについての吸着除去処理を短時間で確実に完了させることができる。また、熱交換器4a,4c内に一次熱交換部31,41および二次熱交換部32,42を設けて二次熱交換部32,42において熱媒液Wcとの熱交換によって水素ガスGを冷却しつつ、一次熱交換部31,41において導入口30i,40iから導入される水素ガスGを排出口30o,40oから排出される水素ガスG(すなわち、二次熱交換部32,42において冷却された水素ガスG)との熱交換によって冷却することで、水素ガスGを効率よく冷却して水分を除去することができる。これにより、多量の水分を含んだ水素ガスGが吸着除去処理を行う吸着塔2に流入する事態を回避することができると共に、一次熱交換部31,41および二次熱交換部32,42を備えない構成の熱交換器を使用するのと比較して、水素ガスGからの水分を除去するのに消費されるエネルギー量を一層低減することができる。 Therefore, according to this "adsorbent regeneration device" and removal system 1, even if a cold heat source (e.g., a refrigeration cycle that operates independently) for cooling hydrogen gas G to remove moisture from hydrogen gas G and a hot heat source (e.g., an electric heater) for heating hydrogen gas G for the adsorption capacity regeneration process of the heating regeneration method are not operated separately, the heat transfer liquid Wc for cooling hydrogen gas G can be cooled in the cooling section 3c and the heat transfer liquid Wh for heating hydrogen gas G can be heated in the heating section 3h at the same time by operating the heat pump unit 3. This makes it possible to sufficiently reduce the amount of energy consumed for removing moisture from hydrogen gas G and regenerating the adsorbent. In addition, since a part of the moisture contained in hydrogen gas G is removed in the heat exchanger 4a before hydrogen gas G is flowed into the adsorption tower 2 that performs the adsorption removal process, the decrease in the adsorption capacity of the adsorbent in the adsorption tower 2 that performs the adsorption removal process can be suppressed by the amount of the moisture contained in hydrogen gas G removed in the heat exchanger 4a before the hydrogen gas G is flowed into the adsorption tower 2 that performs the adsorption removal process. Therefore, it is not necessary to reduce the amount of hydrogen gas G flowing into the adsorption tower 2 that performs the adsorption removal process or to temporarily stop the adsorption removal process, and the adsorption removal process for the introduced hydrogen gas G can be reliably completed in a short time. In addition, the primary heat exchange section 31, 41 and the secondary heat exchange section 32, 42 are provided in the heat exchanger 4a, 4c, and the hydrogen gas G is cooled by heat exchange with the heat transfer liquid Wc in the secondary heat exchange section 32, 42, while the hydrogen gas G introduced from the inlet 30i, 40i in the primary heat exchange section 31, 41 is cooled by heat exchange with the hydrogen gas G discharged from the outlet 30o, 40o (i.e., the hydrogen gas G cooled in the secondary heat exchange section 32, 42), thereby efficiently cooling the hydrogen gas G and removing moisture. This makes it possible to avoid a situation in which hydrogen gas G containing a large amount of moisture flows into the adsorption tower 2 where the adsorption and removal process is performed, and further reduces the amount of energy consumed to remove moisture from the hydrogen gas G compared to using a heat exchanger configured without the primary heat exchange section 31, 41 and the secondary heat exchange section 32, 42.

また、この「吸着剤再生装置」では、二次熱交換部42を通過させられた水素ガスGを、一次熱交換部41を再び通過させずに排出口40oから排出させるバイパス流路43が熱交換器4cに設けられると共に、バイパス流路43を通過する水素ガスGの流量を調整可能な流量調整弁43a,43bが配設され、制御部15が、導入口40iから導入された水素ガスGの「第1の温度(温度センサ44aの検出温度)」、導入口40iから導入されて一次熱交換部41を通過させられた水素ガスGの「第2の温度(温度センサ44bの検出温度)」、および二次熱交換部42を通過させられた水素ガスGの「第3の温度(温度センサ44cの検出温度)」をそれぞれ特定すると共に、「第1の温度」および「第3の温度」の「第1の温度差」と、「第2の温度」および「第3の温度」の「第2の温度差」との比に基づき、流量調整弁43a,43bを制御してバイパス流路43を通過する水素ガスGの流量を調整する「第3の処理」を実行する。したがって、この「吸着剤再生装置」および除去システム1によれば、過剰に低い温度の水素ガスGが吸着除去処理を行う吸着塔2などを通過させられる事態が回避されるため、吸着除去処理を行う吸着塔2と吸着能力再生処理を行う吸着塔2とを切り換えたときに、吸着除去処理を行っていた吸着塔2内等で結露が生じる事態を回避することができる。 In addition, in this "adsorbent regeneration device", a bypass flow path 43 is provided in the heat exchanger 4c, which allows the hydrogen gas G that has been passed through the secondary heat exchange section 42 to be discharged from the exhaust port 40o without passing through the primary heat exchange section 41 again, and flow rate control valves 43a, 43b are provided that can adjust the flow rate of the hydrogen gas G passing through the bypass flow path 43. The control unit 15 controls the "first temperature (temperature detected by the temperature sensor 44a)" of the hydrogen gas G introduced from the inlet 40i, the "temperature detected by the temperature sensor 44a)" of the hydrogen gas G introduced from the inlet 40i and passed through the primary heat exchange section 41, and the "temperature detected by the temperature sensor 44a" of the hydrogen gas G introduced from the inlet 40i. The "second temperature (temperature detected by the temperature sensor 44b)" of the hydrogen gas G passed through the secondary heat exchanger 42 and the "third temperature (temperature detected by the temperature sensor 44c)" of the hydrogen gas G passed through the secondary heat exchanger 42 are identified, and the flow rate of the hydrogen gas G passing through the bypass flow path 43 is adjusted by controlling the flow rate control valves 43a and 43b based on the ratio of the "first temperature difference" between the "first temperature" and the "third temperature" to the "second temperature difference" between the "second temperature" and the "third temperature". Therefore, according to this "adsorbent regeneration device" and removal system 1, a situation in which excessively low-temperature hydrogen gas G is passed through the adsorption tower 2 performing the adsorption removal process, etc., can be avoided, so that when the adsorption tower 2 performing the adsorption removal process and the adsorption tower 2 performing the adsorption capacity regeneration process are switched, condensation can be avoided in the adsorption tower 2 performing the adsorption removal process.

また、この「吸着剤再生装置」では、二次熱交換部32を通過させられた水素ガスGを、一次熱交換部31を再び通過させずに排出口30oから排出させるバイパス流路33が熱交換器4aに設けられると共に、バイパス流路33を通過させる水素ガスGの流量を調整可能な流量調整弁33a,33bが配設され、制御部15が、熱交換器4aにおける導入口30iから導入された水素ガスGの「第4の温度(温度センサ34aの検出温度)」、導入口30iから導入されて一次熱交換部31を通過させられた水素ガスGの「第5の温度(温度センサ34bの検出温度)」、および二次熱交換部32を通過させられた水素ガスGの「第6の温度(温度センサ34cの検出温度)」を特定すると共に、「第4の温度」および「第6の温度」の「第3の温度差」と、「第5の温度」および「第6の温度」の「第4の温度差」との比に基づき、流量調整弁33a,33bを制御してバイパス流路33を通過する水素ガスGの流量を調整させる「第4の処理」を実行する。したがって、この「吸着剤再生装置」および除去システム1によれば、過剰に低い温度の水素ガスGが吸着除去処理を行う吸着塔2などを通過させられる事態が回避されるため、吸着除去処理を行う吸着塔2と吸着能力再生処理を行う吸着塔2とを切り換えたときに、吸着除去処理を行っていた吸着塔2内等で結露が生じる事態を回避することができる。 In addition, in this "adsorbent regeneration device", a bypass flow path 33 is provided in the heat exchanger 4a, which allows the hydrogen gas G that has been passed through the secondary heat exchange section 32 to be discharged from the exhaust port 30o without passing it through the primary heat exchange section 31 again, and flow rate control valves 33a, 33b are provided that can adjust the flow rate of the hydrogen gas G that passes through the bypass flow path 33. The control unit 15 controls the "fourth temperature (temperature detected by the temperature sensor 34a)" of the hydrogen gas G introduced from the inlet 30i in the heat exchanger 4a, the "fourth temperature (temperature detected by the temperature sensor 34a)" of the hydrogen gas G introduced from the inlet 30i The "fifth temperature (temperature detected by temperature sensor 34b)" of the hydrogen gas G passed through the secondary heat exchanger 31 and the "sixth temperature (temperature detected by temperature sensor 34c)" of the hydrogen gas G passed through the secondary heat exchanger 32 are identified, and a "fourth process" is performed in which the flow rate of the hydrogen gas G passing through the bypass flow passage 33 is adjusted by controlling the flow rate control valves 33a and 33b based on the ratio of the "third temperature difference" between the "fourth temperature" and the "sixth temperature" and the "fourth temperature difference" between the "fifth temperature" and the "sixth temperature". Therefore, according to this "adsorbent regeneration device" and removal system 1, a situation in which hydrogen gas G at an excessively low temperature is passed through the adsorption tower 2 performing the adsorption removal process, etc., can be avoided, so that when the adsorption tower 2 performing the adsorption removal process and the adsorption tower 2 performing the adsorption capacity regeneration process are switched, condensation can be avoided in the adsorption tower 2 performing the adsorption removal process.

また、この「吸着剤再生装置」では、熱交換器4cを通過させられる水素ガスGの流量を調整する流量調整弁7bを備え、制御部15が、熱交換器4cを通過させられた水素ガスGの温度(温度センサ9による検出温度)が予め規定された温度範囲内の温度となるように流量調整弁7bを制御して熱交換器4cを通過させられる水素ガスGの流量を調整する「第5の処理」を実行する。したがって、この「吸着剤再生装置」および除去システム1によれば、過剰に低い温度の水素ガスGが吸着除去処理を行う吸着塔2などを通過させられる事態が回避されるため、吸着除去処理を行う吸着塔2と吸着能力再生処理を行う吸着塔2とを切り換えたときに、吸着除去処理を行っていた吸着塔2内等で結露が生じる事態を回避することができる。 In addition, this "adsorbent regeneration device" is provided with a flow rate adjustment valve 7b that adjusts the flow rate of hydrogen gas G passed through the heat exchanger 4c, and the control unit 15 executes a "fifth process" in which the flow rate of hydrogen gas G passed through the heat exchanger 4c is adjusted by controlling the flow rate adjustment valve 7b so that the temperature of the hydrogen gas G passed through the heat exchanger 4c (the temperature detected by the temperature sensor 9) is within a predetermined temperature range. Therefore, according to this "adsorbent regeneration device" and removal system 1, a situation in which excessively low-temperature hydrogen gas G is passed through the adsorption tower 2 performing the adsorption removal process can be avoided, and therefore, when switching between the adsorption tower 2 performing the adsorption removal process and the adsorption tower 2 performing the adsorption capacity regeneration process, condensation can be avoided in the adsorption tower 2 performing the adsorption removal process.

また、この「吸着剤再生装置」では、制御部15が、吸着除去処理を行う吸着塔2を通過させられた水素ガスGに含まれている水分の量に応じて変化する「第1のパラメータ」が予め規定された「第1の範囲」を外れたときに、吸着除去処理を行う吸着塔2内の吸着剤の吸着能力が予め規定された「第1の能力」を下回る「第1の条件(第1の切換え条件)」が満たされたと判別して「第2の処理」を実行する。したがって、この「吸着剤再生装置」および除去システム1によれば、吸着除去処理を行っている吸着塔2の吸着剤が、水素ガスGからの好適な水分の吸着が困難となる前に吸着能力再生処理を行っている吸着塔2、すなわち、水素ガスGからの好適な水分の吸着が可能な状態となっている吸着剤が収容されている吸着塔2において吸着除去処理を行うことができるため、十分に水分が除去された水素ガスGを継続的に排出用配管Poに排出することができる。 In addition, in this "adsorbent regeneration device", when the "first parameter" that changes depending on the amount of moisture contained in the hydrogen gas G passed through the adsorption tower 2 performing the adsorption removal process falls outside the predetermined "first range", the control unit 15 determines that the "first condition (first switching condition)" in which the adsorption capacity of the adsorbent in the adsorption tower 2 performing the adsorption removal process falls below the predetermined "first capacity" is satisfied, and executes the "second process". Therefore, according to this "adsorbent regeneration device" and the removal system 1, the adsorption removal process can be performed in the adsorption tower 2 performing the adsorption capacity regeneration process before the adsorbent in the adsorption tower 2 performing the adsorption removal process becomes difficult to adsorb moisture from the hydrogen gas G, that is, in the adsorption tower 2 that contains the adsorbent that is in a state where it is capable of adsorbing moisture from the hydrogen gas G, so that the hydrogen gas G from which moisture has been sufficiently removed can be continuously discharged to the discharge pipe Po.

また、この「吸着剤再生装置」では、制御部15が、吸着能力再生処理を行う吸着塔2を通過させられた水素ガスGに含まれている水分の量に応じて変化する「第2のパラメータ」が予め規定された「第2の範囲」を外れたときに、吸着能力再生処理を行う吸着塔2内の吸着剤の吸着能力が予め規定された「第2の能力」を超える「第2の条件(第2の切換え条件)」が満たされたと判別して「第2の処理」を実行する。したがって、この「吸着剤再生装置」および除去システム1によれば、吸着能力再生処理を行ったことで吸着剤の吸着能力が十分に向上した吸着塔2について、不要な吸着能力再生処理を継続せずに済むため、消費電力を一層低減することができる。 In addition, in this "adsorbent regeneration device", when the "second parameter" that changes depending on the amount of moisture contained in the hydrogen gas G passed through the adsorption tower 2 that performs the adsorption capacity regeneration process falls outside the predefined "second range", the control unit 15 determines that the "second condition (second switching condition)" is satisfied, whereby the adsorption capacity of the adsorbent in the adsorption tower 2 that performs the adsorption capacity regeneration process exceeds the predefined "second capacity", and executes the "second process". Therefore, according to this "adsorbent regeneration device" and removal system 1, it is not necessary to continue unnecessary adsorption capacity regeneration processes for the adsorption tower 2 in which the adsorption capacity of the adsorbent has been sufficiently improved by performing the adsorption capacity regeneration process, and power consumption can be further reduced.

また、この「吸着剤再生装置」では、制御部15が、吸着除去処理を開始してからの経過時間が予め規定された「第1の時間」に達する「第3の条件(第3の切換え条件)」、および吸着能力再生処理を開始してからの経過時間が予め規定された「第2の時間」に達する「第4の条件(第4の切換え条件)」の予め規定された一方が満たされたときに、「第2の処理」を実行する。したがって、この「吸着剤再生装置」および除去システム1によれば、使用環境に応じて「第1の時間」または「第2の時間」を予め規定しておくことで、水素ガスGの状態を把握するための複雑な構成を備えなくても、「第3の条件」が満たされたときに「第2の処理」を実行すれば、水素ガスGからの好適な水分の吸着が可能な状態となっている吸着剤が収容されている吸着塔2において吸着除去処理を行うことができるため、十分に水分が除去された水素ガスGを継続的に排出用配管Poに排出することが可能となり、「第4の条件」が満たされたときに「第2の処理」を実行すれば、不要な吸着能力再生処理を継続せずに済むため、消費電力を一層低減することが可能となる。 In addition, in this "adsorbent regeneration device", the control unit 15 executes the "second process" when one of the "third condition (third switching condition)" where the time elapsed since the start of the adsorption and removal process reaches a predefined "first time" and the "fourth condition (fourth switching condition)" where the time elapsed since the start of the adsorption and removal process reaches a predefined "second time" is met. Therefore, according to this "adsorbent regeneration device" and the removal system 1, by predefining the "first time" or the "second time" according to the usage environment, even without a complex configuration for grasping the state of the hydrogen gas G, if the "second process" is executed when the "third condition" is satisfied, the adsorption and removal process can be performed in the adsorption tower 2 containing the adsorbent that is in a state capable of adsorbing suitable moisture from the hydrogen gas G, and the hydrogen gas G from which moisture has been sufficiently removed can be continuously discharged to the discharge pipe Po, and if the "second process" is executed when the "fourth condition" is satisfied, unnecessary adsorption and removal processes do not need to be continued, which makes it possible to further reduce power consumption.

また、この「吸着剤再生装置」では、熱交換器4cを通過させられる熱媒液Wcの流量を調整する流量調整弁7bを備え、制御部15が、吸着除去処理を行う吸着塔2に流入させられる水素ガスGの温度(温度センサ9の検出温度)に基づき、流量調整弁7bを制御して、水素ガスGの温度が高いときに熱交換器4cを通過させられる熱媒液Wcの流量を増加させ、水素ガスGの温度が低いときに熱交換器4cを通過させられる熱媒液Wcの流量を減少させる。したがって、この「吸着剤再生装置」および除去システム1によれば、過剰に低い温度の水素ガスGが吸着除去処理を行う吸着塔2などを通過させられる事態が回避されるため、吸着除去処理を行う吸着塔2と吸着能力再生処理を行う吸着塔2とを切り換えたときに、吸着除去処理を行っていた吸着塔2内等で結露が生じる事態を回避することができる。 In addition, this "adsorbent regeneration device" is equipped with a flow rate adjustment valve 7b that adjusts the flow rate of the heat transfer liquid Wc that is passed through the heat exchanger 4c, and the control unit 15 controls the flow rate adjustment valve 7b based on the temperature of the hydrogen gas G that is flowed into the adsorption tower 2 that performs the adsorption removal process (the temperature detected by the temperature sensor 9), to increase the flow rate of the heat transfer liquid Wc that is passed through the heat exchanger 4c when the temperature of the hydrogen gas G is high, and to decrease the flow rate of the heat transfer liquid Wc that is passed through the heat exchanger 4c when the temperature of the hydrogen gas G is low. Therefore, according to this "adsorbent regeneration device" and removal system 1, a situation in which excessively low-temperature hydrogen gas G is passed through the adsorption tower 2 that performs the adsorption removal process, etc., can be avoided, so that a situation in which condensation occurs in the adsorption tower 2 that was performing the adsorption removal process when switching between the adsorption tower 2 that performs the adsorption removal process and the adsorption tower 2 that performs the adsorption capacity regeneration process can be avoided.

なお、「吸着剤再生装置および除去システム」の構成は、上記の除去システム1の構成の例に限定されない。例えば、上記の除去システム1における熱交換器4aに代えて図5に示す熱交換器54aを採用して除去システム1を構成したり、熱交換器4cに代えて図6に示す熱交換器54cを採用して除去システム1を構成したりすることもできる。 The configuration of the "adsorbent regeneration device and removal system" is not limited to the example of the configuration of the removal system 1 described above. For example, the removal system 1 can be configured by adopting the heat exchanger 54a shown in FIG. 5 instead of the heat exchanger 4a in the removal system 1 described above, or the removal system 1 can be configured by adopting the heat exchanger 54c shown in FIG. 6 instead of the heat exchanger 4c.

熱交換器54aは、「第2の熱交換器」の他の一例であって、前述した熱交換器4aと同様にして、ヒートポンプユニット3(冷却部3c)から熱媒液循環路LC1を介して供給される熱媒液Wcとの熱交換によって、吸着除去処理を行う吸着塔2や熱交換器4bに流入させられる水素ガスGを冷却可能に構成されている。また、熱交換器54cは、「第3の熱交換器」の他の一例であって、前述した熱交換器4cと同様にして、ヒートポンプユニット3(冷却部3c)から熱媒液循環路LC2を介して供給される熱媒液Wcとの熱交換によって、吸着能力再生処理を行っている吸着塔2を通過させられた水素ガスGを冷却可能に構成されている。なお、これら熱交換器54a,54cにおいて、熱交換器4a,4cと同様の機能を有する構成要素については、同一の符号を付して重複する説明を省略する。 The heat exchanger 54a is another example of the "second heat exchanger" and is configured to be able to cool the hydrogen gas G flowing into the adsorption tower 2 performing the adsorption removal process or the heat exchanger 4b by heat exchange with the heat transfer liquid Wc supplied from the heat pump unit 3 (cooling section 3c) via the heat transfer liquid circulation path LC1, in the same manner as the heat exchanger 4a described above. The heat exchanger 54c is another example of the "third heat exchanger" and is configured to be able to cool the hydrogen gas G passed through the adsorption tower 2 performing the adsorption capacity regeneration process by heat exchange with the heat transfer liquid Wc supplied from the heat pump unit 3 (cooling section 3c) via the heat transfer liquid circulation path LC2, in the same manner as the heat exchanger 4c described above. In these heat exchangers 54a and 54c, the components having the same functions as the heat exchangers 4a and 4c are assigned the same reference numerals and redundant explanations are omitted.

この場合、図5に示すように、熱交換器54aには、導入口30iから導入されて一次熱交換部31を通過させられた水素ガスGの一部を、二次熱交換部32を通過させずに、二次熱交換部32を通過させられて一次熱交換部31に流入させられる水素ガスGに合流させるバイパス流路35(「バイパス流路B」の一例)が設けられると共に、このバイパス流路35を通過する水素ガスGの流量を調整可能な流量調整弁35a(「流量調整部B」の一例)が配設されている。また、熱交換器54aには、導入口30iから導入された水素ガスGの温度(「温度D」の一例)を検出可能な温度センサ34a、導入口30iから導入されて一次熱交換部31を通過させられた水素ガスGの温度(「温度E」の一例)を検出可能な温度センサ34b、および排出口30oから排出される水素ガスGの温度(「温度F」の一例)を検出可能な温度センサ34dが配設されている。 In this case, as shown in FIG. 5, the heat exchanger 54a is provided with a bypass flow path 35 (an example of a "bypass flow path B") that merges a part of the hydrogen gas G introduced from the inlet 30i and passed through the primary heat exchange section 31 with the hydrogen gas G that is passed through the secondary heat exchange section 32 and flows into the primary heat exchange section 31 without passing through the secondary heat exchange section 32, and is provided with a flow rate adjustment valve 35a (an example of a "flow rate adjustment section B") that can adjust the flow rate of the hydrogen gas G passing through the bypass flow path 35. In addition, the heat exchanger 54a is provided with a temperature sensor 34a that can detect the temperature of the hydrogen gas G introduced from the inlet 30i (an example of a "temperature D"), a temperature sensor 34b that can detect the temperature of the hydrogen gas G introduced from the inlet 30i and passed through the primary heat exchange section 31 (an example of a "temperature E"), and a temperature sensor 34d that can detect the temperature of the hydrogen gas G discharged from the discharge port 30o (an example of a "temperature F").

また、図6に示すように、熱交換器54cには、導入口40iから導入されて一次熱交換部41を通過させられた水素ガスGの一部を、二次熱交換部42を通過させずに、二次熱交換部42を通過させられて一次熱交換部41に流入させられる水素ガスGに合流させるバイパス流路45(「バイパス流路A」の一例)が設けられると共に、このバイパス流路45を通過する水素ガスGの流量を調整可能な流量調整弁45a(「流量調整部A」の一例)が配設されている。また、熱交換器54cには、導入口40iから導入された水素ガスGの温度(「温度A」の一例)を検出可能な温度センサ44a、導入口40iから導入されて一次熱交換部41を通過させられた水素ガスGの温度(「温度B」の一例)を検出可能な温度センサ44b、および排出口40oから排出される水素ガスGの温度(「温度C」の一例)を検出可能な温度センサ44dが配設されている。 6, the heat exchanger 54c is provided with a bypass flow path 45 (an example of a "bypass flow path A") that merges a part of the hydrogen gas G introduced from the inlet 40i and passed through the primary heat exchange section 41 with the hydrogen gas G that is passed through the secondary heat exchange section 42 and flows into the primary heat exchange section 41 without passing through the secondary heat exchange section 42, and is provided with a flow rate adjustment valve 45a (an example of a "flow rate adjustment section A") that can adjust the flow rate of the hydrogen gas G passing through the bypass flow path 45. The heat exchanger 54c is also provided with a temperature sensor 44a that can detect the temperature of the hydrogen gas G introduced from the inlet 40i (an example of "temperature A"), a temperature sensor 44b that can detect the temperature of the hydrogen gas G introduced from the inlet 40i and passed through the primary heat exchange section 41 (an example of "temperature B"), and a temperature sensor 44d that can detect the temperature of the hydrogen gas G discharged from the discharge port 40o (an example of "temperature C").

この場合、熱交換器4aに代えて熱交換器54aを採用した除去システム1において、処理対象の水素ガスGが導入されたとき(除去システム1による各処理を開始したとき)に、制御部15は、最初に、熱交換器54a内の流量調整弁35aを最小の開度となる開弁状態(全閉可能な弁構造の場合には全閉状態)に制御する。これにより、導入口30iから熱交換器54aに導入されて一次熱交換部31を通過させられた水素ガスGの大半(流量調整弁35aが全閉の場合には、一次熱交換部31を通過させられた水素ガスGのすべて)が二次熱交換部32を通過させられる。 In this case, in the removal system 1 employing the heat exchanger 54a instead of the heat exchanger 4a, when the hydrogen gas G to be treated is introduced (when each treatment by the removal system 1 is started), the control unit 15 first controls the flow rate control valve 35a in the heat exchanger 54a to an open state with the minimum opening (fully closed state in the case of a valve structure that can be fully closed). As a result, most of the hydrogen gas G introduced from the inlet 30i into the heat exchanger 54a and passed through the primary heat exchange unit 31 (when the flow rate control valve 35a is fully closed, all of the hydrogen gas G passed through the primary heat exchange unit 31) is passed through the secondary heat exchange unit 32.

また、二次熱交換部32における熱媒液Wcとの熱交換によって冷却された水素ガスG(排出口30oに向かって一次熱交換部31を通過させられる水素ガスG)と、導入口30iから一次熱交換部31に新たに導入された水素ガスGとの一次熱交換部31における熱交換によって、新たに導入された水素ガスGが冷却される。これにより、新たに導入された水素ガスGの相対湿度が上昇するため、水素ガスGに含まれている気相の水分の一部が一次熱交換部31において液相に変化して水素ガスGから離脱させられる(除去される)。この結果、前述の熱交換器4aを採用したときと同様にして、一次熱交換部31から二次熱交換部32に流入する水素ガスGの絶対湿度が十分に低下させられる(水素ガスGに含まれる水分の量が十分に減少させられる)ため、前述した二次熱交換部32における水分の除去と相俟って、水素ガスGに含まれていた水分が熱交換器54aにおいて十分に除去される。 In addition, the newly introduced hydrogen gas G is cooled by heat exchange in the primary heat exchange section 31 between the hydrogen gas G (hydrogen gas G passed through the primary heat exchange section 31 toward the exhaust port 30o) cooled by heat exchange with the heat transfer liquid Wc in the secondary heat exchange section 32 and the hydrogen gas G newly introduced into the primary heat exchange section 31 from the inlet 30i. As a result, the relative humidity of the newly introduced hydrogen gas G increases, and a part of the moisture in the gas phase contained in the hydrogen gas G changes to a liquid phase in the primary heat exchange section 31 and is separated (removed) from the hydrogen gas G. As a result, similar to the case where the above-mentioned heat exchanger 4a is adopted, the absolute humidity of the hydrogen gas G flowing from the primary heat exchange section 31 to the secondary heat exchange section 32 is sufficiently reduced (the amount of moisture contained in the hydrogen gas G is sufficiently reduced), and thus, in combination with the removal of moisture in the above-mentioned secondary heat exchange section 32, the moisture contained in the hydrogen gas G is sufficiently removed in the heat exchanger 54a.

また、排出口30oに向かって一次熱交換部31を通過させられる水素ガスGは、一次熱交換部31に新たに導入された水素ガスGとの熱交換によって温度上昇させられる。この場合、二次熱交換部32から一次熱交換部31に流入する水素ガスGは、二次熱交換部32における冷却(温度低下)によって相対湿度が100%程度となっている。したがって、排出口30oから排出されるのに先立って水素ガスGを温度上昇させて相対湿度を低下させることにより、熱交換器54aから吸着塔2aや熱交換器4bに向かう流路内等で水素ガスGに含まれている水分が結露する事態を好適に回避することが可能となる。 The hydrogen gas G passing through the primary heat exchange section 31 toward the exhaust port 30o is heated by heat exchange with the hydrogen gas G newly introduced into the primary heat exchange section 31. In this case, the hydrogen gas G flowing from the secondary heat exchange section 32 into the primary heat exchange section 31 has a relative humidity of about 100% due to cooling (temperature reduction) in the secondary heat exchange section 32. Therefore, by raising the temperature of the hydrogen gas G and reducing the relative humidity before it is exhausted from the exhaust port 30o, it is possible to preferably avoid a situation in which the moisture contained in the hydrogen gas G condenses in the flow path from the heat exchanger 54a toward the adsorption tower 2a or the heat exchanger 4b.

また、熱交換器4cに代えて熱交換器54cを採用した除去システム1において処理対象の水素ガスGが導入されたとき(除去システム1による各処理を開始したとき)に、制御部15は、最初に、熱交換器54c内の流量調整弁45aを最小の開度となる開弁状態(全閉可能な弁構造の場合には全閉状態)に制御する。これにより、導入口40iから熱交換器54cに導入されて一次熱交換部41を通過させられた水素ガスGの大半(流量調整弁45aが全閉の場合には、一次熱交換部41を通過させられた水素ガスGのすべて)が二次熱交換部42を通過させられる。 When hydrogen gas G to be treated is introduced into the removal system 1 employing the heat exchanger 54c instead of the heat exchanger 4c (when each treatment by the removal system 1 is started), the control unit 15 first controls the flow rate control valve 45a in the heat exchanger 54c to the open state with the minimum opening (fully closed state in the case of a valve structure that can be fully closed). As a result, most of the hydrogen gas G introduced into the heat exchanger 54c from the inlet 40i and passed through the primary heat exchange section 41 (when the flow rate control valve 45a is fully closed, all of the hydrogen gas G passed through the primary heat exchange section 41) is passed through the secondary heat exchange section 42.

また、二次熱交換部42における熱媒液Wcとの熱交換によって冷却された水素ガスG(排出口40oに向かって一次熱交換部41を通過させられる水素ガスG)と、導入口40iから一次熱交換部41に新たに導入された水素ガスGとの一次熱交換部41における熱交換によって、新たに導入された水素ガスGが冷却される。これにより、新たに導入された水素ガスGの相対湿度が上昇するため、水素ガスGに含まれている気相の水分の一部が一次熱交換部41において液相に変化して水素ガスGから離脱させられる(除去される)。この結果、一次熱交換部41から二次熱交換部42に流入する水素ガスGの絶対湿度が十分に低下させられる(水素ガスGに含まれる水分の量が十分に減少させられる)ため、前述した二次熱交換部42における水分の除去と相俟って、水素ガスGに含まれていた水分が熱交換器54cにおいて十分に除去される。 In addition, the newly introduced hydrogen gas G is cooled by heat exchange in the primary heat exchange section 41 between the hydrogen gas G (hydrogen gas G passed through the primary heat exchange section 41 toward the exhaust port 40o) cooled by heat exchange with the heat transfer liquid Wc in the secondary heat exchange section 42 and the hydrogen gas G newly introduced into the primary heat exchange section 41 from the inlet 40i. As a result, the relative humidity of the newly introduced hydrogen gas G increases, and a part of the moisture in the gas phase contained in the hydrogen gas G changes to a liquid phase in the primary heat exchange section 41 and is separated (removed) from the hydrogen gas G. As a result, the absolute humidity of the hydrogen gas G flowing from the primary heat exchange section 41 to the secondary heat exchange section 42 is sufficiently reduced (the amount of moisture contained in the hydrogen gas G is sufficiently reduced), and thus, in combination with the removal of moisture in the secondary heat exchange section 42 described above, the moisture contained in the hydrogen gas G is sufficiently removed in the heat exchanger 54c.

また、排出口40oに向かって一次熱交換部41を通過させられる水素ガスGは、一次熱交換部41に新たに導入された水素ガスGとの熱交換によって温度上昇させられる。この場合、二次熱交換部42から一次熱交換部41に流入する水素ガスGは、二次熱交換部42における冷却(温度低下)によって相対湿度が100%程度となっている。したがって、排出口40oから排出されるのに先立って水素ガスGを温度上昇させて相対湿度を低下させることにより、熱交換器54cから吸着塔2aに向かう流路内等で水素ガスGに含まれている水分が結露する事態を好適に回避することが可能となる。 The hydrogen gas G passing through the primary heat exchange section 41 toward the exhaust port 40o is heated by heat exchange with the hydrogen gas G newly introduced into the primary heat exchange section 41. In this case, the hydrogen gas G flowing from the secondary heat exchange section 42 into the primary heat exchange section 41 has a relative humidity of about 100% due to cooling (temperature reduction) in the secondary heat exchange section 42. Therefore, by raising the temperature of the hydrogen gas G and reducing the relative humidity before it is exhausted from the exhaust port 40o, it is possible to preferably avoid a situation in which the moisture contained in the hydrogen gas G condenses in the flow path from the heat exchanger 54c toward the adsorption tower 2a, etc.

一方、吸着能力再生処理を継続することによって吸着剤に吸着された状態の水分が徐々に減少し、かつ高温の水素ガスGに接している耐圧容器や吸着剤の温度も十分に高い温度となったとき(処理開始からある程度経過したとき)には、吸着能力再生処理を行っている吸着塔2に供給する水素ガスGの温度をある程度低下させても、吸着剤から水分を十分に離脱させることが可能となる。このため、前述したように、加熱部3hから熱交換器4bに供給する熱媒液Whの温度を処理開始直後よりも低下させることでヒートポンプユニット3(冷凍サイクル11)の処理能力を低下させて電力消費量を低減することが可能となる。 On the other hand, when the moisture adsorbed in the adsorbent is gradually reduced by continuing the adsorption capacity regeneration process, and the temperature of the pressure vessel and the adsorbent in contact with the high-temperature hydrogen gas G becomes sufficiently high (a certain amount of time has passed since the start of the process), it becomes possible to sufficiently remove the moisture from the adsorbent even if the temperature of the hydrogen gas G supplied to the adsorption tower 2 undergoing the adsorption capacity regeneration process is lowered to a certain extent. Therefore, as described above, by lowering the temperature of the heat transfer liquid Wh supplied from the heating section 3h to the heat exchanger 4b to a temperature lower than immediately after the start of the process, it becomes possible to reduce the processing capacity of the heat pump unit 3 (refrigeration cycle 11) and reduce power consumption.

この際には、加熱部3hにおいて熱媒液Whを加熱する熱量を減少させるのに伴って冷却部3cにおいて熱媒液Wcを冷却する熱量、すなわち、熱交換器54a,54cにおいて水素ガスGから熱媒液Wcに吸熱する熱量を減少させる必要がある。したがって、制御部15は、ヒートポンプユニット3(冷凍サイクル11)の処理能力を低下させる制御と相俟って、流量調整弁7aの開度を大きくする制御、流量調整弁35aの開度を大きくする制御、流量調整弁7bの開度を大きくする制御、および流量調整弁45aの開度を大きくする制御を実行する。 In this case, it is necessary to reduce the amount of heat used to heat the heat transfer liquid Wh in the heating section 3h and to reduce the amount of heat used to cool the heat transfer liquid Wc in the cooling section 3c, i.e., the amount of heat absorbed from the hydrogen gas G to the heat transfer liquid Wc in the heat exchangers 54a and 54c. Therefore, in conjunction with the control to reduce the processing capacity of the heat pump unit 3 (refrigeration cycle 11), the control section 15 executes control to increase the opening degree of the flow rate control valve 7a, control to increase the opening degree of the flow rate control valve 35a, control to increase the opening degree of the flow rate control valve 7b, and control to increase the opening degree of the flow rate control valve 45a.

この際に、流量調整弁7aの開度が大きくなることで、冷却部3cから熱媒液循環路LC1に流入した熱媒液Wcの一部が熱交換器54a(二次熱交換部32)を通過させずに冷却部3cに戻ることとなる。また、流量調整弁35aの開度が大きくなることで、導入口30iから熱交換器54aに流入して一次熱交換部31を通過させられた水素ガスGの一部が、二次熱交換部32を通過せずにバイパス流路35を通過させられて一次熱交換部31に流入し、排出口30oから排出される。したがって、流量調整弁7aの開度や流量調整弁35aの開度が大きくなることで、熱交換器54aにおいて水素ガスGから熱媒液Wcに吸熱される熱量が減少する。 At this time, as the opening degree of the flow rate control valve 7a increases, a portion of the heat transfer liquid Wc that has flowed from the cooling section 3c into the heat transfer liquid circulation path LC1 returns to the cooling section 3c without passing through the heat exchanger 54a (secondary heat exchange section 32). Also, as the opening degree of the flow rate control valve 35a increases, a portion of the hydrogen gas G that has flowed into the heat exchanger 54a from the inlet 30i and passed through the primary heat exchange section 31 passes through the bypass flow path 35 without passing through the secondary heat exchange section 32, flows into the primary heat exchange section 31, and is discharged from the outlet 30o. Therefore, as the opening degree of the flow rate control valve 7a and the opening degree of the flow rate control valve 35a increase, the amount of heat absorbed from the hydrogen gas G to the heat transfer liquid Wc in the heat exchanger 54a decreases.

また、流量調整弁7bの開度が大きくなることで、冷却部3cから熱媒液循環路LC2に流入した熱媒液Wcの一部が熱交換器54c(二次熱交換部42)を通過させずに冷却部3cに戻ることとなる。また、流量調整弁45aの開度が大きくなることで、導入口40iから熱交換器54cに流入して一次熱交換部41を通過させられた水素ガスGの一部が、二次熱交換部42を通過せずにバイパス流路45を通過させられて一次熱交換部41に流入し、排出口40oから排出される。したがって、流量調整弁7bの開度や流量調整弁45aの開度が大きくなることで、熱交換器54cにおいて水素ガスGから熱媒液Wcに吸熱される熱量が減少する。 In addition, by increasing the opening of the flow rate control valve 7b, a portion of the heat transfer liquid Wc that flows from the cooling section 3c into the heat transfer liquid circulation path LC2 returns to the cooling section 3c without passing through the heat exchanger 54c (secondary heat exchange section 42). In addition, by increasing the opening of the flow rate control valve 45a, a portion of the hydrogen gas G that flows into the heat exchanger 54c from the inlet 40i and passes through the primary heat exchange section 41 passes through the bypass flow path 45 without passing through the secondary heat exchange section 42, flows into the primary heat exchange section 41, and is discharged from the outlet 40o. Therefore, by increasing the opening of the flow rate control valve 7b and the opening of the flow rate control valve 45a, the amount of heat absorbed from the hydrogen gas G to the heat transfer liquid Wc in the heat exchanger 54c decreases.

これにより、ヒートポンプユニット3(冷凍サイクル11)の処理能力を低下させた状態において、加熱部3hにおける熱媒液Whの加熱および冷却部3cにおける熱媒液Wcの冷却を均衡させることができる。この場合、前述したように、吸着能力再生処理を継続することによって吸着剤に吸着されている水分が徐々に減少するため、熱交換器54cに流入する水素ガスGに含まれる水分、すなわち、熱交換器54cにおいて水素ガスGから除去可能な水分が徐々に減少する。このため、熱交換器54cにおいて水素ガスGを冷却するのに必要となる冷熱の熱量が徐々に低下する。その一方では、導入用配管Piに導入される水素ガスGに含まれる水分の量は、吸着能力再生処理の進捗状況とは無関係であるため、熱交換器54aにおいて水素ガスGから水分を除去するのに必要となる冷熱の熱量は大きく変化しないものの、導入される水素ガスGに含まれる水分の量が多いときには、熱交換器54aにおいて必要となる冷熱の熱量が多くなり、導入される水素ガスGに含まれる水分の量が少ないときには、熱交換器54aにおいて必要となる冷熱の熱量が少なくなる。 This allows the heating of the heat transfer liquid Wh in the heating section 3h and the cooling of the heat transfer liquid Wc in the cooling section 3c to be balanced when the processing capacity of the heat pump unit 3 (refrigeration cycle 11) is reduced. In this case, as described above, the moisture adsorbed in the adsorbent gradually decreases by continuing the adsorption capacity regeneration process, so the moisture contained in the hydrogen gas G flowing into the heat exchanger 54c, i.e., the moisture that can be removed from the hydrogen gas G in the heat exchanger 54c, gradually decreases. Therefore, the amount of cold heat required to cool the hydrogen gas G in the heat exchanger 54c gradually decreases. On the other hand, the amount of moisture contained in the hydrogen gas G introduced into the introduction pipe Pi is unrelated to the progress of the adsorption capacity regeneration process, so the amount of cold heat required to remove moisture from the hydrogen gas G in the heat exchanger 54a does not change significantly. However, when the amount of moisture contained in the introduced hydrogen gas G is large, the amount of cold heat required in the heat exchanger 54a increases, and when the amount of moisture contained in the introduced hydrogen gas G is small, the amount of cold heat required in the heat exchanger 54a decreases.

したがって、制御部15は、熱交換器54aにおいて必要とされる冷熱の熱量(熱交換器54aに流入する水素ガスGに含まれている水分の量)、および熱交換器54cにおいて必要とされる冷熱の熱量(熱交換器54cに流入する水素ガスGに含まれている水分の量)に応じて、流量調整弁7aおよび流量調整弁35aの開度や、流量調整弁7bおよび流量調整弁45aの開度を調整する。 Therefore, the control unit 15 adjusts the opening degree of the flow control valves 7a and 35a and the opening degree of the flow control valves 7b and 45a according to the amount of cold heat required in the heat exchanger 54a (the amount of moisture contained in the hydrogen gas G flowing into the heat exchanger 54a) and the amount of cold heat required in the heat exchanger 54c (the amount of moisture contained in the hydrogen gas G flowing into the heat exchanger 54c).

この場合、熱交換器54aでは、導入口30iから導入された水素ガスGと、排出口30oから排出される水素ガスGとの一次熱交換部31における熱交換(一次熱交換:予冷)によって水素ガスGから水分が除去されると共に、一次熱交換部31を通過させられた水素ガスGと熱媒液Wcとの二次熱交換部32における熱交換(二次熱交換:本冷)によって水素ガスGから水分がさらに除去される。 In this case, in the heat exchanger 54a, moisture is removed from the hydrogen gas G by heat exchange (primary heat exchange: pre-cooling) in the primary heat exchange section 31 between the hydrogen gas G introduced from the inlet 30i and the hydrogen gas G discharged from the outlet 30o, and moisture is further removed from the hydrogen gas G by heat exchange (secondary heat exchange: main cooling) in the secondary heat exchange section 32 between the hydrogen gas G passed through the primary heat exchange section 31 and the heat transfer liquid Wc.

この際に、前述の流量調整弁35aの開度が小さいとき(二次熱交換部32を通過させられる水素ガスGの量が多いとき)には、導入された水素ガスGと熱媒液Wcとの二次熱交換部32における熱交換量が多くなるため、二次熱交換部32において水素ガスGから水分が好適に除去されると共に、一次熱交換部31における予冷の熱交換量も増加して一次熱交換部31においても水素ガスGから水分が好適に除去される。しかしながら、排出口30oから排出される水素ガスGの温度が低くなるため、この水素ガスGが吸着除去処理を行う吸着塔2を通過させられることで、吸着塔2(耐圧容器や吸着剤)や流路切換え弁5bの温度が低下する結果、吸着塔2を切り換えたときに、温度低下した状態の吸着塔2や流路切換え弁5bに高温の吸着塔2が接することで結露が生じることがある。このような状態では、吸着塔2を再び切り換えたときに、結露水が排出用配管Poに流入するおそれがある。また、排出口30oから排出される水素ガスGの温度が低い状態では、吸着能力再生処理のために熱交換器4bにおいて水素ガスGを好適な温度まで加熱するのに必要となる温熱の熱量が増加する。 At this time, when the opening degree of the flow rate control valve 35a is small (when the amount of hydrogen gas G passing through the secondary heat exchange section 32 is large), the amount of heat exchange between the introduced hydrogen gas G and the heat transfer liquid Wc in the secondary heat exchange section 32 is large, so that moisture is suitably removed from the hydrogen gas G in the secondary heat exchange section 32, and the amount of pre-cooling heat exchange in the primary heat exchange section 31 also increases, so that moisture is suitably removed from the hydrogen gas G in the primary heat exchange section 31. However, since the temperature of the hydrogen gas G discharged from the exhaust port 30o is low, the hydrogen gas G is passed through the adsorption tower 2 where the adsorption and removal process is performed, and as a result, the temperature of the adsorption tower 2 (pressure-resistant container and adsorbent) and the flow path switching valve 5b decreases. As a result, when the adsorption tower 2 is switched, the high-temperature adsorption tower 2 comes into contact with the adsorption tower 2 and flow path switching valve 5b in a temperature-reduced state, and condensation may occur. In such a state, when the adsorption tower 2 is switched again, condensed water may flow into the discharge pipe Po. In addition, when the temperature of the hydrogen gas G discharged from the outlet 30o is low, the amount of heat required to heat the hydrogen gas G to a suitable temperature in the heat exchanger 4b for the adsorption capacity regeneration process increases.

一方、流量調整弁35aの開度が大きいとき(二次熱交換部32を通過する水素ガスGの量が少ないとき)には、導入口30iから導入された水素ガスGと熱媒液Wcとの二次熱交換部32における熱交換量が少なくなるため、二次熱交換部32において水素ガスGから水分を好適に除去するのが困難となると共に、一次熱交換部31における予冷の熱交換量も減少するため、一次熱交換部31においても水素ガスGから水分を好適に除去するのが困難となる。したがって、結露水が排出用配管Poに流入したり、熱交換器4bにおいて必要となる温熱の熱量が過剰に多くなったりする事態を招くことなく、一次熱交換部31および二次熱交換部32の双方において水素ガスGから水分を好適に除去することができるように、流量調整弁35aの開度(すなわち、導入口30iから導入された水素ガスGの二次熱交換部32における冷却の度合い)を調整するのが好ましい。 On the other hand, when the opening degree of the flow rate control valve 35a is large (when the amount of hydrogen gas G passing through the secondary heat exchange section 32 is small), the amount of heat exchange between the hydrogen gas G introduced from the inlet 30i and the heat transfer liquid Wc in the secondary heat exchange section 32 is small, making it difficult to suitably remove moisture from the hydrogen gas G in the secondary heat exchange section 32, and the amount of heat exchange for pre-cooling in the primary heat exchange section 31 is also reduced, making it difficult to suitably remove moisture from the hydrogen gas G in the primary heat exchange section 31. Therefore, it is preferable to adjust the opening degree of the flow rate control valve 35a (i.e., the degree of cooling of the hydrogen gas G introduced from the inlet 30i in the secondary heat exchange section 32) so that moisture can be suitably removed from the hydrogen gas G in both the primary heat exchange section 31 and the secondary heat exchange section 32 without causing a situation in which condensation water flows into the exhaust pipe Po or the amount of heat required for the warm heat in the heat exchanger 4b becomes excessively large.

この場合、熱交換器54aにおける流量調整弁35aの開度の調整(二次熱交換部32における水素ガスGの冷却の度合いの調整)については、熱交換器54a内における水素ガスGの温度変化に基づいて制御される。まず、導入口30iから導入された水素ガスGの温度(温度センサ34aによって検出される温度:「温度D」の一例)、導入口30iから導入されて一次熱交換部31を通過させられた水素ガスGの温度(温度センサ34bによって検出される温度:「温度E」の一例)、および排出口30oから排出される水素ガスGの温度(温度センサ34dによって検出される温度:「温度F」の一例)をそれぞれ特定する。 In this case, the adjustment of the opening degree of the flow rate control valve 35a in the heat exchanger 54a (adjustment of the degree of cooling of the hydrogen gas G in the secondary heat exchange section 32) is controlled based on the temperature change of the hydrogen gas G in the heat exchanger 54a. First, the temperature of the hydrogen gas G introduced from the inlet 30i (temperature detected by the temperature sensor 34a: an example of "temperature D"), the temperature of the hydrogen gas G introduced from the inlet 30i and passed through the primary heat exchange section 31 (temperature detected by the temperature sensor 34b: an example of "temperature E"), and the temperature of the hydrogen gas G discharged from the outlet 30o (temperature detected by the temperature sensor 34d: an example of "temperature F") are each identified.

次いで、上記の「温度D」および「温度E」の温度差(「温度差C」の一例)と、「温度D」および「温度F」の温度差「温度差D」とを特定すると共に、「温度差C」と「温度差D」との比が予め規定された目標範囲内の比となるように、流量調整弁35aを制御してバイパス流路35を通過する水素ガスGの流量を調整する(「処理B」の一例)。なお、上記の「目標範囲」については、除去システム1の使用環境下に応じて、結露水が排出用配管Poに流入したり、熱交換器4bにおいて必要となる温熱の熱量が過剰に多くなったりする事態を招くことなく、一次熱交換部31および二次熱交換部32の双方において水素ガスGから水分を好適に除去することができる状態となる「温度差Cと温度差Dとの比」を予め特定することで、各処理の開始に先立って規定される。 Next, the temperature difference between the above-mentioned "temperature D" and "temperature E" (an example of "temperature difference C") and the temperature difference between "temperature D" and "temperature F", "temperature difference D", are specified, and the flow rate of hydrogen gas G passing through the bypass flow path 35 is adjusted by controlling the flow control valve 35a so that the ratio of "temperature difference C" to "temperature difference D" is within a predetermined target range (an example of "process B"). Note that the above-mentioned "target range" is specified prior to the start of each process by specifying in advance the "ratio of temperature difference C to temperature difference D" that allows moisture to be suitably removed from hydrogen gas G in both the primary heat exchange section 31 and the secondary heat exchange section 32, depending on the usage environment of the removal system 1, without causing a situation in which condensation water flows into the discharge pipe Po or the amount of heat required in the heat exchanger 4b becomes excessively large.

なお、本例の除去システム1では、上記のように流量調整弁35aの開度を調整する制御と並行して、制御部15が、流量調整弁7aの開度を調整する制御を実行する。この流量調整弁7aの開度の調整については、前述の例において流量調整弁33a,33bの開度の調整と並行して行う流量調整弁7aの開度の調整と同様のため、重複する説明を省略する。 In addition, in the removal system 1 of this example, the control unit 15 executes control to adjust the opening degree of the flow control valve 7a in parallel with the control to adjust the opening degree of the flow control valve 35a as described above. This adjustment of the opening degree of the flow control valve 7a is similar to the adjustment of the opening degree of the flow control valve 7a performed in parallel with the adjustment of the opening degree of the flow control valves 33a and 33b in the previous example, so a duplicated explanation will be omitted.

一方、前述の流量調整弁45aの開度が小さいとき(二次熱交換部42を通過させられる水素ガスGの量が多いとき)には、導入された水素ガスGと熱媒液Wcとの二次熱交換部42における熱交換量が多くなるため、二次熱交換部42において水素ガスGから水分が好適に除去されると共に、一次熱交換部41における予冷の熱交換量も増加して一次熱交換部41においても水素ガスGから水分が好適に除去される。しかしながら、排出口40oから排出される水素ガスGの温度が低くなるため、この水素ガスGが吸着除去処理を行う吸着塔2を通過させられることで、吸着塔2(耐圧容器や吸着剤)や流路切換え弁5bの温度が低下する結果、吸着塔2を切り換えたときに、温度低下した状態の吸着塔2や流路切換え弁5bに高温の吸着塔2が接することで結露が生じることがある。このような状態では、吸着塔2を再び切り換えたときに、結露水が排出用配管Poに流入するおそれがある。 On the other hand, when the opening degree of the flow rate control valve 45a is small (when the amount of hydrogen gas G passing through the secondary heat exchanger 42 is large), the amount of heat exchange between the introduced hydrogen gas G and the heat transfer liquid Wc in the secondary heat exchanger 42 is large, so that moisture is preferably removed from the hydrogen gas G in the secondary heat exchanger 42, and the amount of pre-cooling heat exchange in the primary heat exchanger 41 also increases, so that moisture is preferably removed from the hydrogen gas G in the primary heat exchanger 41. However, since the temperature of the hydrogen gas G discharged from the exhaust port 40o is low, the hydrogen gas G is passed through the adsorption tower 2 where the adsorption and removal process is performed, and as a result, the temperature of the adsorption tower 2 (pressure-resistant container and adsorbent) and the flow path switching valve 5b decreases. As a result, when the adsorption tower 2 is switched, the high-temperature adsorption tower 2 comes into contact with the adsorption tower 2 and flow path switching valve 5b in a temperature-reduced state, and condensation may occur. In such a state, when the adsorption tower 2 is switched again, condensed water may flow into the discharge pipe Po.

また、流量調整弁45aの開度が大きいとき(二次熱交換部42を通過する水素ガスGの量が少ないとき)には、導入口40iから導入された水素ガスGと熱媒液Wcとの二次熱交換部42における熱交換量が少なくなるため、二次熱交換部42において水素ガスGから水分を好適に除去するのが困難となると共に、一次熱交換部41における予冷の熱交換量も減少するため、一次熱交換部41においても水素ガスGから水分を好適に除去するのが困難となる。したがって、結露水が排出用配管Poに流入する事態を招くことなく、一次熱交換部41および二次熱交換部42の双方において水素ガスGから水分を好適に除去することができるように、流量調整弁45aの開度(すなわち、導入口40iから導入された水素ガスGの二次熱交換部42における冷却の度合い)を調整するのが好ましい。 In addition, when the opening degree of the flow rate control valve 45a is large (when the amount of hydrogen gas G passing through the secondary heat exchanger 42 is small), the amount of heat exchange between the hydrogen gas G introduced from the inlet 40i and the heat transfer liquid Wc in the secondary heat exchanger 42 is small, making it difficult to suitably remove moisture from the hydrogen gas G in the secondary heat exchanger 42, and the amount of pre-cooling heat exchange in the primary heat exchanger 41 is also reduced, making it difficult to suitably remove moisture from the hydrogen gas G in the primary heat exchanger 41. Therefore, it is preferable to adjust the opening degree of the flow rate control valve 45a (i.e., the degree of cooling of the hydrogen gas G introduced from the inlet 40i in the secondary heat exchanger 42) so that moisture can be suitably removed from the hydrogen gas G in both the primary heat exchanger 41 and the secondary heat exchanger 42 without causing a situation in which condensed water flows into the exhaust pipe Po.

この場合、熱交換器54cにおける流量調整弁45aの開度の調整(二次熱交換部42における水素ガスGの冷却の度合いの調整)については、熱交換器54c内における水素ガスGの温度変化に基づいて制御される。まず、導入口40iから導入された水素ガスGの温度(温度センサ44aによって検出される温度:「温度A」の一例)と、導入口40iから導入されて一次熱交換部41を通過させられた水素ガスGの温度(温度センサ44bによって検出される温度:「温度B」の一例)との温度差(「温度差A」の一例)を特定する。また、上記の「温度A」と排出口40oから排出される水素ガスGの温度(温度センサ44dによって検出される温度:「温度C」の一例)との温度差(「温度差B」の一例)を特定する。 In this case, the adjustment of the opening degree of the flow rate control valve 45a in the heat exchanger 54c (adjustment of the degree of cooling of the hydrogen gas G in the secondary heat exchange section 42) is controlled based on the temperature change of the hydrogen gas G in the heat exchanger 54c. First, the temperature difference (an example of "temperature difference A") between the temperature of the hydrogen gas G introduced from the inlet 40i (temperature detected by the temperature sensor 44a: an example of "temperature A") and the temperature of the hydrogen gas G introduced from the inlet 40i and passed through the primary heat exchange section 41 (temperature detected by the temperature sensor 44b: an example of "temperature B") is identified. In addition, the temperature difference (an example of "temperature difference B") between the above "temperature A" and the temperature of the hydrogen gas G discharged from the outlet 40o (temperature detected by the temperature sensor 44d: an example of "temperature C") is identified.

次いで、上記の「温度差A」と「温度差B」との比が予め規定された目標範囲内の比となるように、流量調整弁45aを制御してバイパス流路45を通過する水素ガスGの流量を調整する(「処理A」の一例)。なお、この「目標範囲」については、除去システム1の使用環境下に応じて、結露水が排出用配管Poに流入する事態を招くことなく、一次熱交換部41および二次熱交換部42の双方において水素ガスGから水分を好適に除去することができる状態となる「温度差Aと温度差Bとの比」を予め特定することで、各処理の開始に先立って規定される。 Next, the flow rate of hydrogen gas G passing through the bypass flow path 45 is adjusted by controlling the flow rate control valve 45a so that the ratio of the above "temperature difference A" to "temperature difference B" falls within a predetermined target range (an example of "process A"). Note that this "target range" is determined prior to the start of each process by specifying in advance the "ratio of temperature difference A to temperature difference B" that allows moisture to be suitably removed from the hydrogen gas G in both the primary heat exchange section 41 and the secondary heat exchange section 42 without causing condensation water to flow into the discharge pipe Po, depending on the usage environment of the removal system 1.

また、本例の除去システム1では、上記のように流量調整弁45aの開度を調整する制御と並行して、制御部15が、流量調整弁7bの開度を調整する制御を実行する。具体的には、制御部15は、吸着除去処理を行う吸着塔2に流入させられる水素ガスGの温度(温度センサ9によって検出される温度)に基づき、流量調整弁7bを制御して、水素ガスGの温度が高いときに熱交換器54cを通過させられる熱媒液Wcの流量を増加させ、水素ガスGの温度が低いときに熱交換器54cを通過させられる熱媒液Wcの流量を減少させる。これにより、吸着除去処理を行う吸着塔2に対して過剰に低い温度の水素ガスGが流入する事態が回避され、結露水が排出用配管Poに流入する事態を好適に回避することが可能となる。 In addition, in the removal system 1 of this example, in parallel with the control of adjusting the opening degree of the flow rate control valve 45a as described above, the control unit 15 executes control of adjusting the opening degree of the flow rate control valve 7b. Specifically, the control unit 15 controls the flow rate control valve 7b based on the temperature (temperature detected by the temperature sensor 9) of the hydrogen gas G flowing into the adsorption tower 2 performing the adsorption removal process, to increase the flow rate of the heat transfer liquid Wc passed through the heat exchanger 54c when the temperature of the hydrogen gas G is high, and to decrease the flow rate of the heat transfer liquid Wc passed through the heat exchanger 54c when the temperature of the hydrogen gas G is low. This makes it possible to avoid a situation in which hydrogen gas G with an excessively low temperature flows into the adsorption tower 2 performing the adsorption removal process, and to preferably avoid a situation in which condensation water flows into the discharge pipe Po.

以上の説明のように、熱交換器4a,4cに代えて熱交換器54a,54cを備えて構成された除去システム1では、熱交換器4a,4cを備えて構成された前述の除去システム1と同様にして、吸着除去処理および吸着能力再生処理を並行して好適に実施することが可能となっている。 As explained above, in the removal system 1 configured with heat exchangers 54a and 54c instead of heat exchangers 4a and 4c, it is possible to preferably perform the adsorption removal process and the adsorption capacity regeneration process in parallel, similar to the above-mentioned removal system 1 configured with heat exchangers 4a and 4c.

このように、この「吸着剤再生装置(熱交換器54a,54cを備えて構成された除去システム1における吸着塔2a,2bを除く構成要素からなる装置)」では、複数の吸着塔2(本例では、吸着塔2a,2bの2つ)を備えて各吸着塔2の一部を対象とする吸着除去処理と各吸着塔2の他の一部を対象とする加熱再生方式の吸着能力再生処理とを並行して実行可能に構成された除去システム1における吸着剤を再生可能に構成され、吸着能力再生処理を行う吸着塔2に流入させる水素ガスGを加熱する熱交換器4bと、吸着除去処理を行う吸着塔2および熱交換器4bに流入させられる水素ガスGを冷却する熱交換器54aと、吸着能力再生処理を行う吸着塔2を通過させられた水素ガスGを冷却する熱交換器54cと、冷凍サイクル11における凝縮器22からの放熱によって熱媒液Whを加熱可能な加熱部3h、および冷凍サイクル11における蒸発器24による吸熱によって熱媒液Wcを冷却可能な冷却部3cを備えたヒートポンプユニット3と、吸着除去処理を行う吸着塔2を通過させられた水素ガスGを、水分の除去が完了した水素ガスGを流入させるべき排出用配管Poに流入させると共に、熱交換器4bによって加熱された水素ガスGを、吸着能力再生処理を行う吸着塔2に流入させる流路切換え弁5bと、熱交換器54aによって冷却された水素ガスGを、吸着除去処理を行う吸着塔2に流入させると共に、吸着能力再生処理を行う吸着塔2を通過させられた水素ガスGを、熱交換器54cに流入させる流路切換え弁5aと、加熱部3hによる熱媒液Whの加熱、熱交換器4bへの熱媒液Whの供給、冷却部3cによる熱媒液Wcの冷却、熱交換器54aへの熱媒液Wcの供給、および熱交換器54cへの熱媒液Wcの供給を制御する「第1の処理」と、流路切換え弁5a,5bを制御して吸着除去処理を行う吸着塔2および吸着能力再生処理を行う吸着塔2を切り換える「第2の処理」とを実行する制御部15とを備え、熱交換器54cを通過させられた水素ガスGが、熱交換器54aを通過させられた水素ガスGに合流させられて流路切換え弁5aを介して吸着除去処理を行う吸着塔2に流入させられると共に、熱交換器54a,54cが、一次熱交換部31,41および二次熱交換部32,42を備え、導入口30i,40iから導入された水素ガスGが、一次熱交換部31,41、二次熱交換部32,42および一次熱交換部31,41をこの順で通過させられて排出口30o,40oから排出されるように水素ガスGの流路が形成されると共に、二次熱交換部32,42において熱媒液Wcとの熱交換によって水素ガスGに含まれている水分が液相化されて除去され、かつ、一次熱交換部31,41において二次熱交換部32,42によって冷却された水素ガスGとの熱交換によって導入口30i,40iから導入された水素ガスGに含まれている水分が液相化されて除去されるようにそれぞれ構成されている。また、この「吸着剤再生装置」では、「気体」としての水素ガスから「除去対象」としての水分を除去可能に構成された除去システム1における吸着剤の吸着能力を再生可能に構成されている。さらに、この除去システム1では、上記の「吸着剤再生装置」と各吸着塔2とを備えて水素ガスGから水分を除去可能に構成されている。 In this way, this "adsorbent regeneration device (a device consisting of components other than the adsorption towers 2a and 2b in the removal system 1 configured with the heat exchangers 54a and 54c)" is configured to be able to regenerate the adsorbent in the removal system 1 that is configured to be able to execute in parallel an adsorption removal process for a part of each adsorption tower 2 and an adsorption capacity regeneration process by a heating regeneration method for another part of each adsorption tower 2, and is configured to be able to regenerate the adsorbent in the removal system 1 that is configured with a plurality of adsorption towers 2 (two adsorption towers 2a and 2b in this example), and is configured to be able to execute an adsorption removal process for a part of each adsorption tower 2 and an adsorption capacity regeneration process by a heating regeneration method for another part of each adsorption tower 2, and is configured to be able to regenerate the adsorbent in the removal system 1 that is configured with the heat exchanger 4b that heats the hydrogen gas G that is to be flowed into the adsorption tower 2 that performs the adsorption removal process and the heat exchanger 54a that cools the hydrogen gas G that is to be flowed into the adsorption tower 2 that performs the adsorption removal process and the heat exchanger 4b, and is configured to be able to regenerate the water that has passed through the adsorption tower 2 that performs the adsorption capacity regeneration process. a heat pump unit 3 including a heat exchanger 54c for cooling the raw gas G, a heating section 3h capable of heating a heat transfer liquid Wh by heat radiation from a condenser 22 in the refrigeration cycle 11, and a cooling section 3c capable of cooling the heat transfer liquid Wc by heat absorption by an evaporator 24 in the refrigeration cycle 11; a flow path switching valve 5b for allowing the hydrogen gas G passed through an adsorption tower 2 performing an adsorption and removal treatment to flow into a discharge pipe Po into which hydrogen gas G from which moisture has been removed is to flow, and allowing the hydrogen gas G heated by the heat exchanger 4b to flow into the adsorption tower 2 performing an adsorption capacity regeneration treatment; The flow path switching valve 5a causes the hydrogen gas G passed through the heat exchanger 54c to flow into the heat exchanger 54c, and a control unit 15 executes a "first process" for controlling the heating of the heat transfer liquid Wh by the heating unit 3h, the supply of the heat transfer liquid Wh to the heat exchanger 4b, the cooling of the heat transfer liquid Wc by the cooling unit 3c, the supply of the heat transfer liquid Wc to the heat exchanger 54a, and the supply of the heat transfer liquid Wc to the heat exchanger 54c, and a "second process" for controlling the flow path switching valves 5a and 5b to switch the adsorption tower 2 that performs the adsorption and removal process and the adsorption tower 2 that performs the adsorption capacity regeneration process. The hydrogen gas G that has passed through the heat exchanger 54c is merged with the hydrogen gas G that has passed through the heat exchanger 54a and is caused to flow into the adsorption tower 2 that performs the adsorption and removal process via the flow path switching valve 5a, and 4c includes a primary heat exchanger 31, 41 and a secondary heat exchanger 32, 42, and the hydrogen gas G introduced from the inlet 30i, 40i is passed through the primary heat exchanger 31, 41, the secondary heat exchanger 32, 42, and the primary heat exchanger 31, 41 in this order, and is discharged from the outlet 30o, 40o, so that a flow path of the hydrogen gas G is formed, and the moisture contained in the hydrogen gas G is liquidized and removed by heat exchange with the heat transfer liquid Wc in the secondary heat exchanger 32, 42, and the moisture contained in the hydrogen gas G introduced from the inlet 30i, 40i is liquidized and removed by heat exchange with the hydrogen gas G cooled by the secondary heat exchanger 32, 42 in the primary heat exchanger 31, 41. In addition, in this "adsorbent regeneration device", the adsorption capacity of the adsorbent in the removal system 1 configured to be able to remove moisture as a "removal target" from hydrogen gas as a "gas" is regenerated. Furthermore, this removal system 1 is equipped with the above-mentioned "adsorbent regeneration device" and each adsorption tower 2, and is configured to be able to remove moisture from hydrogen gas G.

したがって、この「吸着剤再生装置」および除去システム1によれば、水素ガスGを冷却することで水素ガスGから水分を除去するための冷熱源(例えば、単独で動作する冷凍サイクル)と、加熱再生方式の吸着能力再生処理のために水素ガスGを加熱するための温熱源(例えば電気ヒータ)とを別個に動作させなくても、ヒートポンプユニット3を動作させるだけで、水素ガスGを冷却するための熱媒液Wcを冷却部3cにおいて冷却し、同時に水素ガスGを加熱するための熱媒液Whを加熱部3hにおいて加熱することができる。これにより、水素ガスGからの水分の除去および吸着剤の再生のために消費されるエネルギー量を十分に低減することができる。また、吸着除去処理を行う吸着塔2に水素ガスGを流入させる前に熱交換器54aにおいて水素ガスGに含まれる水分の一部を除去する分だけ、吸着除去処理を行う吸着塔2内の吸着剤の吸着能力の低下を抑制できるため、吸着除去処理を行う吸着塔2に流入させる水素ガスGの量を減少させたり、吸着除去処理を一時的に停止させたりする必要がなくなることから、導入される水素ガスGについての吸着除去処理を短時間で確実に完了させることができる。また、熱交換器54a,54c内に一次熱交換部31,41および二次熱交換部32,42を設けて二次熱交換部32,42において熱媒液Wcとの熱交換によって水素ガスGを冷却しつつ、一次熱交換部31,41において導入口30i,40iから導入される水素ガスGを排出口30o,40oから排出される水素ガスG(すなわち、二次熱交換部32,42において冷却された水素ガスG)との熱交換によって冷却することで、水素ガスGを効率よく冷却して水分を除去することができる。これにより、多量の水分を含んだ水素ガスGが吸着除去処理を行う吸着塔2に流入する事態を回避することができると共に、一次熱交換部31,41および二次熱交換部32,42を備えない構成の熱交換器を使用するのと比較して、水素ガスGからの水分を除去するのに消費されるエネルギー量を一層低減することができる。 Therefore, according to this "adsorbent regeneration device" and removal system 1, even without separately operating a cold heat source (e.g., a refrigeration cycle that operates independently) for removing moisture from hydrogen gas G by cooling the hydrogen gas G and a hot heat source (e.g., an electric heater) for heating hydrogen gas G for the adsorption capacity regeneration process of the thermal regeneration method, the heat pump unit 3 can be simply operated to cool the heat transfer liquid Wc for cooling the hydrogen gas G in the cooling section 3c and simultaneously heat the heat transfer liquid Wh for heating the hydrogen gas G in the heating section 3h. This makes it possible to sufficiently reduce the amount of energy consumed for removing moisture from hydrogen gas G and regenerating the adsorbent. In addition, since the amount of moisture contained in the hydrogen gas G is partially removed in the heat exchanger 54a before the hydrogen gas G is introduced into the adsorption tower 2 where the adsorption and removal process is performed can be reduced by suppressing the decrease in the adsorption capacity of the adsorbent in the adsorption tower 2 where the adsorption and removal process is performed, it is not necessary to reduce the amount of hydrogen gas G introduced into the adsorption tower 2 where the adsorption and removal process is performed or to temporarily stop the adsorption and removal process, so that the adsorption and removal process for the introduced hydrogen gas G can be completed reliably in a short time. In addition, the primary heat exchange sections 31, 41 and the secondary heat exchange sections 32, 42 are provided in the heat exchangers 54a, 54c, and the hydrogen gas G is cooled by heat exchange with the heat transfer liquid Wc in the secondary heat exchange sections 32, 42, while the hydrogen gas G introduced from the inlets 30i, 40i in the primary heat exchange sections 31, 41 is cooled by heat exchange with the hydrogen gas G discharged from the outlets 30o, 40o (i.e., the hydrogen gas G cooled in the secondary heat exchange sections 32, 42), so that the hydrogen gas G can be efficiently cooled and moisture can be removed. This makes it possible to prevent hydrogen gas G containing a large amount of moisture from flowing into the adsorption tower 2 where the adsorption and removal process is performed, and also makes it possible to further reduce the amount of energy consumed to remove moisture from the hydrogen gas G compared to using a heat exchanger that does not have the primary heat exchanger 31, 41 and the secondary heat exchanger 32, 42.

また、この「吸着剤再生装置」では、導入口40iから導入されて一次熱交換部41を通過させられた水素ガスGの一部を、二次熱交換部42を通過させずに、二次熱交換部42を通過させられて一次熱交換部41に流入させられる水素ガスGに合流させるバイパス流路45が熱交換器54cに設けられると共に、バイパス流路45を通過する水素ガスGの流量を調整可能な流量調整弁45aが配設され、制御部15が、導入口40iから導入された水素ガスGの「温度A(温度センサ44aの検出温度)」、導入口40iから導入されて一次熱交換部41を通過させられた水素ガスGの「温度B(温度センサ44bの検出温度)」、および熱交換器54cにおける排出口40oから排出される水素ガスGの「温度C(温度センサ44dの検出温度)」をそれぞれ特定すると共に、「温度A」および「温度B」の「温度差A」と、「温度A」および「温度C」の「温度差B」との比に基づき、流量調整弁45aを制御してバイパス流路45を通過する水素ガスGの流量を調整する「処理A」を実行する。したがって、この「吸着剤再生装置」および除去システム1によれば、過剰に低い温度の水素ガスGが吸着除去処理を行う吸着塔2などを通過させられる事態が回避されるため、吸着除去処理を行う吸着塔2と吸着能力再生処理を行う吸着塔2とを切り換えたときに、吸着除去処理を行っていた吸着塔2内等で結露が生じる事態を回避することができる。 In addition, in this "adsorbent regeneration device", a bypass flow path 45 is provided in the heat exchanger 54c, which merges a portion of the hydrogen gas G introduced from the inlet 40i and passed through the primary heat exchange section 41 with the hydrogen gas G that is passed through the secondary heat exchange section 42 and flows into the primary heat exchange section 41 without passing through the secondary heat exchange section 42, and a flow rate adjustment valve 45a is provided that can adjust the flow rate of the hydrogen gas G passing through the bypass flow path 45. The control unit 15 controls the "temperature A (the temperature detected by the temperature sensor 44a)" of the hydrogen gas G introduced from the inlet 40i. The "temperature A" of the hydrogen gas G introduced from the inlet 40i and passed through the primary heat exchanger 41 (temperature B (temperature detected by the temperature sensor 44b)) and the "temperature C" of the hydrogen gas G discharged from the outlet 40o in the heat exchanger 54c (temperature detected by the temperature sensor 44d) are respectively specified, and the flow rate of the hydrogen gas G passing through the bypass flow path 45 is adjusted by controlling the flow rate control valve 45a based on the ratio of the "temperature difference A" between the "temperature A" and the "temperature B" and the "temperature difference B" between the "temperature A" and the "temperature C". Therefore, according to this "adsorbent regeneration device" and the removal system 1, a situation in which excessively low-temperature hydrogen gas G is passed through the adsorption tower 2 performing the adsorption removal process, etc., can be avoided, so that a situation in which condensation occurs in the adsorption tower 2 performing the adsorption removal process when switching between the adsorption tower 2 performing the adsorption removal process and the adsorption tower 2 performing the adsorption capacity regeneration process can be avoided.

また、この「吸着剤再生装置」では、導入口30iから導入されて一次熱交換部31を通過させられた水素ガスGの一部を、二次熱交換部32を通過させずに、二次熱交換部32を通過させられて一次熱交換部31に流入させられる水素ガスGに合流させるバイパス流路35が熱交換器54aに設けられると共に、バイパス流路35を通過する水素ガスGの流量を調整可能な流量調整弁35aが配設され、制御部15が、導入口30iから導入された水素ガスGの「温度D(温度センサ34aの検出温度)」、導入口30iから導入されて一次熱交換部31を通過させられた水素ガスGの「温度E(温度センサ34bの検出温度)」、および熱交換器54aにおける排出口30oから排出される水素ガスGの「温度F(温度センサ34dの検出温度)」をそれぞれ特定すると共に、「温度D」および「温度E」の「温度差C」と、「温度D」および「温度F」の「温度差D」との比に基づき、流量調整弁35aを制御してバイパス流路35を通過する水素ガスGの流量を調整する「処理B」を実行する。したがって、この「吸着剤再生装置」および除去システム1によれば、過剰に低い温度の水素ガスGが吸着除去処理を行う吸着塔2などを通過させられる事態が回避されるため、吸着除去処理を行う吸着塔2と吸着能力再生処理を行う吸着塔2とを切り換えたときに、吸着除去処理を行っていた吸着塔2内等で結露が生じる事態を回避することができる。 In addition, in this "adsorbent regeneration device", a bypass flow path 35 is provided in the heat exchanger 54a, which merges a portion of the hydrogen gas G introduced from the inlet 30i and passed through the primary heat exchange section 31 with the hydrogen gas G that is passed through the secondary heat exchange section 32 and flows into the primary heat exchange section 31 without passing through the secondary heat exchange section 32, and a flow rate adjustment valve 35a is provided that can adjust the flow rate of the hydrogen gas G passing through the bypass flow path 35. The control unit 15 controls the "temperature D (the temperature detected by the temperature sensor 34a)" of the hydrogen gas G introduced from the inlet 30i. The "temperature E (temperature detected by temperature sensor 34b)" of hydrogen gas G introduced from inlet 30i and passed through primary heat exchanger 31, and the "temperature F (temperature detected by temperature sensor 34d)" of hydrogen gas G discharged from outlet 30o in heat exchanger 54a are respectively specified, and "process B" is performed in which flow control valve 35a is controlled to adjust the flow rate of hydrogen gas G passing through bypass flow path 35 based on the ratio of "temperature difference C" between "temperature D" and "temperature E" and "temperature difference D" between "temperature D" and "temperature F". Therefore, according to this "adsorbent regeneration device" and removal system 1, a situation in which hydrogen gas G at an excessively low temperature is passed through adsorption tower 2 performing adsorption removal processing, etc., can be avoided, so that when switching between adsorption tower 2 performing adsorption removal processing and adsorption tower 2 performing adsorption capacity regeneration processing, condensation can be avoided in adsorption tower 2 performing adsorption removal processing.

また、この「吸着剤再生装置」では、熱交換器54cを通過させられる水素ガスGの流量を調整する流量調整弁7bを備え、制御部15が、熱交換器54cを通過させられた水素ガスGの温度(温度センサ9による検出温度)が予め規定された温度範囲内の温度となるように流量調整弁7bを制御して熱交換器54cを通過させられる水素ガスGの流量を調整する「第5の処理」を実行する。したがって、この「吸着剤再生装置」および除去システム1によれば、過剰に低い温度の水素ガスGが吸着除去処理を行う吸着塔2などを通過させられる事態が回避されるため、吸着除去処理を行う吸着塔2と吸着能力再生処理を行う吸着塔2とを切り換えたときに、吸着除去処理を行っていた吸着塔2内等で結露が生じる事態を回避することができる。 In addition, this "adsorbent regeneration device" includes a flow rate control valve 7b that adjusts the flow rate of hydrogen gas G passed through the heat exchanger 54c, and the control unit 15 executes a "fifth process" in which the flow rate of hydrogen gas G passed through the heat exchanger 54c is adjusted by controlling the flow rate control valve 7b so that the temperature of the hydrogen gas G passed through the heat exchanger 54c (the temperature detected by the temperature sensor 9) is within a predetermined temperature range. Therefore, according to this "adsorbent regeneration device" and the removal system 1, a situation in which hydrogen gas G at an excessively low temperature is passed through the adsorption tower 2 performing the adsorption removal process, etc., can be avoided, so that when the adsorption tower 2 performing the adsorption removal process and the adsorption tower 2 performing the adsorption capacity regeneration process are switched, condensation can be avoided in the adsorption tower 2 performing the adsorption removal process.

また、この「吸着剤再生装置」では、熱交換器54cを通過させられる熱媒液Wcの流量を調整する流量調整弁7bを備え、制御部15が、吸着除去処理を行う吸着塔2に流入させられる水素ガスGの温度(温度センサ9の検出温度)に基づき、流量調整弁7bを制御して、水素ガスGの温度が高いときに熱交換器54cを通過させられる熱媒液Wcの流量を増加させ、水素ガスGの温度が低いときに熱交換器54cを通過させられる熱媒液Wcの流量を減少させる。したがって、この「吸着剤再生装置」および除去システム1によれば、過剰に低い温度の水素ガスGが吸着除去処理を行う吸着塔2などを通過させられる事態が回避されるため、吸着除去処理を行う吸着塔2と吸着能力再生処理を行う吸着塔2とを切り換えたときに、吸着除去処理を行っていた吸着塔2内等で結露が生じる事態を回避することができる。 In addition, this "adsorbent regeneration device" is provided with a flow rate adjustment valve 7b that adjusts the flow rate of the heat transfer liquid Wc that is passed through the heat exchanger 54c, and the control unit 15 controls the flow rate adjustment valve 7b based on the temperature of the hydrogen gas G that is flowed into the adsorption tower 2 that performs the adsorption removal process (the temperature detected by the temperature sensor 9), to increase the flow rate of the heat transfer liquid Wc that is passed through the heat exchanger 54c when the temperature of the hydrogen gas G is high, and to decrease the flow rate of the heat transfer liquid Wc that is passed through the heat exchanger 54c when the temperature of the hydrogen gas G is low. Therefore, according to this "adsorbent regeneration device" and removal system 1, a situation in which excessively low-temperature hydrogen gas G is passed through the adsorption tower 2 that performs the adsorption removal process, etc., can be avoided, so that a situation in which condensation occurs in the adsorption tower 2 that was performing the adsorption removal process when switching between the adsorption tower 2 that performs the adsorption removal process and the adsorption tower 2 that performs the adsorption capacity regeneration process can be avoided.

また、上記の構成の例に代えて、熱交換器4aと熱交換器54cとを備えて除去システム1を構成したり、熱交換器54aと熱交換器4cとを備えて除去システム1を構成したりすることもできる。さらに、予冷用の一次熱交換部31や本冷用の二次熱交換部32を備えない通常の熱交換器(図示せず)で「第2の熱交換器」を構成したり、予冷用の一次熱交換部41や本冷用の二次熱交換部42を備えない通常の熱交換器(図示せず)で「第3の熱交換器」を構成したりすることもできる。 In addition, instead of the above example configuration, the removal system 1 can be configured with heat exchanger 4a and heat exchanger 54c, or the removal system 1 can be configured with heat exchanger 54a and heat exchanger 4c. Furthermore, the "second heat exchanger" can be configured with a normal heat exchanger (not shown) that does not have a primary heat exchange section 31 for pre-cooling or a secondary heat exchange section 32 for main cooling, and the "third heat exchanger" can be configured with a normal heat exchanger (not shown) that does not have a primary heat exchange section 41 for pre-cooling or a secondary heat exchange section 42 for main cooling.

また、2つの吸着塔2を備えた構成を例に挙げて説明したが、3つ以上の複数の吸着塔2を備えて「除去システム」およびその「吸着剤再生装置」を構成することもできる。具体的には、吸着除去処理を行う吸着塔2内の吸着剤が好適に水分を吸着するのが困難となるまでの時間よりも、吸着能力再生処理を行う吸着塔2内の吸着剤から水分を好適に離脱させるのに要する時間が長いときには、一例として、3つの吸着塔2を備え、そのうちの1つにおいて吸着除去処理を行いつつ、他の2つにおいて吸着能力再生処理を行うことで、吸着除去処理を継続的に行うことが可能となる。また、吸着能力再生処理を行う吸着塔2内の吸着剤から水分を好適に離脱させるのに要する時間よりも、吸着除去処理を行う吸着塔2内の吸着剤が好適に水分を吸着するのが困難となるまでの時間が長いときには、一例として、3つの吸着塔2を備え、そのうちの1つにおいて吸着能力再生処理を順次行いつつ、他の2つにおいて吸着除去処理を行うことで、吸着除去処理および吸着能力除去処理を効率よく行うことが可能となる。 In addition, although the configuration with two adsorption towers 2 has been described as an example, the "removal system" and its "adsorbent regeneration device" can also be configured with three or more adsorption towers 2. Specifically, when the time required to desorb moisture from the adsorbent in the adsorption tower 2 performing the adsorption capacity regeneration process is longer than the time required for the adsorbent in the adsorption tower 2 performing the adsorption removal process to desorb moisture, as an example, three adsorption towers 2 are provided, and the adsorption removal process is performed in one of them while the adsorption capacity regeneration process is performed in the other two, making it possible to perform the adsorption removal process continuously. In addition, when the time required for the adsorbent in the adsorption tower 2 performing the adsorption removal process to desorb moisture is longer than the time required for the adsorbent in the adsorption tower 2 performing the adsorption capacity regeneration process to desorb moisture, as an example, three adsorption towers 2 are provided, and the adsorption capacity regeneration process is performed in one of them while the adsorption removal process is performed in the other two, making it possible to efficiently perform the adsorption removal process and the adsorption capacity removal process.

また、「第2の流量調整部」としての流量調整弁33a,33bが配設された熱交換器4aを「第2の熱交換器」として備えた構成、および「第1の流量調整部」としての流量調整弁43a,43bが配設された熱交換器4cを「第3の熱交換器」として備えた構成を例に挙げて説明したが、流量調整弁33a,33bに代えて、二次熱交換部32を通過させられた水素ガスGを、バイパス流路33に流入させる流路、および一次熱交換部31に再び流入させる流路のいずれかに流入させる三方弁を「第2の流量調整部」として備えて「第2の熱交換器」を構成したり、流量調整弁43a,43bに代えて、二次熱交換部42を通過させられた水素ガスGを、バイパス流路43に流入させる流路、および一次熱交換部41に再び流入させる流路のいずれかに流入させる三方弁を「第1の流量調整部」として備えて「第3の熱交換器」を構成したりすることもできる。 In addition, the configuration has been described with the heat exchanger 4a provided with the flow rate adjustment valves 33a and 33b as the "second flow rate adjustment unit" as the "second heat exchanger", and the configuration has the heat exchanger 4c provided with the flow rate adjustment valves 43a and 43b as the "first flow rate adjustment unit" as the "third heat exchanger". A "second heat exchanger" can be configured with a three-way valve as a "second flow rate adjustment unit" that directs the hydrogen gas G that has passed through the secondary heat exchange unit 42 into either the flow rate that directs the hydrogen gas G to flow again into the primary heat exchange unit 41, or a "third heat exchanger" can be configured with a three-way valve as a "first flow rate adjustment unit" that directs the hydrogen gas G that has passed through the secondary heat exchange unit 42 into either the flow rate that directs the hydrogen gas G to flow again into the bypass flow rate 43 or the flow rate that directs the hydrogen gas G to flow again into the primary heat exchange unit 41, instead of the flow rate adjustment valves 43a and 43b.

また、「温度調整部」については、前述の除去システム1におけるヒートポンプユニット3のような「1つの冷凍サイクル11」を備えた構成に限定されず、一例として、カスケードコンデンサを介して連設された「多段冷凍サイクル」によって「温度調整部」を構成することができる。この場合、一例として、低温側冷凍サイクルにおける凝縮器、および高温側冷凍サイクルにおける蒸発器に相当する要素をカスケードコンデンサで構成した「二段冷凍サイクル」を備えて「温度調整部」を構成した場合には、低温側冷凍サイクルにおける蒸発器を備えて「冷却部」を構成すると共に、高温側冷凍サイクルにおける凝縮器を備えて「加熱部」を構成することで、「冷却部」から供給可能な冷熱の熱量、および「加熱部」から供給可能な温熱の熱量を十分に増加させる(熱媒液Wcを十分に冷却し、かつ熱媒液Whを十分に加熱する)ことが可能となる。 The "temperature adjustment unit" is not limited to a configuration with "one refrigeration cycle 11" like the heat pump unit 3 in the removal system 1 described above, and as an example, the "temperature adjustment unit" can be configured with a "multi-stage refrigeration cycle" connected via a cascade condenser. In this case, as an example, when the "temperature adjustment unit" is configured with a "two-stage refrigeration cycle" in which the elements corresponding to the condenser in the low-temperature side refrigeration cycle and the evaporator in the high-temperature side refrigeration cycle are configured with a cascade condenser, the "cooling unit" is configured with the evaporator in the low-temperature side refrigeration cycle, and the "heating unit" is configured with the condenser in the high-temperature side refrigeration cycle, so that the amount of cold heat that can be supplied from the "cooling unit" and the amount of hot heat that can be supplied from the "heating unit" can be sufficiently increased (the heat transfer liquid Wc can be sufficiently cooled and the heat transfer liquid Wh can be sufficiently heated).

また、「気体」の一例である水素ガスGから「吸着剤」としての「ゼオライト(合成ゼオライト)」等を用いて「除去対象」の一例である水分を除去可能な構成を例に挙げて説明したが、「気体」、「吸着剤」および「除去対象」はこの例に限定されない。例えば、「気体」としての「酸素」から「吸着剤」としての「ゼオライト(合成ゼオライト)」等を用いて「除去対象」としての「水分」等を吸着除去する「除去システム」およびその「吸着剤再生装置」において本願発明の構成を採用することができる。また、「気体」としての「排気ガス(内燃機関等における燃焼によって排出される気体)」から「吸着剤」としての「活性炭」等を用いて「除去対象」としての「揮発性有機化合物(VOC)」等を吸着除去する「除去システム」およびその「吸着剤再生装置」において本願発明の構成を採用することができる。さらに、「気体」としての「大気(外気)」から「吸着剤」としてのゼオライト(合成ゼオライト)」等を用いて「除去対象」としての「水分」等を吸着除去する「除去システム」およびその「吸着剤再生装置」において本願発明の構成を採用することができる。 In addition, the configuration has been described as being capable of removing moisture, which is an example of a "removal target", from hydrogen gas G, which is an example of a "gas", using zeolite (synthetic zeolite) or the like as an "adsorbent", but the "gas", "adsorbent", and "removal target" are not limited to this example. For example, the configuration of the present invention can be adopted in a "removal system" and its "adsorbent regeneration device" that adsorbs and removes moisture, etc., as a "removal target", from oxygen, which is a "gas", using zeolite (synthetic zeolite) or the like as an "adsorbent". In addition, the configuration of the present invention can be adopted in a "removal system" and its "adsorbent regeneration device" that adsorbs and removes volatile organic compounds (VOCs), etc., as a "removal target", from exhaust gas (gas emitted by combustion in an internal combustion engine, etc.), which is a "gas", using activated carbon, etc. as an "adsorbent". Furthermore, the configuration of the present invention can be adopted in a "removal system" that uses zeolite (synthetic zeolite) as an "adsorbent" to adsorb and remove "moisture" and other substances as "subjects to be removed" from the "atmosphere (outside air)" as a "gas" and in its "adsorbent regeneration device."

1 除去システム
2a,2b 吸着塔
3 ヒートポンプユニット
3c 冷却部
3h 加熱部
4a~4c,54a,54c 熱交換器
5a,5b 流路切換え弁
6,7a,7b 流量調整弁
8a,8b 貯水部
9 温度センサ
10 湿度センサ
11 冷凍サイクル
12a,12b ポンプ
13 操作部
14 表示部
15 制御部
16 記憶部
21 圧縮機
22 凝縮器
23 膨張弁
24 蒸発器
30i,40i 導入口
30o,40o 排出口
31,41 一次熱交換部
32,42 二次熱交換部
33,35,43,45 バイパス流路
33a,33b,35a,43a,43b,45a 流量調整弁
34a~34d,44a~44d 温度センサ
G 水素ガス
LC1,LC2,LH 熱媒液循環路
P1 分岐点
P2 合流点
Pi 導入用配管
Po 排出用配管
Wc,Wh 熱媒液
1 Removal system 2a, 2b Adsorption tower 3 Heat pump unit 3c Cooling section 3h Heating section 4a to 4c, 54a, 54c Heat exchanger 5a, 5b Flow path switching valve 6, 7a, 7b Flow rate control valve 8a, 8b Water storage section 9 Temperature sensor 10 Humidity sensor 11 Refrigeration cycle 12a, 12b Pump 13 Operation section 14 Display section 15 Control section 16 Memory section 21 Compressor 22 Condenser 23 Expansion valve 24 Evaporator 30i, 40i Inlet 30o, 40o Outlet 31, 41 Primary heat exchange section 32, 42 Secondary heat exchange section 33, 35, 43, 45 Bypass flow path 33a, 33b, 35a, 43a, 43b, 45a Flow rate control valve 34a to 34d, 44a to 44d Temperature sensor G Hydrogen gas LC1, LC2, LH Heat transfer liquid circulation path P1 Branch point P2 Junction point Pi Inlet pipe Po Discharge pipe Wc, Wh Heat transfer liquid

Claims (7)

気体に含まれている除去対象を吸着塔内の吸着剤に吸着させて当該気体から除去する吸着除去処理を実行可能な除去システムにおける当該吸着剤を加熱再生方式の吸着能力再生処理によって再生可能に構成された吸着剤再生装置であって、
複数の前記吸着塔を備えて当該各吸着塔の一部を対象とする前記吸着除去処理と当該各吸着塔の他の一部を対象とする前記吸着能力再生処理とを並行して実行可能に構成された前記除去システムにおける前記吸着剤を再生可能に構成され、
前記吸着能力再生処理を行う前記吸着塔に流入させる前記気体を加熱する第1の熱交換器と、
前記吸着除去処理を行う前記吸着塔および前記第1の熱交換器に流入させられる前記気体を冷却する第2の熱交換器と、
前記吸着能力再生処理を行う前記吸着塔を通過させられた前記気体を冷却する第3の熱交換器と、
冷凍サイクルを有すると共に当該冷凍サイクルにおける凝縮器からの放熱によって加熱用熱媒液を加熱可能な加熱部、および当該冷凍サイクルにおける蒸発器による吸熱によって冷却用熱媒液を冷却可能な冷却部を備えた温度調整部と、
前記吸着除去処理を行う前記吸着塔を通過させられた前記気体を、前記除去対象の除去が完了した前記気体を流入させるべき排出用配管に流入させると共に、前記第1の熱交換器によって加熱された前記気体を、前記吸着能力再生処理を行う前記吸着塔に流入させる第1の流路切替え部と、
前記第2の熱交換器によって冷却された前記気体を、前記吸着除去処理を行う前記吸着塔に流入させると共に、前記吸着能力再生処理を行う前記吸着塔を通過させられた前記気体を、前記第3の熱交換器に流入させる第2の流路切替え部と、
前記加熱部による前記加熱用熱媒液の加熱、前記第1の熱交換器への当該加熱用熱媒液の供給、前記冷却部による前記冷却用熱媒液の冷却、前記第2の熱交換器への当該冷却用熱媒液の供給、および前記第3の熱交換器への当該冷却用熱媒液の供給を制御する第1の処理と、前記第1の流路切替え部および前記第2の流路切替え部を制御して前記吸着除去処理を行う前記吸着塔および前記吸着能力再生処理を行う前記吸着塔を切り換える第2の処理とを実行する制御部とを備え、
前記第3の熱交換器を通過させられた前記気体が、前記第2の熱交換器を通過させられた気体に合流させられて前記第2の流路切替え部を介して前記吸着除去処理を行う前記吸着塔に流入させられると共に、
前記第3の熱交換器は、一次熱交換部および二次熱交換部を備え、気体導入口から導入された前記気体が、当該一次熱交換部、当該二次熱交換部および当該一次熱交換部をこの順で通過させられて気体排出口から排出されるように気体流路が形成されると共に、当該二次熱交換部において前記冷却用熱媒液との熱交換によって前記気体に含まれている前記除去対象が液相化されて除去され、かつ、当該一次熱交換部において当該二次熱交換部によって冷却された前記気体との熱交換によって前記気体導入口から導入された前記気体に含まれている前記除去対象が液相化されて除去されるように構成され、かつ当該二次熱交換部を通過させられた前記気体を、当該一次熱交換部を再び通過させずに当該気体排出口から排出させる第1のバイパス流路が設けられると共に、当該第1のバイパス流路を通過させる前記気体の流量を調整可能な第1の流量調整部が配設され、
前記制御部は、前記第3の熱交換器における前記気体導入口から導入された前記気体の第1の温度、当該気体導入口から導入されて前記一次熱交換部を通過させられた前記気体の第2の温度、および前記二次熱交換部を通過させられた前記気体の第3の温度を特定すると共に、当該第1の温度および当該第3の温度の第1の温度差と、当該第2の温度および当該第3の温度の第2の温度差との比に基づき、前記第1の流量調整部を制御して前記第1のバイパス流路を通過する前記気体の流量を調整させる第3の処理を実行する吸着剤再生装置。
An adsorbent regeneration device for a removal system capable of performing an adsorption removal process in which a target substance contained in a gas is adsorbed by an adsorbent in an adsorption tower and removed from the gas, the adsorbent being configured to be regenerated by an adsorption capacity regeneration process using a thermal regeneration method,
The removal system is configured to be capable of regenerating the adsorbent in the removal system, which is provided with a plurality of the adsorption towers and is configured to be capable of executing the adsorption removal process targeting a portion of each of the adsorption towers and the adsorption capacity regeneration process targeting another portion of each of the adsorption towers in parallel,
a first heat exchanger for heating the gas to be introduced into the adsorption tower for performing the adsorption capacity regeneration treatment;
a second heat exchanger that cools the gas that is caused to flow into the adsorption tower and the first heat exchanger that perform the adsorption and removal process;
a third heat exchanger for cooling the gas that has passed through the adsorption tower for performing the adsorption capacity regeneration treatment;
a temperature adjustment unit having a refrigeration cycle and including a heating unit capable of heating a heat transfer liquid by heat radiation from a condenser in the refrigeration cycle, and a cooling unit capable of cooling a heat transfer liquid by heat absorption by an evaporator in the refrigeration cycle;
a first flow path switching unit that causes the gas that has passed through the adsorption tower performing the adsorption and removal process to flow into a discharge pipe into which the gas from which the removal target has been completely removed should flow, and causes the gas that has been heated by the first heat exchanger to flow into the adsorption tower performing the adsorption capacity regeneration process;
a second flow path switching unit that causes the gas cooled by the second heat exchanger to flow into the adsorption tower that performs the adsorption removal treatment, and causes the gas that has passed through the adsorption tower that performs the adsorption capacity regeneration treatment to flow into the third heat exchanger;
a control unit that executes a first process of controlling heating of the heating heat transfer liquid by the heating unit, supply of the heating heat transfer liquid to the first heat exchanger, cooling of the cooling heat transfer liquid by the cooling unit, supply of the cooling heat transfer liquid to the second heat exchanger, and supply of the cooling heat transfer liquid to the third heat exchanger, and a second process of controlling the first flow path switching unit and the second flow path switching unit to switch between the adsorption tower that performs the adsorption removal treatment and the adsorption tower that performs the adsorption capacity regeneration treatment,
The gas that has been passed through the third heat exchanger is merged with the gas that has been passed through the second heat exchanger and is caused to flow into the adsorption tower that performs the adsorption and removal treatment via the second flow path switching unit,
The third heat exchanger includes a primary heat exchange section and a secondary heat exchange section, and a gas flow path is formed so that the gas introduced from a gas inlet is passed through the primary heat exchange section, the secondary heat exchange section, and the primary heat exchange section in this order and discharged from a gas outlet, and the object to be removed contained in the gas is liquefied and removed by heat exchange with the cooling heat transfer liquid in the secondary heat exchange section, and the object to be removed contained in the gas introduced from the gas inlet is liquefied and removed by heat exchange with the gas cooled by the secondary heat exchange section in the primary heat exchange section, and a first bypass flow path is provided for discharging the gas passed through the secondary heat exchange section from the gas outlet without passing it through the primary heat exchange section again, and a first flow rate adjustment section is disposed for adjusting the flow rate of the gas passing through the first bypass flow path,
The control unit identifies a first temperature of the gas introduced from the gas inlet in the third heat exchanger, a second temperature of the gas introduced from the gas inlet and passed through the primary heat exchange unit, and a third temperature of the gas passed through the secondary heat exchange unit, and performs a third process of controlling the first flow rate adjustment unit to adjust the flow rate of the gas passing through the first bypass flow path based on a ratio of a first temperature difference between the first temperature and the third temperature and a second temperature difference between the second temperature and the third temperature.
気体に含まれている除去対象を吸着塔内の吸着剤に吸着させて当該気体から除去する吸着除去処理を実行可能な除去システムにおける当該吸着剤を加熱再生方式の吸着能力再生処理によって再生可能に構成された吸着剤再生装置であって、
複数の前記吸着塔を備えて当該各吸着塔の一部を対象とする前記吸着除去処理と当該各吸着塔の他の一部を対象とする前記吸着能力再生処理とを並行して実行可能に構成された前記除去システムにおける前記吸着剤を再生可能に構成され、
前記吸着能力再生処理を行う前記吸着塔に流入させる前記気体を加熱する第1の熱交換器と、
前記吸着除去処理を行う前記吸着塔および前記第1の熱交換器に流入させられる前記気体を冷却する第2の熱交換器と、
前記吸着能力再生処理を行う前記吸着塔を通過させられた前記気体を冷却する第3の熱交換器と、
冷凍サイクルを有すると共に当該冷凍サイクルにおける凝縮器からの放熱によって加熱用熱媒液を加熱可能な加熱部、および当該冷凍サイクルにおける蒸発器による吸熱によって冷却用熱媒液を冷却可能な冷却部を備えた温度調整部と、
前記吸着除去処理を行う前記吸着塔を通過させられた前記気体を、前記除去対象の除去が完了した前記気体を流入させるべき排出用配管に流入させると共に、前記第1の熱交換器によって加熱された前記気体を、前記吸着能力再生処理を行う前記吸着塔に流入させる第1の流路切替え部と、
前記第2の熱交換器によって冷却された前記気体を、前記吸着除去処理を行う前記吸着塔に流入させると共に、前記吸着能力再生処理を行う前記吸着塔を通過させられた前記気体を、前記第3の熱交換器に流入させる第2の流路切替え部と、
前記加熱部による前記加熱用熱媒液の加熱、前記第1の熱交換器への当該加熱用熱媒液の供給、前記冷却部による前記冷却用熱媒液の冷却、前記第2の熱交換器への当該冷却用熱媒液の供給、および前記第3の熱交換器への当該冷却用熱媒液の供給を制御する第1の処理と、前記第1の流路切替え部および前記第2の流路切替え部を制御して前記吸着除去処理を行う前記吸着塔および前記吸着能力再生処理を行う前記吸着塔を切り換える第2の処理とを実行する制御部とを備え、
前記第3の熱交換器を通過させられた前記気体が、前記第2の熱交換器を通過させられた気体に合流させられて前記第2の流路切替え部を介して前記吸着除去処理を行う前記吸着塔に流入させられると共に、
前記第3の熱交換器は、一次熱交換部および二次熱交換部を備え、気体導入口から導入された前記気体が、当該一次熱交換部、当該二次熱交換部および当該一次熱交換部をこの順で通過させられて気体排出口から排出されるように気体流路が形成されると共に、当該二次熱交換部において前記冷却用熱媒液との熱交換によって前記気体に含まれている前記除去対象が液相化されて除去され、かつ、当該一次熱交換部において当該二次熱交換部によって冷却された前記気体との熱交換によって前記気体導入口から導入された前記気体に含まれている前記除去対象が液相化されて除去されるように構成され、かつ当該気体導入口から導入されて当該一次熱交換部を通過させられた前記気体の一部を、当該二次熱交換部を通過させずに、当該二次熱交換部を通過させられて当該一次熱交換部に流入させられる前記気体に合流させるバイパス流路Aが設けられると共に、当該バイパス流路Aを通過させる前記気体の流量を調整可能な流量調整部Aが配設され、
前記制御部は、前記第3の熱交換器における前記気体導入口から導入された前記気体の温度A、当該気体導入口から導入されて前記一次熱交換部を通過させられた前記気体の温度B、および当該第3の熱交換器における前記気体排出口から排出される前記気体の温度Cを特定すると共に、当該温度Aおよび当該温度Bの温度差Aと、当該温度Aおよび当該温度Cの温度差Bとの比に基づき、前記流量調整部Aを制御して前記バイパス流路Aを通過する前記気体の流量を調整させる処理Aを実行する吸着剤再生装置。
An adsorbent regeneration device for a removal system capable of performing an adsorption removal process in which a target substance contained in a gas is adsorbed to an adsorbent in an adsorption tower and removed from the gas, the adsorbent being configured to be regenerated by an adsorption capacity regeneration process using a thermal regeneration method,
The removal system is configured to be capable of regenerating the adsorbent in the removal system, which is provided with a plurality of the adsorption towers and is configured to be capable of executing the adsorption removal process targeting a portion of each of the adsorption towers and the adsorption capacity regeneration process targeting another portion of each of the adsorption towers in parallel,
a first heat exchanger for heating the gas to be introduced into the adsorption tower for performing the adsorption capacity regeneration treatment;
a second heat exchanger that cools the gas that is caused to flow into the adsorption tower and the first heat exchanger that perform the adsorption and removal process;
a third heat exchanger for cooling the gas that has passed through the adsorption tower for performing the adsorption capacity regeneration treatment;
a temperature adjustment unit having a refrigeration cycle and including a heating unit capable of heating a heat transfer liquid by heat radiation from a condenser in the refrigeration cycle, and a cooling unit capable of cooling a heat transfer liquid by heat absorption by an evaporator in the refrigeration cycle;
a first flow path switching unit that causes the gas that has passed through the adsorption tower performing the adsorption and removal process to flow into a discharge pipe into which the gas from which the removal target has been completely removed should flow, and causes the gas that has been heated by the first heat exchanger to flow into the adsorption tower performing the adsorption capacity regeneration process;
a second flow path switching unit that causes the gas cooled by the second heat exchanger to flow into the adsorption tower that performs the adsorption removal treatment, and causes the gas that has passed through the adsorption tower that performs the adsorption capacity regeneration treatment to flow into the third heat exchanger;
a control unit that executes a first process of controlling heating of the heating heat transfer liquid by the heating unit, supply of the heating heat transfer liquid to the first heat exchanger, cooling of the cooling heat transfer liquid by the cooling unit, supply of the cooling heat transfer liquid to the second heat exchanger, and supply of the cooling heat transfer liquid to the third heat exchanger, and a second process of controlling the first flow path switching unit and the second flow path switching unit to switch between the adsorption tower that performs the adsorption removal treatment and the adsorption tower that performs the adsorption capacity regeneration treatment,
The gas that has been passed through the third heat exchanger is merged with the gas that has been passed through the second heat exchanger and is caused to flow into the adsorption tower that performs the adsorption and removal treatment via the second flow path switching unit,
The third heat exchanger includes a primary heat exchange section and a secondary heat exchange section, and a gas flow path is formed so that the gas introduced from a gas inlet is passed through the primary heat exchange section, the secondary heat exchange section, and the primary heat exchange section in this order and discharged from a gas outlet, and the removal target contained in the gas is liquefied and removed by heat exchange with the cooling heat transfer liquid in the secondary heat exchange section, and the removal target contained in the gas introduced from the gas inlet is liquefied and removed by heat exchange with the gas cooled by the secondary heat exchange section in the primary heat exchange section, and a bypass flow path A is provided to merge a part of the gas introduced from the gas inlet and passed through the primary heat exchange section with the gas passed through the secondary heat exchange section and flowing into the primary heat exchange section without passing through the secondary heat exchange section, and a flow rate adjustment section A is provided to adjust the flow rate of the gas passing through the bypass flow path A,
The control unit identifies a temperature A of the gas introduced from the gas inlet in the third heat exchanger, a temperature B of the gas introduced from the gas inlet and passed through the primary heat exchange unit, and a temperature C of the gas discharged from the gas outlet in the third heat exchanger, and performs a process A of controlling the flow rate adjustment unit A to adjust the flow rate of the gas passing through the bypass flow path A based on a ratio of a temperature difference A between the temperature A and the temperature B and a temperature difference B between the temperature A and the temperature C.
気体に含まれている除去対象を吸着塔内の吸着剤に吸着させて当該気体から除去する吸着除去処理を実行可能な除去システムにおける当該吸着剤を加熱再生方式の吸着能力再生処理によって再生可能に構成された吸着剤再生装置であって、
複数の前記吸着塔を備えて当該各吸着塔の一部を対象とする前記吸着除去処理と当該各吸着塔の他の一部を対象とする前記吸着能力再生処理とを並行して実行可能に構成された前記除去システムにおける前記吸着剤を再生可能に構成され、
前記吸着能力再生処理を行う前記吸着塔に流入させる前記気体を加熱する第1の熱交換器と、
前記吸着除去処理を行う前記吸着塔および前記第1の熱交換器に流入させられる前記気体を冷却する第2の熱交換器と、
前記吸着能力再生処理を行う前記吸着塔を通過させられた前記気体を冷却する第3の熱交換器と、
冷凍サイクルを有すると共に当該冷凍サイクルにおける凝縮器からの放熱によって加熱用熱媒液を加熱可能な加熱部、および当該冷凍サイクルにおける蒸発器による吸熱によって冷却用熱媒液を冷却可能な冷却部を備えた温度調整部と、
前記吸着除去処理を行う前記吸着塔を通過させられた前記気体を、前記除去対象の除去が完了した前記気体を流入させるべき排出用配管に流入させると共に、前記第1の熱交換器によって加熱された前記気体を、前記吸着能力再生処理を行う前記吸着塔に流入させる第1の流路切替え部と、
前記第2の熱交換器によって冷却された前記気体を、前記吸着除去処理を行う前記吸着塔に流入させると共に、前記吸着能力再生処理を行う前記吸着塔を通過させられた前記気体を、前記第3の熱交換器に流入させる第2の流路切替え部と、
前記加熱部による前記加熱用熱媒液の加熱、前記第1の熱交換器への当該加熱用熱媒液の供給、前記冷却部による前記冷却用熱媒液の冷却、前記第2の熱交換器への当該冷却用熱媒液の供給、および前記第3の熱交換器への当該冷却用熱媒液の供給を制御する第1の処理と、前記第1の流路切替え部および前記第2の流路切替え部を制御して前記吸着除去処理を行う前記吸着塔および前記吸着能力再生処理を行う前記吸着塔を切り換える第2の処理とを実行する制御部とを備え、
前記第3の熱交換器を通過させられた前記気体が、前記第2の熱交換器を通過させられた気体に合流させられて前記第2の流路切替え部を介して前記吸着除去処理を行う前記吸着塔に流入させられると共に、
前記第2の熱交換器は、一次熱交換部および二次熱交換部を備え、気体導入口から導入された前記気体が、当該一次熱交換部、当該二次熱交換部および当該一次熱交換部をこの順で通過させられて気体排出口から排出されるように気体流路が形成されると共に、当該二次熱交換部において前記冷却用熱媒液との熱交換によって前記気体に含まれている前記除去対象が液相化されて除去され、かつ、当該一次熱交換部において当該二次熱交換部によって冷却された前記気体との熱交換によって前記気体導入口から導入された前記気体に含まれている前記除去対象が液相化されて除去されるように構成され、かつ当該二次熱交換部を通過させられた前記気体を、当該一次熱交換部を再び通過させずに当該気体排出口から排出させる第2のバイパス流路が設けられると共に、当該第2のバイパス流路を通過させる前記気体の流量を調整可能な第2の流量調整部が配設され、
前記制御部は、前記第2の熱交換器における前記気体導入口から導入された前記気体の第4の温度、当該気体導入口から導入されて前記一次熱交換部を通過させられた前記気体の第5の温度、および前記二次熱交換部を通過させられた前記気体の第6の温度を特定すると共に、当該第4の温度および当該第6の温度の第3の温度差と、当該第5の温度および当該第6の温度の第4の温度差との比に基づき、前記第2の流量調整部を制御して前記第2のバイパス流路を通過する前記気体の流量を調整させる第4の処理を実行する吸着剤再生装置。
An adsorbent regeneration device for a removal system capable of performing an adsorption removal process in which a target substance contained in a gas is adsorbed to an adsorbent in an adsorption tower and removed from the gas, the adsorbent being configured to be regenerated by an adsorption capacity regeneration process using a thermal regeneration method,
The removal system is configured to be capable of regenerating the adsorbent in the removal system, which is provided with a plurality of the adsorption towers and is configured to be capable of executing the adsorption removal treatment on a part of each of the adsorption towers and the adsorption capacity regeneration treatment on another part of each of the adsorption towers in parallel,
a first heat exchanger for heating the gas to be introduced into the adsorption tower for performing the adsorption capacity regeneration treatment;
a second heat exchanger that cools the gas that is caused to flow into the adsorption tower and the first heat exchanger that perform the adsorption and removal process;
a third heat exchanger for cooling the gas that has passed through the adsorption tower for performing the adsorption capacity regeneration treatment;
a temperature adjustment unit having a refrigeration cycle and including a heating unit capable of heating a heat transfer liquid by heat radiation from a condenser in the refrigeration cycle, and a cooling unit capable of cooling a heat transfer liquid by heat absorption by an evaporator in the refrigeration cycle;
a first flow path switching unit that causes the gas that has passed through the adsorption tower performing the adsorption and removal process to flow into a discharge pipe into which the gas from which the removal target has been completely removed should flow, and causes the gas that has been heated by the first heat exchanger to flow into the adsorption tower performing the adsorption capacity regeneration process;
a second flow path switching unit that causes the gas cooled by the second heat exchanger to flow into the adsorption tower that performs the adsorption removal treatment, and causes the gas that has passed through the adsorption tower that performs the adsorption capacity regeneration treatment to flow into the third heat exchanger;
a control unit that executes a first process of controlling heating of the heating heat transfer liquid by the heating unit, supply of the heating heat transfer liquid to the first heat exchanger, cooling of the cooling heat transfer liquid by the cooling unit, supply of the cooling heat transfer liquid to the second heat exchanger, and supply of the cooling heat transfer liquid to the third heat exchanger, and a second process of controlling the first flow path switching unit and the second flow path switching unit to switch between the adsorption tower that performs the adsorption removal treatment and the adsorption tower that performs the adsorption capacity regeneration treatment,
The gas that has been passed through the third heat exchanger is merged with the gas that has been passed through the second heat exchanger and is caused to flow into the adsorption tower that performs the adsorption and removal treatment via the second flow path switching unit,
The second heat exchanger includes a primary heat exchange section and a secondary heat exchange section, and a gas flow path is formed so that the gas introduced from a gas inlet is passed through the primary heat exchange section, the secondary heat exchange section, and the primary heat exchange section in this order and discharged from a gas outlet, and the object to be removed contained in the gas is liquefied and removed by heat exchange with the cooling heat transfer liquid in the secondary heat exchange section, and the object to be removed contained in the gas introduced from the gas inlet is liquefied and removed by heat exchange with the gas cooled by the secondary heat exchange section in the primary heat exchange section, and a second bypass flow path is provided for discharging the gas passed through the secondary heat exchange section from the gas outlet without passing it through the primary heat exchange section again, and a second flow rate adjustment section is disposed to adjust the flow rate of the gas passing through the second bypass flow path,
The control unit identifies a fourth temperature of the gas introduced from the gas inlet in the second heat exchanger, a fifth temperature of the gas introduced from the gas inlet and passed through the primary heat exchange unit, and a sixth temperature of the gas passed through the secondary heat exchange unit, and performs a fourth process of controlling the second flow rate adjustment unit to adjust the flow rate of the gas passing through the second bypass flow path based on a ratio of a third temperature difference between the fourth temperature and the sixth temperature to a fourth temperature difference between the fifth temperature and the sixth temperature.
気体に含まれている除去対象を吸着塔内の吸着剤に吸着させて当該気体から除去する吸着除去処理を実行可能な除去システムにおける当該吸着剤を加熱再生方式の吸着能力再生処理によって再生可能に構成された吸着剤再生装置であって、
複数の前記吸着塔を備えて当該各吸着塔の一部を対象とする前記吸着除去処理と当該各吸着塔の他の一部を対象とする前記吸着能力再生処理とを並行して実行可能に構成された前記除去システムにおける前記吸着剤を再生可能に構成され、
前記吸着能力再生処理を行う前記吸着塔に流入させる前記気体を加熱する第1の熱交換器と、
前記吸着除去処理を行う前記吸着塔および前記第1の熱交換器に流入させられる前記気体を冷却する第2の熱交換器と、
前記吸着能力再生処理を行う前記吸着塔を通過させられた前記気体を冷却する第3の熱交換器と、
冷凍サイクルを有すると共に当該冷凍サイクルにおける凝縮器からの放熱によって加熱用熱媒液を加熱可能な加熱部、および当該冷凍サイクルにおける蒸発器による吸熱によって冷却用熱媒液を冷却可能な冷却部を備えた温度調整部と、
前記吸着除去処理を行う前記吸着塔を通過させられた前記気体を、前記除去対象の除去が完了した前記気体を流入させるべき排出用配管に流入させると共に、前記第1の熱交換器によって加熱された前記気体を、前記吸着能力再生処理を行う前記吸着塔に流入させる第1の流路切替え部と、
前記第2の熱交換器によって冷却された前記気体を、前記吸着除去処理を行う前記吸着塔に流入させると共に、前記吸着能力再生処理を行う前記吸着塔を通過させられた前記気体を、前記第3の熱交換器に流入させる第2の流路切替え部と、
前記加熱部による前記加熱用熱媒液の加熱、前記第1の熱交換器への当該加熱用熱媒液の供給、前記冷却部による前記冷却用熱媒液の冷却、前記第2の熱交換器への当該冷却用熱媒液の供給、および前記第3の熱交換器への当該冷却用熱媒液の供給を制御する第1の処理と、前記第1の流路切替え部および前記第2の流路切替え部を制御して前記吸着除去処理を行う前記吸着塔および前記吸着能力再生処理を行う前記吸着塔を切り換える第2の処理とを実行する制御部とを備え、
前記第3の熱交換器を通過させられた前記気体が、前記第2の熱交換器を通過させられた気体に合流させられて前記第2の流路切替え部を介して前記吸着除去処理を行う前記吸着塔に流入させられると共に、
前記第2の熱交換器は、一次熱交換部および二次熱交換部を備え、気体導入口から導入された前記気体が、当該一次熱交換部、当該二次熱交換部および当該一次熱交換部をこの順で通過させられて気体排出口から排出されるように気体流路が形成されると共に、当該二次熱交換部において前記冷却用熱媒液との熱交換によって前記気体に含まれている前記除去対象が液相化されて除去され、かつ、当該一次熱交換部において当該二次熱交換部によって冷却された前記気体との熱交換によって前記気体導入口から導入された前記気体に含まれている前記除去対象が液相化されて除去されるように構成され、かつ当該気体導入口から導入されて当該一次熱交換部を通過させられた前記気体の一部を、当該二次熱交換部を通過させずに、当該二次熱交換部を通過させられて当該一次熱交換部に流入させられる前記気体に合流させるバイパス流路Bが設けられると共に、当該バイパス流路Bを通過させる前記気体の流量を調整可能な流量調整部Bが配設され、
前記制御部は、前記第2の熱交換器における前記気体導入口から導入された前記気体の温度D、当該気体導入口から導入されて前記一次熱交換部を通過させられた前記気体の温度E、および当該第2の熱交換器における前記気体排出口から排出される前記気体の温度Fを特定すると共に、当該温度Dおよび当該温度Eの温度差Cと、当該温度Dおよび当該温度Fの温度差Dとの比に基づき、前記流量調整部Bを制御して前記バイパス流路Bを通過する前記気体の流量を調整させる処理Bを実行する吸着剤再生装置。
An adsorbent regeneration device for a removal system capable of performing an adsorption removal process in which a target substance contained in a gas is adsorbed to an adsorbent in an adsorption tower and removed from the gas, the adsorbent being configured to be regenerated by an adsorption capacity regeneration process using a thermal regeneration method,
The removal system is configured to be capable of regenerating the adsorbent in the removal system, which is provided with a plurality of the adsorption towers and is configured to be capable of executing the adsorption removal treatment on a part of each of the adsorption towers and the adsorption capacity regeneration treatment on another part of each of the adsorption towers in parallel,
a first heat exchanger for heating the gas to be introduced into the adsorption tower for performing the adsorption capacity regeneration treatment;
a second heat exchanger that cools the gas that is caused to flow into the adsorption tower and the first heat exchanger that perform the adsorption and removal process;
a third heat exchanger for cooling the gas that has passed through the adsorption tower for performing the adsorption capacity regeneration treatment;
a temperature adjustment unit having a refrigeration cycle and including a heating unit capable of heating a heat transfer liquid by heat radiation from a condenser in the refrigeration cycle, and a cooling unit capable of cooling a heat transfer liquid by heat absorption by an evaporator in the refrigeration cycle;
a first flow path switching unit that causes the gas that has passed through the adsorption tower performing the adsorption and removal process to flow into a discharge pipe into which the gas from which the removal target has been completely removed should flow, and causes the gas that has been heated by the first heat exchanger to flow into the adsorption tower performing the adsorption capacity regeneration process;
a second flow path switching unit that causes the gas cooled by the second heat exchanger to flow into the adsorption tower that performs the adsorption removal treatment, and causes the gas that has passed through the adsorption tower that performs the adsorption capacity regeneration treatment to flow into the third heat exchanger;
a control unit that executes a first process of controlling heating of the heating heat transfer liquid by the heating unit, supply of the heating heat transfer liquid to the first heat exchanger, cooling of the cooling heat transfer liquid by the cooling unit, supply of the cooling heat transfer liquid to the second heat exchanger, and supply of the cooling heat transfer liquid to the third heat exchanger, and a second process of controlling the first flow path switching unit and the second flow path switching unit to switch between the adsorption tower that performs the adsorption removal treatment and the adsorption tower that performs the adsorption capacity regeneration treatment,
The gas that has been passed through the third heat exchanger is merged with the gas that has been passed through the second heat exchanger and is caused to flow into the adsorption tower that performs the adsorption and removal treatment via the second flow path switching unit,
The second heat exchanger includes a primary heat exchange section and a secondary heat exchange section, and a gas flow path is formed so that the gas introduced from a gas inlet is passed through the primary heat exchange section, the secondary heat exchange section, and the primary heat exchange section in this order and discharged from a gas outlet, and the removal target contained in the gas is liquefied and removed by heat exchange with the cooling heat transfer liquid in the secondary heat exchange section, and the removal target contained in the gas introduced from the gas inlet is liquefied and removed by heat exchange with the gas cooled by the secondary heat exchange section in the primary heat exchange section, and a bypass flow path B is provided to merge a part of the gas introduced from the gas inlet and passed through the primary heat exchange section with the gas passed through the secondary heat exchange section and flowing into the primary heat exchange section without passing through the secondary heat exchange section, and a flow rate adjustment section B is provided to adjust the flow rate of the gas passing through the bypass flow path B,
The control unit identifies a temperature D of the gas introduced from the gas inlet in the second heat exchanger, a temperature E of the gas introduced from the gas inlet and passed through the primary heat exchange unit, and a temperature F of the gas discharged from the gas outlet in the second heat exchanger, and performs a process B of controlling the flow rate adjustment unit B to adjust the flow rate of the gas passing through the bypass flow path B based on the ratio of a temperature difference C between the temperatures D and E and a temperature difference D between the temperatures D and F.
前記第3の熱交換器を通過させられる前記気体の流量を調整する第3の流量調整部を備え、
前記制御部は、前記第3の熱交換器を通過させられた前記気体の温度に基づいて前記第3の流量調整部を制御して当該第3の熱交換器を通過する当該気体の流量を調整させる第5の処理を実行する請求項1から4のいずれかに記載の吸着剤再生装置。
a third flow rate adjusting unit that adjusts a flow rate of the gas that is caused to pass through the third heat exchanger;
An adsorbent regeneration device as described in any one of claims 1 to 4, wherein the control unit executes a fifth process of controlling the third flow rate adjustment unit based on the temperature of the gas passed through the third heat exchanger to adjust the flow rate of the gas passing through the third heat exchanger.
前記気体としての水素ガスから前記除去対象としての水分を除去可能に構成された前記除去システムにおける前記吸着剤の吸着能力を再生可能に構成されている請求項1から5のいずれかに記載の吸着剤再生装置。 The adsorbent regeneration device according to any one of claims 1 to 5, which is configured to be capable of regenerating the adsorption capacity of the adsorbent in the removal system configured to be capable of removing moisture as the removal target from hydrogen gas as the gas. 請求項1から6のいずれかに記載の吸着剤再生装置と前記各吸着塔とを備えて前記気体から前記除去対象を除去可能に構成されている除去システム。 A removal system that is configured to remove the target to be removed from the gas by comprising the adsorbent regeneration device according to any one of claims 1 to 6 and each of the adsorption towers.
JP2022025415A 2022-02-22 2022-02-22 Adsorbent regeneration device and removal system Active JP7525172B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022025415A JP7525172B2 (en) 2022-02-22 2022-02-22 Adsorbent regeneration device and removal system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022025415A JP7525172B2 (en) 2022-02-22 2022-02-22 Adsorbent regeneration device and removal system

Publications (2)

Publication Number Publication Date
JP2023122004A JP2023122004A (en) 2023-09-01
JP7525172B2 true JP7525172B2 (en) 2024-07-30

Family

ID=87798996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022025415A Active JP7525172B2 (en) 2022-02-22 2022-02-22 Adsorbent regeneration device and removal system

Country Status (1)

Country Link
JP (1) JP7525172B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015145000A (en) 2014-02-04 2015-08-13 ダイダン株式会社 dehumidification system
JP2019507677A (en) 2016-02-24 2019-03-22 アトラス コプコ エアーパワー, ナームローゼ フェンノートシャップATLAS COPCO AIRPOWER, naamloze vennootschap Method for adjusting regeneration time of adsorption dryer and adsorption dryer for carrying out such method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015145000A (en) 2014-02-04 2015-08-13 ダイダン株式会社 dehumidification system
JP2019507677A (en) 2016-02-24 2019-03-22 アトラス コプコ エアーパワー, ナームローゼ フェンノートシャップATLAS COPCO AIRPOWER, naamloze vennootschap Method for adjusting regeneration time of adsorption dryer and adsorption dryer for carrying out such method

Also Published As

Publication number Publication date
JP2023122004A (en) 2023-09-01

Similar Documents

Publication Publication Date Title
EP3003535B1 (en) System and method for drying compressed gas
KR101883736B1 (en) Hybrid type absorption air-drying system
KR100793980B1 (en) Absorption type air drying system for both purge process and non-purge process of using compression heat
JP2010510472A (en) Adjusting device for air supply in drying chamber of coating equipment and method for adjusting air supply
JP2008070060A (en) Treated air temperature control method and controller for desiccant air conditioner
KR100533650B1 (en) Frostless heat exchanger and method thereof
KR20150093697A (en) Organic solvent-containing gas processing system
JP7525172B2 (en) Adsorbent regeneration device and removal system
JP7525173B2 (en) Adsorbent regeneration device and removal system
JP3592374B2 (en) Adsorption type cooling device and method for controlling cooling output thereof
JP2017009173A (en) Adsorption type refrigerator and its operational method
JP2012127526A (en) Adsorption type refrigerating system
JP2015068599A (en) Dehumidification system
KR101728241B1 (en) compressed air dryer that recycling the compress air in cooling process and compressed air drying method
JP2002162130A (en) Air conditioner
KR100825391B1 (en) Non-purge processing absorption type air drying system and method for preventing hunting dew point and keeping up very low dew point
JP2017044386A (en) Dehumidification system
JPH05272833A (en) Control method for freezing output of adsorption type freezer and adsorption type freezer capable of controlling freezing output
US20240139673A1 (en) Method and apparatus for drying a process gas
CN217330032U (en) Regeneration system for rotating wheel dehumidification equipment and rotating wheel dehumidification equipment
JP2004294023A (en) Hybrid air conditioning system having combination of refrigerant heat pump and adsorption type heat pump
CN218545021U (en) Purification system and air separation device
JP2019027715A (en) Heat storage system
RU2456059C2 (en) Method of gas treatmentand device to this end
JP6235942B2 (en) Dehumidification system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240709

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240710

R150 Certificate of patent or registration of utility model

Ref document number: 7525172

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150