JP2012127526A - Adsorption type refrigerating system - Google Patents

Adsorption type refrigerating system Download PDF

Info

Publication number
JP2012127526A
JP2012127526A JP2010276765A JP2010276765A JP2012127526A JP 2012127526 A JP2012127526 A JP 2012127526A JP 2010276765 A JP2010276765 A JP 2010276765A JP 2010276765 A JP2010276765 A JP 2010276765A JP 2012127526 A JP2012127526 A JP 2012127526A
Authority
JP
Japan
Prior art keywords
adsorber
condenser
flow path
evaporator
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010276765A
Other languages
Japanese (ja)
Other versions
JP5647879B2 (en
Inventor
Hisanori Kuroda
尚紀 黒田
Naoya Shinada
直也 品田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Nippon Air Technologies Co Ltd
Original Assignee
Shin Nippon Air Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Nippon Air Technologies Co Ltd filed Critical Shin Nippon Air Technologies Co Ltd
Priority to JP2010276765A priority Critical patent/JP5647879B2/en
Publication of JP2012127526A publication Critical patent/JP2012127526A/en
Application granted granted Critical
Publication of JP5647879B2 publication Critical patent/JP5647879B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent degradation of the refrigeration capacity, and to save the labor in the energy consumption.SOLUTION: The adsorption type refrigerating system 1A includes one set of two-tank adsorbers 2a, 2b, an evaporator 3, and a condenser 4, and alternately switches the function of one adsorber 2a and the function of the other adsorber 2b. A flow passage 20 for introducing a part of the refrigerant evaporated in the evaporator 3 into the condenser 4 is formed therein, and a compressor 21 for compressing the circulating refrigerant is disposed in the middle of the flow passage 20. When the calorie of the heating medium to be supplied to the adsorbers is insufficient, the compressed refrigerant can be supplied to the condenser 4 by the operational control of the compressor 21.

Description

本発明は、吸着剤を内蔵し冷媒の吸着槽又は脱着槽として機能する2槽一組の吸着器と、前記各吸着器と連通可能な流路を備えた蒸発器及び凝縮器とからなる吸着式冷凍システムにおいて、前記吸着器に供給される吸着剤の再生用の熱媒の熱量が不足した際でも、冷凍能力の低下を防止するとともに、消費エネルギーの省力化を図った吸着式冷凍システムに関する。   The present invention includes an adsorber comprising a set of two adsorbers having a built-in adsorbent and functioning as an adsorbing tank or a desorbing tank for a refrigerant, and an evaporator and a condenser having flow paths that can communicate with the adsorbers. The present invention relates to an adsorption refrigeration system that prevents a reduction in refrigeration capacity and saves energy consumption even when the amount of heat of the heat medium for regeneration of the adsorbent supplied to the adsorber is insufficient. .

従来より、自然冷媒である水を用いた冷凍機として吸着式冷凍機が知られている。前記吸着式冷凍機50は、図4に示されるように、吸着剤を内蔵し冷媒の吸着槽又は脱着槽として機能する2槽一組の吸着器51a、51bと、前記各吸着器51a、51bと連通可能な流路を備えた蒸発器52と、前記各吸着器51a、51bと連通可能な流路を備えるとともに、凝縮した冷媒を前記蒸発器52に送給する流路を備えた凝縮器53とからなる密閉系とされている。   Conventionally, an adsorption refrigerator is known as a refrigerator using water which is a natural refrigerant. As shown in FIG. 4, the adsorption refrigeration machine 50 includes a pair of adsorbers 51a and 51b that incorporate an adsorbent and function as a refrigerant adsorption or desorption tank, and the adsorbers 51a and 51b. An evaporator 52 having a flow path communicable with each other, a flow path capable of communicating with each of the adsorbers 51a and 51b, and a condenser having a flow path for supplying condensed refrigerant to the evaporator 52 53 is a closed system.

そして、かかる吸着式冷凍機50は、一方の吸着器51aを冷媒の吸着槽として機能させ、他方の吸着器51bを冷媒の脱着槽として機能させるとともに、前記蒸発器52と一方の吸着器51aとを連通させ、前記他方の吸着器51bと凝縮器53とを連通させる運転モードと、一方の吸着器51aを冷媒の脱着槽として機能させ、他方の吸着器51bを冷媒の吸着槽として機能させるとともに、前記蒸発器52と他方の吸着器51bとを連通させ、前記一方の吸着器51aと凝縮器53とを連通させる運転モードとが交互に切り換えられるようになっている。これにより、前記蒸発器52における冷媒の蒸発に伴って発生する気化熱との熱交換によって冷熱が製造されるようになっている。   The adsorption refrigerator 50 causes one adsorber 51a to function as a refrigerant adsorption tank and the other adsorber 51b to function as a refrigerant desorption tank, and the evaporator 52 and one adsorber 51a. The other adsorber 51b and the condenser 53, the one adsorber 51a functions as a refrigerant desorption tank, and the other adsorber 51b functions as a refrigerant adsorption tank. The operation mode in which the evaporator 52 communicates with the other adsorber 51b and the one adsorber 51a communicates with the condenser 53 is alternately switched. As a result, cold energy is produced by heat exchange with the heat of vaporization generated as the refrigerant evaporates in the evaporator 52.

前記吸着器51a、51bに充填された吸着剤は、60℃程度以上に加熱することにより吸着した冷媒が脱着(再生)され、その再生用の熱源としてボイラーなどの排熱や太陽熱などの利用が推奨されている。   The adsorbent filled in the adsorbers 51a and 51b is desorbed (regenerated) when heated to about 60 ° C. or higher, and exhaust heat from a boiler, solar heat, etc. can be used as a heat source for the regeneration. Recommended.

このような吸着式冷凍機として、下記特許文献1には、吸着器から凝縮器に向かう冷媒通路に吸引ポンプを配置することにより、吸着器で吸着剤から脱着された冷媒蒸気が、吸引ポンプによって吸引され、加圧された状態で凝縮器に入り凝縮するとともに、吸引により吸引ポンプ入口側の圧力が低下するため、平衡圧力の関係がずれ、吸着器において吸着剤からより多くの冷媒蒸気を吐き出させるようにした化学ヒートポンプが開示されている。   As such an adsorption refrigeration machine, the following Patent Document 1 discloses that a refrigerant pump desorbed from an adsorbent by an adsorber is disposed by a suction pump in a refrigerant passage from an adsorber to a condenser. As it is sucked and pressurized, it enters the condenser and condenses.At the same time, the pressure at the inlet side of the suction pump decreases due to suction.Therefore, the equilibrium pressure relationship is lost, and more refrigerant vapor is discharged from the adsorbent in the adsorber. A chemical heat pump is disclosed.

特開平11−37596号公報Japanese Patent Laid-Open No. 11-37596

しかしながら、吸着剤の再生用の熱源として利用される排熱や太陽熱は、ボイラーなどの運転状況や天候などによって変動する安定した供給源ではないため、排熱や太陽熱の熱供給がない場合には再生用の熱源がゼロになるという事態も生じ得るが、上記特許文献1記載の化学ヒートポンプでは、このような場合にまで吸引ポンプの吸引により吸着剤から強制的に冷媒蒸気を吐き出させることができるようなものではなかった。   However, exhaust heat or solar heat used as a heat source for adsorbent regeneration is not a stable supply source that fluctuates depending on the operating conditions of the boiler and the weather, so if there is no exhaust heat or solar heat supply Although the situation that the heat source for regeneration becomes zero may occur, the chemical heat pump described in Patent Document 1 can forcibly discharge the refrigerant vapor from the adsorbent by suction of the suction pump until such a case. It was n’t like that.

このように、再生用の熱源が不足した場合、吸着剤の再生が十分に行われないために吸着剤の吸着量が低下するという問題が生じる。その結果、蒸発器内の圧力が上昇し、蒸発器内で冷媒が蒸発し難くなり気化熱の発生が抑えられるため、製造される冷熱の温度が上昇する。このように、吸着剤の再生(脱着)不足による冷凍能力の低下が問題となっていた。   As described above, when the heat source for regeneration is insufficient, the adsorbent is not sufficiently regenerated, which causes a problem that the adsorbed amount of the adsorbent decreases. As a result, the pressure in the evaporator rises, the refrigerant hardly evaporates in the evaporator, and the generation of heat of vaporization is suppressed, so that the temperature of the produced cold heat rises. Thus, there has been a problem that the refrigerating capacity is lowered due to insufficient regeneration (desorption) of the adsorbent.

一方、再生用の熱源不足を補うため、別途熱媒を加熱するための熱源機を設けた場合、その分の消費エネルギーが増加するため運転効率が低下するという問題が生じる。   On the other hand, when a heat source device for separately heating the heat medium is provided to make up for the shortage of the heat source for regeneration, there is a problem that the operating efficiency is lowered because the amount of consumed energy increases accordingly.

そこで本発明の主たる課題は、冷凍能力の低下を防止するとともに、消費エネルギーの省力化を図った吸着式冷凍システムを提供することにある。   Accordingly, a main object of the present invention is to provide an adsorption refrigeration system that prevents a reduction in refrigeration capacity and saves energy.

上記課題を解決するために請求項1に係る本発明として、吸着剤を内蔵し冷媒の吸着槽又は脱着槽として機能するとともに、少なくとも吸着剤の再生用の熱媒が流通する再生用流路を備えた2槽一組の吸着器と、前記各吸着器と連通可能な流路を備えた蒸発器と、前記各吸着器と連通可能な流路を備えるとともに、凝縮した冷媒を前記蒸発器に送給する流路を備えた凝縮器とを含み、
一方の吸着器を吸着槽として機能させ、他方の吸着器を脱着槽として機能させるとともに、前記蒸発器と一方の吸着器とを連通させ、前記他方の吸着器と凝縮器とを連通させる運転モードと、一方の吸着器を脱着槽として機能させ、他方の吸着器を吸着槽として機能させるとともに、前記蒸発器と他方の吸着器とを連通させ、前記一方の吸着器と凝縮器とを連通させる運転モードとが交互に切り換えられる吸着式冷凍システムであって、
前記蒸発器で蒸発した冷媒の一部を前記凝縮器に導入する流路が形成されるとともに、この流路の途中に流通する冷媒を圧縮する圧縮機が配設され、前記吸着器に供給される熱媒の熱量が不足した際、前記圧縮機の運転制御により圧縮した冷媒を前記凝縮器に供給可能としたことを特徴とする吸着式冷凍システムが提供される。
In order to solve the above-mentioned problems, the present invention according to claim 1 is provided with a regeneration flow path that functions as a refrigerant adsorption tank or a desorption tank with a built-in adsorbent and through which at least a heat medium for regenerating the adsorbent flows. A set of two tanks provided, an evaporator provided with a flow path capable of communicating with each of the adsorbers, a flow path capable of communicating with each of the adsorbers, and condensed refrigerant to the evaporator A condenser having a flow path for feeding,
An operation mode in which one adsorber functions as an adsorbing tank, the other adsorber functions as a desorption tank, the evaporator and one adsorber communicate with each other, and the other adsorber communicates with the condenser And one adsorber functions as a desorption tank, the other adsorber functions as an adsorption tank, and the evaporator and the other adsorber communicate with each other, and the one adsorber and the condenser communicate with each other. An adsorption refrigeration system that can be switched alternately between operation modes,
A flow path for introducing a part of the refrigerant evaporated in the evaporator into the condenser is formed, and a compressor for compressing the refrigerant flowing in the middle of the flow path is provided and supplied to the adsorber. An adsorption refrigeration system is provided in which the refrigerant compressed by operation control of the compressor can be supplied to the condenser when the amount of heat of the heat medium is insufficient.

上記請求項1記載の発明は、本発明に係る吸着式冷凍システムの第1形態例であり、従来の2槽一組の吸着器、蒸発器及び凝縮器からなる吸着式冷凍システムに対し、蒸発器で蒸発した冷媒の一部を前記凝縮器に導入する流路を形成するとともに、この流路の途中に流通する冷媒を圧縮する圧縮機を配設し、吸着器に供給される熱媒の熱量が不足した際、前記圧縮機の運転制御により圧縮した冷媒を前記凝縮器に供給可能としたものである。このため、吸着器に供給される熱媒の熱量が不足し吸着剤の再生が十分に行われなくなった結果、吸着剤の吸着量が低下しても、前記圧縮機の運転制御により蒸発器内の冷媒蒸気が凝縮器に送給されるため、蒸発器内の圧力が一定に保たれ、蒸発器内の圧力上昇によって冷媒が蒸発し難くなり気化熱の発生が抑制されて冷熱の温度が上昇するという事態が生じなくなる。従って、吸着剤の再生不足による冷凍能力の低下が防止できる。   The invention described in claim 1 is a first embodiment of the adsorption refrigeration system according to the present invention, and evaporates compared to the conventional adsorption refrigeration system consisting of a set of two tanks, an evaporator and a condenser. A flow path for introducing a part of the refrigerant evaporated in the condenser into the condenser, and a compressor for compressing the refrigerant flowing in the middle of the flow path are provided, and the heat medium supplied to the adsorber When the amount of heat is insufficient, the refrigerant compressed by the operation control of the compressor can be supplied to the condenser. For this reason, even if the amount of heat of the heat medium supplied to the adsorber is insufficient and the adsorbent is not sufficiently regenerated, even if the adsorbent adsorbed amount decreases, the operation control of the compressor controls the inside of the evaporator. Since the refrigerant vapor is fed to the condenser, the pressure inside the evaporator is kept constant, and the rise in pressure inside the evaporator makes it difficult for the refrigerant to evaporate, suppressing the generation of heat of vaporization and increasing the temperature of the cold. The situation of doing does not occur. Therefore, it is possible to prevent a decrease in the refrigerating capacity due to insufficient regeneration of the adsorbent.

また、再生用の熱源不足を補うため、別途熱媒を加熱するための熱源機を設ける必要が無く、消費エネルギーの省力化を図ることができる。また、前記圧縮機は前記吸着器に供給される熱媒の熱量が不足した際に運転すればよく、冷凍能力を満足している限り圧縮機を停止しておくことができ、消費エネルギーが省力化できる。   Further, in order to compensate for the shortage of the heat source for regeneration, there is no need to provide a separate heat source device for heating the heat medium, and energy consumption can be saved. The compressor may be operated when the amount of heat of the heat medium supplied to the adsorber is insufficient, and the compressor can be stopped as long as the refrigerating capacity is satisfied, and energy consumption is saved. Can be

さらに、通常の吸着式冷凍機では冷水温度を安定させるため吸着剤の吸着能力に余裕を持たせた時間間隔(5分〜20分程度)で2槽の吸着器の切り換えタイミングを決定しているが、本吸着式冷凍システムでは圧縮機を併用運転しているため、この切り換えの時間間隔を長くすることが可能となる。そうすることで切り換え時の予冷・予熱の消費エネルギーのロスを防止することができるとともに、設備の寿命を延ばすことができるようになる。   Furthermore, in a normal adsorption refrigerator, the switching timing of the two tank adsorbers is determined at a time interval (about 5 to 20 minutes) with a sufficient adsorbent adsorption capacity in order to stabilize the cold water temperature. However, in the present adsorption refrigeration system, since the compressor is operated in combination, it is possible to lengthen the switching time interval. By doing so, it is possible to prevent loss of precooling / preheating energy consumption at the time of switching, and to extend the life of the equipment.

請求項2に係る本発明として、吸着剤を内蔵し冷媒の吸着槽又は脱着槽として機能するとともに、少なくとも吸着剤の再生用の熱媒が流通する再生用流路を備えた2槽一組の吸着器と、前記各吸着器と連通可能な流路を備えた蒸発器と、前記各吸着器と連通可能な流路を備えるとともに、凝縮した冷媒を前記蒸発器に送給する流路を備えた凝縮器とを含み、
一方の吸着器を吸着槽として機能させ、他方の吸着器を脱着槽として機能させるとともに、前記蒸発器と一方の吸着器とを連通させ、前記他方の吸着器と凝縮器とを連通させる運転モードと、一方の吸着器を脱着槽として機能させ、他方の吸着器を吸着槽として機能させるとともに、前記蒸発器と他方の吸着器とを連通させ、前記一方の吸着器と凝縮器とを連通させる運転モードとが交互に切り換えられる吸着式冷凍システムであって、
前記凝縮器と連通可能な流路を備えるとともに、凝縮した冷媒を前記蒸発器に送給する流路を備えた第2凝縮器が配設され、前記凝縮器と第2凝縮器とを連結する流路の途中に流通する冷媒を圧縮する圧縮機が配設されるとともに、前記吸着器に供給される熱媒が前記第2凝縮器内の熱交換器を巡って該吸着器に供給される流路が形成され、前記吸着器に供給される熱媒の熱量が不足した際、前記圧縮機の運転制御により圧縮した冷媒を前記第2凝縮器に供給可能としたことを特徴とする吸着式冷凍システムが提供される。
As a second aspect of the present invention, a set of two tanks including an adsorbent and functioning as a refrigerant adsorption tank or a desorption tank, and at least a regeneration channel through which a heat medium for regeneration of the adsorbent flows. An adsorber, an evaporator provided with a flow path capable of communicating with each of the adsorbers, a flow path capable of communicating with each of the adsorbers, and a flow path for supplying condensed refrigerant to the evaporator. Including a condenser,
An operation mode in which one adsorber functions as an adsorbing tank, the other adsorber functions as a desorption tank, the evaporator and one adsorber communicate with each other, and the other adsorber communicates with the condenser And one adsorber functions as a desorption tank, the other adsorber functions as an adsorption tank, and the evaporator and the other adsorber communicate with each other, and the one adsorber and the condenser communicate with each other. An adsorption refrigeration system that can be switched alternately between operation modes,
A second condenser having a flow path capable of communicating with the condenser and having a flow path for supplying condensed refrigerant to the evaporator is disposed, and connects the condenser and the second condenser. A compressor for compressing the refrigerant flowing in the middle of the flow path is disposed, and the heat medium supplied to the adsorber is supplied to the adsorber through the heat exchanger in the second condenser. An adsorption type characterized in that a refrigerant compressed by operation control of the compressor can be supplied to the second condenser when a flow path is formed and the amount of heat of the heat medium supplied to the adsorber is insufficient. A refrigeration system is provided.

上記請求項2記載の発明は、本発明に係る吸着式冷凍システムの第2形態例であり、従来の2槽一組の吸着器、蒸発器及び凝縮器からなる吸着式冷凍システムに対し、凝縮器と連通可能な流路を備えるとともに、凝縮した冷媒を蒸発器に送給する流路を備えた第2凝縮器を配設し、前記凝縮器と第2凝縮器とを連結する流路の途中に流通する冷媒を圧縮する圧縮機を配設し、且つ吸着器に供給される熱媒が第2凝縮機内の熱交換器を巡って該吸着器に供給される流路を形成し、吸着器に供給される熱媒の熱量が不足した際、圧縮機の運転制御により圧縮した冷媒を第2凝縮器に供給可能としたものである。このように、凝縮器内の冷媒蒸気が圧縮機による加圧に伴い温度上昇して第2凝縮器に供給されるため、第2凝縮機内の熱交換器を巡る熱媒が加熱され、吸着材の再生が促進される結果、冷凍能力の低下が防止できる。   The invention described in claim 2 is a second embodiment of the adsorption refrigeration system according to the present invention, which is different from the conventional adsorption refrigeration system consisting of a set of two tanks, an evaporator and a condenser. A second condenser having a flow path capable of communicating with the condenser and having a flow path for supplying condensed refrigerant to the evaporator; and a flow path for connecting the condenser and the second condenser. A compressor that compresses the refrigerant flowing in the middle is disposed, and the heat medium supplied to the adsorber forms a flow path that is supplied to the adsorber through the heat exchanger in the second condenser, and is adsorbed When the amount of heat of the heat medium supplied to the condenser is insufficient, the refrigerant compressed by the operation control of the compressor can be supplied to the second condenser. Thus, since the refrigerant vapor in the condenser rises in temperature with pressurization by the compressor and is supplied to the second condenser, the heat medium surrounding the heat exchanger in the second condenser is heated, and the adsorbent As a result of promoting the regeneration of the refrigeration, it is possible to prevent the freezing capacity from being lowered.

請求項3に係る本発明として、吸着剤を内蔵し冷媒の吸着槽又は脱着槽として機能するとともに、少なくとも吸着剤の再生用の熱媒が流通する再生用流路を備えた2槽一組の吸着器と、前記各吸着器と連通可能な流路を備えた蒸発器と、前記各吸着器と連通可能な流路を備えるとともに、凝縮した冷媒を前記蒸発器に送給する流路を備えた凝縮器とを含み、
一方の吸着器を吸着槽として機能させ、他方の吸着器を脱着槽として機能させるとともに、前記蒸発器と一方の吸着器とを連通させ、前記他方の吸着器と凝縮器とを連通させる運転モードと、一方の吸着器を脱着槽として機能させ、他方の吸着器を吸着槽として機能させるとともに、前記蒸発器と他方の吸着器とを連通させ、前記一方の吸着器と凝縮器とを連通させる運転モードとが交互に切り換えられる吸着式冷凍システムであって、
前記蒸発器で蒸発した冷媒の一部を前記凝縮器に導入する流路が形成されるとともに、この流路の途中に流通する冷媒を圧縮する圧縮機が配設され、且つ前記凝縮器と連通可能な流路を備えるとともに、凝縮した冷媒を前記蒸発器に送給する流路を備えた第2凝縮器が配設され、前記凝縮器と第2凝縮器とを連結する流路の途中に流通する冷媒を圧縮する第2圧縮機が配設されるとともに、前記吸着器に供給される熱媒が前記第2凝縮器内の熱交換器を巡って該吸着器に供給される流路が形成され、前記吸着器に供給される熱媒の熱量が不足した際、前記圧縮機及び/又は第2圧縮機の運転制御により圧縮した冷媒を前記凝縮器及び/又は第2凝縮器に供給可能としたことを特徴とする吸着式冷凍システムが提供される。
As a third aspect of the present invention, a set of two tanks each having a regeneration channel in which an adsorbent is incorporated and functions as a refrigerant adsorption tank or a desorption tank, and at least a heat medium for regeneration of the adsorbent flows. An adsorber, an evaporator provided with a flow path capable of communicating with each of the adsorbers, a flow path capable of communicating with each of the adsorbers, and a flow path for supplying condensed refrigerant to the evaporator. Including a condenser,
An operation mode in which one adsorber functions as an adsorbing tank, the other adsorber functions as a desorption tank, the evaporator and one adsorber communicate with each other, and the other adsorber communicates with the condenser And one adsorber functions as a desorption tank, the other adsorber functions as an adsorption tank, and the evaporator and the other adsorber communicate with each other, and the one adsorber and the condenser communicate with each other. An adsorption refrigeration system that can be switched alternately between operation modes,
A flow path for introducing a part of the refrigerant evaporated in the evaporator to the condenser is formed, and a compressor for compressing the refrigerant flowing in the middle of the flow path is provided, and communicated with the condenser. A second condenser having a possible flow path and a flow path for supplying condensed refrigerant to the evaporator is disposed in the middle of the flow path connecting the condenser and the second condenser. A second compressor for compressing the circulating refrigerant is disposed, and a flow path through which the heat medium supplied to the adsorber is supplied to the adsorber around the heat exchanger in the second condenser is provided. When the amount of heat of the heat medium formed and supplied to the adsorber is insufficient, refrigerant compressed by operation control of the compressor and / or the second compressor can be supplied to the condenser and / or the second condenser. An adsorption refrigeration system is provided.

上記請求項3記載の発明は、本発明に係る吸着式冷凍システムの第3形態例であり、上記第1形態例と第2形態例とを組み合わせ、両運転の選択・併用を可能としたものである。   The invention described in claim 3 is a third embodiment of the adsorption refrigeration system according to the present invention, which combines the first embodiment and the second embodiment, and enables selection and use of both operations. It is.

請求項4に係る本発明として、前記蒸発器には、前記吸着器に供給される熱媒の熱量が不足した状態か否かを判別するため、該蒸発器内の圧力を検知する圧力計が設置されている請求項1〜3いずれかに記載の吸着式冷凍システムが提供される。   As a fourth aspect of the present invention, the evaporator includes a pressure gauge for detecting the pressure in the evaporator in order to determine whether or not the amount of heat of the heat medium supplied to the adsorber is insufficient. An adsorption refrigeration system according to any one of claims 1 to 3 is provided.

上記請求項4記載の発明では、吸着器に供給される熱媒の熱量が不足した状態か否かを判別するため、前記蒸発器に該蒸発器内の圧力を検知する圧力計を設置することにより、蒸発器内を冷媒が蒸発可能となる冷媒温度に見合った所定の圧力以下となるように圧縮機の運転制御をすることができるようになる。   In the invention described in claim 4, in order to determine whether or not the amount of heat of the heat medium supplied to the adsorber is insufficient, a pressure gauge for detecting the pressure in the evaporator is installed in the evaporator. Thus, the operation of the compressor can be controlled so that the pressure in the evaporator becomes equal to or lower than a predetermined pressure corresponding to the refrigerant temperature at which the refrigerant can evaporate.

請求項5に係る本発明として、前記圧縮機及び/又は第2圧縮機は、ルーツ式圧縮機である請求項1〜4いずれかに記載の吸着式冷凍システムが提供される。   As the present invention according to claim 5, there is provided the adsorption refrigeration system according to any one of claims 1 to 4, wherein the compressor and / or the second compressor is a Roots compressor.

上記請求項5記載の発明では、前記圧縮機及び/又は第2圧縮機として、ルーツ式圧縮機を用いることにより、設備の小型化及び消費エネルギーの省力化を図ることができる。   In the invention according to the fifth aspect, by using a Roots type compressor as the compressor and / or the second compressor, it is possible to reduce the size of the equipment and save energy.

以上詳説のとおり本発明によれば、冷凍能力の低下を防止するとともに、消費エネルギーの省力化を図った吸着式冷凍システムが提供できるようになる。   As described above in detail, according to the present invention, it is possible to provide an adsorption refrigeration system that prevents a reduction in refrigeration capacity and saves energy.

本発明の第1形態例に係る吸着式冷凍システム1Aのシステム構成図である。1 is a system configuration diagram of an adsorption refrigeration system 1A according to a first embodiment of the present invention. 本発明の第2形態例に係る吸着式冷凍システム1Bのシステム構成図である。It is a system configuration figure of adsorption refrigeration system 1B concerning the 2nd example of the present invention. 本発明の第3形態例に係る吸着式冷凍システム1Cのシステム構成図である。It is a system configuration figure of adsorption type refrigeration system 1C concerning the 3rd example of the present invention. 従来の吸着式冷凍機50のシステム構成図である。It is a system configuration | structure figure of the conventional adsorption | suction type refrigerator 50.

〔第1形態例〕
以下、本発明の第1形態例について図1を参照しながら詳述する。
[First embodiment]
The first embodiment of the present invention will be described in detail below with reference to FIG.

第1形態例に係る吸着式冷凍システム1Aは、図1に示されるように、吸着剤を内蔵し冷媒の吸着槽又は脱着槽として機能する2槽一組の吸着器2a、2bと、前記各吸着器2a、2bと連通可能な流路を備えた蒸発器3と、前記各吸着器2a、2bと連通可能な流路を備えるとともに、凝縮した冷媒を前記蒸発器3に送給する流路9を備えた凝縮器4とを含む密閉系とされている。前記蒸発器3と各吸着器2a、2bとの間の流路にはそれぞれ第1バルブ5及び第2バルブ6が介在され、前記凝縮器4と各吸着器2a、2bとの間の流路にはそれぞれ第3バルブ7及び第4バルブ8が介在されている。前記吸着器2a、2bにはそれぞれ、吸着剤の再生(脱着)時に吸着剤を加熱して吸着した冷媒を脱着させる吸着剤再生用の熱媒が流通する再生用流路10及び吸着剤の吸着時に吸着剤を冷却して冷媒の吸着を促進させる吸着剤冷却用の冷却水が流通する冷却用流路11が備えられている。また、前記蒸発器3には、冷水などの冷媒が流通する熱交換器12が配設され、蒸発器3内の冷媒の蒸発に伴う気化熱によって熱交換器12内の冷媒が冷却され、冷熱が製造されている。一方、前記凝縮器4には、冷却塔などで製造された冷却水が流通する熱交換器13が配設され、この熱交換器13が凝縮器4内の冷媒蒸気と接触することにより冷媒蒸気から冷水への凝縮が行われている。   As shown in FIG. 1, the adsorption refrigeration system 1A according to the first embodiment includes a set of two adsorbers 2a and 2b that contain an adsorbent and function as a refrigerant adsorption tank or a desorption tank. An evaporator 3 having a flow path that can communicate with the adsorbers 2a and 2b, a flow path that can communicate with each of the adsorbers 2a and 2b, and a flow path for supplying condensed refrigerant to the evaporator 3 9 is a closed system including a condenser 4 with 9. A first valve 5 and a second valve 6 are interposed in the flow path between the evaporator 3 and the adsorbers 2a and 2b, respectively, and the flow path between the condenser 4 and the adsorbers 2a and 2b. A third valve 7 and a fourth valve 8 are interposed in each. The adsorbers 2a and 2b respectively adsorb the adsorbent by the regeneration flow path 10 through which the adsorbent regeneration heat medium flows to desorb the adsorbed refrigerant by heating the adsorbent during the regeneration (desorption) of the adsorbent. A cooling flow path 11 through which cooling water for cooling the adsorbent that sometimes cools the adsorbent and promotes adsorption of the refrigerant is provided. Further, the evaporator 3 is provided with a heat exchanger 12 through which a refrigerant such as cold water flows, and the refrigerant in the heat exchanger 12 is cooled by the heat of vaporization accompanying the evaporation of the refrigerant in the evaporator 3. Is manufactured. On the other hand, the condenser 4 is provided with a heat exchanger 13 through which cooling water produced by a cooling tower or the like flows, and the heat exchanger 13 comes into contact with the refrigerant vapor in the condenser 4 to thereby generate refrigerant vapor. To cold water.

かかる吸着式冷凍システム1Aは、一方の吸着器2aを吸着槽として機能させ、他方の吸着器2bを脱着槽として機能させるとともに、前記第1バルブ5を閉、第2バルブ6を開として蒸発器3と一方の吸着器2aとを連通させ、前記第3バルブ7を開、第4バルブ8を閉として他方の吸着器2bと凝縮器4とを連通させる運転モードと、一方の吸着器2aを脱着槽として機能させ、他方の吸着器2bを吸着槽として機能させるとともに、前記第1バルブ5を開、第2バルブ6を閉として蒸発器3と他方の吸着器2bとを連通させ、前記第3バルブ7を閉、第4バルブ8を開として一方の吸着器2aと凝縮器4とを連通させる運転モードとが交互に切り換えられるように運転されている。   In this adsorption refrigeration system 1A, one adsorber 2a functions as an adsorption tank, the other adsorber 2b functions as a desorption tank, the first valve 5 is closed, and the second valve 6 is opened. 3 and one adsorber 2a are communicated, the third valve 7 is opened, the fourth valve 8 is closed and the other adsorber 2b and the condenser 4 are communicated, and one adsorber 2a is The first adsorber 2b functions as an adsorbing tank, and the first valve 5 is opened and the second valve 6 is closed to allow the evaporator 3 and the other adsorber 2b to communicate with each other. The operation is performed so that the operation mode in which the three valves 7 are closed and the fourth valve 8 is opened and the one adsorber 2a and the condenser 4 are communicated with each other is alternately switched.

さらに本第1形態例では、蒸発器3で蒸発した冷媒蒸気の一部を取り出して凝縮器4に導入する流路20が形成されるとともに、この流路20の途中に流通する冷媒蒸気を圧縮する圧縮機21が配設されている。また、前記流路20の蒸発器3及び凝縮器4の近傍にはそれぞれ、バルブ22、23が設けられている。   Further, in the first embodiment, a flow path 20 for taking out a part of the refrigerant vapor evaporated by the evaporator 3 and introducing it into the condenser 4 is formed, and the refrigerant vapor flowing in the middle of the flow path 20 is compressed. A compressor 21 is disposed. Further, valves 22 and 23 are provided in the vicinity of the evaporator 3 and the condenser 4 in the flow path 20, respectively.

そして、本吸着式冷凍システム1Aでは、前記吸着器2a又は2bに供給される熱媒の熱量が不足した際、前記圧縮機21の運転制御により圧縮した冷媒が前記凝縮器4に供給可能とされている。   In the adsorption refrigeration system 1A, the refrigerant compressed by the operation control of the compressor 21 can be supplied to the condenser 4 when the amount of heat of the heat medium supplied to the adsorber 2a or 2b is insufficient. ing.

従って、再生用流路10を流通する熱媒の熱量が不足し、脱着槽として機能する吸着器に内蔵される吸着剤の再生が十分に行われないために、吸着槽として機能する吸着器に内蔵された吸着剤の吸着量が低下した場合であっても、圧縮機21の運転制御により蒸発器3内の冷媒蒸気が前記流路20を通って凝縮器4に送給されるため、蒸発器3内の圧力上昇が抑えられる。これにより、蒸発器3内の圧力が上昇し冷媒が蒸発し難くなって気化熱の発生が抑制され冷熱の温度が上昇する、という事態が防止できる。この結果、吸着剤の冷凍能力の低下が防止できる。   Therefore, since the heat quantity of the heat medium flowing through the regeneration channel 10 is insufficient and the adsorbent built in the adsorber functioning as the desorption tank is not sufficiently regenerated, the adsorber functioning as the adsorption tank is used. Even when the adsorption amount of the built-in adsorbent decreases, the refrigerant vapor in the evaporator 3 is sent to the condenser 4 through the flow path 20 by the operation control of the compressor 21, so that the evaporation The pressure rise in the vessel 3 is suppressed. As a result, it is possible to prevent a situation in which the pressure in the evaporator 3 rises and the refrigerant hardly evaporates, the generation of heat of vaporization is suppressed, and the temperature of the cold heat rises. As a result, it is possible to prevent a decrease in the refrigerating capacity of the adsorbent.

また、再生用の熱源不足を補うため、別途熱媒を加熱するための熱源機を設ける必要が無く、熱源機などの稼働のための消費エネルギーが省力化できる。また、前記圧縮機21は吸着器に供給される熱媒の熱量が不足した際に運転し、冷凍能力を満足している限り圧縮機21を停止しておくことも可能であるので、消費エネルギーが省力化できる。   Further, in order to compensate for the shortage of the heat source for regeneration, it is not necessary to provide a separate heat source device for heating the heat medium, and energy consumption for operating the heat source device can be saved. The compressor 21 can be operated when the amount of heat of the heat medium supplied to the adsorber is insufficient, and the compressor 21 can be stopped as long as the refrigerating capacity is satisfied. Can save labor.

さらに、蒸発器3から取り出される冷媒は、圧縮機21によって圧縮され凝縮器4に供給されるため、この圧縮に伴って冷媒の温度が上昇する結果、凝縮器4での凝縮効率が向上する。このような観点から、吸着器2a、2bに供給される熱媒の熱量が満足している状態においても、圧縮機21を運転制御して圧縮した冷媒を凝縮器4に供給し、冷凍能力の向上を図ることも可能である。   Furthermore, since the refrigerant taken out from the evaporator 3 is compressed by the compressor 21 and supplied to the condenser 4, the temperature of the refrigerant rises as a result of this compression, so that the condensation efficiency in the condenser 4 is improved. From such a viewpoint, even when the heat quantity of the heat medium supplied to the adsorbers 2a and 2b is satisfied, the compressed refrigerant is supplied to the condenser 4 by controlling the operation of the compressor 21, and the refrigerating capacity is improved. It is also possible to improve.

一方、前記運転モードの切り換えは、通常、吸着剤の吸着能力に余裕を持たせた時間間隔(5分〜20分程度)で2槽の吸着器2a、2bの切り換え及び各バルブ5〜8の開閉状態が制御されているが、本吸着式冷凍システム1Aでは蒸発器3の冷媒を凝縮器4に供給可能としているため、通常の時間間隔より長くすることができる。これにより吸着剤の切り換え時の予冷・予熱のためのエネルギーロスが少なくて済み熱効率が向上するとともに、システムの寿命を延ばすことができるようになる。具体的な運転モード切り換えの時間間隔は、およそ10分〜30分とすることができる。   On the other hand, the switching of the operation mode is usually performed by switching the adsorbers 2a and 2b of the two tanks and the valves 5 to 8 at a time interval (about 5 to 20 minutes) with a sufficient adsorbent adsorption capacity. Although the open / close state is controlled, in the present adsorption refrigeration system 1A, the refrigerant of the evaporator 3 can be supplied to the condenser 4, so that it can be longer than the normal time interval. As a result, energy loss for pre-cooling / pre-heating at the time of switching the adsorbent can be reduced, the thermal efficiency can be improved, and the life of the system can be extended. A specific operation mode switching time interval can be approximately 10 minutes to 30 minutes.

前記圧縮機21は、前述の通り、吸着器2a、2bに供給される熱媒の熱量が不足した際に運転される。このため前記蒸発器3には、吸着器2a、2bに供給される熱媒の熱量が不足した状態か否かを判別するため、該蒸発器3内の蒸気圧力を検知する圧力計(図示せず)及び該蒸発器3内に溜まった冷媒(水)の温度を検知する温度計(図示せず)を設置することが好ましい。この圧力計により検知された圧力に基づいて、温度計により検知された冷媒温度に見合った所定の圧力以下になるように圧縮機21を運転制御することによって冷却能力不足を補うことができる。前記蒸発器3内の圧力は、例えば冷媒温度が7℃で1.0kPa以下、20℃で2.3kPa以下(絶対圧力)となるようにすることが好ましい。   As described above, the compressor 21 is operated when the amount of heat of the heat medium supplied to the adsorbers 2a and 2b is insufficient. Therefore, the evaporator 3 has a pressure gauge (not shown) for detecting the vapor pressure in the evaporator 3 in order to determine whether or not the heat quantity of the heat medium supplied to the adsorbers 2a and 2b is insufficient. And a thermometer (not shown) for detecting the temperature of the refrigerant (water) accumulated in the evaporator 3 is preferably installed. Based on the pressure detected by the pressure gauge, the lack of cooling capacity can be compensated by controlling the operation of the compressor 21 so as to be equal to or lower than a predetermined pressure corresponding to the refrigerant temperature detected by the thermometer. The pressure in the evaporator 3 is preferably such that the refrigerant temperature is 1.0 kPa or less at 7 ° C. and 2.3 kPa or less (absolute pressure) at 20 ° C., for example.

前記圧縮機21は、インバータにより回転数制御可能なものを用いることが好ましく、蒸発器3内の圧力に応じて所定の回転数に制御する。また、前記圧縮機21の吸込側及び吐出側にはそれぞれバルブ22、23が設けられ、各バルブ22、23の開度を調整することによって、流路20の流量及び圧力が制御されている。   The compressor 21 is preferably one that can be controlled in rotation speed by an inverter, and is controlled to a predetermined rotation speed according to the pressure in the evaporator 3. Further, valves 22 and 23 are respectively provided on the suction side and the discharge side of the compressor 21, and the flow rate and pressure of the flow path 20 are controlled by adjusting the opening degree of each valve 22 and 23.

前記圧縮機21は、ルーツ式(ロータリー式)、レシプロ式、スクリュー式、スクロール式、ターボ式など各種型式のものを用いることができる。特に、前記ルーツ式圧縮機を用いることにより、システムの小型化、省電力化を図ることができる。   The compressor 21 may be of various types such as a roots type (rotary type), a reciprocating type, a screw type, a scroll type, and a turbo type. In particular, by using the roots compressor, the system can be reduced in size and power can be saved.

ところで、前記吸着器2a、2b、蒸発器3、凝縮器4及び流路20を循環する冷媒は、水、アンモニア、炭化水素等の自然冷媒であることが好ましく、特に本吸着式冷凍システム1Aでは水であることが望ましい。   By the way, it is preferable that the refrigerant circulating through the adsorbers 2a and 2b, the evaporator 3, the condenser 4 and the flow path 20 is a natural refrigerant such as water, ammonia and hydrocarbons. Desirably water.

前記吸着器2a、2bに供給される熱媒は、ボイラーや焼却炉、エンジンなどの排熱や太陽熱を利用して加熱されたものとすることが望ましい。   The heat medium supplied to the adsorbers 2a and 2b is preferably heated using exhaust heat from a boiler, an incinerator, an engine, or solar heat.

前記吸着器2a、2bに供給される冷却水と凝縮器4に供給される冷却水とは、別々の冷却装置から供給されるものでもよいが、図1に示されるように、冷却塔を介して前記吸着器2a、2bに供給される冷却水と凝縮器4に供給される冷却水とが循環するように構成することが好ましい。   The cooling water supplied to the adsorbers 2a and 2b and the cooling water supplied to the condenser 4 may be supplied from different cooling devices, but as shown in FIG. The cooling water supplied to the adsorbers 2a and 2b and the cooling water supplied to the condenser 4 are preferably circulated.

〔第2形態例〕
第2形態例に係る吸着式冷凍システム1Bは、図2に示されるように、上記第1形態例に係る吸着式冷凍システム1Aと比較して、流路20を形成するとともにこの流路20の途中に圧縮機21を配設する構成に代えて、バルブ33を介して凝縮器4と連通可能な流路31を備えるとともに、凝縮した冷媒を蒸発器3に送給する流路32を備えた第2凝縮器30を配設し、前記凝縮器4と第2凝縮器30とを連結する流路31の途中に、流通する冷媒を圧縮する第2圧縮機34を配設するとともに、前記吸着器2a、2bに供給される熱媒が第2凝縮器30内の熱交換器36を巡って該吸着器2a、2bに供給される流路35を形成することにより、前記吸着器2a、2bに供給される熱媒の熱量が不足した際の冷凍能力の低下防止を図るようにしたものである。
[Second embodiment]
As shown in FIG. 2, the adsorption refrigeration system 1 </ b> B according to the second embodiment forms a flow path 20 as compared with the adsorption refrigeration system 1 </ b> A according to the first embodiment. In place of the configuration in which the compressor 21 is disposed in the middle, a flow path 31 that can communicate with the condenser 4 via the valve 33 is provided, and a flow path 32 that supplies condensed refrigerant to the evaporator 3 is provided. The second condenser 30 is disposed, and a second compressor 34 that compresses the circulating refrigerant is disposed in the middle of the flow path 31 that connects the condenser 4 and the second condenser 30. The heat medium supplied to the devices 2a and 2b travels around the heat exchanger 36 in the second condenser 30 to form a flow path 35 that is supplied to the adsorbers 2a and 2b, thereby the adsorbers 2a and 2b. To prevent the refrigerating capacity from being lowered when the amount of heat supplied to the heating medium is insufficient It is obtained by the.

具体的には、前記吸着器2a、2bに供給される熱媒の熱量が不足した際、前記第2圧縮機34の運転制御により圧縮した冷媒を前記第2凝縮器30に供給可能としている。   Specifically, the refrigerant compressed by the operation control of the second compressor 34 can be supplied to the second condenser 30 when the amount of heat of the heat medium supplied to the adsorbers 2a and 2b is insufficient.

このように、凝縮器を2段にして、第1段目の凝縮器4内の冷媒蒸気を第2圧縮機34で加圧して第2段目の第2凝縮器30に供給することにより、第2圧縮機34の加圧に伴い冷媒が温度上昇するため、第2凝縮器30内の熱交換器36を巡る熱媒が加熱され、吸着剤の再生が促進される結果、冷凍能力の低下が防止できる。   In this way, by making the condenser into two stages, the refrigerant vapor in the first stage condenser 4 is pressurized by the second compressor 34 and supplied to the second condenser 30 in the second stage, Since the temperature of the refrigerant rises as the second compressor 34 is pressurized, the heat medium around the heat exchanger 36 in the second condenser 30 is heated and the regeneration of the adsorbent is promoted, resulting in a decrease in the refrigerating capacity. Can be prevented.

このような第2圧縮機34の運転及び熱媒の熱交換器36への巡回を開始するのは、吸着器2a、2bにおける熱媒が流通する再生用流路10の入口側に、熱媒の温度を検知する温度計(図示せず)を備えておき、この検知温度が60℃を下回ったタイミングとすることができる。なお、吸着器2a、2bに供給される熱媒の熱量が満足する場合であっても、第2圧縮機34の運転及び熱媒の熱交換器36への巡回を行い、冷凍能力の向上を図ることもできる。   The operation of the second compressor 34 and the circulation of the heat medium to the heat exchanger 36 are started on the inlet side of the regeneration channel 10 through which the heat medium flows in the adsorbers 2a and 2b. A thermometer (not shown) for detecting this temperature is provided, and the detected temperature can be set to a timing lower than 60 ° C. Even if the heat quantity of the heat medium supplied to the adsorbers 2a and 2b is satisfied, the operation of the second compressor 34 and the circulation of the heat medium to the heat exchanger 36 are performed to improve the refrigerating capacity. You can also plan.

〔第3形態例〕
第3形態例に係る吸着式冷凍システム1Cは、図3に示されるように、上記第1形態例に係る吸着式冷凍システム1A及び第2形態例に係る吸着式冷凍システム1Bを組み合わせ、両運転の選択・併用を可能としたものである。
[Third embodiment]
As shown in FIG. 3, the adsorption refrigeration system 1C according to the third embodiment combines the adsorption refrigeration system 1A according to the first embodiment and the adsorption refrigeration system 1B according to the second embodiment, Can be selected and used together.

具体的には、上記2槽一組の吸着器2a、2b、蒸発器3及び凝縮器4からなる吸着式冷凍システムに対し、蒸発器3で蒸発した冷媒の一部を凝縮器4に導入する流路20を形成するとともに、この流路20の途中に流通する冷媒を圧縮する圧縮機21を配設し、且つ凝縮器4と連通可能な流路31を備えるとともに、凝縮した冷媒を蒸発器3に送給する流路32を備えた第2凝縮器30を配設し、前記凝縮器4と第2凝縮器30とを連通する流路の途中に流通する冷媒を圧縮する第2圧縮機34を配設するとともに、前記吸着器に供給される熱媒が前記第2凝縮器30内の熱交換器36を巡って該吸着器に供給される流路35を形成し、前記吸着器2a、2bに供給される熱媒の熱量が不足した際、前記圧縮機21及び/又は第2圧縮機34の運転制御により圧縮した冷媒を前記凝縮器4及び/又は第2凝縮器30に供給可能としたものである。   Specifically, a part of the refrigerant evaporated in the evaporator 3 is introduced into the condenser 4 with respect to the adsorption refrigeration system composed of the two tanks of the adsorbers 2a and 2b, the evaporator 3 and the condenser 4. While forming the flow path 20, the compressor 21 which compresses the refrigerant | coolant which distribute | circulates in the middle of this flow path 20, and the flow path 31 which can be connected with the condenser 4 are provided, and the condensed refrigerant | coolant is evaporator A second compressor 30 having a flow path 32 to be fed to the compressor 3 and compressing the refrigerant flowing in the middle of the flow path connecting the condenser 4 and the second condenser 30. 34, and a heat medium supplied to the adsorber forms a flow path 35 to be supplied to the adsorber around the heat exchanger 36 in the second condenser 30, and the adsorber 2a. When the amount of heat of the heat medium supplied to 2b is insufficient, the compressor 21 and / or the second compressor 3 Is a refrigerant compressed by the operation control of those can be supplied to the condenser 4 and / or the second condenser 30.

このように、上記第1形態例及び第2形態例の各システムを組み合わせることにより、各システムを選択的に運転することもできるし、両システムを同時に運転することもできる。特に両システムを併用した場合には、蒸発器3内の蒸発効率の向上と吸着剤の再生効率の向上との相乗効果により冷凍能力が各段に向上するようになる。   In this way, by combining the systems of the first embodiment and the second embodiment, each system can be selectively operated, and both systems can be operated simultaneously. In particular, when both systems are used in combination, the refrigerating capacity is improved in each stage by the synergistic effect of the improvement of the evaporation efficiency in the evaporator 3 and the improvement of the regeneration efficiency of the adsorbent.

1A・1B・1C…吸着式冷凍システム、2a・2b…吸着器、3…蒸発器、4…凝縮器、5…第1バルブ、6…第2バルブ、7…第3バルブ、8…第4バルブ、9…流路、10…再生用流路、11…冷却用流路、12・13…熱交換器、20…流路、21…圧縮機、30…第2凝縮器、31・32…流路、34…第2圧縮機、36…熱交換器   1A, 1B, 1C ... Adsorption refrigeration system, 2a, 2b ... Adsorber, 3 ... Evaporator, 4 ... Condenser, 5 ... First valve, 6 ... Second valve, 7 ... Third valve, 8 ... Fourth Valves, 9 ... flow path, 10 ... regeneration flow path, 11 ... cooling flow path, 12.13 ... heat exchanger, 20 ... flow path, 21 ... compressor, 30 ... second condenser, 31.32 ... Flow path, 34 ... second compressor, 36 ... heat exchanger

Claims (5)

吸着剤を内蔵し冷媒の吸着槽又は脱着槽として機能するとともに、少なくとも吸着剤の再生用の熱媒が流通する再生用流路を備えた2槽一組の吸着器と、前記各吸着器と連通可能な流路を備えた蒸発器と、前記各吸着器と連通可能な流路を備えるとともに、凝縮した冷媒を前記蒸発器に送給する流路を備えた凝縮器とを含み、
一方の吸着器を吸着槽として機能させ、他方の吸着器を脱着槽として機能させるとともに、前記蒸発器と一方の吸着器とを連通させ、前記他方の吸着器と凝縮器とを連通させる運転モードと、一方の吸着器を脱着槽として機能させ、他方の吸着器を吸着槽として機能させるとともに、前記蒸発器と他方の吸着器とを連通させ、前記一方の吸着器と凝縮器とを連通させる運転モードとが交互に切り換えられる吸着式冷凍システムであって、
前記蒸発器で蒸発した冷媒の一部を前記凝縮器に導入する流路が形成されるとともに、この流路の途中に流通する冷媒を圧縮する圧縮機が配設され、前記吸着器に供給される熱媒の熱量が不足した際、前記圧縮機の運転制御により圧縮した冷媒を前記凝縮器に供給可能としたことを特徴とする吸着式冷凍システム。
A set of two adsorbers having a built-in adsorbent and functioning as a refrigerant adsorbing tank or a desorbing tank, and at least a regeneration channel through which a heat medium for adsorbent regeneration flows, and each of the adsorbers An evaporator having a flow path capable of communicating; a condenser having a flow path capable of communicating with each of the adsorbers; and a flow path for supplying condensed refrigerant to the evaporator;
An operation mode in which one adsorber functions as an adsorbing tank, the other adsorber functions as a desorption tank, the evaporator and one adsorber communicate with each other, and the other adsorber communicates with the condenser And one adsorber functions as a desorption tank, the other adsorber functions as an adsorption tank, and the evaporator and the other adsorber communicate with each other, and the one adsorber and the condenser communicate with each other. An adsorption refrigeration system that can be switched alternately between operation modes,
A flow path for introducing a part of the refrigerant evaporated in the evaporator into the condenser is formed, and a compressor for compressing the refrigerant flowing in the middle of the flow path is provided and supplied to the adsorber. An adsorption refrigeration system characterized in that when the amount of heat of the heat medium is insufficient, the refrigerant compressed by the operation control of the compressor can be supplied to the condenser.
吸着剤を内蔵し冷媒の吸着槽又は脱着槽として機能するとともに、少なくとも吸着剤の再生用の熱媒が流通する再生用流路を備えた2槽一組の吸着器と、前記各吸着器と連通可能な流路を備えた蒸発器と、前記各吸着器と連通可能な流路を備えるとともに、凝縮した冷媒を前記蒸発器に送給する流路を備えた凝縮器とを含み、
一方の吸着器を吸着槽として機能させ、他方の吸着器を脱着槽として機能させるとともに、前記蒸発器と一方の吸着器とを連通させ、前記他方の吸着器と凝縮器とを連通させる運転モードと、一方の吸着器を脱着槽として機能させ、他方の吸着器を吸着槽として機能させるとともに、前記蒸発器と他方の吸着器とを連通させ、前記一方の吸着器と凝縮器とを連通させる運転モードとが交互に切り換えられる吸着式冷凍システムであって、
前記凝縮器と連通可能な流路を備えるとともに、凝縮した冷媒を前記蒸発器に送給する流路を備えた第2凝縮器が配設され、前記凝縮器と第2凝縮器とを連結する流路の途中に流通する冷媒を圧縮する圧縮機が配設されるとともに、前記吸着器に供給される熱媒が前記第2凝縮器内の熱交換器を巡って該吸着器に供給される流路が形成され、前記吸着器に供給される熱媒の熱量が不足した際、前記圧縮機の運転制御により圧縮した冷媒を前記第2凝縮器に供給可能としたことを特徴とする吸着式冷凍システム。
A set of two adsorbers having a built-in adsorbent and functioning as a refrigerant adsorbing tank or a desorbing tank, and at least a regeneration channel through which a heat medium for adsorbent regeneration flows, and each of the adsorbers An evaporator having a flow path capable of communicating; a condenser having a flow path capable of communicating with each of the adsorbers; and a flow path for supplying condensed refrigerant to the evaporator;
An operation mode in which one adsorber functions as an adsorbing tank, the other adsorber functions as a desorption tank, the evaporator and one adsorber communicate with each other, and the other adsorber communicates with the condenser And one adsorber functions as a desorption tank, the other adsorber functions as an adsorption tank, and the evaporator and the other adsorber communicate with each other, and the one adsorber and the condenser communicate with each other. An adsorption refrigeration system that can be switched alternately between operation modes,
A second condenser having a flow path capable of communicating with the condenser and having a flow path for supplying condensed refrigerant to the evaporator is disposed, and connects the condenser and the second condenser. A compressor for compressing the refrigerant flowing in the middle of the flow path is disposed, and the heat medium supplied to the adsorber is supplied to the adsorber through the heat exchanger in the second condenser. An adsorption type characterized in that a refrigerant compressed by operation control of the compressor can be supplied to the second condenser when a flow path is formed and the amount of heat of the heat medium supplied to the adsorber is insufficient. Refrigeration system.
吸着剤を内蔵し冷媒の吸着槽又は脱着槽として機能するとともに、少なくとも吸着剤の再生用の熱媒が流通する再生用流路を備えた2槽一組の吸着器と、前記各吸着器と連通可能な流路を備えた蒸発器と、前記各吸着器と連通可能な流路を備えるとともに、凝縮した冷媒を前記蒸発器に送給する流路を備えた凝縮器とを含み、
一方の吸着器を吸着槽として機能させ、他方の吸着器を脱着槽として機能させるとともに、前記蒸発器と一方の吸着器とを連通させ、前記他方の吸着器と凝縮器とを連通させる運転モードと、一方の吸着器を脱着槽として機能させ、他方の吸着器を吸着槽として機能させるとともに、前記蒸発器と他方の吸着器とを連通させ、前記一方の吸着器と凝縮器とを連通させる運転モードとが交互に切り換えられる吸着式冷凍システムであって、
前記蒸発器で蒸発した冷媒の一部を前記凝縮器に導入する流路が形成されるとともに、この流路の途中に流通する冷媒を圧縮する圧縮機が配設され、且つ前記凝縮器と連通可能な流路を備えるとともに、凝縮した冷媒を前記蒸発器に送給する流路を備えた第2凝縮器が配設され、前記凝縮器と第2凝縮器とを連結する流路の途中に流通する冷媒を圧縮する第2圧縮機が配設されるとともに、前記吸着器に供給される熱媒が前記第2凝縮器内の熱交換器を巡って該吸着器に供給される流路が形成され、前記吸着器に供給される熱媒の熱量が不足した際、前記圧縮機及び/又は第2圧縮機の運転制御により圧縮した冷媒を前記凝縮器及び/又は第2凝縮器に供給可能としたことを特徴とする吸着式冷凍システム。
A set of two adsorbers having a built-in adsorbent and functioning as a refrigerant adsorbing tank or a desorbing tank, and at least a regeneration channel through which a heat medium for adsorbent regeneration flows, and each of the adsorbers An evaporator having a flow path capable of communicating; a condenser having a flow path capable of communicating with each of the adsorbers; and a flow path for supplying condensed refrigerant to the evaporator;
An operation mode in which one adsorber functions as an adsorbing tank, the other adsorber functions as a desorption tank, the evaporator and one adsorber communicate with each other, and the other adsorber communicates with the condenser And one adsorber functions as a desorption tank, the other adsorber functions as an adsorption tank, and the evaporator and the other adsorber communicate with each other, and the one adsorber and the condenser communicate with each other. An adsorption refrigeration system that can be switched alternately between operation modes,
A flow path for introducing a part of the refrigerant evaporated in the evaporator to the condenser is formed, and a compressor for compressing the refrigerant flowing in the middle of the flow path is provided, and communicated with the condenser. A second condenser having a possible flow path and a flow path for supplying condensed refrigerant to the evaporator is disposed in the middle of the flow path connecting the condenser and the second condenser. A second compressor for compressing the circulating refrigerant is disposed, and a flow path through which the heat medium supplied to the adsorber is supplied to the adsorber around the heat exchanger in the second condenser is provided. When the amount of heat of the heat medium formed and supplied to the adsorber is insufficient, refrigerant compressed by operation control of the compressor and / or the second compressor can be supplied to the condenser and / or the second condenser. Adsorption refrigeration system characterized by that.
前記蒸発器には、前記吸着器に供給される熱媒の熱量が不足した状態か否かを判別するため、該蒸発器内の圧力を検知する圧力計が設置されている請求項1〜3いずれかに記載の吸着式冷凍システム。   The pressure gauge which detects the pressure in this evaporator is installed in the said evaporator in order to discriminate | determine whether it is in the state where the calorie | heat amount of the heat medium supplied to the said adsorption device is insufficient. The adsorption refrigeration system according to any one of the above. 前記圧縮機及び/又は第2圧縮機は、ルーツ式圧縮機である請求項1〜4いずれかに記載の吸着式冷凍システム。   The adsorption refrigeration system according to any one of claims 1 to 4, wherein the compressor and / or the second compressor is a Roots compressor.
JP2010276765A 2010-12-13 2010-12-13 Adsorption refrigeration system Active JP5647879B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010276765A JP5647879B2 (en) 2010-12-13 2010-12-13 Adsorption refrigeration system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010276765A JP5647879B2 (en) 2010-12-13 2010-12-13 Adsorption refrigeration system

Publications (2)

Publication Number Publication Date
JP2012127526A true JP2012127526A (en) 2012-07-05
JP5647879B2 JP5647879B2 (en) 2015-01-07

Family

ID=46644776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010276765A Active JP5647879B2 (en) 2010-12-13 2010-12-13 Adsorption refrigeration system

Country Status (1)

Country Link
JP (1) JP5647879B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014070831A (en) * 2012-09-28 2014-04-21 Toyota Central R&D Labs Inc Hot water supply device
WO2017169511A1 (en) * 2016-03-30 2017-10-05 Kabushiki Kaisha Toyota Chuo Kenkyusho Heat pump system and cooling generation method
CN111059792A (en) * 2019-12-27 2020-04-24 天津商业大学 Solar adsorption and absorption type combined indirect cooling system
CN115420033A (en) * 2022-08-29 2022-12-02 华为数字能源技术有限公司 Heat management system and adsorption bed refrigeration equipment

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101801647B1 (en) * 2016-10-27 2017-11-28 한국생산기술연구원 An adsorption cooling system for distributing refrigent vapor and removing condensed water and a method for cooling thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7001A (en) * 1850-01-08 Thomas Hoyt Improvement in curing tobacco-stems
US4031712A (en) * 1975-12-04 1977-06-28 The University Of Delaware Combined absorption and vapor-compression refrigeration system
JPH04203856A (en) * 1990-11-30 1992-07-24 Ebara Corp Absorption refrigerating machine
JPH05126431A (en) * 1991-03-08 1993-05-21 Mitsubishi Heavy Ind Ltd Adsorption type cooler
JP2000039224A (en) * 1998-07-24 2000-02-08 Toyota Motor Corp Air conditioner system
JP2003130485A (en) * 2001-10-19 2003-05-08 Hitachi Ltd Two-stage absorption chilled or hot-water machine
JP2003240382A (en) * 2001-12-14 2003-08-27 Mitsubishi Chemicals Corp Adsorption heat pump
JP2005127632A (en) * 2003-10-24 2005-05-19 Toyota Motor Corp Adsorption type heat pump
JP2009058165A (en) * 2007-08-31 2009-03-19 Sasakura Engineering Co Ltd Evaporation type air conditioning device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7001A (en) * 1850-01-08 Thomas Hoyt Improvement in curing tobacco-stems
US4031712A (en) * 1975-12-04 1977-06-28 The University Of Delaware Combined absorption and vapor-compression refrigeration system
JPH04203856A (en) * 1990-11-30 1992-07-24 Ebara Corp Absorption refrigerating machine
JPH05126431A (en) * 1991-03-08 1993-05-21 Mitsubishi Heavy Ind Ltd Adsorption type cooler
JP2000039224A (en) * 1998-07-24 2000-02-08 Toyota Motor Corp Air conditioner system
JP2003130485A (en) * 2001-10-19 2003-05-08 Hitachi Ltd Two-stage absorption chilled or hot-water machine
JP2003240382A (en) * 2001-12-14 2003-08-27 Mitsubishi Chemicals Corp Adsorption heat pump
JP2005127632A (en) * 2003-10-24 2005-05-19 Toyota Motor Corp Adsorption type heat pump
JP2009058165A (en) * 2007-08-31 2009-03-19 Sasakura Engineering Co Ltd Evaporation type air conditioning device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014070831A (en) * 2012-09-28 2014-04-21 Toyota Central R&D Labs Inc Hot water supply device
WO2017169511A1 (en) * 2016-03-30 2017-10-05 Kabushiki Kaisha Toyota Chuo Kenkyusho Heat pump system and cooling generation method
JP2017180955A (en) * 2016-03-30 2017-10-05 株式会社豊田中央研究所 Heat pump system and cold generation method
CN111059792A (en) * 2019-12-27 2020-04-24 天津商业大学 Solar adsorption and absorption type combined indirect cooling system
CN115420033A (en) * 2022-08-29 2022-12-02 华为数字能源技术有限公司 Heat management system and adsorption bed refrigeration equipment

Also Published As

Publication number Publication date
JP5647879B2 (en) 2015-01-07

Similar Documents

Publication Publication Date Title
JP4192385B2 (en) Adsorption type refrigerator
US5791157A (en) Heat pump device and desiccant assisted air conditioning system
JP4333627B2 (en) Adsorption heat pump device
JP5647879B2 (en) Adsorption refrigeration system
US8479529B2 (en) Two-stage low temperature air cooled adsorption cooling unit
JP5355540B2 (en) Heat pump equipment
WO2011142352A1 (en) Air conditioning device for vehicle
US20100300124A1 (en) Refrigerating machine comprising different sorption materials
JP5974541B2 (en) Air conditioning system
JP2005090825A (en) Complex air-conditioner
JP2017009173A (en) Adsorption type refrigerator and its operational method
CN104890474A (en) Vehicular air conditioner and vehicle
JP2014001876A (en) Adsorptive refrigeration device and engine-driven air conditioner
JP6319902B2 (en) Ice rink cooling equipment and cooling method
JP2002162130A (en) Air conditioner
JP6613404B2 (en) Refrigeration system
JP2005098586A (en) Air conditioner
JP2002250573A (en) Air conditioner
JP2010255880A (en) Absorption type system
JP2005331147A (en) Power generating and air-conditioning system
JPH11281190A (en) Double adsorption refrigerating machine
JP3871206B2 (en) Refrigeration system combining absorption and compression
JP5260895B2 (en) Absorption refrigerator
JPH03204569A (en) Refrigerating method using oil injection type screw compressor and heat pump method
JP2503752B2 (en) Adsorption refrigerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131001

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140617

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141110

R150 Certificate of patent or registration of utility model

Ref document number: 5647879

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250