JP2023122004A - Adsorbent regeneration device and removal system - Google Patents

Adsorbent regeneration device and removal system Download PDF

Info

Publication number
JP2023122004A
JP2023122004A JP2022025415A JP2022025415A JP2023122004A JP 2023122004 A JP2023122004 A JP 2023122004A JP 2022025415 A JP2022025415 A JP 2022025415A JP 2022025415 A JP2022025415 A JP 2022025415A JP 2023122004 A JP2023122004 A JP 2023122004A
Authority
JP
Japan
Prior art keywords
gas
adsorption
heat exchanger
heat exchange
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022025415A
Other languages
Japanese (ja)
Inventor
英治 高牟禮
Eiji Takamure
孝浩 中根
Takahiro Nakane
強志 丸山
Tsuyoshi Maruyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Orion Machinery Co Ltd
Original Assignee
Orion Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Orion Machinery Co Ltd filed Critical Orion Machinery Co Ltd
Priority to JP2022025415A priority Critical patent/JP2023122004A/en
Publication of JP2023122004A publication Critical patent/JP2023122004A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Drying Of Gases (AREA)

Abstract

To sufficiently reduce an energy consumption amount while surely completing adsorption removal treatment in a short time.SOLUTION: An adsorbent regeneration device includes: a heat exchanger 4b for heating hydrogen gas G flowed into an adsorption tower 2 for performing adsorption capability regeneration treatment; a heat exchanger 4a for cooling the hydrogen gas G flowed into the adsorption tower 2 for performing adsorption removal treatment and the heat exchanger 4b; a heat exchanger 4c for cooling the hydrogen gas G made to pass through the adsorption tower 2 for performing adsorption capability regeneration treatment; a heat pump unit 3 comprising a heating part capable of heating a heat medium liquid Wh and a cooling part capable of cooling a heat medium liquid Wc; and a control part for performing heating of the heat medium liquid Wh by the heating part, supply of the heating medium liquid Wh to the heat exchanger 4b, cooling of the heat medium liquid Wc by the cooling part, supply of the heat medium liquid Wc to the heat exchangers 4a and 4c, and adjustment of a flow rate of the hydrogen gas G passing through a first bypass passage in the heat exchanger 4c according to a temperature (temperature difference) of the hydrogen gas G in each part of the heat exchanger 4c.SELECTED DRAWING: Figure 1

Description

本発明は、気体に含まれている除去対象を吸着塔内の吸着剤に吸着させて除去する吸着除去処理を実行可能な除去システムにおける吸着剤を加熱再生方式の吸着能力再生処理によって再生可能に構成された吸着剤再生装置、並びにそのような吸着剤再生装置を備えて吸着除去処理および吸着能力再生処理を実行可能に構成された除去システムに関するものである。 The present invention makes it possible to regenerate the adsorbent in a removal system capable of carrying out an adsorption removal process in which an object to be removed contained in a gas is adsorbed by an adsorbent in an adsorption tower and removed by a heat regeneration type adsorption capacity regeneration process. The present invention relates to a configured adsorbent regeneration device and a removal system including such a adsorbent regeneration device and configured to perform adsorption removal processing and adsorption capacity regeneration processing.

例えば、下記の特許文献には、原料ガスに含まれている水分などを除去して精製ガスを製造可能に構成された精製ガスの製造装置(以下、単に「製造装置」ともいう)が開示されている。この製造装置は、原料ガスに含まれている水分等を吸着して除去可能な吸着剤(脱湿剤など)が収容された複数の精製塔(一例として、第1精製塔および第2精製塔)を備えている。また、この製造装置では、各精製塔の一部(第1精製塔および第2精製塔のいずれか一方)において水分等を吸着して除去する処理(以下、「吸着除去処理」ともいう)と、各精製塔の他の一部(第1精製塔および第2精製塔の他方)において吸着剤の吸着能力を再生する処理(以下、「吸着能力再生処理」ともいう)とを並行して実行することができるように構成されている。 For example, the following patent documents disclose a purified gas manufacturing apparatus (hereinafter also simply referred to as "manufacturing apparatus") that is configured to be capable of manufacturing purified gas by removing moisture and the like contained in raw material gas. ing. This production apparatus includes a plurality of refining towers (for example, a first refining tower and a second refining tower ). In addition, in this production apparatus, a part of each refining tower (one of the first refining tower and the second refining tower) absorbs and removes moisture (hereinafter also referred to as "adsorption removal treatment"). , a process for regenerating the adsorption capacity of the adsorbent (hereinafter also referred to as "adsorption capacity regeneration process") in the other part of each refining tower (the other of the first refining tower and the second refining tower). It is configured so that it can be

具体的には、一例として、第1精製塔における吸着除去処理と第2精製塔における吸着能力再生処理とを並行して実行するときには、水分等を含んだガスを第1精製塔に導入すると共に、再生ガス(加熱された窒素など)を第2精製塔に導入する。この際には、第1精製塔に導入された原料ガスに含まれている水分等が第1精製塔内の吸着剤に吸着されて原料ガスから除去される結果、湿度(水分の濃度:水分の含有量)が低下した原料ガスが第1精製塔から精製ガスとして排出される。また、第2精製塔に導入された再生ガスによって第2精製塔内の吸着剤が温度上昇させられる結果、吸着剤に吸着されている水分が離脱させられて吸着剤が再生(吸着能力が復元)される。 Specifically, as an example, when the adsorption removal treatment in the first refining tower and the adsorption capacity regeneration treatment in the second refining tower are performed in parallel, a gas containing moisture etc. is introduced into the first refining tower and , a regeneration gas (such as heated nitrogen) is introduced into the second purification column. At this time, moisture and the like contained in the raw material gas introduced into the first purification tower are adsorbed by the adsorbent in the first purification tower and removed from the raw material gas, resulting in humidity (concentration of moisture: moisture content) is discharged from the first purification tower as a purified gas. In addition, as a result of the temperature rise of the adsorbent in the second refining tower by the regeneration gas introduced into the second refining tower, the moisture adsorbed by the adsorbent is released and the adsorbent is regenerated (restores the adsorption capacity ) is done.

この場合、この製造装置では、ヒータによって加熱した120℃~220℃程度の高温の再生ガスを吸着能力再生処理対象の精製塔に導入することで吸着剤の温度を上昇させて水分を離脱させる構成が採用されている。これにより、処理対象の精製塔内の吸着剤が好適に再生される。 In this case, in this manufacturing apparatus, a high-temperature regeneration gas of about 120° C. to 220° C. heated by a heater is introduced into the refining tower to be subjected to the adsorption capacity regeneration treatment, thereby increasing the temperature of the adsorbent and desorbing the moisture. is adopted. As a result, the adsorbent in the purification tower to be treated is preferably regenerated.

特開2019-171231号公報(第4-13頁、第1図)JP 2019-171231 A (pages 4-13, FIG. 1)

ところが、上記特許文献に開示の製造装置には、以下のような解決すべき課題が存在する。 However, the manufacturing apparatus disclosed in the above patent document has the following problems to be solved.

具体的には、上記の製造装置では、吸着能力再生処理に際して、処理対象の精製塔における吸着剤に吸着されている水分の量に応じて0.5時間~3時間程度に亘って高温の再生ガスを供給することで吸着剤から水分を離脱させる構成が採用されている。この場合、製造装置に導入される原料ガスに含まれている水分の量が多いときには、吸着能力再生処理を行う精製塔(吸着能力再生処理の前に吸着除去処理を行っていた精製塔)の吸着剤が多量の水分を吸着した状態となっている。このため、原料ガスに含まれている水分の量が多いときには、吸着剤の再生に要する時間が長くなる傾向がある。また、原料ガスに含まれている水分の量が多いときには、吸着除去処理を行っている精製塔内の吸着剤の吸着能力が短時間で大きく低下する。 Specifically, in the above manufacturing apparatus, during the adsorption capacity regeneration treatment, high temperature regeneration is performed for about 0.5 to 3 hours depending on the amount of water adsorbed by the adsorbent in the purification tower to be treated. A configuration is adopted in which moisture is separated from the adsorbent by supplying gas. In this case, when the amount of water contained in the raw material gas introduced into the production apparatus is large, the refining tower that performs the adsorption capacity regeneration process (the refining tower that had been subjected to the adsorption removal process before the adsorption capacity regeneration process) The adsorbent is in a state of adsorbing a large amount of moisture. Therefore, when the amount of water contained in the raw material gas is large, the time required to regenerate the adsorbent tends to be long. Moreover, when the amount of water contained in the raw material gas is large, the adsorption capacity of the adsorbent in the refining tower, which is performing the adsorption removal treatment, is greatly reduced in a short period of time.

このため、原料ガスに含まれている水分の量が多いときには、吸着能力再生処理を行っている精製塔内の吸着剤の再生が完了していないにも拘わらず、吸着除去処理を行っている精製塔において水分を好適に除去するのが困難な状態(吸着剤の吸着能力が低下した状態)となることがある。しかしながら、水分を好適に吸着除去するのが困難な状態の精製塔において吸着除去処理を継続したときには、多量の水分が含まれた精製ガスが製造されてしまう。したがって、吸着除去処理を行っている精製塔の吸着能力が低下したときには、例え吸着能力再生処理が完了していなくても、吸着除去処理を行う精製塔と、吸着能力再生処理を行う精製塔とを切り換える必要がある。 Therefore, when the amount of moisture contained in the raw material gas is large, the adsorption removal process is performed even though the regeneration of the adsorbent in the refining tower in which the adsorption capacity regeneration process is being performed is not completed. In some cases, it is difficult to remove moisture in the refining column (the adsorption capacity of the adsorbent is reduced). However, if the adsorption removal treatment is continued in a refining tower in which it is difficult to adequately adsorb and remove water, a purified gas containing a large amount of water will be produced. Therefore, when the adsorption capacity of the refining tower that is performing the adsorption removal treatment is reduced, even if the adsorption capacity regeneration treatment is not completed, the purification tower that is performing the adsorption removal treatment and the purification tower that is performing the adsorption capacity regeneration treatment. need to switch.

この結果、吸着除去処理を開始した精製塔(吸着能力再生処理を完了することができなかった精製塔)において水分を好適に吸着除去するのが困難となるまでの時間がさらに短時間になると共に、次に精製塔を切り換えるときまでに他方の精製塔についての吸着能力再生処理を完了させることも一層困難となる。したがって、最悪の場合には、一方の精製塔についての吸着能力再生処理が完了するまで他方の精製塔における吸着除去処理を停止させたり、吸着除去処理を行っている精製塔に対する単位時間あたりの原料ガスの導入量を減少させたりする必要が生じる。このため、上記特許文献に開示の製造装置では、吸着除去処理と並行して吸着能力再生処理を実行する構成を採用しているにも拘わらず、精製ガスの製造効率の向上が困難となっている現状がある。 As a result, the time until it becomes difficult to adequately adsorb and remove moisture in the refining tower that started the adsorption removal treatment (the refining tower that could not complete the adsorption capacity regeneration treatment) is further shortened. It also becomes more difficult to complete the adsorption capacity regeneration treatment for the other purification tower by the time the purification tower is switched next time. Therefore, in the worst case, the adsorption removal treatment in the other purification tower is stopped until the adsorption capacity regeneration treatment for one purification tower is completed, or the raw material per unit time for the purification tower undergoing the adsorption removal treatment It becomes necessary to reduce the amount of gas introduced. For this reason, although the production apparatus disclosed in the above patent document employs a configuration in which the adsorption capacity regeneration process is executed in parallel with the adsorption removal process, it is difficult to improve the production efficiency of the purified gas. There is a current situation.

一方、出願人は、上記の製造装置と同様の構成の処理装置を用いて原料ガスとしての水素ガスから水分を除去する際にも同様の課題が生じることを確認した。そこで、出願人は、吸着塔(上記の製造装置における精製塔)内の吸着剤が好適な吸着能力を有する状態を長時間に亘って維持できるように、吸着除去処理を行う吸着塔に導入するのに先立ち、処理対象の水素ガスに含まれている水分の一部を除去することで、吸着塔に導入される水素ガスに含まれる水分の量を減少させる構成の処理装置を試作した。 On the other hand, the applicant confirmed that the same problem occurs when removing moisture from hydrogen gas as a raw material gas using a processing apparatus having the same configuration as the manufacturing apparatus described above. Therefore, the applicant introduces the adsorbent in the adsorption tower (the purification tower in the above manufacturing apparatus) into the adsorption tower that performs the adsorption removal treatment so that the state of having a suitable adsorption capacity can be maintained for a long time. Prior to this, a prototype treatment apparatus was constructed to reduce the amount of moisture contained in the hydrogen gas introduced into the adsorption tower by removing part of the moisture contained in the hydrogen gas to be treated.

具体的には、出願人が試作した処理装置では、水素ガス冷却用の熱交換器が水素ガスの流路における吸着塔の上流側に配設されると共に、冷凍サイクルの蒸発器において冷却した冷却用熱媒液が上記の熱交換器に供給される構成が採用されている。これにより、この処理装置では、熱交換器における冷却用熱媒液との熱交換によって水素ガスが冷却されて相対湿度が上昇し、水素ガスに含まれている水分の一部が熱交換器内において結露する(気相から液相に変化する)ことで水素ガスから除去される。したがって、この処理装置では、吸着塔に導入される水素ガスに含まれる水分が少量となる(水素ガスの絶対湿度が低くなる)ため、吸着塔内の吸着剤が好適な吸着能力を有する状態を長時間に亘って維持することが可能となり、前述のような課題を解決することが可能となった。 Specifically, in the treatment apparatus prototyped by the applicant, a heat exchanger for cooling hydrogen gas is disposed upstream of the adsorption tower in the hydrogen gas flow path, and the cooling is performed by the evaporator of the refrigeration cycle. A configuration is adopted in which the heat transfer fluid is supplied to the heat exchanger. As a result, in this processing apparatus, the hydrogen gas is cooled by heat exchange with the cooling heat transfer liquid in the heat exchanger, the relative humidity increases, and part of the moisture contained in the hydrogen gas is released into the heat exchanger. is removed from the hydrogen gas by condensation (changing from the gas phase to the liquid phase). Therefore, in this treatment apparatus, the amount of water contained in the hydrogen gas introduced into the adsorption tower is small (the absolute humidity of the hydrogen gas is low), so that the adsorbent in the adsorption tower has a suitable adsorption capacity. It has become possible to maintain it for a long time, and it has become possible to solve the above-mentioned problems.

この場合、出願人が試作した処理装置では、吸着除去処理と吸着能力再生処理とを並行して実行することで、吸着除去処理を行っている吸着塔内の吸着剤が好適な吸着能力を有しているうちに他の吸着塔についての吸着能力再生処理を完了させることが可能となっている。しかしながら、この処理装置では、上記の冷却用熱媒液を冷却するための冷凍サイクルと、吸着能力再生処理を行う吸着塔に導入する再生ガスを加熱するためのヒータ(例えば電気ヒータ)とをそれぞれ動作させる必要がある。このため、前述の製造装置と比較して、冷凍サイクルによる電力消費が生じる分だけ、水素ガスから水分を除去する処理のコストが高騰してしまう。したがって、この点を改善するのが好ましい。 In this case, in the treatment apparatus prototyped by the applicant, the adsorption removal treatment and the adsorption capacity regeneration treatment are performed in parallel, so that the adsorbent in the adsorption tower undergoing the adsorption removal treatment has a suitable adsorption capacity. In the meantime, it is possible to complete the adsorption capacity regeneration treatment for other adsorption towers. However, in this treatment apparatus, a refrigeration cycle for cooling the cooling heat transfer fluid and a heater (for example, an electric heater) for heating the regeneration gas introduced into the adsorption tower where the adsorption capacity regeneration process is performed are provided. need to work. Therefore, the cost of the process of removing water from the hydrogen gas increases by the amount of power consumed by the refrigeration cycle, as compared with the manufacturing apparatus described above. Therefore, it is preferable to improve this point.

本発明は、かかる改善すべき課題に鑑みてなされたものであり、吸着除去処理を短時間で確実に完了可能としつつ、消費エネルギー量を十分に低減し得る吸着剤再生装置および除去システムを提供することを主目的とする。 The present invention has been made in view of such problems to be solved, and provides an adsorbent regeneration device and a removal system capable of sufficiently reducing the amount of energy consumption while ensuring that the adsorption removal treatment can be completed in a short time. The main purpose is to

上記目的を達成すべく、請求項1記載の吸着剤再生装置は、気体に含まれている除去対象を吸着塔内の吸着剤に吸着させて当該気体から除去する吸着除去処理を実行可能な除去システムにおける当該吸着剤を加熱再生方式の吸着能力再生処理によって再生可能に構成された吸着剤再生装置であって、複数の前記吸着塔を備えて当該各吸着塔の一部を対象とする前記吸着除去処理と当該各吸着塔の他の一部を対象とする前記吸着能力再生処理とを並行して実行可能に構成された前記除去システムにおける前記吸着剤を再生可能に構成され、前記吸着能力再生処理を行う前記吸着塔に流入させる前記気体を加熱する第1の熱交換器と、前記吸着除去処理を行う前記吸着塔および前記第1の熱交換器に流入させられる前記気体を冷却する第2の熱交換器と、前記吸着能力再生処理を行う前記吸着塔を通過させられた前記気体を冷却する第3の熱交換器と、冷凍サイクルを有すると共に当該冷凍サイクルにおける凝縮器からの放熱によって加熱用熱媒液を加熱可能な加熱部、および当該冷凍サイクルにおける蒸発器による吸熱によって冷却用熱媒液を冷却可能な冷却部を備えた温度調整部と、前記吸着除去処理を行う前記吸着塔を通過させられた前記気体を、前記除去対象の除去が完了した前記気体を流入させるべき排出用配管に流入させると共に、前記第1の熱交換器によって加熱された前記気体を、前記吸着能力再生処理を行う前記吸着塔に流入させる第1の流路切替え部と、前記第2の熱交換器によって冷却された前記気体を、前記吸着除去処理を行う前記吸着塔に流入させると共に、前記吸着能力再生処理を行う前記吸着塔を通過させられた前記気体を、前記第3の熱交換器に流入させる第2の流路切替え部と、前記加熱部による前記加熱用熱媒液の加熱、前記第1の熱交換器への当該加熱用熱媒液の供給、前記冷却部による前記冷却用熱媒液の冷却、前記第2の熱交換器への当該冷却用熱媒液の供給、および前記第3の熱交換器への当該冷却用熱媒液の供給を制御する第1の処理と、前記第1の流路切替え部および前記第2の流路切替え部を制御して前記吸着除去処理を行う前記吸着塔および前記吸着能力再生処理を行う前記吸着塔を切り換える第2の処理とを実行する制御部とを備え、前記第3の熱交換器を通過させられた前記気体が、前記第2の熱交換器を通過させられた気体に合流させられて前記第2の流路切替え部を介して前記吸着除去処理を行う前記吸着塔に流入させられると共に、前記第3の熱交換器は、一次熱交換部および二次熱交換部を備え、気体導入口から導入された前記気体が、当該一次熱交換部、当該二次熱交換部および当該一次熱交換部をこの順で通過させられて気体排出口から排出されるように気体流路が形成されると共に、当該二次熱交換部において前記冷却用熱媒液との熱交換によって前記気体に含まれている前記除去対象が液相化されて除去され、かつ、当該一次熱交換部において当該二次熱交換部によって冷却された前記気体との熱交換によって前記気体導入口から導入された前記気体に含まれている前記除去対象が液相化されて除去されるように構成され、かつ当該二次熱交換部を通過させられた前記気体を、当該一次熱交換部を再び通過させずに当該気体排出口から排出させる第1のバイパス流路が設けられると共に、当該第1のバイパス流路を通過させる前記気体の流量を調整可能な第1の流量調整部が配設され、前記制御部は、前記第3の熱交換器における前記気体導入口から導入された前記気体の第1の温度、当該気体導入口から導入されて前記一次熱交換部を通過させられた前記気体の第2の温度、および前記二次熱交換部を通過させられた前記気体の第3の温度を特定すると共に、当該第1の温度および当該第3の温度の第1の温度差と、当該第2の温度および当該第3の温度の第2の温度差との比に基づき、前記第1の流量調整部を制御して前記第1のバイパス流路を通過する前記気体の流量を調整させる第3の処理を実行する。 In order to achieve the above object, the adsorbent regeneration device according to claim 1 is capable of performing an adsorption removal process of removing a target of removal contained in a gas by adsorbing it on an adsorbent in an adsorption tower. An adsorbent regeneration device configured to be able to regenerate the adsorbent in the system by adsorption capacity regeneration treatment of a thermal regeneration method, comprising a plurality of the adsorption towers, and targeting a part of each of the adsorption towers. The adsorbent in the removal system configured to be able to perform the removal process and the adsorption capacity regeneration process for another part of each adsorption tower in parallel, and the adsorption capacity regeneration A first heat exchanger for heating the gas flowing into the adsorption tower for treatment, and a second heat exchanger for cooling the gas flowing into the adsorption tower and the first heat exchanger for the adsorption removal treatment. and a third heat exchanger that cools the gas that has passed through the adsorption tower that performs the adsorption capacity regeneration process, and a refrigeration cycle that is heated by heat radiation from the condenser in the refrigeration cycle. a temperature control unit having a heating unit capable of heating the heat transfer liquid for cooling, a cooling unit capable of cooling the cooling heat transfer liquid by absorbing heat from the evaporator in the refrigeration cycle, and the adsorption tower performing the adsorption removal process. The gas that has been passed through is made to flow into a discharge pipe into which the gas that has been completely removed from the object to be removed is to flow, and the gas that has been heated by the first heat exchanger is subjected to the adsorption capacity regeneration process. and the gas cooled by the second heat exchanger is allowed to flow into the adsorption tower for performing the adsorption removal treatment, and the adsorption capacity regeneration a second flow switching unit for causing the gas passed through the adsorption tower to be treated to flow into the third heat exchanger; heating the heat transfer liquid for heating by the heating unit; supply of the heating heat transfer fluid to the heat exchanger, cooling of the cooling heat transfer fluid by the cooling unit, supply of the cooling heat transfer fluid to the second heat exchanger, and the third a first process for controlling the supply of the cooling heat transfer liquid to the heat exchanger, and the adsorption removal process by controlling the first flow path switching unit and the second flow path switching unit. a second process for switching between the adsorption tower and the adsorption tower that performs the adsorption capacity regeneration process; The gas that has passed through the heat exchanger is combined and flowed into the adsorption tower that performs the adsorption removal process via the second flow switching part, and the third heat exchanger is a primary A heat exchange section and a secondary heat exchange section are provided, and the gas introduced from the gas inlet is passed through the primary heat exchange section, the secondary heat exchange section, and the primary heat exchange section in this order to form a gas A gas flow path is formed so as to be discharged from the outlet, and the removal target contained in the gas is liquefied by heat exchange with the cooling heat transfer liquid in the secondary heat exchange section. and is contained in the gas introduced from the gas introduction port by heat exchange with the gas cooled by the secondary heat exchange section in the primary heat exchange section is a liquid phase. a first bypass flow configured to be converted and removed, and for causing the gas that has passed through the secondary heat exchange section to exit from the gas outlet without passing through the primary heat exchange section again. A passage is provided, and a first flow rate adjustment unit is provided that can adjust the flow rate of the gas that passes through the first bypass flow passage, and the control unit controls the flow rate of the gas in the third heat exchanger. a first temperature of the gas introduced from the inlet, a second temperature of the gas introduced from the gas inlet and passed through the primary heat exchange section, and a second temperature of the gas introduced from the gas inlet and passed through the secondary heat exchange section; a first temperature difference between the first temperature and the third temperature and a second temperature difference between the second temperature and the third temperature; and a third process of controlling the first flow rate adjusting unit to adjust the flow rate of the gas passing through the first bypass flow path.

請求項2記載の吸着剤再生装置は、気体に含まれている除去対象を吸着塔内の吸着剤に吸着させて当該気体から除去する吸着除去処理を実行可能な除去システムにおける当該吸着剤を加熱再生方式の吸着能力再生処理によって再生可能に構成された吸着剤再生装置であって、複数の前記吸着塔を備えて当該各吸着塔の一部を対象とする前記吸着除去処理と当該各吸着塔の他の一部を対象とする前記吸着能力再生処理とを並行して実行可能に構成された前記除去システムにおける前記吸着剤を再生可能に構成され、前記吸着能力再生処理を行う前記吸着塔に流入させる前記気体を加熱する第1の熱交換器と、前記吸着除去処理を行う前記吸着塔および前記第1の熱交換器に流入させられる前記気体を冷却する第2の熱交換器と、前記吸着能力再生処理を行う前記吸着塔を通過させられた前記気体を冷却する第3の熱交換器と、冷凍サイクルを有すると共に当該冷凍サイクルにおける凝縮器からの放熱によって加熱用熱媒液を加熱可能な加熱部、および当該冷凍サイクルにおける蒸発器による吸熱によって冷却用熱媒液を冷却可能な冷却部を備えた温度調整部と、前記吸着除去処理を行う前記吸着塔を通過させられた前記気体を、前記除去対象の除去が完了した前記気体を流入させるべき排出用配管に流入させると共に、前記第1の熱交換器によって加熱された前記気体を、前記吸着能力再生処理を行う前記吸着塔に流入させる第1の流路切替え部と、前記第2の熱交換器によって冷却された前記気体を、前記吸着除去処理を行う前記吸着塔に流入させると共に、前記吸着能力再生処理を行う前記吸着塔を通過させられた前記気体を、前記第3の熱交換器に流入させる第2の流路切替え部と、前記加熱部による前記加熱用熱媒液の加熱、前記第1の熱交換器への当該加熱用熱媒液の供給、前記冷却部による前記冷却用熱媒液の冷却、前記第2の熱交換器への当該冷却用熱媒液の供給、および前記第3の熱交換器への当該冷却用熱媒液の供給を制御する第1の処理と、前記第1の流路切替え部および前記第2の流路切替え部を制御して前記吸着除去処理を行う前記吸着塔および前記吸着能力再生処理を行う前記吸着塔を切り換える第2の処理とを実行する制御部とを備え、前記第3の熱交換器を通過させられた前記気体が、前記第2の熱交換器を通過させられた気体に合流させられて前記第2の流路切替え部を介して前記吸着除去処理を行う前記吸着塔に流入させられると共に、前記第3の熱交換器は、一次熱交換部および二次熱交換部を備え、気体導入口から導入された前記気体が、当該一次熱交換部、当該二次熱交換部および当該一次熱交換部をこの順で通過させられて気体排出口から排出されるように気体流路が形成されると共に、当該二次熱交換部において前記冷却用熱媒液との熱交換によって前記気体に含まれている前記除去対象が液相化されて除去され、かつ、当該一次熱交換部において当該二次熱交換部によって冷却された前記気体との熱交換によって前記気体導入口から導入された前記気体に含まれている前記除去対象が液相化されて除去されるように構成され、かつ当該気体導入口から導入されて当該一次熱交換部を通過させられた前記気体の一部を、当該二次熱交換部を通過させずに、当該二次熱交換部を通過させられて当該一次熱交換部に流入させられる前記気体に合流させるバイパス流路Aが設けられると共に、当該バイパス流路Aを通過させる前記気体の流量を調整可能な流量調整部Aが配設され、前記制御部は、前記第3の熱交換器における前記気体導入口から導入された前記気体の温度A、当該気体導入口から導入されて前記一次熱交換部を通過させられた前記気体の温度B、および当該第3の熱交換器における前記気体排出口から排出される前記気体の温度Cを特定すると共に、当該温度Aおよび当該温度Bの温度差Aと、当該温度Aおよび当該温度Cの温度差Bとの比に基づき、前記流量調整部Aを制御して前記バイパス流路Aを通過する前記気体の流量を調整させる処理Aを実行する。 The adsorbent regeneration device according to claim 2 is a removal system capable of performing an adsorption removal process for adsorbing an object to be removed contained in a gas to an adsorbent in an adsorption tower and removing it from the gas by heating the adsorbent. An adsorbent regeneration device configured to be regenerated by regeneration-type adsorption capacity regeneration treatment, comprising a plurality of adsorption towers, the adsorption removal treatment for a part of each adsorption tower, and each adsorption tower. In the adsorption tower configured to regenerate the adsorbent in the removal system configured to be able to execute in parallel with the adsorption capacity regeneration treatment for another part of the adsorption tower for performing the adsorption capacity regeneration treatment a first heat exchanger for heating the gas to be introduced; a second heat exchanger for cooling the gas to be introduced into the adsorption tower and the first heat exchanger for performing the adsorption removal treatment; A third heat exchanger that cools the gas that has passed through the adsorption tower that performs adsorption capacity regeneration processing, and a refrigeration cycle that can heat the heat transfer liquid for heating by heat radiation from the condenser in the refrigeration cycle. and a cooling unit that can cool the cooling heat transfer liquid by absorbing heat from the evaporator in the refrigeration cycle, and the gas passed through the adsorption tower that performs the adsorption removal process. and making the gas in which the removal of the object to be removed is completed flow into a discharge pipe into which the gas heated by the first heat exchanger is to flow, and the gas heated by the first heat exchanger is made to flow into the adsorption tower in which the adsorption capacity regeneration process is performed. and the gas cooled by the second heat exchanger is caused to flow into the adsorption tower that performs the adsorption removal treatment, and the adsorption tower that performs the adsorption capacity regeneration treatment is operated. a second flow switching unit for causing the passed gas to flow into the third heat exchanger; heating the heat transfer liquid for heating by the heating unit; supplying the heating heat transfer fluid, cooling the cooling heat transfer fluid by the cooling unit, supplying the cooling heat transfer fluid to the second heat exchanger, and supplying the cooling heat transfer fluid to the third heat exchanger; a first process for controlling the supply of the cooling heat transfer liquid; the adsorption tower and the adsorption capacity for performing the adsorption removal process by controlling the first flow path switching section and the second flow path switching section; a second process of switching the adsorption tower that performs the regeneration process, and the gas passed through the third heat exchanger is passed through the second heat exchanger. The gas is merged with the gas and flowed into the adsorption tower for performing the adsorption removal process through the second flow switching section, and the third heat exchanger includes a primary heat exchange section and a secondary heat An exchange unit is provided, and the gas introduced from the gas inlet is passed through the primary heat exchange unit, the secondary heat exchange unit, and the primary heat exchange unit in this order, and is discharged from the gas discharge port. A gas flow path is formed in the secondary heat exchange portion, and the removal target contained in the gas is liquefied and removed by heat exchange with the cooling heat transfer liquid in the secondary heat exchange portion, and In the primary heat exchange section, heat exchange with the gas cooled by the secondary heat exchange section causes the removal target contained in the gas introduced from the gas introduction port to be liquefied and removed. and part of the gas introduced from the gas inlet and passed through the primary heat exchange part passes through the secondary heat exchange part without passing through the secondary heat exchange part A bypass flow path A is provided for joining the gas that is forced to flow into the primary heat exchange section, and a flow rate adjustment section A that can adjust the flow rate of the gas that passes through the bypass flow path A is provided. , the control unit controls the temperature A of the gas introduced from the gas inlet in the third heat exchanger, the temperature of the gas introduced from the gas inlet and passed through the primary heat exchange unit B, and the temperature C of the gas discharged from the gas outlet in the third heat exchanger are specified, and the temperature difference A between the temperature A and the temperature B, and the temperature A and the temperature C Based on the ratio to the temperature difference B, a process A is executed for controlling the flow rate adjusting unit A to adjust the flow rate of the gas passing through the bypass flow path A.

請求項3記載の吸着剤再生装置は、気体に含まれている除去対象を吸着塔内の吸着剤に吸着させて当該気体から除去する吸着除去処理を実行可能な除去システムにおける当該吸着剤を加熱再生方式の吸着能力再生処理によって再生可能に構成された吸着剤再生装置であって、複数の前記吸着塔を備えて当該各吸着塔の一部を対象とする前記吸着除去処理と当該各吸着塔の他の一部を対象とする前記吸着能力再生処理とを並行して実行可能に構成された前記除去システムにおける前記吸着剤を再生可能に構成され、前記吸着能力再生処理を行う前記吸着塔に流入させる前記気体を加熱する第1の熱交換器と、前記吸着除去処理を行う前記吸着塔および前記第1の熱交換器に流入させられる前記気体を冷却する第2の熱交換器と、前記吸着能力再生処理を行う前記吸着塔を通過させられた前記気体を冷却する第3の熱交換器と、冷凍サイクルを有すると共に当該冷凍サイクルにおける凝縮器からの放熱によって加熱用熱媒液を加熱可能な加熱部、および当該冷凍サイクルにおける蒸発器による吸熱によって冷却用熱媒液を冷却可能な冷却部を備えた温度調整部と、前記吸着除去処理を行う前記吸着塔を通過させられた前記気体を、前記除去対象の除去が完了した前記気体を流入させるべき排出用配管に流入させると共に、前記第1の熱交換器によって加熱された前記気体を、前記吸着能力再生処理を行う前記吸着塔に流入させる第1の流路切替え部と、前記第2の熱交換器によって冷却された前記気体を、前記吸着除去処理を行う前記吸着塔に流入させると共に、前記吸着能力再生処理を行う前記吸着塔を通過させられた前記気体を、前記第3の熱交換器に流入させる第2の流路切替え部と、前記加熱部による前記加熱用熱媒液の加熱、前記第1の熱交換器への当該加熱用熱媒液の供給、前記冷却部による前記冷却用熱媒液の冷却、前記第2の熱交換器への当該冷却用熱媒液の供給、および前記第3の熱交換器への当該冷却用熱媒液の供給を制御する第1の処理と、前記第1の流路切替え部および前記第2の流路切替え部を制御して前記吸着除去処理を行う前記吸着塔および前記吸着能力再生処理を行う前記吸着塔を切り換える第2の処理とを実行する制御部とを備え、前記第3の熱交換器を通過させられた前記気体が、前記第2の熱交換器を通過させられた気体に合流させられて前記第2の流路切替え部を介して前記吸着除去処理を行う前記吸着塔に流入させられると共に、前記第2の熱交換器は、一次熱交換部および二次熱交換部を備え、気体導入口から導入された前記気体が、当該一次熱交換部、当該二次熱交換部および当該一次熱交換部をこの順で通過させられて気体排出口から排出されるように気体流路が形成されると共に、当該二次熱交換部において前記冷却用熱媒液との熱交換によって前記気体に含まれている前記除去対象が液相化されて除去され、かつ、当該一次熱交換部において当該二次熱交換部によって冷却された前記気体との熱交換によって前記気体導入口から導入された前記気体に含まれている前記除去対象が液相化されて除去されるように構成され、かつ当該二次熱交換部を通過させられた前記気体を、当該一次熱交換部を再び通過させずに当該気体排出口から排出させる第2のバイパス流路が設けられると共に、当該第2のバイパス流路を通過させる前記気体の流量を調整可能な第2の流量調整部が配設され、前記制御部は、前記第2の熱交換器における前記気体導入口から導入された前記気体の第4の温度、当該気体導入口から導入されて前記一次熱交換部を通過させられた前記気体の第5の温度、および前記二次熱交換部を通過させられた前記気体の第6の温度を特定すると共に、当該第4の温度および当該第6の温度の第3の温度差と、当該第5の温度および当該第6の温度の第4の温度差との比に基づき、前記第2の流量調整部を制御して前記第2のバイパス流路を通過する前記気体の流量を調整させる第4の処理を実行する。 The adsorbent regeneration device according to claim 3 is a removal system capable of performing an adsorption removal process in which a target to be removed contained in a gas is adsorbed by the adsorbent in the adsorption tower and removed from the gas by heating the adsorbent. An adsorbent regeneration device configured to be regenerated by regeneration-type adsorption capacity regeneration treatment, comprising a plurality of adsorption towers, the adsorption removal treatment for a part of each adsorption tower, and each adsorption tower. In the adsorption tower configured to regenerate the adsorbent in the removal system configured to be able to execute in parallel with the adsorption capacity regeneration treatment for another part of the adsorption tower for performing the adsorption capacity regeneration treatment a first heat exchanger for heating the gas to be introduced; a second heat exchanger for cooling the gas to be introduced into the adsorption tower and the first heat exchanger for performing the adsorption removal treatment; A third heat exchanger that cools the gas that has passed through the adsorption tower that performs adsorption capacity regeneration processing, and a refrigeration cycle that can heat the heat transfer liquid for heating by heat radiation from the condenser in the refrigeration cycle. and a cooling unit that can cool the cooling heat transfer liquid by absorbing heat from the evaporator in the refrigeration cycle, and the gas passed through the adsorption tower that performs the adsorption removal process. and making the gas in which the removal of the object to be removed is completed flow into a discharge pipe into which the gas heated by the first heat exchanger is to flow, and the gas heated by the first heat exchanger is made to flow into the adsorption tower in which the adsorption capacity regeneration process is performed. and the gas cooled by the second heat exchanger is caused to flow into the adsorption tower that performs the adsorption removal treatment, and the adsorption tower that performs the adsorption capacity regeneration treatment is operated. a second flow switching unit for causing the passed gas to flow into the third heat exchanger; heating the heat transfer liquid for heating by the heating unit; supplying the heating heat transfer fluid, cooling the cooling heat transfer fluid by the cooling unit, supplying the cooling heat transfer fluid to the second heat exchanger, and supplying the cooling heat transfer fluid to the third heat exchanger; a first process for controlling the supply of the cooling heat transfer liquid; the adsorption tower and the adsorption capacity for performing the adsorption removal process by controlling the first flow path switching section and the second flow path switching section; a second process of switching the adsorption tower that performs the regeneration process, and the gas passed through the third heat exchanger is passed through the second heat exchanger. The gas is combined with the gas and flowed through the second flow switching unit into the adsorption tower for performing the adsorption removal process, and the second heat exchanger includes a primary heat exchange unit and a secondary heat An exchange unit is provided, and the gas introduced from the gas inlet is passed through the primary heat exchange unit, the secondary heat exchange unit, and the primary heat exchange unit in this order, and is discharged from the gas discharge port. A gas flow path is formed in the secondary heat exchange portion, and the removal target contained in the gas is liquefied and removed by heat exchange with the cooling heat transfer liquid in the secondary heat exchange portion, and In the primary heat exchange section, heat exchange with the gas cooled by the secondary heat exchange section causes the removal target contained in the gas introduced from the gas introduction port to be liquefied and removed. and a second bypass flow path for discharging the gas that has passed through the secondary heat exchange section from the gas discharge port without passing through the primary heat exchange section again, and A second flow rate adjustment unit is provided that can adjust the flow rate of the gas that passes through the second bypass flow path, and the control unit controls the flow rate of the gas introduced from the gas introduction port in the second heat exchanger. A fourth temperature of the gas, a fifth temperature of the gas introduced from the gas inlet and passed through the primary heat exchange section, and a sixth temperature of the gas passed through the secondary heat exchange section and based on the ratio of the third temperature difference between the fourth temperature and the sixth temperature and the fourth temperature difference between the fifth temperature and the sixth temperature, the A fourth process of controlling a second flow rate adjusting unit to adjust the flow rate of the gas passing through the second bypass flow path is executed.

請求項4記載の吸着剤再生装置は、気体に含まれている除去対象を吸着塔内の吸着剤に吸着させて当該気体から除去する吸着除去処理を実行可能な除去システムにおける当該吸着剤を加熱再生方式の吸着能力再生処理によって再生可能に構成された吸着剤再生装置であって、複数の前記吸着塔を備えて当該各吸着塔の一部を対象とする前記吸着除去処理と当該各吸着塔の他の一部を対象とする前記吸着能力再生処理とを並行して実行可能に構成された前記除去システムにおける前記吸着剤を再生可能に構成され、前記吸着能力再生処理を行う前記吸着塔に流入させる前記気体を加熱する第1の熱交換器と、前記吸着除去処理を行う前記吸着塔および前記第1の熱交換器に流入させられる前記気体を冷却する第2の熱交換器と、前記吸着能力再生処理を行う前記吸着塔を通過させられた前記気体を冷却する第3の熱交換器と、冷凍サイクルを有すると共に当該冷凍サイクルにおける凝縮器からの放熱によって加熱用熱媒液を加熱可能な加熱部、および当該冷凍サイクルにおける蒸発器による吸熱によって冷却用熱媒液を冷却可能な冷却部を備えた温度調整部と、前記吸着除去処理を行う前記吸着塔を通過させられた前記気体を、前記除去対象の除去が完了した前記気体を流入させるべき排出用配管に流入させると共に、前記第1の熱交換器によって加熱された前記気体を、前記吸着能力再生処理を行う前記吸着塔に流入させる第1の流路切替え部と、前記第2の熱交換器によって冷却された前記気体を、前記吸着除去処理を行う前記吸着塔に流入させると共に、前記吸着能力再生処理を行う前記吸着塔を通過させられた前記気体を、前記第3の熱交換器に流入させる第2の流路切替え部と、前記加熱部による前記加熱用熱媒液の加熱、前記第1の熱交換器への当該加熱用熱媒液の供給、前記冷却部による前記冷却用熱媒液の冷却、前記第2の熱交換器への当該冷却用熱媒液の供給、および前記第3の熱交換器への当該冷却用熱媒液の供給を制御する第1の処理と、前記第1の流路切替え部および前記第2の流路切替え部を制御して前記吸着除去処理を行う前記吸着塔および前記吸着能力再生処理を行う前記吸着塔を切り換える第2の処理とを実行する制御部とを備え、前記第3の熱交換器を通過させられた前記気体が、前記第2の熱交換器を通過させられた気体に合流させられて前記第2の流路切替え部を介して前記吸着除去処理を行う前記吸着塔に流入させられると共に、前記第2の熱交換器は、一次熱交換部および二次熱交換部を備え、気体導入口から導入された前記気体が、当該一次熱交換部、当該二次熱交換部および当該一次熱交換部をこの順で通過させられて気体排出口から排出されるように気体流路が形成されると共に、当該二次熱交換部において前記冷却用熱媒液との熱交換によって前記気体に含まれている前記除去対象が液相化されて除去され、かつ、当該一次熱交換部において当該二次熱交換部によって冷却された前記気体との熱交換によって前記気体導入口から導入された前記気体に含まれている前記除去対象が液相化されて除去されるように構成され、かつ当該気体導入口から導入されて当該一次熱交換部を通過させられた前記気体の一部を、当該二次熱交換部を通過させずに、当該二次熱交換部を通過させられて当該一次熱交換部に流入させられる前記気体に合流させるバイパス流路Bが設けられると共に、当該バイパス流路Bを通過させる前記気体の流量を調整可能な流量調整部Bが配設され、前記制御部は、前記第2の熱交換器における前記気体導入口から導入された前記気体の温度D、当該気体導入口から導入されて前記一次熱交換部を通過させられた前記気体の温度E、および当該第2の熱交換器における前記気体排出口から排出される前記気体の温度Fを特定すると共に、当該温度Dおよび当該温度Eの温度差Cと、当該温度Dおよび当該温度Fの温度差Dとの比に基づき、前記流量調整部Bを制御して前記バイパス流路Bを通過する前記気体の流量を調整させる処理Bを実行する。 The adsorbent regeneration device according to claim 4 is a removal system capable of performing an adsorption removal process of adsorbing an object to be removed contained in a gas onto an adsorbent in an adsorption tower and removing it from the gas by heating the adsorbent. An adsorbent regeneration device configured to be regenerated by regeneration-type adsorption capacity regeneration treatment, comprising a plurality of adsorption towers, the adsorption removal treatment for a part of each adsorption tower, and each adsorption tower. In the adsorption tower configured to regenerate the adsorbent in the removal system configured to be able to execute in parallel with the adsorption capacity regeneration treatment for another part of the adsorption tower for performing the adsorption capacity regeneration treatment a first heat exchanger for heating the gas to be introduced; a second heat exchanger for cooling the gas to be introduced into the adsorption tower and the first heat exchanger for performing the adsorption removal treatment; A third heat exchanger that cools the gas that has passed through the adsorption tower that performs adsorption capacity regeneration processing, and a refrigeration cycle that can heat the heat transfer liquid for heating by heat radiation from the condenser in the refrigeration cycle. and a cooling unit that can cool the cooling heat transfer liquid by absorbing heat from the evaporator in the refrigeration cycle, and the gas passed through the adsorption tower that performs the adsorption removal process. and making the gas in which the removal of the object to be removed is completed flow into a discharge pipe into which the gas heated by the first heat exchanger is to flow, and the gas heated by the first heat exchanger is made to flow into the adsorption tower in which the adsorption capacity regeneration process is performed. and the gas cooled by the second heat exchanger is caused to flow into the adsorption tower that performs the adsorption removal treatment, and the adsorption tower that performs the adsorption capacity regeneration treatment is operated. a second flow switching unit for causing the passed gas to flow into the third heat exchanger; heating the heat transfer liquid for heating by the heating unit; supply of the heating heat transfer fluid, cooling of the cooling heat transfer fluid by the cooling unit, supply of the cooling heat transfer fluid to the second heat exchanger, and supply of the cooling heat transfer fluid to the third heat exchanger; a first process for controlling the supply of the cooling heat transfer liquid; and the adsorption tower and the adsorption capacity for performing the adsorption removal process by controlling the first flow path switching section and the second flow path switching section. and a second process of switching the adsorption tower that performs the regeneration process, and the gas passed through the third heat exchanger is passed through the second heat exchanger. The second gas is merged with the gas and flowed through the second flow switching unit into the adsorption tower for performing the adsorption removal process, and the second heat exchanger includes a primary heat exchange unit and a secondary heat An exchange unit is provided, and the gas introduced from the gas inlet is passed through the primary heat exchange unit, the secondary heat exchange unit, and the primary heat exchange unit in this order, and is discharged from the gas discharge port. A gas flow path is formed in the secondary heat exchange portion, and the removal target contained in the gas is liquefied and removed by heat exchange with the cooling heat transfer liquid in the secondary heat exchange portion, and In the primary heat exchange section, heat exchange with the gas cooled by the secondary heat exchange section causes the removal target contained in the gas introduced from the gas introduction port to be liquefied and removed. and part of the gas introduced from the gas inlet and passed through the primary heat exchange part passes through the secondary heat exchange part without passing through the secondary heat exchange part A bypass flow path B is provided for joining the gas that is forced to flow into the primary heat exchange section, and a flow rate adjustment section B that can adjust the flow rate of the gas that passes through the bypass flow path B is provided. , the control unit controls the temperature D of the gas introduced from the gas inlet in the second heat exchanger, the temperature of the gas introduced from the gas inlet and passed through the primary heat exchange unit E and the temperature F of the gas discharged from the gas outlet in the second heat exchanger are specified, and the temperature difference C between the temperature D and the temperature E, and the temperature D and the temperature F Based on the ratio to the temperature difference D, a process B is executed for controlling the flow rate adjusting unit B to adjust the flow rate of the gas passing through the bypass flow path B.

請求項5記載の吸着剤再生装置は、請求項1から4のいずれかに記載の吸着剤再生装置において、前記第3の熱交換器を通過させられる前記気体の流量を調整する第3の流量調整部を備え、前記制御部は、前記第3の熱交換器を通過させられた前記気体の温度に基づいて前記第3の流量調整部を制御して当該第3の熱交換器を通過する当該気体の流量を調整させる第5の処理を実行する。 The adsorbent regeneration device according to claim 5 is the adsorbent regeneration device according to any one of claims 1 to 4, wherein a third flow rate for adjusting the flow rate of the gas passed through the third heat exchanger is provided. an adjustment unit, wherein the control unit controls the third flow rate adjustment unit based on the temperature of the gas passed through the third heat exchanger so that the gas passes through the third heat exchanger A fifth process for adjusting the flow rate of the gas is executed.

請求項6記載の吸着剤再生装置は、請求項1から5のいずれかに記載の吸着剤再生装置において、前記気体としての水素ガスから前記除去対象としての水分を除去可能に構成された前記除去システムにおける前記吸着剤の吸着能力を再生可能に構成されている。 The adsorbent regeneration device according to claim 6 is the adsorbent regeneration device according to any one of claims 1 to 5, wherein the removal water is configured to be able to remove water as the removal target from the hydrogen gas as the gas. It is configured to regenerate the adsorption capacity of the adsorbent in the system.

請求項7記載の除去システムは、請求項1から6のいずれかに記載の吸着剤再生装置と前記各吸着塔とを備えて前記気体から前記除去対象を除去可能に構成されている。 A removal system according to claim 7 includes the adsorbent regeneration device according to any one of claims 1 to 6 and each of the adsorption towers, and is configured to be capable of removing the removal target from the gas.

請求項1~4記載の吸着剤再生装置では、複数の吸着塔を備えて各吸着塔の一部を対象とする吸着除去処理と各吸着塔の他の一部を対象とする加熱再生方式の吸着能力再生処理とを並行して実行可能に構成された除去システムにおける吸着剤を再生可能に構成され、吸着能力再生処理を行う吸着塔に流入させる気体を加熱する第1の熱交換器と、吸着除去処理を行う吸着塔および第1の熱交換器に流入させられる気体を冷却する第2の熱交換器と、吸着能力再生処理を行う吸着塔を通過させられた気体を冷却する第3の熱交換器と、冷凍サイクルにおける凝縮器からの放熱によって加熱用熱媒液を加熱可能な加熱部、および冷凍サイクルにおける蒸発器による吸熱によって冷却用熱媒液を冷却可能な冷却部を備えた温度調整部と、吸着除去処理を行う吸着塔を通過させられた気体を、除去対象の除去が完了した気体を流入させるべき排出用配管に流入させると共に、第1の熱交換器によって加熱された気体を、吸着能力再生処理を行う吸着塔に流入させる第1の流路切替え部と、第2の熱交換器によって冷却された気体を、吸着除去処理を行う吸着塔に流入させると共に、吸着能力再生処理を行う吸着塔を通過させられた気体を、第3の熱交換器に流入させる第2の流路切替え部と、加熱部による加熱用熱媒液の加熱、第1の熱交換器への加熱用熱媒液の供給、冷却部による冷却用熱媒液の冷却、第2の熱交換器への冷却用熱媒液の供給、および第3の熱交換器への冷却用熱媒液の供給を制御する第1の処理と、第1の流路切替え部および第2の流路切替え部を制御して吸着除去処理を行う吸着塔および吸着能力再生処理を行う吸着塔を切り換える第2の処理とを実行する制御部とを備え、第3の熱交換器を通過させられた気体が、第2の熱交換器を通過させられた気体に合流させられて第2の流路切替え部を介して吸着除去処理を行う吸着塔に流入させられる。また、請求項6記載の吸着剤再生装置では、気体としての水素ガスから除去対象としての水分を除去可能に構成された除去システムにおける吸着剤の吸着能力を再生可能に構成されている。さらに、請求項7記載の除去システムでは、上記の吸着剤再生装置と各吸着塔とを備えて気体から除去対象を除去可能に構成されている。 In the adsorbent regeneration apparatus according to claims 1 to 4, a plurality of adsorption towers are provided, and a part of each adsorption tower is targeted for adsorption removal treatment and another part of each adsorption tower is targeted for thermal regeneration. a first heat exchanger configured to regenerate the adsorbent in the removal system configured to be able to perform the adsorption capacity regeneration process in parallel and heating the gas flowing into the adsorption tower where the adsorption capacity regeneration process is performed; A second heat exchanger that cools the gas that flows into the adsorption tower and the first heat exchanger that performs the adsorption removal process, and a third that cools the gas that has passed through the adsorption tower that performs the adsorption capacity regeneration process. A temperature that includes a heat exchanger, a heating section that can heat the heat transfer liquid for heating by heat radiation from the condenser in the refrigeration cycle, and a cooling section that can cool the heat transfer liquid for cooling by heat absorption by the evaporator in the refrigeration cycle. The gas that has passed through the adjustment unit and the adsorption tower that performs the adsorption removal treatment is flowed into the discharge pipe into which the gas that has been completely removed to be removed flows, and is heated by the first heat exchanger. into the adsorption tower that performs the adsorption capacity regeneration process, and the gas cooled by the second heat exchanger flows into the adsorption tower that performs the adsorption removal process, and the adsorption capacity regeneration A second flow switching unit that causes the gas that has passed through the adsorption tower to be treated to flow into the third heat exchanger, a heating unit that heats the heat transfer liquid for heating, and a first heat exchanger. supply of the heating heat transfer fluid, cooling of the cooling heat transfer fluid by the cooling unit, supply of the cooling heat transfer fluid to the second heat exchanger, and supply of the cooling heat transfer fluid to the third heat exchanger A first process for controlling the supply, and a second process for switching the adsorption tower for performing the adsorption removal process and the adsorption tower for performing the adsorption capacity regeneration process by controlling the first flow path switching unit and the second flow path switching unit. and the gas passed through the third heat exchanger is merged with the gas passed through the second heat exchanger to pass through the second flow path switching part. It is made to flow into the adsorption tower which performs adsorption removal processing through. Further, in the adsorbent regeneration device according to claim 6, the adsorption capacity of the adsorbent in the removal system configured to be able to remove water as a removal target from hydrogen gas as gas can be regenerated. Furthermore, the removal system according to claim 7 is provided with the adsorbent regeneration device and each adsorption tower, and is configured to be capable of removing the removal target from the gas.

したがって、請求項1~4,6記載の吸着剤再生装置、および請求項7記載の除去システムによれば、気体(水素ガス等)を冷却することで気体から除去対象(水分等)を除去するための冷熱源(例えば、単独で動作する冷凍サイクル)と、加熱再生方式の吸着能力再生処理のために気体を加熱するための温熱源(例えば電気ヒータ)とを別個に動作させなくても、温度調整部を動作させるだけで、気体を冷却するための冷却用熱媒液を冷却部において冷却し、同時に気体を加熱するための加熱用熱媒液を加熱部において加熱することができる。これにより、気体からの除去対象の除去および吸着剤の再生のために消費されるエネルギー量を十分に低減することができる。また、吸着除去処理を行う吸着塔に気体を流入させる前に第2の熱交換器において気体に含まれる除去対象の一部を除去する分だけ、吸着除去処理を行う吸着塔内の吸着剤の吸着能力の低下を抑制できるため、吸着除去処理を行う吸着塔に流入させる気体の量を減少させたり、吸着除去処理を一時的に停止させたりする必要がなくなることから、導入される気体についての吸着除去処理を短時間で確実に完了させることができる。 Therefore, according to the adsorbent regeneration device according to claims 1 to 4 and 6 and the removal system according to claim 7, the removal target (moisture etc.) is removed from the gas (hydrogen gas etc.) by cooling it. without separately operating a cold heat source (for example, a refrigeration cycle that operates independently) and a hot heat source (for example, an electric heater) for heating the gas for the adsorption capacity regeneration treatment of the heat regeneration method. By simply operating the temperature control unit, the cooling heat transfer fluid for cooling the gas can be cooled in the cooling portion, and at the same time, the heating heat transfer fluid for heating the gas can be heated in the heating portion. This makes it possible to significantly reduce the amount of energy consumed for removal of the removal target from the gas and regeneration of the adsorbent. In addition, before the gas is allowed to flow into the adsorption tower for the adsorption removal treatment, the amount of the adsorbent in the adsorption tower for the adsorption removal treatment is removed by the second heat exchanger to remove a part of the target to be removed contained in the gas. Since the decline in adsorption capacity can be suppressed, there is no need to reduce the amount of gas flowing into the adsorption tower where the adsorption removal process is performed, or to temporarily stop the adsorption removal process. The adsorption removal process can be reliably completed in a short time.

また、請求項1,3記載の吸着剤再生装置では、第3の熱交換器が、一次熱交換部および二次熱交換部を備え、気体導入口から導入された気体が、一次熱交換部、二次熱交換部および一次熱交換部をこの順で通過させられて気体排出口から排出されるように気体流路が形成されると共に、二次熱交換部において冷却用熱媒液との熱交換によって気体に含まれている除去対象が液相化されて除去され、かつ、一次熱交換部において二次熱交換部によって冷却された気体との熱交換によって気体導入口から導入された気体に含まれている除去対象が液相化されて除去されるように構成されている。したがって、請求項1,3,6記載の吸着剤再生装置、および請求項7記載の除去システムによれば、第3の熱交換器における二次熱交換部において冷却用熱媒液との熱交換によって気体を冷却しつつ、一次熱交換部において気体導入口から導入される気体を気体排出口から排出される気体(すなわち、二次熱交換部において冷却された気体)との熱交換によって冷却することで、気体を効率よく冷却して除去対象を除去することができる。これにより、多量の除去対象を含んだ気体が吸着除去処理を行う吸着塔に流入する事態を回避することができると共に、一次熱交換部および二次熱交換部を備えない構成の熱交換器を使用するのと比較して、気体からの除去対象を除去するのに消費されるエネルギー量を一層低減することができる。 In addition, in the adsorbent regeneration device according to claims 1 and 3, the third heat exchanger includes a primary heat exchange section and a secondary heat exchange section, and the gas introduced from the gas introduction port passes through the primary heat exchange section. , the secondary heat exchange section and the primary heat exchange section in this order, and a gas flow path is formed so that the gas is discharged from the gas discharge port, and the secondary heat exchange section forms a gas flow path with the cooling heat transfer liquid. The gas is introduced from the gas inlet by heat exchange with the gas cooled by the secondary heat exchange section in the primary heat exchange section and the removal target contained in the gas is liquefied and removed by heat exchange. The object to be removed contained in is liquefied and removed. Therefore, according to the adsorbent regeneration apparatus of claims 1, 3, and 6 and the removal system of claim 7, heat exchange with the cooling heat transfer fluid is performed in the secondary heat exchange section of the third heat exchanger. While cooling the gas by, the gas introduced from the gas inlet in the primary heat exchange section is cooled by heat exchange with the gas discharged from the gas outlet (that is, the gas cooled in the secondary heat exchange section) Thus, it is possible to efficiently cool the gas and remove the object to be removed. As a result, it is possible to avoid a situation in which the gas containing a large amount of the object to be removed flows into the adsorption tower where the adsorption removal process is performed, and a heat exchanger having a configuration without a primary heat exchange section and a secondary heat exchange section can be avoided. The amount of energy consumed to remove the target of removal from the gas can be further reduced compared to using.

また、請求項2,4記載の吸着剤再生装置では、第2の熱交換器が、一次熱交換部および二次熱交換部を備え、気体導入口から導入された気体が、一次熱交換部、二次熱交換部および一次熱交換部をこの順で通過させられて気体排出口から排出されるように気体流路が形成されると共に、二次熱交換部において冷却用熱媒液との熱交換によって気体に含まれている除去対象が液相化されて除去され、かつ、一次熱交換部において二次熱交換部によって冷却された気体との熱交換によって気体導入口から導入された気体に含まれている除去対象が液相化されて除去されるように構成されている。したがって、請求項2,4,6記載の吸着剤再生装置、および請求項7記載の除去システムによれば、第2の熱交換器における二次熱交換部において冷却用熱媒液との熱交換によって気体を冷却しつつ、一次熱交換部において気体導入口から導入される気体を気体排出口から排出される気体(すなわち、二次熱交換部において冷却された気体)との熱交換によって冷却することで、気体を効率よく冷却して除去対象を除去することができる。これにより、多量の除去対象を含んだ気体が吸着除去処理を行う吸着塔に流入する事態を回避することができると共に、一次熱交換部および二次熱交換部を備えない構成の熱交換器を使用するのと比較して、気体からの除去対象を除去するのに消費されるエネルギー量を一層低減することができる。 In addition, in the adsorbent regeneration device according to claims 2 and 4, the second heat exchanger includes a primary heat exchange section and a secondary heat exchange section, and the gas introduced from the gas introduction port passes through the primary heat exchange section. , the secondary heat exchange section and the primary heat exchange section in this order, and a gas flow path is formed so that the gas is discharged from the gas discharge port, and the secondary heat exchange section forms a gas flow path with the cooling heat transfer liquid. The gas is introduced from the gas inlet by heat exchange with the gas cooled by the secondary heat exchange section in the primary heat exchange section and the removal target contained in the gas is liquefied and removed by heat exchange. The object to be removed contained in is liquefied and removed. Therefore, according to the adsorbent regeneration apparatus of claims 2, 4, and 6 and the removal system of claim 7, heat exchange with the cooling heat transfer liquid is performed in the secondary heat exchange section of the second heat exchanger. While cooling the gas by, the gas introduced from the gas inlet in the primary heat exchange section is cooled by heat exchange with the gas discharged from the gas outlet (that is, the gas cooled in the secondary heat exchange section) Thus, it is possible to efficiently cool the gas and remove the object to be removed. As a result, it is possible to avoid a situation in which the gas containing a large amount of the object to be removed flows into the adsorption tower where the adsorption removal process is performed, and a heat exchanger having a configuration without a primary heat exchange section and a secondary heat exchange section can be avoided. The amount of energy consumed to remove the target of removal from the gas can be further reduced compared to using.

また、請求項1記載の吸着剤再生装置では、二次熱交換部を通過させられた気体を、一次熱交換部を再び通過させずに気体排出口から排出させる第1のバイパス流路が第3の熱交換器に設けられると共に、第1のバイパス流路を通過させる気体の流量を調整可能な第1の流量調整部が配設され、制御部が、第3の熱交換器における気体導入口から導入された気体の第1の温度、気体導入口から導入されて一次熱交換部を通過させられた気体の第2の温度、および二次熱交換部を通過させられた気体の第3の温度をそれぞれ特定すると共に、第1の温度および第3の温度の第1の温度差と、第2の温度および第3の温度の第2の温度差との比に基づき、第1の流量調整部を制御して第1のバイパス流路を通過する気体の流量を調整させる第3の処理を実行する。また、請求項2記載の吸着剤再生装置では、気体導入口から導入されて一次熱交換部を通過させられた気体の一部を、二次熱交換部を通過させずに、二次熱交換部を通過させられて一次熱交換部に流入させられる気体に合流させるバイパス流路Aが第3の熱交換器に設けられると共に、バイパス流路Aを通過する気体の流量を調整可能な流量調整部Aが配設され、制御部が、第3の熱交換器における気体導入口から導入された気体の温度A、気体導入口から導入されて一次熱交換部を通過させられた気体の温度B、および第3の熱交換器における気体排出口から排出される気体の温度Cをそれぞれ特定すると共に、温度Aおよび温度Bの温度差Aと、温度Aおよび温度Cの温度差Bとの比に基づき、流量調整部Aを制御してバイパス流路Aを通過する気体の流量を調整する処理Aを実行する。 Further, in the adsorbent regeneration device according to claim 1, the first bypass flow path for discharging the gas that has passed through the secondary heat exchange section from the gas discharge port without passing through the primary heat exchange section again is the first bypass flow path. 3 heat exchanger, and a first flow rate adjustment unit capable of adjusting the flow rate of gas passing through the first bypass flow path is provided, and the control unit controls gas introduction in the third heat exchanger A first temperature of the gas introduced from the inlet, a second temperature of the gas introduced from the gas inlet and passed through the primary heat exchange section, and a third temperature of the gas passed through the secondary heat exchange section. and a first flow rate based on a ratio of a first temperature difference between the first temperature and the third temperature and a second temperature difference between the second temperature and the third temperature A third process of controlling the adjusting unit to adjust the flow rate of the gas passing through the first bypass channel is executed. Further, in the adsorbent regeneration device according to claim 2, part of the gas introduced from the gas inlet and passed through the primary heat exchange part is not passed through the secondary heat exchange part, and is subjected to secondary heat exchange. The third heat exchanger is provided with a bypass flow path A that joins the gas that is passed through the primary heat exchange section and flowed into the primary heat exchange section, and the flow rate adjustment that can adjust the flow rate of the gas that passes through the bypass flow path A. A part A is provided, and the control part controls the temperature A of the gas introduced from the gas inlet in the third heat exchanger, the temperature B of the gas introduced from the gas inlet and passed through the primary heat exchange part , and the temperature C of the gas discharged from the gas outlet in the third heat exchanger, respectively, and the ratio of the temperature difference A between the temperature A and the temperature B to the temperature difference B between the temperature A and the temperature C Based on this, the process A for controlling the flow rate adjusting unit A to adjust the flow rate of the gas passing through the bypass flow path A is executed.

したがって、請求項1,2,6記載の吸着剤再生装置、および請求項7記載の除去システムによれば、過剰に低い温度の気体が吸着除去処理を行う吸着塔などを通過させられる事態が回避されるため、吸着除去処理を行う吸着塔と吸着能力再生処理を行う吸着塔とを切り換えたときに、吸着除去処理を行っていた吸着塔内等で結露が生じる事態を回避することができる。 Therefore, according to the adsorbent regeneration apparatus of claims 1, 2, and 6 and the removal system of claim 7, the situation in which excessively low-temperature gas is passed through an adsorption tower or the like for adsorption removal treatment can be avoided. Therefore, when switching between the adsorption tower for the adsorption removal treatment and the adsorption tower for the adsorption capacity regeneration treatment, it is possible to avoid a situation in which dew condensation occurs in the adsorption tower or the like in which the adsorption removal treatment is being performed.

また、請求項3記載の吸着剤再生装置では、二次熱交換部を通過させられた気体を、一次熱交換部を再び通過させずに気体排出口から排出させる第2のバイパス流路が第2の熱交換器に設けられると共に、第2のバイパス流路を通過させる気体の流量を調整可能な第2の流量調整部が配設され、制御部が、第2の熱交換器における気体導入口から導入された気体の第4の温度、気体導入口から導入されて一次熱交換部を通過させられた気体の第5の温度、および二次熱交換部を通過させられた気体の第6の温度を特定すると共に、第4の温度および第6の温度の第3の温度差と、第5の温度および第6の温度の第4の温度差との比に基づき、第2の流量調整部を制御して第2のバイパス流路を通過する気体の流量を調整させる第4の処理を実行する。また、請求項4記載の吸着剤再生装置では、気体導入口から導入されて一次熱交換部を通過させられた気体の一部を、二次熱交換部を通過させずに、二次熱交換部を通過させられて一次熱交換部に流入させられる気体に合流させるバイパス流路Bが第2の熱交換器に設けられると共に、バイパス流路Bを通過する気体の流量を調整可能な流量調整部Bが配設され、制御部が、第2の熱交換器における気体導入口から導入された気体の温度D、気体導入口から導入されて一次熱交換部を通過させられた気体の温度E、および第2の熱交換器における気体排出口から排出される気体の温度Fをそれぞれ特定すると共に、温度Dおよび温度Eの温度差Cと、温度Dおよび温度Fの温度差Dとの比に基づき、流量調整部Bを制御してバイパス流路Bを通過する気体の流量を調整する処理Bを実行する。 In addition, in the adsorbent regeneration device according to claim 3, the second bypass passage for discharging the gas that has passed through the secondary heat exchange section from the gas discharge port without passing through the primary heat exchange section again is provided as the second bypass flow path. A second flow rate adjusting unit is provided in the second heat exchanger and is capable of adjusting the flow rate of the gas passing through the second bypass flow path, and the control unit controls gas introduction in the second heat exchanger A fourth temperature of the gas introduced from the inlet, a fifth temperature of the gas introduced from the gas inlet and passed through the primary heat exchange section, and a sixth temperature of the gas passed through the secondary heat exchange section. and a second flow rate adjustment based on a ratio of a third temperature difference between the fourth temperature and the sixth temperature and a fourth temperature difference between the fifth temperature and the sixth temperature A fourth process of controlling the unit to adjust the flow rate of the gas passing through the second bypass channel is executed. Further, in the adsorbent regeneration device according to claim 4, part of the gas introduced from the gas inlet and passed through the primary heat exchange part is not passed through the secondary heat exchange part, and is subjected to secondary heat exchange. The second heat exchanger is provided with a bypass flow path B that joins the gas that is passed through the primary heat exchange section and flowed into the primary heat exchange section, and a flow rate adjustment that can adjust the flow rate of the gas passing through the bypass flow path B. A part B is provided, and the control part controls the temperature D of the gas introduced from the gas inlet in the second heat exchanger, the temperature E of the gas introduced from the gas inlet and passed through the primary heat exchange part , and the temperature F of the gas discharged from the gas outlet in the second heat exchanger, respectively, and the ratio of the temperature difference C between the temperature D and the temperature E to the temperature difference D between the temperature D and the temperature F Based on this, the process B of controlling the flow rate adjusting unit B to adjust the flow rate of the gas passing through the bypass flow path B is executed.

したがって、請求項3,4,6記載の吸着剤再生装置、および請求項7記載の除去システムによれば、過剰に低い温度の気体が吸着除去処理を行う吸着塔などを通過させられる事態が回避されるため、吸着除去処理を行う吸着塔と吸着能力再生処理を行う吸着塔とを切り換えたときに、吸着除去処理を行っていた吸着塔内等で結露が生じる事態を回避することができる。 Therefore, according to the adsorbent regeneration apparatus of claims 3, 4, and 6 and the removal system of claim 7, the situation in which excessively low-temperature gas is passed through an adsorption tower or the like for adsorption removal treatment can be avoided. Therefore, when switching between the adsorption tower for the adsorption removal treatment and the adsorption tower for the adsorption capacity regeneration treatment, it is possible to avoid a situation in which dew condensation occurs in the adsorption tower or the like in which the adsorption removal treatment is being performed.

また、請求項5記載の吸着剤再生装置では、第3の熱交換器を通過させられる気体の流量を調整する第3の流量調整部を備え、制御部が、第3の熱交換器を通過させられた気体の温度に基づいて第3の流量調整部を制御して第3の熱交換器を通過する気体の流量を調整させる第5の処理を実行する。したがって、請求項5記載の吸着剤再生装置、およびそのような吸着剤再生装置を備えた除去システムによれば、過剰に低い温度の気体が吸着除去処理を行う吸着塔などを通過させられる事態が回避されるため、吸着除去処理を行う吸着塔と吸着能力再生処理を行う吸着塔とを切り換えたときに、吸着除去処理を行っていた吸着塔内等で結露が生じる事態を回避することができる。 In addition, the adsorbent regeneration device according to claim 5 includes a third flow rate adjustment unit that adjusts the flow rate of the gas that is allowed to pass through the third heat exchanger, and the control unit controls the A fifth process is executed for controlling the third flow rate adjusting unit based on the temperature of the gas to adjust the flow rate of the gas passing through the third heat exchanger. Therefore, according to the adsorbent regeneration device of claim 5 and the removal system equipped with such an adsorbent regeneration device, there is a situation where the gas of excessively low temperature is passed through the adsorption tower or the like where the adsorption removal process is performed. Since it is avoided, it is possible to avoid a situation in which dew condensation occurs in the adsorption tower or the like in which the adsorption removal process is being performed when the adsorption tower that performs the adsorption removal process and the adsorption tower that performs the adsorption capacity regeneration process are switched. .

除去システム1の構成を示す構成図である。1 is a configuration diagram showing the configuration of a removal system 1; FIG. 除去システム1におけるヒートポンプユニット3の構成を示す構成図である。3 is a configuration diagram showing the configuration of a heat pump unit 3 in the removal system 1. FIG. 除去システム1における熱交換器4aの構成を示す構成図である。2 is a configuration diagram showing the configuration of a heat exchanger 4a in the removal system 1; FIG. 除去システム1における熱交換器4cの構成を示す構成図である。4 is a configuration diagram showing the configuration of a heat exchanger 4c in the removal system 1. FIG. 他の実施の形態に係る熱交換器54aの構成を示す構成図である。FIG. 11 is a configuration diagram showing the configuration of a heat exchanger 54a according to another embodiment; 他の実施の形態に係る熱交換器54cの構成を示す構成図である。FIG. 11 is a configuration diagram showing the configuration of a heat exchanger 54c according to another embodiment;

以下、添付図面を参照して、吸着剤再生装置および除去システムの実施の形態について説明する。 Hereinafter, embodiments of an adsorbent regeneration device and a removal system will be described with reference to the accompanying drawings.

最初に、除去システム1の構成について、添付図面を参照して説明する。 First, the configuration of the removal system 1 will be described with reference to the accompanying drawings.

図1に示す除去システム1は、「除去システム」の一例であって、処理対象の水素ガスGに含まれている水分を後述する吸着除去処理によって除去する(水素ガスGの湿度を低下させる)ことができるように構成されている。また、本例の除去システム1は、後述するように、吸着除去処理と並行して、吸着塔2a,2b内の吸着剤を加熱再生方式の吸着能力再生処理によって再生する(吸着能力を復元する)ことができるように構成さている(「複数の吸着塔を備えて各吸着塔の一部を対象とする吸着除去処理と各吸着塔の他の一部を対象とする吸着能力再生処理とを並行して実行可能」との構成の一例)。 The removal system 1 shown in FIG. 1 is an example of a "removal system", and removes moisture contained in the hydrogen gas G to be treated by an adsorption removal process described later (reduces the humidity of the hydrogen gas G). configured to be able to In addition, as will be described later, the removal system 1 of this embodiment regenerates the adsorbent in the adsorption towers 2a and 2b by a heat regeneration type adsorption capacity regeneration process (restores the adsorption capacity) in parallel with the adsorption removal process. ) is configured to be able to An example of a configuration that can be executed in parallel).

この場合、本例の除去システム1は、一例として、図示しない外部装置において実行された電気分解処理や改質処理によって製造された水素ガスGや、図示しないガスタンクに貯留されている水素ガスGなどが同図に破線で示す圧縮機によって圧送されたときに、この水素ガスG(「気体」の一例)を処理対象として水分(「除去対象」の一例)を除去する構成が採用されている。具体的には、本例の除去システム1は、吸着塔2a,2b、ヒートポンプユニット3、熱交換器4a~4c、流路切換え弁5a,5b、流量調整弁6、流量調整弁7a,7b、貯水部8a,8b、温度センサ9および湿度センサ10を備えている。なお、本例の除去システム1では、上記の各構成要素のうちの吸着塔2a,2bを除く各構成要素3,4a~4c,5a,5b,6,7a,7b,8a,8b,9,10によって「吸着剤再生装置」が構成されている。 In this case, the removal system 1 of this example includes, as an example, hydrogen gas G produced by electrolysis processing or reforming processing performed in an external device (not shown), hydrogen gas G stored in a gas tank (not shown), or the like. is pumped by a compressor indicated by a dashed line in FIG. Specifically, the removal system 1 of this example includes adsorption towers 2a and 2b, a heat pump unit 3, heat exchangers 4a to 4c, flow path switching valves 5a and 5b, a flow control valve 6, flow control valves 7a and 7b, It has water reservoirs 8 a and 8 b, a temperature sensor 9 and a humidity sensor 10 . In addition, in the removal system 1 of this example, the components 3, 4a to 4c, 5a, 5b, 6, 7a, 7b, 8a, 8b, 9, 10 constitutes an "adsorbent regeneration device".

吸着塔2a,2b(以下、区別しないときには「吸着塔2」ともいう)は、「吸着塔」の一例であって、水素ガスGの導入/排出が可能な2つの入出口が設けられた耐圧容器で構成されると共に、両入出口の間に水素ガスGの通過が可能な吸着剤の層が設けられている。この場合、「気体」としての水素ガスGから「除去対象」としての水分を吸着除去する本例の除去システム1では、ゼオライト(合成ゼオライト)などの吸着剤が耐圧容器内に収容されて吸着塔2が構成されている。 The adsorption towers 2a and 2b (hereinafter also referred to as "adsorption tower 2" when not distinguished) are an example of an "adsorption tower", and are pressure-resistant with two inlets and outlets for introducing and discharging hydrogen gas G. It is composed of a container, and an adsorbent layer through which hydrogen gas G can pass is provided between both inlets and outlets. In this case, in the removal system 1 of this example that adsorbs and removes moisture as the “removal target” from the hydrogen gas G as the “gas”, an adsorbent such as zeolite (synthetic zeolite) is housed in a pressure vessel and the adsorption tower 2 is configured.

ヒートポンプユニット3は、「温度調整部」の一例である「冷温同時温度調整装置」であって、熱媒液循環路LC1,LC2を介して低温の熱媒液Wc(「冷却用熱媒液」の一例)を熱交換器4a,4cに供給する処理と、熱媒液循環路LHを介して高温の熱媒液Wh(「加熱用熱媒液」の一例)を熱交換器4bに供給する処理とを並行して実行可能に構成されている。このヒートポンプユニット3は、図2に示すように、冷凍サイクル11、ポンプ12a,12b、操作部13、表示部14、制御部15および記憶部16を備えている。 The heat pump unit 3 is a “cooling/heating simultaneous temperature control device” which is an example of a “temperature control unit”, and supplies a low-temperature heat transfer fluid Wc (“heat transfer fluid for cooling”) through heat transfer fluid circulation paths LC1 and LC2. example) to the heat exchangers 4a and 4c, and supplying the high-temperature heat medium liquid Wh (an example of a "heating heat medium liquid") to the heat exchanger 4b via the heat medium liquid circulation path LH. processing can be executed in parallel. The heat pump unit 3 includes a refrigeration cycle 11, pumps 12a and 12b, an operation section 13, a display section 14, a control section 15 and a storage section 16, as shown in FIG.

冷凍サイクル11は、圧縮機21、凝縮器22、膨張弁23および蒸発器24を備え、制御部15の制御下で、熱媒液Whを加熱したり熱媒液Wcを冷却したりする。この場合、本例のヒートポンプユニット3では、凝縮器22からの放熱(凝縮器22における冷媒との熱交換)によって熱媒液Whを加熱可能に加熱部3h(熱媒液Whを加熱する温熱源:「加熱部」の一例)が構成されている。また、本例のヒートポンプユニット3では、蒸発器24による吸熱(蒸発器24における冷媒との熱交換)によって熱媒液Wcを冷却可能に冷却部3c(熱媒液Wcを冷却する冷熱源:「冷却部」の一例)が構成されている。さらに、図示および詳細な説明を省略するが、本例のヒートポンプユニット3では、外気の熱を吸熱して熱媒液Whを温度上昇させる熱交換器などの補助的な温熱源が加熱部3hに配設されると共に、熱媒液Wcの熱を外気に放熱して熱媒液Wcを温度低下させる熱交換器などの補助的な冷熱源が冷却部3cに配設されている。 The refrigerating cycle 11 includes a compressor 21 , a condenser 22 , an expansion valve 23 and an evaporator 24 , and heats the heat transfer liquid Wh and cools the heat transfer liquid Wc under the control of the controller 15 . In this case, in the heat pump unit 3 of this example, the heating portion 3h (heat source for heating the heat medium liquid Wh) can heat the heat medium liquid Wh by heat radiation from the condenser 22 (heat exchange with the refrigerant in the condenser 22). : an example of a “heating unit”) is configured. In addition, in the heat pump unit 3 of the present example, the cooling unit 3c (cold heat source for cooling the heat medium liquid Wc) is capable of cooling the heat medium liquid Wc by heat absorption by the evaporator 24 (heat exchange with the refrigerant in the evaporator 24). An example of "cooling section") is configured. Furthermore, although illustration and detailed description are omitted, in the heat pump unit 3 of this embodiment, the heating portion 3h includes an auxiliary heat source such as a heat exchanger that absorbs heat from outside air to increase the temperature of the heat transfer liquid Wh. An auxiliary cold heat source such as a heat exchanger is provided in the cooling portion 3c to radiate the heat of the heat medium liquid Wc to the outside air to lower the temperature of the heat medium liquid Wc.

また、加熱部3hには、熱交換器4bとの間で熱媒液Whを循環させる熱媒液循環路LHが接続され、冷却部3cには、熱交換器4aとの間で熱媒液Wcを循環させる熱媒液循環路LC1、および熱交換器4cとの間で熱媒液Wcを循環させる熱媒液循環路LC2が接続されている。なお、図1に示すように、本例の除去システム1では、一例として、ヒートポンプユニット3(冷却部3c)側において上記の熱媒液循環路LC1用の配管と熱媒液循環路LC2用の配管とが共用されている。つまり、本例の除去システム1では、ヒートポンプユニット3(冷却部3c)から供給する熱媒液Wcをヒートポンプユニット3の外部で分流させて熱交換器4a,4cに供給すると共に、熱交換器4a,4cを通過させた熱媒液Wcをヒートポンプユニット3の外部で合流させて冷却部3cに流入させる構成が採用されている。 Further, the heating unit 3h is connected to a heat medium liquid circulation path LH for circulating the heat medium liquid Wh with the heat exchanger 4b, and the cooling unit 3c is connected with the heat exchanger 4a. A heat transfer fluid circuit LC1 for circulating Wc and a heat transfer fluid circuit LC2 for circulating the heat transfer fluid Wc with the heat exchanger 4c are connected. As shown in FIG. 1, in the removal system 1 of this example, as an example, the piping for the heat medium liquid circulation path LC1 and the piping for the heat medium liquid circulation path LC2 are arranged on the side of the heat pump unit 3 (cooling unit 3c). Plumbing is shared. That is, in the removal system 1 of this embodiment, the heat transfer liquid Wc supplied from the heat pump unit 3 (cooling section 3c) is split outside the heat pump unit 3 and supplied to the heat exchangers 4a and 4c, and the heat exchanger 4a , 4c are merged outside the heat pump unit 3 and flowed into the cooling portion 3c.

ポンプ12aは、一例として、上記の熱媒液循環路LC1,LC2における冷却部3cの上流側(上記の合流後の配管)に配設され、制御部15の制御下で熱媒液Wcを冷却部3cに圧送することによって熱媒液循環路LC1,LC2内で熱媒液Wcを循環させる。ポンプ12bは、一例として、上記の熱媒液循環路LHにおける加熱部3hの上流側に配設され、制御部15の制御下で熱媒液Whを加熱部3hに圧送することによって熱媒液循環路LH内で熱媒液Whを循環させる。なお、本例の除去システム1(ヒートポンプユニット3)では、一例として、ポンプ12a,12b(以下、区別しないときには「ポンプ12」ともいう)が圧送量可変型の液送ポンプでそれぞれ構成されている。操作部13は、除去システム1の動作条件などを指示するための複数の操作スイッチを備え、スイッチ操作に応じた操作信号を制御部15に出力する。表示部14は、制御部15の制御下で除去システム1の動作条件を設定するための表示画面や、除去システム1の動作状態を示す表示画面などを表示する。 As an example, the pump 12a is disposed on the upstream side of the cooling section 3c in the heat medium liquid circulation paths LC1 and LC2 (pipes after the merging), and cools the heat medium liquid Wc under the control of the control section 15. The heating medium liquid Wc is circulated in the heating medium liquid circulation paths LC1 and LC2 by pumping to the portion 3c. As an example, the pump 12b is disposed on the upstream side of the heating portion 3h in the heat medium liquid circulation path LH, and pumps the heat medium liquid Wh to the heating portion 3h under the control of the control section 15, whereby the heat medium liquid Wh is pumped to the heating section 3h. The heat transfer fluid Wh is circulated within the circulation path LH. In the removal system 1 (heat pump unit 3) of the present embodiment, as an example, the pumps 12a and 12b (hereinafter also referred to as "pumps 12" when not distinguished) are respectively configured by variable pumping amount type liquid feed pumps. . The operation unit 13 includes a plurality of operation switches for instructing operating conditions of the removal system 1 and outputs operation signals to the control unit 15 in response to switch operations. The display unit 14 displays, under the control of the control unit 15, a display screen for setting operating conditions of the removal system 1, a display screen showing the operating state of the removal system 1, and the like.

制御部15は、「制御部」の一例であって、除去システム1を総括的に制御する。具体的には、制御部15は、ヒートポンプユニット3の各構成要素の動作を制御すると共に、流路切換え弁5a,5bや流量調整弁6,7a,7bおよび後述の流量調整弁33a,33b,43a,43bの動作を制御する。より具体的には、制御部15は、加熱部3hによる熱媒液Whの加熱および冷却部3cによる熱媒液Wcの冷却(冷凍サイクル11の動作)の制御、熱交換器4a,4cへの熱媒液Wcの供給(ポンプ12aによる熱媒液Wcの圧送)の制御、並びに熱交換器4bへの熱媒液Whの供給(ポンプ12bによる熱媒液Whの圧送)の制御などを実行する(「第1の処理」の一例)。また、制御部15は、流路切換え弁5a,5bを制御して、吸着除去処理を行う吸着塔2と、吸着能力再生処理を行う吸着塔2とを切り換える処理(吸着塔2a,2bのいずれにおいて吸着除去処理を行い、いずれにおいて吸着能力再生処理を行うかを変更する処理:「第2の処理」の一例)を実行する。 The control unit 15 is an example of a “control unit” and controls the removal system 1 as a whole. Specifically, the control unit 15 controls the operation of each component of the heat pump unit 3, and also controls the flow path switching valves 5a and 5b, the flow rate adjustment valves 6, 7a and 7b, and the flow rate adjustment valves 33a, 33b and 33b, which will be described later. It controls the operations of 43a and 43b. More specifically, the control unit 15 controls the heating of the heat transfer fluid Wh by the heating unit 3h and the cooling of the heat transfer fluid Wc by the cooling unit 3c (operation of the refrigeration cycle 11), and controls the heat exchangers 4a and 4c. Control of the supply of the heat medium liquid Wc (pumping of the heat medium liquid Wc by the pump 12a) and control of the supply of the heat medium liquid Wh to the heat exchanger 4b (pumping of the heat medium liquid Wh by the pump 12b) are executed. (An example of “first processing”). In addition, the control unit 15 controls the flow path switching valves 5a and 5b to switch between the adsorption tower 2 that performs the adsorption removal process and the adsorption tower 2 that performs the adsorption capacity regeneration process (either adsorption tower 2a or 2b). , the adsorption removal process is performed, and the process of changing which one of the adsorption capacity regeneration processes is performed: an example of the "second process") is executed.

この場合、制御部15は、後述するように、吸着除去処理を行っている吸着塔2を通過させられた水素ガスGに含まれている水分の量に応じて変化する「第1のパラメータ」が「予め規定された第1の範囲」を外れたときに、吸着除去処理を行っている吸着塔2内の吸着剤の吸着能力が「予め規定された第1の能力」を下回る「第1の条件」が満たされたと判別して上記の「第2の処理」を実行する。また、制御部15は、後述するように、吸着能力再生処理を行っている吸着塔2を通過させられた水素ガスGに含まれている水分の量に応じて変化する「第2のパラメータ」が「予め規定された第2の範囲」を外れたときに、吸着能力再生処理を行っている吸着塔2内の吸着剤の吸着能力が「予め規定された第2の能力」を超える「第2の条件」が満たされたと判別して上記の「第2の処理」を実行する。 In this case, as will be described later, the control unit 15 controls a "first parameter" that changes according to the amount of water contained in the hydrogen gas G that has passed through the adsorption tower 2 that is performing the adsorption removal process. is outside the "predetermined first range", the adsorption capacity of the adsorbent in the adsorption tower 2 that is performing the adsorption removal process falls below the "predetermined first capacity" "first condition” is satisfied, and the above “second processing” is executed. In addition, as will be described later, the control unit 15 controls a "second parameter" that changes according to the amount of water contained in the hydrogen gas G that has passed through the adsorption tower 2 that is undergoing the adsorption capacity regeneration process. is outside the "predetermined second range", the adsorption capacity of the adsorbent in the adsorption tower 2 undergoing the adsorption capacity regeneration process exceeds the "predetermined second capacity" "second 2 condition” is satisfied, and the above “second process” is executed.

さらに、制御部15は、後述するように、熱交換器4c内の各部における水素ガスGの温度に応じて熱交換器4c内における水素ガスGの流れ方を調整する「第3の処理」や、熱交換器4a内の各部における水素ガスGの温度に応じて熱交換器4a内における水素ガスGの流れ方を調整する「第4の処理」を実行する。また、制御部15は、後述するように、熱交換器4cを通過させられた水素ガスGの温度に基づいて流量調整弁6を制御して熱交換器4cを通過する水素ガスGの流量を調整させ、熱交換器4cを通過させられた水素ガスGの温度が、予め規定された温度範囲内の温度となるようにする「第5の処理」を実行する。なお、制御部15によって実行される上記の各処理については、後に詳細に説明する。記憶部16は、制御部15の動作プログラムや、除去システム1の動作条件についての各種データなどを記憶する。 Furthermore, as will be described later, the control unit 15 performs a “third process” for adjusting the flow of the hydrogen gas G in the heat exchanger 4c according to the temperature of the hydrogen gas G in each part in the heat exchanger 4c. , the "fourth process" is executed to adjust the flow of the hydrogen gas G in the heat exchanger 4a according to the temperature of the hydrogen gas G in each part in the heat exchanger 4a. Further, as will be described later, the control unit 15 controls the flow rate adjustment valve 6 based on the temperature of the hydrogen gas G passing through the heat exchanger 4c to adjust the flow rate of the hydrogen gas G passing through the heat exchanger 4c. A "fifth process" is performed to adjust the temperature of the hydrogen gas G passed through the heat exchanger 4c to a temperature within a predetermined temperature range. Each of the above processes executed by the control unit 15 will be described later in detail. The storage unit 16 stores an operation program of the control unit 15, various data regarding operation conditions of the removal system 1, and the like.

なお、上記のヒートポンプユニット3は、実際には、冷凍サイクル11内の冷媒の圧力や温度、冷却部3cに流入する熱媒液Wcの温度、冷却部3cから排出される熱媒液Wcの温度、加熱部3hに流入する熱媒液Whの温度、加熱部3hから排出される熱媒液Whの温度、および外気温などを検出する各種センサが配設されているが、除去システム1の構成および動作に関する理解を容易とするために、これらのセンサについての図示や説明を省略する。 In addition, the heat pump unit 3 actually has the pressure and temperature of the refrigerant in the refrigeration cycle 11, the temperature of the heat transfer liquid Wc flowing into the cooling unit 3c, and the temperature of the heat transfer liquid Wc discharged from the cooling unit 3c. , the temperature of the heat medium liquid Wh flowing into the heating unit 3h, the temperature of the heat medium liquid Wh discharged from the heating unit 3h, and various sensors for detecting the ambient temperature. In order to facilitate understanding of these sensors and their operations, illustrations and descriptions of these sensors are omitted.

熱交換器4aは、「第2の熱交換器」の一例であって、ヒートポンプユニット3(冷却部3c)から熱媒液循環路LC1を介して供給される熱媒液Wcとの熱交換によって、吸着除去処理を行う吸着塔2や熱交換器4bに流入させられる水素ガスGを冷却可能に構成されている。熱交換器4bは、「第1の熱交換器」の一例であって、ヒートポンプユニット3(加熱部3h)から熱媒液循環路LHを介して供給される熱媒液Whとの熱交換によって、吸着能力再生処理を行う吸着塔2に流入させる水素ガスGを加熱可能に構成されている。熱交換器4cは、「第3の熱交換器」の一例であって、ヒートポンプユニット3(冷却部3c)から熱媒液循環路LC2を介して供給される熱媒液Wcとの熱交換によって、吸着能力再生処理を行っている吸着塔2を通過させられた水素ガスGを冷却可能に構成されている。 The heat exchanger 4a is an example of a "second heat exchanger" and heat exchanges with the heat transfer fluid Wc supplied from the heat pump unit 3 (cooling unit 3c) through the heat transfer fluid circulation path LC1. , the hydrogen gas G flowing into the adsorption tower 2 and the heat exchanger 4b for the adsorption removal process can be cooled. The heat exchanger 4b is an example of a “first heat exchanger” and heat exchanges with the heat transfer liquid Wh supplied from the heat pump unit 3 (heating section 3h) through the heat transfer liquid circulation path LH. , the hydrogen gas G to be flowed into the adsorption tower 2 where the adsorption capacity regeneration process is performed can be heated. The heat exchanger 4c is an example of a "third heat exchanger", and heat exchange with the heat transfer fluid Wc supplied from the heat pump unit 3 (cooling unit 3c) via the heat transfer fluid circuit LC2 , the hydrogen gas G that has passed through the adsorption tower 2 that is undergoing the adsorption capacity regeneration process can be cooled.

この場合、図1に示すように、本例の除去システム1では、熱交換器4aが処理対象の水素ガスGを導入する導入用配管Piに配設されると共に、熱交換器4aを通過させられた水素ガスGの流路が、流路切換え弁5aを介して吸着塔2a,2bのいずれか(吸着除去処理を行う吸着塔2)に流入させられる流路と、熱交換器4bに流入させられる流路とに分岐点P1において分岐されている。なお、上記の導入用配管Piには、同図に破線で示すように、水素ガスGを除去システム1に向けて圧送する外部装置としての圧縮機が接続されている。 In this case, as shown in FIG. 1, in the removal system 1 of this example, the heat exchanger 4a is arranged in the introduction pipe Pi for introducing the hydrogen gas G to be treated, and the heat exchanger 4a is passed through. The flow path of the hydrogen gas G thus obtained flows into one of the adsorption towers 2a and 2b (the adsorption tower 2 that performs the adsorption removal process) via the flow switching valve 5a, and the flow path flows into the heat exchanger 4b. It is branched at the branch point P1 into the flow path to be made. A compressor as an external device for pressure-feeding the hydrogen gas G toward the removal system 1 is connected to the introduction pipe Pi, as indicated by a broken line in FIG.

また、本例の除去システム1では、流路切換え弁5aを介して吸着塔2a,2bのいずれか(吸着除去処理を行う吸着塔2)に流入させられた水素ガスGが流路切換え弁5bを介して排出用配管Poに流入させられる流路が形成されている。また、本例の除去システム1では、熱交換器4bを通過させられた水素ガスGが、流路切換え弁5bを介して吸着塔2a,2bのいずれか(吸着能力再生処理を行う吸着塔2)に流入させられた後に、流路切換え弁5aを介して熱交換器4cに流入させられる流路が形成されている。 In addition, in the removal system 1 of this example, the hydrogen gas G flowed into one of the adsorption towers 2a and 2b (the adsorption tower 2 that performs the adsorption removal process) through the flow path switching valve 5a passes through the flow path switching valve 5b. A flow path is formed through which the flow is made to flow into the discharge pipe Po. In addition, in the removal system 1 of this example, the hydrogen gas G passed through the heat exchanger 4b is passed through the flow path switching valve 5b to either one of the adsorption towers 2a and 2b (the adsorption tower 2 that performs the adsorption capacity regeneration process). ) and then into the heat exchanger 4c via the flow switching valve 5a.

また、本例の除去システム1では、熱交換器4aから流路切換え弁5bに向かう水素ガスGの流路に合流点P2が設けられており、熱交換器4cを通過させられた水素ガスGが、熱交換器4aから流路切換え弁5aに向かう水素ガスGに合流点P2において合流させられる構成が採用されている。なお、本例の除去システム1では、同図に示すように、一例として、合流点P2が分岐点P1よりも下流側に設けられている。 In addition, in the removal system 1 of this example, a confluence point P2 is provided in the flow path of the hydrogen gas G from the heat exchanger 4a to the flow path switching valve 5b, and the hydrogen gas G that has passed through the heat exchanger 4c is However, a configuration is adopted in which the hydrogen gas G flowing from the heat exchanger 4a to the flow path switching valve 5a joins at the joining point P2. In addition, in the removal system 1 of this example, as shown in the figure, as an example, the confluence point P2 is provided downstream of the branch point P1.

また、図3に示すように、本例の除去システム1における熱交換器4aは、一次熱交換部31および二次熱交換部32を備え、導入口30i(「気体導入口」の一例)から導入された水素ガスGが、一次熱交換部31、二次熱交換部32および一次熱交換部31をこの順で通過させられて排出口30o(「気体排出口」の一例)から排出されるように気体流路が形成されている。また、熱交換器4aは、二次熱交換部32において、熱媒液Wcとの熱交換(本冷)によって水素ガスGに含まれている水分が液相化されて除去されると共に、一次熱交換部31において、二次熱交換部32によって冷却された水素ガスGとの熱交換(二次熱交換部32における本冷に先立つ水素ガスGの予冷)によって導入口30iから導入された水素ガスGに含まれている水分が液相化されて除去されるように構成されている。 Further, as shown in FIG. 3, the heat exchanger 4a in the removal system 1 of this example includes a primary heat exchange section 31 and a secondary heat exchange section 32, and from an inlet 30i (an example of a "gas inlet") The introduced hydrogen gas G passes through the primary heat exchange section 31, the secondary heat exchange section 32, and the primary heat exchange section 31 in this order and is discharged from the discharge port 30o (an example of a "gas discharge port"). A gas flow path is formed as follows. In the heat exchanger 4a, the moisture contained in the hydrogen gas G is liquefied and removed by heat exchange (main cooling) with the heat medium liquid Wc in the secondary heat exchange section 32, and the primary In the heat exchange section 31, hydrogen introduced from the inlet 30i by heat exchange with the hydrogen gas G cooled by the secondary heat exchange section 32 (precooling of the hydrogen gas G prior to main cooling in the secondary heat exchange section 32) It is configured such that moisture contained in the gas G is liquefied and removed.

また、熱交換器4aには、導入口30iから導入されて一次熱交換部31および二次熱交換部32をこの順で通過させられた水素ガスGを、一次熱交換部31を再び通過させずに排出口30oから排出させるバイパス流路33(「第2のバイパス流路」の一例)が設けられると共に、このバイパス流路33を通過させる水素ガスGの流量を調整可能な流量調整弁33a,33b(「第2の流量調整部」の一例)が配設されている。この場合、本例の熱交換器4aでは、両流量調整弁33a,33bが開口率可変型の開閉弁でそれぞれ構成されており、流量調整弁33aが、二次熱交換部32から一次熱交換部31に向かう水素ガスGの流路に配設されると共に、流量調整弁33bが、上記のバイパス流路33に配設されている。これにより、流量調整弁33aの開口率を小さくしつつ流量調整弁33bの開口率を大きくすることでバイパス流路33を通過させる水素ガスGの流量を増加させ、流量調整弁33aの開口率を大きくしつつ流量調整弁33bの開口率を小さくすることでバイパス流路33を通過させる水素ガスGの流量を減少させることが可能となっている。 In addition, in the heat exchanger 4a, the hydrogen gas G introduced from the inlet 30i and passed through the primary heat exchange section 31 and the secondary heat exchange section 32 in this order is allowed to pass through the primary heat exchange section 31 again. A bypass flow path 33 (an example of a "second bypass flow path") is provided for discharging from the discharge port 30o without any change, and a flow rate adjustment valve 33a capable of adjusting the flow rate of the hydrogen gas G passing through the bypass flow path 33. , 33b (an example of a “second flow rate adjusting unit”) are provided. In this case, in the heat exchanger 4a of the present example, both the flow rate control valves 33a and 33b are configured by open/close valves with variable opening ratios, and the flow rate control valve 33a switches from the secondary heat exchange section 32 to the primary heat exchange section. A flow regulating valve 33 b is provided in the bypass flow path 33 while being disposed in the flow path of the hydrogen gas G directed to the portion 31 . As a result, the flow rate of the flow rate regulating valve 33b is increased while the rate of opening of the flow rate regulating valve 33a is decreased to increase the flow rate of the hydrogen gas G passing through the bypass flow path 33, thereby increasing the opening rate of the flow rate regulating valve 33a. It is possible to reduce the flow rate of the hydrogen gas G passing through the bypass flow path 33 by decreasing the opening ratio of the flow rate regulating valve 33b while increasing it.

また、熱交換器4aには、導入口30iから導入された水素ガスGの温度(「第4の温度」の一例)を検出可能な温度センサ34a、導入口30iから導入されて一次熱交換部31を通過させられた水素ガスGの温度(「第5の温度」の一例)を検出可能な温度センサ34b、および二次熱交換部32を通過させられた水素ガスGの温度(「第6の温度」の一例)を検出可能な温度センサ34cが配設されている。 In addition, the heat exchanger 4a includes a temperature sensor 34a capable of detecting the temperature of the hydrogen gas G introduced from the inlet 30i (an example of a "fourth temperature"), and a primary heat exchange portion introduced from the inlet 30i. A temperature sensor 34b capable of detecting the temperature of hydrogen gas G passed through 31 (an example of a “fifth temperature”), and the temperature of hydrogen gas G passed through the secondary heat exchange section 32 (a “sixth A temperature sensor 34c capable of detecting the "temperature" is provided.

また、図4に示すように、本例の除去システム1における熱交換器4cは、一次熱交換部41および二次熱交換部42を備え、導入口40i(「気体導入口」の一例)から導入された水素ガスGが、一次熱交換部41、二次熱交換部42および一次熱交換部41をこの順で通過させられて排出口40o(「気体排出口」の一例)から排出されるように気体流路が形成されている。また、熱交換器4cは、二次熱交換部42において、熱媒液Wcとの熱交換(本冷)によって水素ガスGに含まれている水分が液相化されて除去されると共に、一次熱交換部41において、二次熱交換部42によって冷却された水素ガスGとの熱交換(二次熱交換部42における本冷に先立つ水素ガスGの予冷)によって導入口40iから導入された水素ガスGに含まれている水分が液相化されて除去されるように構成されている。 Further, as shown in FIG. 4, the heat exchanger 4c in the removal system 1 of this example includes a primary heat exchange section 41 and a secondary heat exchange section 42, and from an inlet 40i (an example of a "gas inlet") The introduced hydrogen gas G passes through the primary heat exchange section 41, the secondary heat exchange section 42, and the primary heat exchange section 41 in this order and is discharged from the discharge port 40o (an example of a "gas discharge port"). A gas flow path is formed as follows. In the heat exchanger 4c, the moisture contained in the hydrogen gas G is liquefied and removed by heat exchange (main cooling) with the heat medium liquid Wc in the secondary heat exchange section 42, and the primary In the heat exchange section 41, hydrogen introduced from the introduction port 40i by heat exchange with the hydrogen gas G cooled by the secondary heat exchange section 42 (precooling of the hydrogen gas G prior to main cooling in the secondary heat exchange section 42) It is configured such that moisture contained in the gas G is liquefied and removed.

また、熱交換器4cには、導入口40iから導入されて一次熱交換部41および二次熱交換部42をこの順で通過させられた水素ガスGを、一次熱交換部41を再び通過させずに排出口40oから排出させるバイパス流路43(「第1のバイパス流路」の一例)が設けられると共に、このバイパス流路43を通過させる水素ガスGの流量を調整可能な流量調整弁43a、43b(「第1の流量調整部」の一例)が配設されている。この場合、本例の熱交換器4cでは、両流量調整弁43a,43bが開口率可変型の開閉弁でそれぞれ構成されており、流量調整弁43aが、二次熱交換部42から一次熱交換部41に向かう水素ガスGの流路に配設されると共に、流量調整弁43bが、上記のバイパス流路43に配設されている。これにより、流量調整弁43aの開口率を小さくしつつ流量調整弁43bの開口率を大きくすることでバイパス流路43を通過させる水素ガスGの流量を増加させ、流量調整弁43aの開口率を大きくしつつ流量調整弁43bの開口率を小さくすることでバイパス流路43を通過させる水素ガスGの流量を減少させることが可能となっている。 In addition, in the heat exchanger 4c, the hydrogen gas G introduced from the inlet 40i and passed through the primary heat exchange section 41 and the secondary heat exchange section 42 in this order is allowed to pass through the primary heat exchange section 41 again. A bypass flow path 43 (an example of a "first bypass flow path") is provided for discharging from the discharge port 40o without any change, and a flow rate adjustment valve 43a capable of adjusting the flow rate of the hydrogen gas G passing through the bypass flow path 43. , 43b (an example of a “first flow rate adjusting unit”) are provided. In this case, in the heat exchanger 4c of the present example, both the flow rate control valves 43a and 43b are configured by variable opening ratio opening/closing valves, and the flow rate control valve 43a is connected to the secondary heat exchange section 42 for primary heat exchange. A flow regulating valve 43 b is provided in the bypass flow path 43 while being disposed in the flow path of the hydrogen gas G toward the portion 41 . As a result, the flow rate of the flow rate regulating valve 43b is increased while the rate of opening of the flow rate regulating valve 43a is decreased to increase the flow rate of the hydrogen gas G passing through the bypass flow path 43, thereby increasing the opening rate of the flow rate regulating valve 43a. It is possible to reduce the flow rate of the hydrogen gas G passing through the bypass flow path 43 by decreasing the opening ratio of the flow rate control valve 43b while increasing it.

また、熱交換器4cには、導入口40iから導入された水素ガスGの温度(「第1の温度」の一例)を検出可能な温度センサ44a、導入口40iから導入されて一次熱交換部41を通過させられた水素ガスGの温度(「第2の温度」の一例)を検出可能な温度センサ44b、および二次熱交換部42を通過させられた水素ガスGの温度(「第3の温度」の一例)を検出可能な温度センサ44cが配設されている。 In addition, the heat exchanger 4c includes a temperature sensor 44a capable of detecting the temperature of the hydrogen gas G introduced from the inlet 40i (an example of a "first temperature"), and a primary heat exchange section introduced from the inlet 40i. A temperature sensor 44b capable of detecting the temperature of hydrogen gas G passed through 41 (an example of a “second temperature”), and the temperature of hydrogen gas G passed through the secondary heat exchange section 42 (a “third A temperature sensor 44c capable of detecting the "temperature" is provided.

流路切換え弁5aは、「第2の流路切替え部」の一例であって、制御部15の制御に従い、熱交換器4aにおいて冷却された水素ガスGを、吸着塔2a,2bのうちの吸着除去処理を行っている吸着塔2に流入させると共に、吸着塔2a,2bのうちの吸着能力再生処理を行っている吸着塔2を通過させられた水素ガスGを、熱交換器4cに流入させる。流路切換え弁5bは、「第1の流路切替え部」の一例であって、制御部15の制御に従い、吸着塔2a,2bのうちの吸着除去処理を行っている吸着塔2を通過させられた水素ガスGを、水分の除去が完了した水素ガスG流入させるべき排出用配管Poに流入させると共に、熱交換器4bにおいて加熱された水素ガスGを、吸着塔2a,2bのうちの吸着能力再生処理を行っている吸着塔2に流入させる。 The flow path switching valve 5a is an example of a "second flow path switching unit", and according to the control of the control unit 15, the hydrogen gas G cooled in the heat exchanger 4a is switched to one of the adsorption towers 2a and 2b. The hydrogen gas G, which has flowed into the adsorption tower 2 that is performing the adsorption removal process and has passed through the adsorption tower 2 that is performing the adsorption capacity regeneration process among the adsorption towers 2a and 2b, flows into the heat exchanger 4c. Let The flow path switching valve 5b is an example of a "first flow path switching unit", and according to the control of the control unit 15, allows passage of the adsorption tower 2 that is performing the adsorption removal process among the adsorption towers 2a and 2b. The hydrogen gas G thus obtained is introduced into the discharge pipe Po into which the hydrogen gas G whose moisture has been removed is to be introduced, and the hydrogen gas G heated in the heat exchanger 4b is transferred to the adsorption towers 2a and 2b for adsorption. It is made to flow into the adsorption tower 2 which is performing capacity regeneration processing.

流量調整弁6は、「第3の流量調整部」の一例であって、図1に示すように、一例として、水素ガスGの流路における熱交換器4cの下流側に配設され、制御部15の制御下で熱交換器4cを通過させられる水素ガスGの流量を調整する。なお、「第3の流量調整部」については、本例の除去システム1における流量調整弁6の配設位置に限定されず、分岐点P1から、熱交換器4b、流路切換え弁5b、吸着塔2、流路切換え弁5aおよび熱交換器4cを経て合流点P2に至るまでの水素ガスGの流路内における任意の位置に配設することができる。 The flow rate adjustment valve 6 is an example of a "third flow rate adjustment section", and as shown in FIG. The flow rate of hydrogen gas G passed through the heat exchanger 4c under the control of the section 15 is adjusted. Note that the "third flow rate adjustment unit" is not limited to the arrangement position of the flow rate adjustment valve 6 in the removal system 1 of the present example, and from the branch point P1, the heat exchanger 4b, the flow path switching valve 5b, the adsorption It can be arranged at any position in the flow path of the hydrogen gas G through the column 2, the flow switching valve 5a and the heat exchanger 4c to the confluence point P2.

流量調整弁7aは、ヒートポンプユニット3(冷却部3c)において冷却されて熱媒液循環路LC1を熱交換器4aに向かって圧送される熱媒液Wcの一部が熱交換器4aを通過せずにヒートポンプユニット3(冷却部3c)に回収されるように制御部15によって開度が変更されることにより、熱交換器4aを通過させられる熱媒液Wcの流量を調整する(「第2の熱交換器を通過させられる冷却用熱媒液の流量を調整する流量調整部」の一例)。流量調整弁7bは、ヒートポンプユニット3(冷却部3c)において冷却されて熱媒液循環路LC2を熱交換器4cに向かって圧送される熱媒液Wcの一部が熱交換器4cを通過せずにヒートポンプユニット3(冷却部3c)に回収されるように制御部15によって開度が変更されることにより、熱交換器4cを通過させられる熱媒液Wcの流量を調整する(「第3の熱交換器を通過させられる冷却用熱媒液の流量を調整する流量調整部」の一例)。 The flow regulating valve 7a allows part of the heat transfer fluid Wc, which is cooled in the heat pump unit 3 (cooling section 3c) and pressure-fed through the heat transfer fluid circuit LC1 toward the heat exchanger 4a, to pass through the heat exchanger 4a. The control unit 15 changes the opening degree so that the heat pump unit 3 (cooling unit 3c) recovers the heat transfer fluid Wc through the heat exchanger 4a without delay. An example of a "flow rate adjustment unit" that adjusts the flow rate of the cooling heat transfer fluid that is passed through the heat exchanger of The flow regulating valve 7b allows part of the heat transfer liquid Wc that is cooled in the heat pump unit 3 (cooling section 3c) and pressure-fed through the heat transfer liquid circulation path LC2 toward the heat exchanger 4c to pass through the heat exchanger 4c. The control unit 15 changes the opening degree so that the heat pump unit 3 (cooling unit 3c) recovers the heat transfer fluid Wc without any delay, thereby adjusting the flow rate of the heat transfer fluid Wc passing through the heat exchanger 4c (“third An example of a "flow rate adjustment unit" that adjusts the flow rate of the cooling heat transfer fluid that is passed through the heat exchanger of

貯水部8aは、熱交換器4aにおいて水素ガスGから除去されて熱交換器4aから排水された水分を貯留可能に構成され、一例として、貯留した水分の量が予め規定された量(以下、「第1の規定量」ともいう)に達したときに、その一部の予め規定された量(「第1の規定量」よりも少量:以下、「第2の規定量」ともいう)を外部に排出(排水)すると共に、排出したことを報知する信号を制御部15に出力する。貯水部8bは、熱交換器4cにおいて水素ガスGから除去されて熱交換器4cから排水された水分を貯留可能に構成され、一例として、貯留した水分の量が予め規定された量(以下、「第3の規定量」ともいう)に達したときに、その一部の予め規定された量(「第3の規定量」よりも少量:以下、「第4の規定量」ともいう)を外部に排出(排水)すると共に、排出したことを報知する信号を制御部15に出力する。 The water storage part 8a is configured to be able to store water removed from the hydrogen gas G in the heat exchanger 4a and drained from the heat exchanger 4a. Also referred to as the "first specified amount"), a part of the predetermined amount (smaller than the "first specified amount": hereinafter also referred to as the "second specified amount") Along with discharging (draining water) to the outside, a signal notifying that the water has been discharged is output to the control unit 15 . The water storage part 8b is configured to be able to store water removed from the hydrogen gas G in the heat exchanger 4c and drained from the heat exchanger 4c. Also referred to as the "third specified amount"), a part of the predetermined amount (smaller than the "third specified amount": hereinafter also referred to as the "fourth specified amount") Along with discharging (draining water) to the outside, a signal notifying that the water has been discharged is output to the control unit 15 .

温度センサ9は、流路切換え弁5aの上流側に配設されており、熱交換器4aや熱交換器4cを通過させられた後に吸着塔2a,2bのうちの吸着除去処理を行っている吸着塔2に流入させられる水素ガスGの温度を検出する。湿度センサ10は、排出用配管Poに配設されており、吸着除去処理を行っている吸着塔2を通過させられて排出用配管Poに流入させられた水素ガスGの湿度を検出する。 The temperature sensor 9 is arranged on the upstream side of the flow path switching valve 5a, and after passing through the heat exchanger 4a and the heat exchanger 4c, performs the adsorption removal processing of the adsorption towers 2a and 2b. The temperature of the hydrogen gas G flowing into the adsorption tower 2 is detected. The humidity sensor 10 is arranged in the discharge pipe Po, and detects the humidity of the hydrogen gas G that has flowed into the discharge pipe Po after passing through the adsorption tower 2 that is performing the adsorption removal process.

次に、除去システム1による吸着除去処理および吸着能力再生処理の基本的な動作について説明する。 Next, the basic operation of the adsorption removal process and the adsorption capacity regeneration process by the removal system 1 will be described.

操作部13の電源スイッチが投入されたときに、制御部15は、ヒートポンプユニット3の各構成要素を動作させることにより、冷却部3cからの熱媒液Wcの供給、および加熱部3hからの熱媒液Whの供給を開始させる。この際には、冷却部3cによる熱媒液Wcの冷却、および加熱部3hによる熱媒液Whの加熱が行われると共に、ポンプ12aによって熱媒液循環路LC1,LC2内を熱媒液Wcが循環させられ、かつポンプ12bによって熱媒液循環路LH内を熱媒液Whが循環させられる。 When the power switch of the operation unit 13 is turned on, the control unit 15 operates each component of the heat pump unit 3 to supply the heat medium liquid Wc from the cooling unit 3c and heat from the heating unit 3h. Start supplying the liquid medium Wh. At this time, the heat medium liquid Wc is cooled by the cooling section 3c and the heat medium liquid Wh is heated by the heating section 3h, and the heat medium liquid Wc is caused to flow through the heat medium liquid circulation paths LC1 and LC2 by the pump 12a. The heat transfer fluid Wh is circulated in the heat transfer fluid circuit LH by the pump 12b.

具体的には、冷凍サイクル11内における冷媒の循環に伴い、冷却部3cの蒸発器24における冷媒と熱媒液Wcとの熱交換(蒸発器24における熱媒液Wcから冷媒への吸熱)によって熱媒液Wcが冷却されると共に、低温の熱媒液Wcが、熱媒液循環路LC1を介して熱交換器4aに供給され、かつ熱媒液循環路LC2を介して熱交換器4cに供給される。また、冷凍サイクル11内における冷媒の循環に伴い、加熱部3hの凝縮器22内における冷媒と熱媒液Whとの熱交換(凝縮器22における冷媒から熱媒液Whへの放熱)によって熱媒液Whが加熱されると共に、高温の熱媒液Whが熱媒液循環路LHを介して熱交換器4bに供給される。 Specifically, as the refrigerant circulates in the refrigerating cycle 11, heat exchange between the refrigerant and the heat medium liquid Wc in the evaporator 24 of the cooling unit 3c (heat absorption from the heat medium liquid Wc to the refrigerant in the evaporator 24) While the heat medium liquid Wc is cooled, the low-temperature heat medium liquid Wc is supplied to the heat exchanger 4a through the heat medium liquid circuit LC1 and to the heat exchanger 4c through the heat medium liquid circuit LC2. supplied. In addition, as the refrigerant circulates in the refrigeration cycle 11, the heat medium is heat exchanged between the refrigerant in the condenser 22 of the heating unit 3h and the heat medium liquid Wh (heat dissipation from the refrigerant to the heat medium liquid Wh in the condenser 22). While the liquid Wh is heated, the hot heat transfer liquid Wh is supplied to the heat exchanger 4b through the heat transfer liquid circuit LH.

なお、処理開始直後のこの時点において、制御部15は、一例として、流量調整弁7a,7bをそれぞれ最小の開度となる開弁状態(全閉可能な弁構造の場合には全閉状態)に制御する。これにより、冷却部3cから熱媒液循環路LC1に流入した熱媒液Wcの大半(流量調整弁7aが全閉状態の場合には、流入した熱媒液Wcのすべて)が導入口30iから熱交換器4a内に流入させられると共に、冷却部3cから熱媒液循環路LC2に流入した熱媒液Wcの大半(流量調整弁7bが全閉状態の場合には、流入した熱媒液Wcのすべて)が導入口40iから熱交換器4c内に流入させられる。したがって、後述するように除去システム1に水素ガスGが導入されたときに、熱交換器4a,4cにおいて水素ガスGを速やかに冷却する(水素ガスGの熱を熱交換器4a,4cにおいて熱媒液Wcに速やかに吸熱させる)ことが可能となる。また、加熱部3hから熱媒液循環路LHに流入した熱媒液Whが熱交換器4b内に流入させられることにより、後述するように除去システム1に水素ガスGが導入されたときに、好適な吸着能力再生処理が可能な十分に高い温度まで水素ガスGを熱交換器4bにおいて速やかに加熱することが可能となる。 At this point immediately after the start of processing, the control unit 15, as an example, causes the flow control valves 7a and 7b to be in an open state (in the case of a fully closable valve structure, in a fully closed state) where the respective opening degrees are the minimum. to control. As a result, most of the heat transfer fluid Wc that has flowed into the heat transfer fluid circulation path LC1 from the cooling part 3c (when the flow control valve 7a is fully closed, all of the heat transfer fluid Wc that has flowed in) flows from the inlet 30i. Most of the heat transfer liquid Wc that flows into the heat exchanger 4a and flows into the heat transfer liquid circulation path LC2 from the cooling part 3c (when the flow rate adjustment valve 7b is fully closed, the flowed heat transfer liquid Wc ) is flowed into the heat exchanger 4c from the inlet 40i. Therefore, as will be described later, when the hydrogen gas G is introduced into the removal system 1, the hydrogen gas G is quickly cooled in the heat exchangers 4a and 4c (the heat of the hydrogen gas G is transferred to the heat exchangers 4a and 4c). It is possible to make the medium liquid Wc quickly absorb heat. Further, when the hydrogen gas G is introduced into the removal system 1 as described later by causing the heat medium liquid Wh that has flowed into the heat medium liquid circulation path LH from the heating unit 3h to flow into the heat exchanger 4b, It is possible to rapidly heat the hydrogen gas G in the heat exchanger 4b to a sufficiently high temperature at which suitable adsorption capacity regeneration processing is possible.

次いで、処理対象の水素ガスGを除去システム1に導入する。この際に、本例の除去システム1では、前述したように、吸着塔2a,2bのいずれか一方における吸着除去処理と、吸着塔2a,2bの他方における吸着能力再生処理とを並行して実行することができるように構成されている。この場合、一例として、前回稼働時に、吸着塔2bにおいて吸着除去処理を実行しつつ、吸着塔2aにおいて吸着能力再生処理を実行していた場合には、吸着塔2b内の吸着剤に多量の水分が吸着されて吸着塔2bの吸着除去能力が低下した状態となっており、吸着塔2a内の吸着剤が吸着能力再生処理によって水分を除去されて吸着塔2aの吸着除去能力が向上した状態となっている。したがって、そのような稼働状態の後に処理を開始したこの時点においては、一例として、前回稼働時に吸着能力再生処理が実行されていたことで吸着処理能力が高い吸着塔2aにおいて吸着除去処理を実行しつつ、前回稼働時に吸着除去処理が実行されていたことで吸着処理能力が低下している吸着塔2bにおいて吸着能力再生処理を実行する。 Next, the hydrogen gas G to be treated is introduced into the removal system 1 . At this time, in the removal system 1 of this example, as described above, the adsorption removal process in one of the adsorption towers 2a and 2b and the adsorption capacity regeneration process in the other of the adsorption towers 2a and 2b are executed in parallel. It is configured so that it can be In this case, as an example, when the adsorption removal process was performed in the adsorption tower 2b and the adsorption capacity regeneration process was performed in the adsorption tower 2a during the previous operation, a large amount of water was added to the adsorbent in the adsorption tower 2b. is adsorbed and the adsorption removal capacity of the adsorption tower 2b is reduced, and the adsorption capacity of the adsorption tower 2a is improved by removing moisture from the adsorbent in the adsorption tower 2a by the adsorption capacity regeneration process. It's becoming Therefore, at this time when the treatment is started after such an operating state, as an example, the adsorption removal treatment is performed in the adsorption tower 2a, which has a high adsorption treatment capacity because the adsorption capacity regeneration treatment was performed during the previous operation. At the same time, the adsorption capacity regeneration process is executed in the adsorption tower 2b whose adsorption capacity has decreased due to the adsorption removal process being executed during the previous operation.

具体的には、制御部15は、導入用配管Piから導入されて熱交換器4aを通過させられた水素ガスGの一部が分岐点P1を通過して吸着塔2aに流入し、かつ吸着塔2bを通過させられた水素ガスGが熱交換器4cに流入するように流路切換え弁5aを制御する。また、制御部15は、吸着塔2aを通過させられた水素ガスGが排出用配管Poに流入し、かつ分岐点P1および熱交換器4bをこの順で通過させられた水素ガスGが吸着塔2bに流入するように流路切換え弁5bを制御する。これにより、導入用配管Piから導入されて熱交換器4aを通過させられた水素ガスGの一部が、分岐点P1、流路切換え弁5a、吸着塔2aおよび流路切換え弁5bをこの順で通過して排出用配管Poに流入する流路(吸着塔2aにおける吸着除去処理を主目的とする流路)と、熱交換器4aを通過させられた水素ガスGの他の一部が、分岐点P1、熱交換器4b、流路切換え弁5b、吸着塔2b、流路切換え弁5a、熱交換器4c、流量調整弁6および合流点P2をこの順で通過させられて流路切換え弁5aを介して吸着塔2aに流入させられる流路(吸着塔2bにおける吸着能力再生処理を主目的とする流路)とが形成される。 Specifically, the control unit 15 causes a portion of the hydrogen gas G introduced from the introduction pipe Pi and passed through the heat exchanger 4a to pass through the branch point P1 and flow into the adsorption tower 2a, The flow switching valve 5a is controlled so that the hydrogen gas G passed through the tower 2b flows into the heat exchanger 4c. Further, the control unit 15 allows the hydrogen gas G that has passed through the adsorption tower 2a to flow into the discharge pipe Po, and the hydrogen gas G that has passed through the branch point P1 and the heat exchanger 4b in this order to the adsorption tower. The flow switching valve 5b is controlled to flow into 2b. As a result, part of the hydrogen gas G introduced from the introduction pipe Pi and passed through the heat exchanger 4a passes through the branch point P1, the flow switching valve 5a, the adsorption tower 2a and the flow switching valve 5b in this order. A flow path (a flow path mainly intended for adsorption removal processing in the adsorption tower 2a) that passes through and flows into the discharge pipe Po, and another part of the hydrogen gas G that has passed through the heat exchanger 4a, The branch point P1, the heat exchanger 4b, the channel switching valve 5b, the adsorption tower 2b, the channel switching valve 5a, the heat exchanger 4c, the flow control valve 6, and the confluence point P2 are passed in this order, and the channel switching valve 5a into the adsorption tower 2a (a flow path whose main purpose is to regenerate the adsorption capacity in the adsorption tower 2b).

この際に、熱交換器4aの二次熱交換部32では、導入口30iから導入されて後述するように一次熱交換部31を通過させられた水素ガスGと、ヒートポンプユニット3(冷却部3c)から供給された熱媒液Wcとの熱交換によって水素ガスGが冷却される。これにより、熱交換器4a内において水素ガスGの相対湿度が上昇するため、水素ガスGに含まれている気相の水分の一部が液相に変化して水素ガスGから離脱させられる(除去される)。この結果、二次熱交換部32を通過させられた水素ガスGの絶対湿度が十分に低下させられる(水素ガスGに含まれる水分の量が十分に減少させられる)。 At this time, in the secondary heat exchange section 32 of the heat exchanger 4a, the hydrogen gas G introduced from the inlet 30i and passed through the primary heat exchange section 31 as described later is combined with the heat pump unit 3 (cooling section 3c). ), the hydrogen gas G is cooled by heat exchange with the heat transfer liquid Wc supplied from . As a result, the relative humidity of the hydrogen gas G increases in the heat exchanger 4a, so that part of the vapor phase moisture contained in the hydrogen gas G changes to a liquid phase and is separated from the hydrogen gas G ( removed). As a result, the absolute humidity of the hydrogen gas G that has passed through the secondary heat exchange section 32 is sufficiently lowered (the amount of moisture contained in the hydrogen gas G is sufficiently reduced).

この場合、制御部15は、処理開始直後のこの時点において、熱交換器4a内の流量調整弁33aを最大の開度となる開弁状態(全開可能な弁構造の場合には全開状態)に制御すると共に、流量調整弁33bを最小の開度となる開弁状態(全閉可能な弁構造の場合には全閉状態)に制御する。これにより、導入口30iから熱交換器4aに導入されて一次熱交換部31および二次熱交換部32をこの順で通過させられた水素ガスGの大半(流量調整弁33bが全閉の場合には、二次熱交換部32を通過させられた水素ガスGのすべて)が一次熱交換部31を再び通過させられる状態となる。 In this case, the control unit 15 causes the flow control valve 33a in the heat exchanger 4a to be opened to the maximum degree of opening (to the fully open state in the case of a fully openable valve structure) at this point immediately after the start of the process. At the same time, it controls the flow regulating valve 33b to an open state (a fully closed state in the case of a fully closable valve structure) with a minimum degree of opening. As a result, most of the hydrogen gas G introduced into the heat exchanger 4a from the inlet 30i and passed through the primary heat exchange section 31 and the secondary heat exchange section 32 in this order (when the flow rate adjustment valve 33b is fully closed , all of the hydrogen gas G that has passed through the secondary heat exchange section 32 is allowed to pass through the primary heat exchange section 31 again.

この際には、二次熱交換部32における熱媒液Wcとの熱交換によって冷却された水素ガスG(排出口30oに向かって一次熱交換部31を通過させられる水素ガスG)と、導入口30iから一次熱交換部31に新たに導入された水素ガスGとの一次熱交換部31における熱交換によって、新たに導入された水素ガスGが冷却される。これにより、新たに導入された水素ガスGの相対湿度が上昇するため、水素ガスGに含まれている気相の水分の一部が一次熱交換部31において液相に変化して水素ガスGから離脱させられる(除去される)。この結果、一次熱交換部31から二次熱交換部32に流入する水素ガスGの絶対湿度が十分に低下させられる(水素ガスGに含まれる水分の量が十分に減少させられる)ため、前述した二次熱交換部32における水分の除去と相俟って、水素ガスGに含まれていた水分が熱交換器4aにおいて十分に除去される。 At this time, the hydrogen gas G cooled by heat exchange with the heat medium liquid Wc in the secondary heat exchange section 32 (hydrogen gas G passed through the primary heat exchange section 31 toward the discharge port 30o), and the introduction The newly introduced hydrogen gas G is cooled by heat exchange in the primary heat exchange section 31 with the hydrogen gas G newly introduced into the primary heat exchange section 31 through the port 30i. As a result, the relative humidity of the newly introduced hydrogen gas G increases, so that part of the vapor phase moisture contained in the hydrogen gas G changes to a liquid phase in the primary heat exchange section 31, and the hydrogen gas G is detached (removed) from As a result, the absolute humidity of the hydrogen gas G flowing from the primary heat exchange section 31 to the secondary heat exchange section 32 is sufficiently lowered (the amount of moisture contained in the hydrogen gas G is sufficiently reduced), so the above-described Together with the removal of water in the secondary heat exchange section 32, the water contained in the hydrogen gas G is sufficiently removed in the heat exchanger 4a.

また、排出口30oに向かって一次熱交換部31を通過させられる水素ガスGは、一次熱交換部31に新たに導入された水素ガスGとの熱交換によって温度上昇させられる。この場合、二次熱交換部32から一次熱交換部31に流入する水素ガスGは、二次熱交換部32における冷却(温度低下)によって相対湿度が100%程度となっている。したがって、排出口30oから排出されるのに先立って水素ガスGを温度上昇させて相対湿度を低下させることにより、熱交換器4aから吸着塔2aや熱交換器4bに向かう流路内等で水素ガスGに含まれている水分が結露する事態を好適に回避することが可能となる。 Further, the hydrogen gas G that is passed through the primary heat exchange section 31 toward the discharge port 30o is heated by heat exchange with the hydrogen gas G that is newly introduced into the primary heat exchange section 31 . In this case, the hydrogen gas G flowing from the secondary heat exchange section 32 into the primary heat exchange section 31 has a relative humidity of about 100% due to cooling (temperature drop) in the secondary heat exchange section 32 . Therefore, by raising the temperature of the hydrogen gas G and lowering the relative humidity before it is discharged from the discharge port 30o, the hydrogen is It is possible to suitably avoid the situation where the moisture contained in the gas G is condensed.

また、一次熱交換部31および二次熱交換部32において水素ガスGから離脱させられた液相の水分は、貯水部8aに貯留されると共に、予め規定された量の水分が貯水部8aに貯留される都度、貯水部8aから所定の排水場所に排水される。この際には、前述したように、貯水部8a(貯水部8aに配設されているセンサ)からヒートポンプユニット3の制御部15に排水を報知する信号が出力される。したがって、この信号の出力頻度、すなわち、貯水部8aからの排水の頻度に基づき、熱交換器4aにおいて単位時間当りに水素ガスGから除去される水分の量を特定することができる。 Further, the liquid-phase moisture separated from the hydrogen gas G in the primary heat exchange section 31 and the secondary heat exchange section 32 is stored in the water storage section 8a, and a predetermined amount of moisture is stored in the water storage section 8a. Each time the water is stored, it is drained from the water storage portion 8a to a predetermined drainage location. At this time, as described above, the water storage portion 8a (sensor provided in the water storage portion 8a) outputs a signal to notify the control portion 15 of the heat pump unit 3 of the drainage. Therefore, the amount of water removed from the hydrogen gas G per unit time in the heat exchanger 4a can be specified based on the output frequency of this signal, that is, the frequency of drainage from the water reservoir 8a.

また、除去システム1に対して水素ガスGを圧送する圧縮機の回転数(すなわち、単位時間あたりの水素ガスGの導入量)、各温度センサ34によって検出される水素ガスGの温度、ヒートポンプユニット3(冷却部3c)の動作状態および流量調整弁7aの開度(すなわち、熱交換器4aに供給される冷熱の熱量)、並びに熱交換器4aにおいて単位時間当りに水素ガスGから除去される水分の量などに基づき、導入用配管Piを介して熱交換器4aに流入する水素ガスGに含まれている水分の量(湿度)や、熱交換器4aから排出される水素ガスGに含まれている水分の量(湿度)を特定することができる。 Also, the number of revolutions of the compressor that pumps the hydrogen gas G to the removal system 1 (that is, the amount of hydrogen gas G introduced per unit time), the temperature of the hydrogen gas G detected by each temperature sensor 34, and the heat pump unit 3 (cooling part 3c) and the opening degree of the flow control valve 7a (that is, the amount of cold heat supplied to the heat exchanger 4a), and the heat exchanger 4a removes from the hydrogen gas G per unit time Based on the amount of moisture, etc., the amount of moisture (humidity) contained in the hydrogen gas G flowing into the heat exchanger 4a through the introduction pipe Pi, and the amount of moisture contained in the hydrogen gas G discharged from the heat exchanger 4a. The amount of moisture (humidity) contained in the air can be specified.

一方、熱交換器4a(排出口30o)から排出された水素ガスG(冷却によって水分の一部を除去された水素ガスG)の一部は、分岐点P1および流路切換え弁5aをこの順で通過して吸着塔2aに流入する。この際に、吸着塔2aに流入した水素ガスGに含まれている水分が吸着塔2a内の吸着剤に吸着されて水素ガスGから除去される(吸着塔2aにおける吸着除去処理の実行)。これにより、吸着塔2aを通過させられた水素ガスGの絶対湿度が十分に低下させられる(水素ガスGに含まれる水分の量が十分に減少させられる)。 On the other hand, part of the hydrogen gas G discharged from the heat exchanger 4a (discharge port 30o) (hydrogen gas G from which part of the moisture has been removed by cooling) passes through the branch point P1 and the flow path switching valve 5a in this order. and flows into the adsorption tower 2a. At this time, moisture contained in the hydrogen gas G flowing into the adsorption tower 2a is adsorbed by the adsorbent in the adsorption tower 2a and removed from the hydrogen gas G (execution of adsorption removal processing in the adsorption tower 2a). As a result, the absolute humidity of the hydrogen gas G passed through the adsorption tower 2a is sufficiently lowered (the amount of moisture contained in the hydrogen gas G is sufficiently reduced).

この場合、本例の除去システム1では、導入用配管Piに導入された水素ガスGに含まれる水分の一部が熱交換器4aにおいて除去されるため、吸着除去処理を行う吸着塔2aに流入する水素ガスGの絶対湿度は、導入用配管Piに導入された水素ガスGの絶対湿度よりも低くなっている。したがって、熱交換器4aを通過させずに導入用配管Piから吸着塔2aに水素ガスGを直接流入させる構成(導入用配管Piに導入される水素ガスGに含まれている水分を吸着塔2aによる吸着除去処理だけで除去する構成)とは異なり、吸着除去処理を行っている吸着塔2a内の吸着剤の吸着除去能力が短時間で大きく低下する事態が回避される。この後、吸着塔2aにおいて水分を十分に吸着除去された水素ガスGは、流路切換え弁5bを介して排出用配管Poに流入し、図示しない水素ガスGの供給先に排出される。 In this case, in the removal system 1 of this example, since part of the moisture contained in the hydrogen gas G introduced into the introduction pipe Pi is removed in the heat exchanger 4a, the moisture flows into the adsorption tower 2a where the adsorption removal process is performed. The absolute humidity of the hydrogen gas G is lower than the absolute humidity of the hydrogen gas G introduced into the introduction pipe Pi. Therefore, there is a configuration in which the hydrogen gas G directly flows into the adsorption tower 2a from the introduction pipe Pi without passing through the heat exchanger 4a (moisture contained in the hydrogen gas G introduced into the introduction pipe Pi is ), a situation in which the adsorption removal capability of the adsorbent in the adsorption tower 2a performing the adsorption removal treatment is greatly reduced in a short period of time is avoided. Thereafter, the hydrogen gas G from which moisture has been sufficiently adsorbed and removed in the adsorption tower 2a flows into the discharge pipe Po via the flow path switching valve 5b and is discharged to the supply destination of the hydrogen gas G (not shown).

また、熱交換器4a(排出口30o)から排出された水素ガスG(冷却によって水分の一部を除去された水素ガスG)の他の一部は、分岐点P1を通過して熱交換器4bに流入する。この際に、熱交換器4bでは、流入させられた水素ガスGが、ヒートポンプユニット3(加熱部3h)から供給された熱媒液Whとの熱交換によって加熱され、その相対湿度が大きく低下させられる。また、熱交換器4bにおいて加熱された水素ガスGは、流路切換え弁5bを介して吸着塔2bに流入する。 In addition, another part of the hydrogen gas G (hydrogen gas G from which part of the moisture has been removed by cooling) discharged from the heat exchanger 4a (discharge port 30o) passes through the branch point P1 and passes through the heat exchanger. Flow into 4b. At this time, in the heat exchanger 4b, the flowed hydrogen gas G is heated by heat exchange with the heat medium liquid Wh supplied from the heat pump unit 3 (heating section 3h), and the relative humidity thereof is greatly reduced. be done. Also, the hydrogen gas G heated in the heat exchanger 4b flows into the adsorption tower 2b via the flow path switching valve 5b.

この場合、吸着塔2bに流入させる水素ガスGの温度が高いほど、吸着塔2b内の吸着剤を好適に温度上昇させて吸着剤から水分を好適に離脱させることができる。したがって、熱交換器4bにおいて十分に温度上昇させられた水素ガスGが吸着塔2bに流入させられる本例の除去システム1では、流入した水素ガスGによって吸着塔2b内の吸着剤が十分に温度上昇させられるため、この吸着剤に吸着されている水分が吸着剤から好適に離脱させられる。また、吸着塔2bに流入させる水素ガスGに含まれる水分が少ないほど(水素ガスGの相対湿度が低いほど)、吸着塔2b内の吸着剤から水素ガスGに水分を好適に離脱させる(吸着剤から離脱する水分を水素ガスGに取り込む)ことができる。したがって、熱交換器4a,4cにおいて水分を除去され、かつ熱交換器4bにおいて加熱されることでその相対湿度が十分に低くなっている水素ガスGが吸着塔2bに流入させられる本例の除去システム1では、このような水素ガスGに接することで、吸着剤に吸着されている水分が一層好適に離脱させられる。これにより、吸着塔2b内の吸着剤が再生されて吸着塔2bの吸着除去能力が復元される。 In this case, the higher the temperature of the hydrogen gas G flowing into the adsorption tower 2b, the more suitable the temperature of the adsorbent in the adsorption tower 2b is raised, and the more moisture can be desorbed from the adsorbent. Therefore, in the removal system 1 of the present embodiment in which the hydrogen gas G whose temperature has been sufficiently raised in the heat exchanger 4b is allowed to flow into the adsorption tower 2b, the adsorbent in the adsorption tower 2b is sufficiently heated by the inflowing hydrogen gas G. Since it is raised, the moisture adsorbed by this adsorbent is preferably detached from the adsorbent. In addition, the less moisture contained in the hydrogen gas G flowing into the adsorption tower 2b (the lower the relative humidity of the hydrogen gas G), the more preferably the moisture is desorbed from the adsorbent in the adsorption tower 2b to the hydrogen gas G (adsorption The moisture released from the agent can be taken into the hydrogen gas G). Therefore, the hydrogen gas G from which moisture is removed in the heat exchangers 4a and 4c and whose relative humidity is sufficiently low by being heated in the heat exchanger 4b is flowed into the adsorption tower 2b. In the system 1, by contacting with such hydrogen gas G, the moisture adsorbed by the adsorbent is more preferably desorbed. As a result, the adsorbent in the adsorption tower 2b is regenerated and the adsorption removal capability of the adsorption tower 2b is restored.

また、吸着塔2bにおいて吸着剤から離脱した水分を含む水素ガスGは、流路切換え弁5aを介して熱交換器4cに流入する。この際に、熱交換器4cの二次熱交換部42では、導入口40iから導入されて後述するように一次熱交換部41を通過させられた水素ガスGと、ヒートポンプユニット3(冷却部3c)から供給された熱媒液Wcとの熱交換によって水素ガスGが冷却される。これにより、熱交換器4c内において水素ガスGの相対湿度が上昇するため、水素ガスGに含まれている気相の水分の一部が液相に変化して水素ガスGから離脱させられる(除去される)。この結果、二次熱交換部42を通過させられた水素ガスGの絶対湿度が十分に低下させられる(水素ガスGに含まれる水分の量が十分に減少させられる)。 Further, the hydrogen gas G containing moisture separated from the adsorbent in the adsorption tower 2b flows into the heat exchanger 4c via the flow path switching valve 5a. At this time, in the secondary heat exchange section 42 of the heat exchanger 4c, the hydrogen gas G introduced from the introduction port 40i and passed through the primary heat exchange section 41 as described later is combined with the heat pump unit 3 (cooling section 3c ), the hydrogen gas G is cooled by heat exchange with the heat transfer liquid Wc supplied from . As a result, the relative humidity of the hydrogen gas G increases in the heat exchanger 4c, so that part of the vapor phase moisture contained in the hydrogen gas G changes to the liquid phase and is separated from the hydrogen gas G ( removed). As a result, the absolute humidity of the hydrogen gas G passed through the secondary heat exchange section 42 is sufficiently lowered (the amount of moisture contained in the hydrogen gas G is sufficiently reduced).

この場合、制御部15は、処理開始直後のこの時点において、熱交換器4c内の流量調整弁43aを最大の開度となる開弁状態(全開可能な弁構造の場合には全閉状態)に制御すると共に、流量調整弁43bを最小の開度となる開弁状態(全閉可能な弁構造の場合には全閉状態)に制御する。これにより、導入口40iから熱交換器4cに導入されて一次熱交換部41および二次熱交換部42を通過させられた水素ガスGの大半(流量調整弁43bが全閉の場合には、二次熱交換部42を通過させられた水素ガスGのすべて)が一次熱交換部41を再び通過させられる状態となる。 In this case, the control unit 15 causes the flow control valve 43a in the heat exchanger 4c to be opened to the maximum degree of opening (fully closed in the case of a fully openable valve structure) at this point immediately after the start of processing. In addition, the flow control valve 43b is controlled to the minimum opening degree (fully closed state in the case of a fully closable valve structure). As a result, most of the hydrogen gas G introduced into the heat exchanger 4c from the inlet 40i and passed through the primary heat exchange section 41 and the secondary heat exchange section 42 (when the flow rate adjustment valve 43b is fully closed, All of the hydrogen gas G that has passed through the secondary heat exchange section 42 is allowed to pass through the primary heat exchange section 41 again.

この際には、二次熱交換部42における熱媒液Wcとの熱交換によって冷却された水素ガスG(排出口40oに向かって一次熱交換部41を通過させられる水素ガスG)と、導入口40iから一次熱交換部41に新たに導入された水素ガスGとの一次熱交換部41における熱交換によって、新たに導入された水素ガスGが冷却される。これにより、新たに導入された水素ガスGの相対湿度が上昇するため、水素ガスGに含まれている気相の水分の一部が一次熱交換部41において液相に変化して水素ガスGから離脱させられる(除去される)。この結果、一次熱交換部41から二次熱交換部42に流入する水素ガスGの絶対湿度が十分に低下させられる(水素ガスGに含まれる水分の量が十分に減少させられる)ため、前述した二次熱交換部42における水分の除去と相俟って、水素ガスGに含まれていた水分が熱交換器4cにおいて十分に除去される。 At this time, the hydrogen gas G cooled by heat exchange with the heat medium liquid Wc in the secondary heat exchange section 42 (hydrogen gas G passed through the primary heat exchange section 41 toward the discharge port 40o), and the introduction The newly introduced hydrogen gas G is cooled by heat exchange in the primary heat exchange section 41 with the hydrogen gas G newly introduced into the primary heat exchange section 41 through the port 40i. As a result, the relative humidity of the newly introduced hydrogen gas G increases, so that part of the vapor phase moisture contained in the hydrogen gas G changes to a liquid phase in the primary heat exchange section 41, and the hydrogen gas G is detached (removed) from As a result, the absolute humidity of the hydrogen gas G flowing from the primary heat exchange section 41 to the secondary heat exchange section 42 is sufficiently lowered (the amount of moisture contained in the hydrogen gas G is sufficiently reduced), so the above-described Together with the removal of moisture in the secondary heat exchange section 42, the moisture contained in the hydrogen gas G is sufficiently removed in the heat exchanger 4c.

また、排出口40oに向かって一次熱交換部41を通過させられる水素ガスGは、一次熱交換部41に新たに導入された水素ガスGとの熱交換によって温度上昇させられる。この場合、二次熱交換部42から一次熱交換部41に流入する水素ガスGは、二次熱交換部42における冷却(温度低下)によって相対湿度が100%程度となっている。したがって、排出口40oから排出されるのに先立って水素ガスGを温度上昇させて相対湿度を低下させることにより、熱交換器4cから吸着塔2aに向かう流路内等で水素ガスGに含まれている水分が結露する事態を好適に回避することが可能となる。 Further, the hydrogen gas G that is passed through the primary heat exchange section 41 toward the discharge port 40 o is heated by heat exchange with the hydrogen gas G that is newly introduced into the primary heat exchange section 41 . In this case, the hydrogen gas G flowing from the secondary heat exchange section 42 into the primary heat exchange section 41 has a relative humidity of about 100% due to cooling (temperature drop) in the secondary heat exchange section 42 . Therefore, by raising the temperature of the hydrogen gas G and lowering the relative humidity before it is discharged from the discharge port 40o, It is possible to suitably avoid the situation where the moisture in the container is condensed.

また、一次熱交換部41および二次熱交換部42において水素ガスGから離脱させられた液相の水分は、貯水部8bに貯留されると共に、予め規定された量の水分が貯水部8bに貯留される都度、貯水部8bから所定の排水場所に排水される。この際には、前述したように、貯水部8b(貯水部8bに配設されているセンサ)からヒートポンプユニット3の制御部15に排水を報知する信号が出力される。したがって、この信号の出力頻度、すなわち、貯水部8bからの排水の頻度に基づき、熱交換器4cにおいて単位時間当りに水素ガスGから除去される水分の量を特定することができる。 Further, the liquid-phase moisture separated from the hydrogen gas G in the primary heat exchange section 41 and the secondary heat exchange section 42 is stored in the water storage section 8b, and a predetermined amount of moisture is stored in the water storage section 8b. Each time the water is stored, it is drained from the water storage portion 8b to a predetermined drainage place. At this time, as described above, the water storage portion 8b (sensor provided in the water storage portion 8b) outputs a signal to notify the control portion 15 of the heat pump unit 3 of the drainage. Therefore, the amount of water removed from the hydrogen gas G per unit time in the heat exchanger 4c can be specified based on the output frequency of this signal, that is, the frequency of draining water from the water reservoir 8b.

また、除去システム1に対して水素ガスGを圧送する圧縮機の回転数(すなわち、単位時間あたりの水素ガスGの導入量)、分岐点P1における水素ガスGの分流比、各温度センサ44によって検出される水素ガスGの温度、ヒートポンプユニット3(冷却部3c)の動作状態および流量調整弁7bの開度(すなわち、熱交換器4cに供給される冷熱の熱量)、並びに熱交換器4cにおいて単位時間当りに水素ガスGから除去される水分の量などに基づき、吸着塔2bを通過して熱交換器4cに流入する水素ガスGに含まれている水分の量(すなわち、吸着塔2bにおいて吸着剤から離脱した水分の量)や、熱交換器4cから排出される水素ガスGに含まれている水分の量(湿度)を特定することができる。 In addition, the number of rotations of the compressor that pumps the hydrogen gas G to the removal system 1 (that is, the amount of hydrogen gas G introduced per unit time), the split ratio of the hydrogen gas G at the branch point P1, and each temperature sensor 44 The detected temperature of the hydrogen gas G, the operating state of the heat pump unit 3 (cooling unit 3c), the opening degree of the flow rate adjustment valve 7b (that is, the amount of cold heat supplied to the heat exchanger 4c), and the heat exchanger 4c Based on the amount of moisture removed from the hydrogen gas G per unit time, the amount of moisture contained in the hydrogen gas G flowing into the heat exchanger 4c through the adsorption tower 2b (i.e., in the adsorption tower 2b The amount of moisture released from the adsorbent) and the amount of moisture (humidity) contained in the hydrogen gas G discharged from the heat exchanger 4c can be specified.

一方、熱交換器4c(排出口40o)から排出された水素ガスGは、合流点P2において吸着塔2aに向かって流動している水素ガスGに合流させられ、流路切換え弁5aを通過して吸着塔2aに流入する。この際に、前述したように、吸着塔2aに流入した水素ガスGに含まれている水分が吸着塔2a内の吸着剤に吸着されて水素ガスGから除去されるため、熱交換器4cにおいて除去し切れなかった水分が水素ガスGから確実に除去される。したがって、水分を除去すべき水素ガスGを用いて吸着塔2bの吸着能力を再生しているにも拘わらず、多量の水分が含まれた水素ガスGが排出用配管Poに流入する事態が好適に回避される。 On the other hand, the hydrogen gas G discharged from the heat exchanger 4c (discharge port 40o) joins the hydrogen gas G flowing toward the adsorption tower 2a at the confluence point P2, and passes through the flow path switching valve 5a. and flows into the adsorption tower 2a. At this time, as described above, the moisture contained in the hydrogen gas G that has flowed into the adsorption tower 2a is adsorbed by the adsorbent in the adsorption tower 2a and removed from the hydrogen gas G, so in the heat exchanger 4c Moisture left unremoved is surely removed from the hydrogen gas G. Therefore, even though the adsorption capacity of the adsorption tower 2b is being regenerated using the hydrogen gas G from which moisture is to be removed, it is preferable that the hydrogen gas G containing a large amount of moisture flow into the discharge pipe Po. is avoided.

このように、本例の除去システム1では、吸着塔2aにおける吸着除去処理と、吸着塔2bにおける吸着能力再生処理とが並行して実行される。したがって、例えば、吸着塔2a内の吸着剤が水分を好適に除去することが困難な状態となったときに、制御部15流路切換え弁5a,5bを制御することにより、吸着能力が再生された吸着塔2bにおいて吸着除去処理を実行し、吸着能力が低下した吸着塔2aにおいて吸着能力再生処理を実行することで、再び吸着塔2bの吸着能力が低下したときに、吸着塔2aにおける吸着除去処理を実行することが可能となっている。 Thus, in the removal system 1 of this example, the adsorption removal process in the adsorption tower 2a and the adsorption capacity regeneration process in the adsorption tower 2b are performed in parallel. Therefore, for example, when it becomes difficult for the adsorbent in the adsorption tower 2a to suitably remove moisture, the adsorption capacity is regenerated by controlling the flow path switching valves 5a and 5b of the controller 15. By performing the adsorption removal process in the adsorption tower 2b that has been depleted, and performing the adsorption capacity regeneration process in the adsorption tower 2a whose adsorption capacity has decreased, when the adsorption capacity of the adsorption tower 2b decreases again, the adsorption removal in the adsorption tower 2a It is possible to process.

続いて、制御部15による各部の制御態様の一例について説明する。 Next, an example of how each unit is controlled by the control unit 15 will be described.

本例の除去システム1では、上記したように、水素ガスGを加熱するための温熱源として加熱部3hを備えると共に、水素ガスGを冷却するための冷熱源として冷却部3cを備えて構成されている。この場合、加熱部3hは、冷凍サイクル11の凝縮器22における冷媒からの放熱によって熱媒液Whを加熱可能に構成され、冷却部3cは、冷凍サイクル11の蒸発器24における冷媒への吸熱によって熱媒液Wcを冷却可能に構成されている。したがって、本例の除去システム1では、前述したように、ヒートポンプユニット3(冷凍サイクル11)を動作させることで、熱交換器4a,4cにおける水素ガスGの冷却と、熱交換器4bにおける水素ガスGの加熱とを同時に行うことが可能となっている。 As described above, the removal system 1 of this embodiment includes the heating unit 3h as a heat source for heating the hydrogen gas G and the cooling unit 3c as a cold heat source for cooling the hydrogen gas G. ing. In this case, the heating unit 3h is configured to be able to heat the heat transfer liquid Wh by heat radiation from the refrigerant in the condenser 22 of the refrigerating cycle 11, and the cooling unit 3c is configured to heat the refrigerant by absorbing heat in the evaporator 24 of the refrigerating cycle 11. It is configured to be able to cool the heat transfer liquid Wc. Therefore, in the removal system 1 of this example, as described above, by operating the heat pump unit 3 (refrigerating cycle 11), the hydrogen gas G is cooled in the heat exchangers 4a and 4c and the hydrogen gas in the heat exchanger 4b is cooled. It is possible to perform the heating of G at the same time.

しかしながら、ヒートポンプユニット3を構成する冷凍サイクル11では、蒸発器24において冷媒に吸熱することなく凝縮器22において冷媒から放熱したり、凝縮器22において冷媒から放熱することなく蒸発器24において冷媒に吸熱したりすることができず、凝縮器22における冷媒からの放熱と、蒸発器24における冷媒への吸熱とを同時に行う必要がある。このため、ヒートポンプユニット3を温熱源および冷熱源として使用する本例の除去システム1では、加熱部3hにおいて熱媒液Whを加熱するときに、その加熱の度合いに応じて冷却部3cにおいて熱媒液Wcが冷却され、冷却部3cにおいて熱媒液Wcを冷却するときに、その冷却の度合いに応じて加熱部3hにおいて熱媒液Whが加熱される。言い換えれば、本例の除去システム1では、加熱部3hにおいて熱媒液Whを加熱する必要があるときに、その加熱の度合いに応じて冷却部3cにおいて熱媒液Wcを冷却する必要があり、冷却部3cにおいて熱媒液Wcを冷却する必要があるときに、その冷却の度合いに応じて加熱部3hにおいて熱媒液Whを加熱する必要がある。 However, in the refrigerating cycle 11 constituting the heat pump unit 3, heat is released from the refrigerant in the condenser 22 without absorbing heat into the refrigerant in the evaporator 24, or heat is absorbed into the refrigerant in the evaporator 24 without releasing heat from the refrigerant in the condenser 22. Therefore, it is necessary to release heat from the refrigerant in the condenser 22 and absorb heat into the refrigerant in the evaporator 24 at the same time. For this reason, in the removal system 1 of the present embodiment that uses the heat pump unit 3 as a hot heat source and a cold heat source, when the heating portion 3h heats the heat medium liquid Wh, the cooling portion 3c heats the heat medium in accordance with the degree of heating. When the liquid Wc is cooled and the heat transfer liquid Wc is cooled in the cooling section 3c, the heat transfer liquid Wh is heated in the heating section 3h according to the degree of cooling. In other words, in the removal system 1 of the present embodiment, when the heating unit 3h needs to heat the heat transfer fluid Wh, the cooling unit 3c needs to cool the heat transfer fluid Wc in accordance with the degree of heating. When it is necessary to cool the heat transfer fluid Wc in the cooling part 3c, it is necessary to heat the heat transfer fluid Wh in the heating part 3h according to the degree of cooling.

なお、本例の除去システム1では、前述したように、加熱部3hが、大気からの吸熱によって熱媒液Whを加熱する補助的な温熱源を備え、冷却部3cが、大気への放熱によって熱媒液Wcを冷却する補助的な冷熱源を備えている。しかしながら、蒸発器24における冷媒への吸熱を行うことなく補助的な冷熱源だけで熱媒液Wcを冷却しようとしても、凝縮器22における冷媒からの放熱によって熱媒液Whを加熱することができず、凝縮器22における冷媒からの放熱を行うことなく補助的な温熱源だけで熱媒液Whを加熱しようとしても、蒸発器24における冷媒への吸熱によって熱媒液Wcを冷却することができない。したがって、上記の補助的な熱源は、あくまでも、凝縮器22において冷媒から放熱する熱量と、蒸発器24において冷媒に吸熱する熱量とが僅かに相違したときに、この差を補うことができる程度の熱源として利用されるものとなっている。 In the removal system 1 of this example, as described above, the heating unit 3h includes an auxiliary heat source that heats the heat transfer fluid Wh by absorbing heat from the atmosphere, and the cooling unit 3c heats the heat transfer fluid Wh by releasing heat to the atmosphere. An auxiliary cold heat source is provided to cool the heat transfer liquid Wc. However, even if an attempt is made to cool the heat transfer liquid Wc only by the auxiliary cold heat source without absorbing heat into the refrigerant in the evaporator 24, the heat transfer liquid Wh cannot be heated by heat radiation from the refrigerant in the condenser 22. First, even if an attempt is made to heat the heat transfer liquid Wh only by the auxiliary heat source without radiating heat from the refrigerant in the condenser 22, the heat transfer liquid Wc cannot be cooled by the heat absorbed by the refrigerant in the evaporator 24. . Therefore, the above auxiliary heat source is only to the extent that when there is a slight difference between the amount of heat radiated from the refrigerant in the condenser 22 and the amount of heat absorbed by the refrigerant in the evaporator 24, the difference can be compensated for. It is used as a heat source.

一方、吸着塔2a,2bのいずれか一方における吸着除去処理と吸着塔2a,2bの他方における吸着能力再生処理とを並行して実行する本例の除去システム1において、導入用配管Piに導入される水素ガスGの量を減少させることなく吸着除去処理を継続的に実行するには、吸着除去処理を行っている吸着塔2において水素ガスGに含まれる水分を好適に吸着除去するのが困難となったときに、吸着能力再生処理によって吸着能力が再生された吸着塔2において吸着除去処理を継続する(吸着除去処理を行っている吸着塔2と吸着能力再生処理を行っている吸着塔2とを切り換える:以下、単に「吸着塔2を切り換える」ともいう)必要がある。このため、本例の除去システム1のような構成を採用したときには、吸着除去処理を行っている吸着塔2が、水素ガスGに含まれる水分を好適に吸着除去することが可能な状態のうちに、吸着能力再生処理を行っている吸着塔2の吸着除去能力が十分に再生される(吸着剤の吸着能力が十分に復元される)ように吸着能力再生処理を行うのが好ましい。 On the other hand, in the removal system 1 of the present embodiment in which the adsorption removal process in one of the adsorption towers 2a and 2b and the adsorption capacity regeneration process in the other of the adsorption towers 2a and 2b are executed in parallel, the In order to continuously perform the adsorption removal process without reducing the amount of the hydrogen gas G that is absorbed, it is difficult to preferably adsorb and remove the moisture contained in the hydrogen gas G in the adsorption tower 2 that is performing the adsorption removal process. When , the adsorption removal process is continued in the adsorption tower 2 whose adsorption capacity has been regenerated by the adsorption capacity regeneration process (the adsorption tower 2 that is performing the adsorption removal process and the adsorption tower 2 that is performing the adsorption capacity regeneration process and: hereinafter, simply referred to as "switching the adsorption tower 2"). For this reason, when a configuration like the removal system 1 of this example is adopted, the adsorption tower 2 performing the adsorption removal process is in a state in which the moisture contained in the hydrogen gas G can be preferably adsorbed and removed. Furthermore, it is preferable to carry out the adsorption capacity regeneration process so that the adsorption removal capacity of the adsorption tower 2 undergoing the adsorption capacity regeneration process is sufficiently regenerated (the adsorption capacity of the adsorbent is sufficiently restored).

この場合、吸着能力再生処理を行う吸着塔2は、除去システム1が停止状態であったり、直前まで吸着除去処理が行われていたりすることで、耐圧容器や吸着剤の温度が、吸着剤から水分を好適に離脱させ得る温度よりも低くなっている。したがって、吸着除去処理および吸着能力再生処理を開始した直後(除去システム1の起動直後や、両吸着塔2を切り換えた直後)には、熱交換器4bにおいて加熱された水素ガスGによって吸着能力再生処理の対象とする吸着塔2の耐圧容器や吸着剤を効率よく加熱して吸着剤から水分を好適に離脱させることができるように、加熱部3hにおいて熱媒液Whを短時間で十分に加熱する必要がある。 In this case, in the adsorption tower 2 that performs the adsorption capacity regeneration process, the removal system 1 is in a stopped state, or the adsorption removal process is being performed until just before, so that the temperature of the pressure vessel and the adsorbent rises from the adsorbent. It is lower than the temperature at which moisture can be suitably detached. Therefore, immediately after starting the adsorption removal process and the adsorption capacity regeneration process (immediately after starting the removal system 1 or immediately after switching between the two adsorption towers 2), the adsorption capacity is regenerated by the hydrogen gas G heated in the heat exchanger 4b. The heat transfer liquid Wh is sufficiently heated in the heating part 3h in a short time so that the pressure vessel and the adsorbent of the adsorption tower 2 to be treated can be efficiently heated and the moisture can be preferably desorbed from the adsorbent. There is a need to.

また、吸着除去処理を行っている吸着塔2に水分を多量に含んだ水素ガスGが流入したときには、その吸着塔2内の吸着剤の吸着能力が短時間で大きく低下してしまう。このため、吸着能力再生処理を行っている吸着塔2が十分に再生される前に、吸着除去処理を行っている吸着塔2において水素ガスGから水分を好適に吸着除去するのが困難となるおそれがある。 Further, when the hydrogen gas G containing a large amount of water flows into the adsorption tower 2 which is performing the adsorption removal process, the adsorption capacity of the adsorbent in the adsorption tower 2 is greatly reduced in a short time. Therefore, it becomes difficult to preferably adsorb and remove moisture from the hydrogen gas G in the adsorption tower 2 undergoing the adsorption removal treatment before the adsorption tower 2 undergoing the adsorption capacity regeneration treatment is sufficiently regenerated. There is a risk.

ここで、吸着能力再生処理の開始直後は、吸着剤が多量の水分を吸着した状態となっているため、熱交換器4bによって加熱された高温の水素ガスGに接した吸着剤から多量の水分が離脱させられる結果、熱交換器4cに流入する水素ガスGに多量の水分が含まれた水素ガスGが流入することとなる。このため、この水分を熱交換器4cにおいて好適に除去することができなかった場合には、吸着除去処理を行っている吸着塔2に合流点P2を経て水分を多量に含んだ水素ガスGが流入してしまう。また、導入用配管Piに導入される水素ガスGに多量の水分が含まれているときに、この水分を熱交換器4aにおいて好適に除去することができなかった場合には、吸着除去処理を行っている吸着塔2に水分を多量に含んだ水素ガスGが流入してしまう。 Here, immediately after the start of the adsorption capacity regeneration process, the adsorbent is in a state of adsorbing a large amount of moisture. As a result, the hydrogen gas G containing a large amount of moisture flows into the hydrogen gas G flowing into the heat exchanger 4c. For this reason, if this moisture cannot be suitably removed in the heat exchanger 4c, the hydrogen gas G containing a large amount of moisture passes through the confluence point P2 of the adsorption tower 2 that is performing the adsorption removal process. flow in. Further, when the hydrogen gas G introduced into the introduction pipe Pi contains a large amount of water, if the water cannot be preferably removed in the heat exchanger 4a, the adsorption removal process is performed. Hydrogen gas G containing a large amount of water flows into the adsorption tower 2 in operation.

そこで、本例の除去システム1では、吸着除去処理および吸着能力再生処理を開始した直後に、ヒートポンプユニット3(冷凍サイクル11)を最大限の処理能力で動作させる(具体的には、圧縮機21の回転数を上昇させる)ことで、十分に高温の熱媒液Whが加熱部3hから熱交換器4bに供給されて水素ガスGが十分に温度上昇させられ、この高温の水素ガスGが吸着能力再生処理を行う吸着塔2に供給されると共に、凝縮器22において冷媒から放熱される大量の熱量に対応して蒸発器24において冷媒に大量の熱量が吸熱される結果、十分に低温の熱媒液Wcが熱交換器4a,4cに供給されるように構成されている。 Therefore, in the removal system 1 of this example, the heat pump unit 3 (refrigerating cycle 11) is operated at the maximum processing capacity (specifically, the compressor 21 By increasing the rotation speed of), a sufficiently high-temperature heat transfer liquid Wh is supplied from the heating unit 3h to the heat exchanger 4b, and the temperature of the hydrogen gas G is sufficiently increased, and the high-temperature hydrogen gas G is adsorbed. While being supplied to the adsorption tower 2 that performs the capacity regeneration process, a large amount of heat is absorbed by the refrigerant in the evaporator 24 corresponding to the large amount of heat released from the refrigerant in the condenser 22. As a result, the heat is sufficiently low temperature. The medium liquid Wc is configured to be supplied to the heat exchangers 4a and 4c.

この際に、本例の除去システム1では、前述したように、流量調整弁7aが最小の開度となる開弁状態(または全閉状態)に制御されることで、冷却部3cから熱媒液循環路LC1に流入した熱媒液Wcの大半(または全て)が熱交換器4a(二次熱交換部32)を通過させられる。また、熱交換器4a内の流量調整弁33aが最大の開度となる開弁状態(または全開状態)に制御されると共に、流量調整弁33bが最小の開度となる開弁状態(または全閉状態)に制御されることで、導入用配管Piに導入された水素ガスGの大半(または全て)が二次熱交換部32を通過させられた後に一次熱交換部31を再び通過させられる。これにより、熱媒液Wcとの熱交換によって二次熱交換部32において水素ガスGが十分に冷却されて(水素ガスGの熱が熱媒液Wcに好適に吸熱されて)水素ガスGに含まれている水分が好適に除去されると共に、二次熱交換部32を通過させられた水素ガスGとの熱交換によって一次熱交換部31において水素ガスGが十分に冷却されて(一次熱交換部31を通過している水素ガスGの熱が排出口30oから排出される水素ガスGに好適に吸熱されて)水分が好適に除去される結果、多量の水分を含んだ水素ガスGが吸着除去処理を行っている吸着塔2に流入する事態が好適に回避される。 At this time, in the removal system 1 of the present embodiment, as described above, the flow control valve 7a is controlled to the minimum open state (or fully closed state), so that the heat medium is removed from the cooling unit 3c. Most (or all) of the heat transfer liquid Wc that has flowed into the liquid circulation path LC1 is allowed to pass through the heat exchanger 4a (secondary heat exchange section 32). In addition, the flow control valve 33a in the heat exchanger 4a is controlled to the maximum open state (or fully open state), and the flow control valve 33b is controlled to the minimum open state (or fully open state). closed state), most (or all) of the hydrogen gas G introduced into the introduction pipe Pi is allowed to pass through the secondary heat exchange section 32 and then through the primary heat exchange section 31 again. . As a result, the hydrogen gas G is sufficiently cooled in the secondary heat exchange section 32 by heat exchange with the heat medium liquid Wc (the heat of the hydrogen gas G is preferably absorbed by the heat medium liquid Wc), and the hydrogen gas G The contained moisture is preferably removed, and the hydrogen gas G is sufficiently cooled in the primary heat exchange section 31 by heat exchange with the hydrogen gas G that has passed through the secondary heat exchange section 32 (primary heat The heat of the hydrogen gas G passing through the exchange part 31 is favorably absorbed by the hydrogen gas G discharged from the discharge port 30o, and the moisture is favorably removed, resulting in the hydrogen gas G containing a large amount of moisture. The situation of flowing into the adsorption tower 2 which is performing adsorption removal processing is suitably avoided.

さらに、本例の除去システム1では、前述したように、流量調整弁7bが最小の開度となる開弁状態(または全閉状態)に制御されることで、冷却部3cから熱媒液循環路LC2に流入した熱媒液Wcの大半(または全て)が熱交換器4c(二次熱交換部42)を通過させられる。また、熱交換器4c内の流量調整弁43aが最大の開度となる開弁状態(または全開状態)に制御されると共に、流量調整弁43bが最小の開度となる開弁状態(または全閉状態)に制御されることで、吸着能力再生処理の対象の吸着塔2を通過させられた水素ガスGの大半(または全て)が二次熱交換部42を通過させられた後に一次熱交換部41を再び通過させられる。これにより、熱媒液Wcとの熱交換によって二次熱交換部42において水素ガスGが十分に冷却されて(水素ガスGの熱が熱媒液Wcに好適に吸熱されて)水素ガスGに含まれている水分が好適に除去されると共に、二次熱交換部42を通過させられた水素ガスGとの熱交換によって一次熱交換部41において水素ガスGが十分に冷却されて(一次熱交換部41を通過している水素ガスGの熱が排出口40oから排出される水素ガスGに好適に吸熱されて)水分が好適に除去される結果、多量の水分を含んだ水素ガスGが吸着除去処理を行っている吸着塔2に流入する事態が好適に回避される。 Furthermore, in the removal system 1 of the present embodiment, as described above, the flow control valve 7b is controlled to the minimum opening state (or fully closed state), thereby circulating the heat transfer fluid from the cooling unit 3c. Most (or all) of the heat transfer fluid Wc that has flowed into the path LC2 is allowed to pass through the heat exchanger 4c (secondary heat exchange section 42). In addition, the flow control valve 43a in the heat exchanger 4c is controlled to the maximum open state (or fully open state), and the flow control valve 43b is controlled to the minimum open state (or fully open state). closed state), most (or all) of the hydrogen gas G that has passed through the adsorption tower 2 to be subjected to the adsorption capacity regeneration process is passed through the secondary heat exchange section 42, and then the primary heat exchange It is made to pass through part 41 again. As a result, the hydrogen gas G is sufficiently cooled in the secondary heat exchange section 42 by heat exchange with the heat medium liquid Wc (the heat of the hydrogen gas G is suitably absorbed by the heat medium liquid Wc), and the hydrogen gas G The contained moisture is preferably removed, and the hydrogen gas G is sufficiently cooled in the primary heat exchange section 41 by heat exchange with the hydrogen gas G that has passed through the secondary heat exchange section 42 (primary heat The heat of the hydrogen gas G passing through the exchange part 41 is favorably absorbed by the hydrogen gas G discharged from the discharge port 40o, and the moisture is favorably removed, resulting in the hydrogen gas G containing a large amount of moisture. The situation of flowing into the adsorption tower 2 which is performing adsorption removal processing is suitably avoided.

これにより、ヒートポンプユニット3(冷凍サイクル11)を最大限の処理能力で動作させることで得られる温熱(凝縮器22において冷媒から放熱される熱)および冷熱(蒸発器24において冷媒に吸熱される熱)の均衡を保ちつつ、吸着能力再生処理の対象の吸着塔2を短時間で効率良く再生し、かつ吸着除去処理の対象の吸着塔2の吸着能力が短時間で大きく低下する事態を好適に回避することが可能となっている。 As a result, hot heat (heat radiated from the refrigerant in the condenser 22) and cold heat (heat absorbed by the refrigerant in the evaporator 24) obtained by operating the heat pump unit 3 (refrigeration cycle 11) at the maximum processing capacity ), the adsorption tower 2 to be subjected to the adsorption capacity regeneration treatment is efficiently regenerated in a short time, and the adsorption capacity of the adsorption tower 2 to be subjected to the adsorption removal treatment is greatly reduced in a short time. It is possible to avoid.

一方、吸着能力再生処理を継続することによって吸着剤に吸着された状態の水分が徐々に減少する。また、高温の水素ガスGに接している耐圧容器や吸着剤の温度も十分に高い温度となる。したがって、処理開始からある程度経過したときには、吸着能力再生処理を行っている吸着塔2に供給する水素ガスGの温度をある程度低下させても、吸着剤から水分を十分に離脱させることが可能となる。このため、加熱部3hから熱交換器4bに供給する熱媒液Whの温度を処理開始直後よりも低下させたり、単位時間当りの熱媒液Whの供給量を減少させたりすることが可能となり、これに応じて、ヒートポンプユニット3(冷凍サイクル11)やポンプ12a,12bの処理能力を低下させて電力消費量を低減することが可能となる。 On the other hand, by continuing the adsorption capacity regeneration process, the amount of water adsorbed by the adsorbent gradually decreases. Also, the temperature of the pressure-resistant container and the adsorbent that are in contact with the high-temperature hydrogen gas G is sufficiently high. Therefore, when a certain amount of time has passed since the start of the treatment, even if the temperature of the hydrogen gas G supplied to the adsorption tower 2 undergoing the adsorption capacity regeneration treatment is lowered to some extent, it is possible to sufficiently desorb moisture from the adsorbent. . Therefore, it is possible to lower the temperature of the heat transfer liquid Wh supplied from the heating unit 3h to the heat exchanger 4b than immediately after the start of processing, or to reduce the amount of the heat transfer liquid Wh supplied per unit time. Accordingly, power consumption can be reduced by lowering the processing capacity of the heat pump unit 3 (refrigerating cycle 11) and the pumps 12a and 12b.

この際に、ヒートポンプユニット3(冷凍サイクル11)を温熱源および冷熱源とする本例の除去システム1では、前述したように、加熱部3hにおいて熱媒液Whを加熱する度合いに応じて冷却部3cにおいて熱媒液Wcが冷却される。言い換えれば、加熱部3hにおいて熱媒液Whを加熱する熱量を減少させるときには、冷却部3cにおいて熱媒液Wcを冷却する熱量、すなわち、熱交換器4a,4cにおいて水素ガスGから熱媒液Wcに吸熱する熱量を減少させる必要がある。したがって、本例の除去システム1では、制御部15が、ヒートポンプユニット3(冷凍サイクル11)の処理能力を低下させる(具体的には、圧縮機21の回転数を低下させる)制御と相俟って、流量調整弁7aの開度を大きくする制御、および流量調整弁7bの開度を大きくする制御を実行する。 At this time, in the removal system 1 of the present embodiment that uses the heat pump unit 3 (refrigerating cycle 11) as a heat source and a cold heat source, as described above, the cooling portion The heat transfer fluid Wc is cooled at 3c. In other words, when the heat amount for heating the heat medium liquid Wh in the heating unit 3h is reduced, the heat amount for cooling the heat medium liquid Wc in the cooling unit 3c, that is, the heat amount for cooling the heat medium liquid Wc in the heat exchangers 4a and 4c is reduced from the hydrogen gas G to the heat medium liquid Wc It is necessary to reduce the amount of heat absorbed by Therefore, in the removal system 1 of this example, the control unit 15 reduces the processing capacity of the heat pump unit 3 (refrigeration cycle 11) (specifically, reduces the rotation speed of the compressor 21). Then, control to increase the opening degree of the flow rate adjustment valve 7a and control to increase the opening degree of the flow rate adjustment valve 7b are executed.

この際に、流量調整弁7aの開度が大きくなることで、冷却部3cから熱媒液循環路LC1に流入した熱媒液Wcの一部が熱交換器4a(二次熱交換部32)を通過させずに冷却部3cに戻ることとなる。したがって、流量調整弁7aの開度が大きくなることで、熱交換器4aにおいて水素ガスGから熱媒液Wcに吸熱される熱量が減少する。また、流量調整弁7bの開度が大きくなることで、冷却部3cから熱媒液循環路LC2に流入した熱媒液Wcの一部が熱交換器4c(二次熱交換部42)を通過させずに冷却部3cに戻ることとなる。したがって、流量調整弁7bの開度が大きくなることで、熱交換器4cにおいて水素ガスGから熱媒液Wcに吸熱される熱量が減少する。 At this time, part of the heat medium liquid Wc that has flowed into the heat medium liquid circulation path LC1 from the cooling section 3c is transferred to the heat exchanger 4a (secondary heat exchange section 32) by increasing the opening degree of the flow rate adjustment valve 7a. It returns to the cooling part 3c without passing through. Therefore, the amount of heat absorbed by the heat transfer liquid Wc from the hydrogen gas G in the heat exchanger 4a is reduced by increasing the opening degree of the flow rate control valve 7a. In addition, as the opening degree of the flow rate adjustment valve 7b increases, part of the heat medium liquid Wc that has flowed into the heat medium liquid circulation path LC2 from the cooling section 3c passes through the heat exchanger 4c (secondary heat exchange section 42). It returns to the cooling part 3c without cooling. Therefore, the amount of heat absorbed by the heat transfer liquid Wc from the hydrogen gas G in the heat exchanger 4c is reduced by increasing the opening degree of the flow rate control valve 7b.

この場合、前述したように、吸着能力再生処理を継続することによって吸着剤に吸着されている水分が徐々に減少するため、熱交換器4cに流入する水素ガスGに含まれる水分、すなわち、熱交換器4cにおいて水素ガスGから除去可能な水分が徐々に減少する。このため、熱交換器4cにおいて水素ガスGを冷却するのに必要となる冷熱の熱量が徐々に低下する。その一方では、導入用配管Piに導入される水素ガスGに含まれる水分の量は、吸着能力再生処理の進捗状況とは無関係であるため、熱交換器4aにおいて水素ガスGから水分を除去するのに必要となる冷熱の熱量は大きく変化しないものの、導入される水素ガスGに含まれる水分の量が多いときには、熱交換器4aにおいて必要となる冷熱の熱量が多くなり、導入される水素ガスGに含まれる水分の量が少ないときには、熱交換器4aにおいて必要となる冷熱の熱量が少なくなる。 In this case, as described above, the moisture adsorbed by the adsorbent gradually decreases by continuing the adsorption capacity regeneration process. Moisture that can be removed from the hydrogen gas G in the exchanger 4c gradually decreases. Therefore, the amount of cold heat required to cool the hydrogen gas G in the heat exchanger 4c gradually decreases. On the other hand, since the amount of moisture contained in the hydrogen gas G introduced into the introduction pipe Pi is irrelevant to the progress of the adsorption capacity regeneration process, the moisture is removed from the hydrogen gas G in the heat exchanger 4a. Although the heat amount of the cold heat required for this does not change greatly, when the amount of moisture contained in the hydrogen gas G to be introduced is large, the heat amount of the cold heat required in the heat exchanger 4a increases, and the introduced hydrogen gas When the amount of moisture contained in G is small, the amount of cooling heat required in the heat exchanger 4a is small.

したがって、本例の除去システム1では、熱交換器4aにおいて必要とされる冷熱の熱量(熱交換器4aに流入する水素ガスGに含まれている水分の量)、および熱交換器4cにおいて必要とされる冷熱の熱量(熱交換器4cに流入する水素ガスGに含まれている水分の量)に応じて、制御部15が流量調整弁7a,7bの開度を調整する。 Therefore, in the removal system 1 of this example, the amount of cold heat required in the heat exchanger 4a (the amount of water contained in the hydrogen gas G flowing into the heat exchanger 4a) and the amount of water required in the heat exchanger 4c The controller 15 adjusts the opening degrees of the flow control valves 7a and 7b according to the amount of cold heat (the amount of water contained in the hydrogen gas G flowing into the heat exchanger 4c).

この場合、前述したように、熱交換器4aでは、導入口30iから導入された水素ガスGと、排出口30oから排出される水素ガスGとの一次熱交換部31における熱交換(一次熱交換:予冷)によって水素ガスGから水分が除去されると共に、一次熱交換部31を通過させられた水素ガスGと熱媒液Wcとの二次熱交換部32における熱交換(二次熱交換:本冷)によって水素ガスGから水分がさらに除去される。 In this case, as described above, in the heat exchanger 4a, heat exchange (primary heat exchange : Precooling) removes moisture from the hydrogen gas G, and heat exchange (secondary heat exchange: Moisture is further removed from the hydrogen gas G by the main cooling.

この際に、前述の流量調整弁33aの開度が大きく、かつ流量調整弁33bの開度が小さいとき(二次熱交換部32を通過させられた後に一次熱交換部31を再び通過させられる水素ガスGの量が多いとき)には、一次熱交換部31における予冷の熱交換量が増加して一次熱交換部31において水素ガスGから水分が好適に除去される。しかしながら、排出口30oから排出される水素ガスGの温度が低くなるため、この水素ガスGが吸着除去処理を行う吸着塔2を通過させられることで、吸着塔2(耐圧容器や吸着剤)や流路切換え弁5bの温度が低下する結果、吸着塔2を切り換えたときに、温度低下した状態の吸着塔2や流路切換え弁5bに高温の吸着塔2が接することで結露が生じることがある。このような状態では、吸着塔2を再び切り換えたときに、結露水が排出用配管Poに流入するおそれがある。また、排出口30oから排出される水素ガスGの温度が低い状態では、吸着能力再生処理のために熱交換器4bにおいて水素ガスGを好適な温度まで加熱するのに必要となる温熱の熱量が増加する。 At this time, when the opening degree of the flow rate adjustment valve 33a is large and the opening degree of the flow rate adjustment valve 33b is small (when the flow rate adjustment valve 33b is passed through the secondary heat exchange section 32, it is allowed to pass through the primary heat exchange section 31 again). When the amount of hydrogen gas G is large), the amount of precooling heat exchanged in the primary heat exchange section 31 increases, and moisture is preferably removed from the hydrogen gas G in the primary heat exchange section 31 . However, since the temperature of the hydrogen gas G discharged from the discharge port 30o becomes low, the hydrogen gas G is allowed to pass through the adsorption tower 2 that performs adsorption removal processing, so that the adsorption tower 2 (pressure vessel or adsorbent) or As a result of the decrease in the temperature of the flow path switching valve 5b, when the adsorption tower 2 is switched, dew condensation may occur due to the high-temperature adsorption tower 2 coming into contact with the adsorption tower 2 and the flow path switching valve 5b in a state where the temperature has decreased. be. In such a state, when the adsorption tower 2 is switched again, the condensed water may flow into the discharge pipe Po. In addition, when the temperature of the hydrogen gas G discharged from the discharge port 30o is low, the amount of thermal heat required to heat the hydrogen gas G to a suitable temperature in the heat exchanger 4b for the adsorption capacity regeneration process is To increase.

一方、流量調整弁33aの開度が小さく、かつ流量調整弁33bの開度が大きいとき(二次熱交換部32を通過させられた後に一次熱交換部31を再び通過させられる水素ガスGの量が少ないとき)には、一次熱交換部31における予冷の熱交換量が減少するため、一次熱交換部31において水素ガスGから水分を好適に除去するのが困難となる。したがって、結露水が排出用配管Poに流入したり、熱交換器4bにおいて必要となる温熱の熱量が過剰に多くなったりする事態を招くことなく、一次熱交換部31および二次熱交換部32の双方において水素ガスGから水分を好適に除去することができるように、流量調整弁33a,33bの開度(すなわち、一次熱交換部31における水素ガスGの冷却の度合い)を調整するのが好ましい。 On the other hand, when the opening degree of the flow rate adjustment valve 33a is small and the opening degree of the flow rate adjustment valve 33b is large (the amount of hydrogen gas G that is passed through the secondary heat exchange section 32 and then passed through the primary heat exchange section 31 again When the amount is small), the amount of precooling heat exchanged in the primary heat exchange section 31 decreases, so it becomes difficult to preferably remove moisture from the hydrogen gas G in the primary heat exchange section 31 . Therefore, the primary heat exchange section 31 and the secondary heat exchange section 32 are prevented from flowing into the discharge pipe Po or excessively increasing the amount of thermal heat required in the heat exchanger 4b. It is preferable to adjust the degree of opening of the flow control valves 33a and 33b (that is, the degree of cooling of the hydrogen gas G in the primary heat exchange section 31) so that moisture can be preferably removed from the hydrogen gas G in both preferable.

この場合、熱交換器4aにおける流量調整弁33a,33bの開度の調整(一次熱交換部31における水素ガスGの冷却の度合いの調整)については、熱交換器4a内における水素ガスGの温度変化に基づいて制御される。具体的には、導入口30iから導入された水素ガスGの温度(温度センサ34aによって検出される温度:「第4の温度」の一例)、導入口30iから導入されて一次熱交換部31を通過させられた水素ガスGの温度(温度センサ34bによって検出される温度:「第5の温度」の一例)、および二次熱交換部32を通過させられた水素ガスGの温度(温度センサ34cによって検出される温度:「第6の温度」の一例)をそれぞれ特定する。 In this case, the adjustment of the degree of opening of the flow rate adjustment valves 33a and 33b in the heat exchanger 4a (adjustment of the degree of cooling of the hydrogen gas G in the primary heat exchange section 31) is performed by adjusting the temperature of the hydrogen gas G in the heat exchanger 4a. Controlled based on change. Specifically, the temperature of the hydrogen gas G introduced from the inlet 30i (the temperature detected by the temperature sensor 34a: an example of the "fourth temperature"), the primary heat exchange section 31 introduced from the inlet 30i The temperature of the hydrogen gas G passed through (the temperature detected by the temperature sensor 34b: an example of the “fifth temperature”), and the temperature of the hydrogen gas G passed through the secondary heat exchange section 32 (the temperature sensor 34c The temperature detected by : an example of the "sixth temperature") are specified respectively.

次いで、上記の「第4の温度」および「第6の温度」の温度差(「第3の温度差」の一例)と、「第5の温度」および「第6の温度」の温度差(「第4の温度差」の一例)とを特定すると共に、「第3の温度差」と「第4の温度差」との比が予め規定された目標範囲内の比となるように、流量調整弁33a,33bを制御してバイパス流路33を通過する水素ガスGの流量を調整する(「第4の処理」の一例)。なお、上記の「目標範囲」については、除去システム1の使用環境下に応じて、結露水が排出用配管Poに流入したり、熱交換器4bにおいて必要となる温熱の熱量が過剰に多くなったりする事態を招くことなく、一次熱交換部31において水素ガスGから水分を好適に除去することができる状態となる「第3の温度差と第4の温度差との比」を予め特定することで、各処理の開始に先立って規定される。 Next, the temperature difference between the "fourth temperature" and the "sixth temperature" (an example of the "third temperature difference") and the temperature difference between the "fifth temperature" and the "sixth temperature" ( An example of the "fourth temperature difference") and the flow rate so that the ratio between the "third temperature difference" and the "fourth temperature difference" is within a predetermined target range The adjustment valves 33a and 33b are controlled to adjust the flow rate of the hydrogen gas G passing through the bypass flow path 33 (an example of "fourth processing"). Regarding the above-mentioned "target range", depending on the usage environment of the removal system 1, the condensation water may flow into the discharge pipe Po, or the amount of heat required in the heat exchanger 4b may become excessively large. ``Ratio between the third temperature difference and the fourth temperature difference'' at which moisture can be preferably removed from the hydrogen gas G in the primary heat exchange section 31 without causing a situation where the are defined prior to the start of each process.

また、本例の除去システム1では、制御部15が、流量調整弁33a,33bの開度を調整する制御と並行して、流量調整弁7aの開度を調整する制御を実行する。具体的には、制御部15は、吸着除去処理を行う吸着塔2に流入させられる水素ガスGの温度(温度センサ9によって検出される温度)に基づき、流量調整弁7aを制御して、水素ガスGの温度が高いときに熱交換器4aを通過させられる熱媒液Wcの流量を増加させ、水素ガスGの温度が低いときに熱交換器4aを通過させられる熱媒液Wcの流量を減少させる。これにより、吸着除去処理を行う吸着塔2に対して過剰に低い温度の水素ガスGが流入する事態が回避され、結露水が排出用配管Poに流入する事態を好適に回避することが可能となる。 In addition, in the removal system 1 of this example, the control unit 15 executes control for adjusting the opening degree of the flow rate adjusting valve 7a in parallel with the control for adjusting the opening degrees of the flow rate adjusting valves 33a and 33b. Specifically, the control unit 15 controls the flow rate adjustment valve 7a based on the temperature of the hydrogen gas G flowing into the adsorption tower 2 where the adsorption removal process is performed (the temperature detected by the temperature sensor 9). The flow rate of the heat transfer liquid Wc passed through the heat exchanger 4a is increased when the temperature of the gas G is high, and the flow rate of the heat transfer liquid Wc passed through the heat exchanger 4a is increased when the temperature of the hydrogen gas G is low. Decrease. As a result, it is possible to prevent the hydrogen gas G having an excessively low temperature from flowing into the adsorption tower 2 that performs the adsorption removal process, and to suitably prevent the flow of condensed water into the discharge pipe Po. Become.

また、本例の除去システム1では、制御部15が、熱交換器4c内における水素ガスGの温度変化の状態に応じて流量調整弁43a,43bの開度を調整する制御を実行する。この場合、流量調整弁43aの開度が大きく、かつ流量調整弁43bの開度が小さいとき(二次熱交換部42の後に一次熱交換部41を再び通過させられる水素ガスGの量が多いとき)には、導入口40iから導入された水素ガスGと二次熱交換部42において冷却された水素ガスGとの一次熱交換部41における熱交換量が多くなる。このため、一次熱交換部41において水素ガスGから水分を好適に除去することが可能となるものの、熱交換器4cにおいて必要とされる冷熱の熱量が増加することとなる。また、流量調整弁43aの開度が小さく、かつ流量調整弁43bの開度が大きいとき(二次熱交換部42の後に一次熱交換部41を再び通過させられる水素ガスGの量が少ないとき)には、導入口40iから導入された水素ガスGと二次熱交換部42において冷却された水素ガスGとの一次熱交換部41における熱交換量が少なくなる。このため、熱交換器4cにおいて必要とされる冷熱の熱量が減少するものの、一次熱交換部41において水素ガスGから水分を好適に除去するのが困難となる。 In addition, in the removal system 1 of this example, the control unit 15 executes control for adjusting the opening degrees of the flow rate adjustment valves 43a and 43b according to the state of temperature change of the hydrogen gas G in the heat exchanger 4c. In this case, when the opening degree of the flow rate adjustment valve 43a is large and the opening degree of the flow rate adjustment valve 43b is small (the amount of hydrogen gas G passing through the primary heat exchange section 41 again after the secondary heat exchange section 42 is large) ), the amount of heat exchange in the primary heat exchange section 41 between the hydrogen gas G introduced from the inlet 40i and the hydrogen gas G cooled in the secondary heat exchange section 42 increases. Therefore, although the moisture can be preferably removed from the hydrogen gas G in the primary heat exchange section 41, the amount of cold heat required in the heat exchanger 4c increases. Further, when the opening degree of the flow rate adjustment valve 43a is small and the opening degree of the flow rate adjustment valve 43b is large (when the amount of hydrogen gas G that is allowed to pass through the primary heat exchange section 41 again after the secondary heat exchange section 42 is small, ), the amount of heat exchanged in the primary heat exchange section 41 between the hydrogen gas G introduced from the inlet 40i and the hydrogen gas G cooled in the secondary heat exchange section 42 decreases. Therefore, although the amount of cold heat required in the heat exchanger 4 c is reduced, it becomes difficult to preferably remove the moisture from the hydrogen gas G in the primary heat exchange section 41 .

したがって、流量調整弁7bの開度調整に応じて熱交換器4cに供給される熱媒液Wcの量(すなわち、熱交換器4cに供給される冷熱の熱量)に応じて、一次熱交換部41および二次熱交換部42の双方において水素ガスGから水分を好適に除去することができるように、流量調整弁43,43bの開度(すなわち、導入口40iから導入された水素ガスGと二次熱交換部42において冷却された水素ガスGとの一次熱交換部41における冷却の度合い)を調整するのが好ましい。 Therefore, according to the amount of heat transfer liquid Wc supplied to the heat exchanger 4c according to the opening degree adjustment of the flow rate adjustment valve 7b (that is, the amount of cold heat supplied to the heat exchanger 4c), the primary heat exchange unit 41 and the secondary heat exchange section 42, the opening degree of the flow control valves 43 and 43b (that is, the hydrogen gas G introduced from the inlet 40i and the It is preferable to adjust the degree of cooling in the primary heat exchange section 41 with the hydrogen gas G cooled in the secondary heat exchange section 42 .

この場合、熱交換器4cにおける流量調整弁43a,43bの開度の調整については、熱交換器4c内における水素ガスGの温度変化に基づいて制御される。具体的には、導入口40iから導入された水素ガスGの温度(温度センサ44aによって検出される温度:「第1の温度」の一例)、導入口40iから導入されて一次熱交換部41を通過させられた水素ガスGの温度(温度センサ44bによって検出される温度:「第2の温度」の一例)、および二次熱交換部42から排出される水素ガスGの温度(温度センサ44cによって検出される温度:「第3の温度」の一例)をそれぞれ特定する。 In this case, the adjustment of the opening degrees of the flow control valves 43a and 43b in the heat exchanger 4c is controlled based on the temperature change of the hydrogen gas G in the heat exchanger 4c. Specifically, the temperature of the hydrogen gas G introduced from the inlet 40i (the temperature detected by the temperature sensor 44a: an example of the "first temperature"), the primary heat exchange section 41 introduced from the inlet 40i The temperature of the hydrogen gas G passed through (the temperature detected by the temperature sensor 44b: an example of a “second temperature”) and the temperature of the hydrogen gas G discharged from the secondary heat exchange section 42 (the temperature detected by the temperature sensor 44c Detected temperature: an example of “third temperature”) are specified respectively.

次いで、上記の「第1の温度」および「第3の温度」の温度差(「第1の温度差」の一例)、および「第2の温度」および「第3の温度」の温度差(「第2の温度差」の一例)「それぞれ特定すると共に、「第1の温度差」と「第2の温度差」との比が予め規定された目標範囲内の比となるように、流量調整弁43a,43bを制御してバイパス流路43を通過する水素ガスGの流量を調整する(「第3の処理」の一例)。なお、上記の「目標範囲」については、除去システム1の使用環境下に応じて、熱交換器4cに供給される冷熱の熱量に応じて、一次熱交換部41および二次熱交換部42の双方において水素ガスGから水分を好適に除去することができる状態となる「第1の温度差と第2の温度差との比」を予め特定することで、各処理の開始に先立って規定される。 Next, the temperature difference between the "first temperature" and the "third temperature" (an example of the "first temperature difference") and the temperature difference between the "second temperature" and the "third temperature" ( Example of "second temperature difference") "In addition to specifying each, the flow rate The adjustment valves 43a and 43b are controlled to adjust the flow rate of the hydrogen gas G passing through the bypass flow path 43 (an example of the "third process"). Regarding the above-mentioned “target range”, the primary heat exchange section 41 and the secondary heat exchange section 42 are adjusted according to the usage environment of the removal system 1 and the amount of cold heat supplied to the heat exchanger 4c. By specifying in advance the "ratio between the first temperature difference and the second temperature difference", which is a state in which moisture can be preferably removed from the hydrogen gas G in both cases, it is defined prior to the start of each process. be.

また、本例の除去システム1では、制御部15が、上記のように流量調整弁43a,43bの開度を調整する制御と並行して、流量調整弁7bの開度を調整する制御を実行する。具体的には、制御部15は、吸着除去処理を行う吸着塔2に流入させられる水素ガスGの温度(温度センサ9によって検出される温度)に応じて制御する。この場合、熱交換器4cにおいて冷却された水素ガスGの温度が低いときには、そのような水素ガスGが合流点P2において合流させられた後に吸着除去処理を行う吸着塔2を通過させられることで、吸着塔2(耐圧容器や吸着剤)や流路切換え弁5bの温度が低下することとなる。この結果、吸着塔2を切り換えたときに、温度低下した状態の吸着塔2や流路切換え弁5bに高温の水素ガスGが接することで結露が生じることがある。このような状態では、吸着塔2を再び切り換えたときに、結露水が排出用配管Poに流入するおそれがある。 In addition, in the removal system 1 of this example, the control unit 15 executes control for adjusting the opening degree of the flow rate adjusting valve 7b in parallel with the control for adjusting the opening degrees of the flow rate adjusting valves 43a and 43b as described above. do. Specifically, the control unit 15 performs control according to the temperature of the hydrogen gas G (the temperature detected by the temperature sensor 9) flowing into the adsorption tower 2 where the adsorption removal process is performed. In this case, when the temperature of the hydrogen gas G cooled in the heat exchanger 4c is low, such hydrogen gas G is joined at the confluence point P2 and then passed through the adsorption tower 2 where the adsorption removal process is performed. , the temperature of the adsorption tower 2 (pressure vessel or adsorbent) and the flow path switching valve 5b is lowered. As a result, when the adsorption tower 2 is switched, dew condensation may occur due to contact of the high-temperature hydrogen gas G with the adsorption tower 2 and the flow path switching valve 5b in a state where the temperature is lowered. In such a state, when the adsorption tower 2 is switched again, the condensed water may flow into the discharge pipe Po.

したがって、制御部15は、温度センサ9によって検出される水素ガスGの温度が高いときには、流量調整弁7bの開度を小さくして熱交換器4cを通過させられる熱媒液Wcの流量を増加させ、水素ガスGの温度が低いときには、流量調整弁7bの開度を大きくして熱交換器4cを通過させられる熱媒液Wcの流量を減少させる。これにより、吸着除去処理を行う吸着塔2に対して過剰に低い温度の水素ガスGが流入する事態が回避され、結露水が排出用配管Poに流入する事態を好適に回避することが可能となる。 Therefore, when the temperature of the hydrogen gas G detected by the temperature sensor 9 is high, the control unit 15 decreases the degree of opening of the flow regulating valve 7b to increase the flow rate of the heat transfer fluid Wc passing through the heat exchanger 4c. When the temperature of the hydrogen gas G is low, the degree of opening of the flow control valve 7b is increased to reduce the flow rate of the heat transfer liquid Wc passing through the heat exchanger 4c. As a result, it is possible to prevent the hydrogen gas G having an excessively low temperature from flowing into the adsorption tower 2 that performs the adsorption removal process, and to suitably prevent the flow of condensed water into the discharge pipe Po. Become.

一方、吸着能力再生処理をさらに継続したときには、吸着剤に吸着された状態の水分がさらに少量となり、高温の水素ガスGに接することで吸着剤から離脱する水分の量が極く少量となる。このような状態において、吸着剤に多量の水分が吸着されていたときと同様に加熱部3hから高温の熱媒液Whを供給したときには、熱交換器4bにおいて水素ガスGが同様に加熱されるのにも拘わらず、吸着能力再生処理を行っている吸着塔2において吸着剤から水分を離脱させるのに消費される温熱の量が減少するため、結果として、吸着塔2から排出される水素ガスGの温度が高温となる。この際には、吸着塔2から排出された水素ガスGが熱交換器4cにおける冷却の分だけ温度低下するものの、熱交換器4cから排出される水素ガスGの温度が高温となる。このため、吸着除去処理を行っている吸着塔2に流入する水素ガスGの温度が高温となり、その相対湿度が低くなることで吸着剤に水分を好適に吸着させるのが困難になると共に、最終的に排出用配管Poに排出される水素ガスGの温度が高温となる。 On the other hand, when the adsorption capacity regeneration process is continued further, the amount of moisture adsorbed by the adsorbent becomes even smaller, and the amount of moisture detached from the adsorbent upon contact with the high-temperature hydrogen gas G becomes extremely small. In this state, when the high-temperature heat transfer liquid Wh is supplied from the heating unit 3h in the same manner as when a large amount of moisture is adsorbed on the adsorbent, the hydrogen gas G is similarly heated in the heat exchanger 4b. In spite of this, the amount of heat consumed to desorb moisture from the adsorbent in the adsorption tower 2 that is performing the adsorption capacity regeneration treatment decreases, and as a result, the hydrogen gas discharged from the adsorption tower 2 The temperature of G becomes high. At this time, although the temperature of the hydrogen gas G discharged from the adsorption tower 2 is lowered by the cooling in the heat exchanger 4c, the temperature of the hydrogen gas G discharged from the heat exchanger 4c becomes high. For this reason, the temperature of the hydrogen gas G flowing into the adsorption tower 2 that is performing the adsorption removal process becomes high, and the relative humidity becomes low, making it difficult to cause the adsorbent to adsorb moisture appropriately. As a result, the temperature of the hydrogen gas G discharged to the discharge pipe Po becomes high.

したがって、本例の除去システム1では、制御部15が、温度センサ9によって検出される水素ガスGの温度が許容範囲を超えて高い温度に変化したときに、熱交換器4cと合流点P2との間に配設されている流量調整弁6の開度を小さくする制御(水素ガスGの通過量を減少させる制御:「第3の熱交換器を通過させられた気体の温度に基づいて第3の流量調整部を制御して第3の熱交換器を通過する気体の流量を調整させる第5の処理」の一例)を実行する。これにより、吸着除去処理を行っている吸着塔2に流入する水素ガスGが過剰に高温となる事態が回避される。 Therefore, in the removal system 1 of this example, when the temperature of the hydrogen gas G detected by the temperature sensor 9 changes to a high temperature exceeding the allowable range, the heat exchanger 4c and the confluence point P2 Control to reduce the opening degree of the flow rate adjustment valve 6 disposed between (control to reduce the amount of hydrogen gas G passing through: "based on the temperature of the gas passed through the third heat exchanger An example of "the fifth process for controlling the flow rate adjusting unit 3 to adjust the flow rate of the gas passing through the third heat exchanger") is executed. This avoids a situation in which the hydrogen gas G flowing into the adsorption tower 2 undergoing the adsorption removal process becomes excessively hot.

また、本例の除去システム1では、前述したように、導入用配管Piに導入される水素ガスGに含まれている水分の量や、吸着能力再生処理の進捗状況などに応じてヒートポンプユニット3(冷凍サイクル11)の動作状態や各流量調整弁7a,7b,33a,33b,43a,43bの開度の調整が行われる。この場合、導入用配管Piに導入される水素ガスGに含まれている水分の量については、一例として、単位時間当りに導入用配管Piに導入される水素ガスGの量およびその温度、単位時間当りに熱交換器4aに供給される熱媒液Wcの量およびその温度、並びに単位時間当りに熱交換器4aから排水された水分の量に基づいて特定することができる。 Further, in the removal system 1 of this example, as described above, the heat pump unit 3 The operation state of (refrigerating cycle 11) and the opening degree of each flow control valve 7a, 7b, 33a, 33b, 43a, 43b are adjusted. In this case, regarding the amount of water contained in the hydrogen gas G introduced into the introduction pipe Pi, for example, the amount of hydrogen gas G introduced into the introduction pipe Pi per unit time, its temperature, and the unit It can be specified based on the amount and temperature of the heat transfer fluid Wc supplied to the heat exchanger 4a per hour and the amount of water drained from the heat exchanger 4a per unit time.

また、単位時間当りに導入用配管Piに導入された水素ガスGの量は、圧縮機の回転数に基づいて特定することができる。また、本例の除去システム1では、前述したように、貯水部8aが、熱交換器4aにおいて水素ガスGから除去されて熱交換器4aから排水された水分が「第1の規定量」に達したときに、その一部の「第2の規定量」を外部に排出(排水)すると共に、排出したことを報知する信号を制御部15に出力する構成が採用されている。したがって、貯水部8aからの信号の出力頻度に基づき、貯水部8aから単位時間当りに排出された水分の量(第2の規定量)を特定することができる。また、単位時間当りに熱交換器4aに供給される熱媒液Wcの量は、ポンプ12aの回転数、流量調整弁7a,7bの開度に基づいて特定することができ、熱媒液Wcの温度は、ヒートポンプユニット3(冷却部3c)に設けられている図示しない温度センサによって検出することができる。 Also, the amount of hydrogen gas G introduced into the introduction pipe Pi per unit time can be specified based on the rotation speed of the compressor. Further, in the removal system 1 of the present embodiment, as described above, the water storage part 8a is configured such that the moisture removed from the hydrogen gas G in the heat exchanger 4a and discharged from the heat exchanger 4a reaches the "first specified amount". A configuration is adopted in which, when the amount is reached, a portion of the “second specified amount” is discharged (drained) to the outside and a signal notifying the discharge is output to the control unit 15 . Therefore, based on the output frequency of the signal from the water storage portion 8a, the amount of water discharged per unit time (second specified amount) from the water storage portion 8a can be specified. Further, the amount of the heat transfer liquid Wc supplied to the heat exchanger 4a per unit time can be specified based on the rotational speed of the pump 12a and the opening degrees of the flow rate control valves 7a and 7b. can be detected by a temperature sensor (not shown) provided in the heat pump unit 3 (cooling section 3c).

また、吸着能力再生処理の進捗状況については、一例として、吸着塔2内の吸着剤が吸着可能な水分の量と、熱交換器4cから排出された水分の量(すなわち、吸着塔2において水素ガスGから除去された水分の量)とに基づいて特定することができる。具体的には、本例の除去システム1では、前述したように、 貯水部8bが、熱交換器4cにおいて水素ガスGから除去されて熱交換器4cから排水された水分が「第3の規定量」に達したときに、その一部の「第4の規定量」を外部に排出(排水)すると共に、排出したことを報知する信号を制御部15に出力する構成が採用されている。 In addition, regarding the progress of the adsorption capacity regeneration process, as an example, the amount of moisture that can be adsorbed by the adsorbent in the adsorption tower 2 and the amount of moisture discharged from the heat exchanger 4c (that is, the amount of hydrogen in the adsorption tower 2 amount of water removed from the gas G). Specifically, in the removal system 1 of the present example, as described above, the water storage section 8b removes water from the hydrogen gas G in the heat exchanger 4c and drains water from the heat exchanger 4c. A configuration is adopted in which, when reaching the "amount", a part of the "fourth prescribed amount" is discharged (drained) to the outside and a signal notifying the discharge is output to the control unit 15.

したがって、貯水部8bから出力される信号に基づき、貯水部8bから排出された水分の量(第4の規定量の積算量)を特定することができ、特定した量に基づいて、吸着能力再生処理が行われている吸着塔2において吸着剤から離脱させられた水分の量を推定することができる。また、各吸着塔2内の吸着剤が吸着可能な水分の量が既知であるため、この既知の水分の量と、吸着剤から離脱させられたと推定される水分の量とに基づき、吸着能力再生処理の進捗状況、すなわち、吸着能力再生処理を行っている吸着塔2内の吸着剤がどの程度の水分を吸着している状態であるか(どの程度の水分を吸着可能な状態であるか)を特定することができる。 Therefore, based on the signal output from the water storage part 8b, the amount of water discharged from the water storage part 8b (the integrated amount of the fourth specified amount) can be specified, and based on the specified amount, the adsorption capacity regeneration It is possible to estimate the amount of water that has been desorbed from the adsorbent in the adsorption tower 2 that is being treated. In addition, since the amount of moisture that can be adsorbed by the adsorbent in each adsorption tower 2 is known, based on this known amount of moisture and the estimated amount of moisture desorbed from the adsorbent, The progress of the regeneration process, that is, how much moisture the adsorbent in the adsorption tower 2 undergoing the adsorption capacity regeneration process is in (how much moisture can be adsorbed) ) can be specified.

これにより、本例の除去システム1では、吸着能力再生処理に必要な温熱の熱量(加熱部3hにおいて熱媒液Whを加熱すべき熱量)や、熱交換器4a,4cにおける水素ガスGの冷却に必要な冷熱の熱量(冷却部3cにおいて熱媒液Wcを冷却すべき熱量)に応じてヒートポンプユニット3(冷凍サイクル11)の動作状態や各流量調整弁7a,7b,33a,33b,43a,43bの開度を調整することができるため、ヒートポンプユニット3(冷凍サイクル11)やポンプ12a,12bを不必要に高い処理能力で動作させることなく、吸着除去処理および吸着能力再生処理を実行することが可能となっている。 As a result, in the removal system 1 of the present example, the amount of thermal heat required for the adsorption capacity regeneration process (the amount of heat to heat the heat transfer liquid Wh in the heating unit 3h) and the cooling of the hydrogen gas G in the heat exchangers 4a and 4c The operating state of the heat pump unit 3 (refrigerating cycle 11) and the flow control valves 7a, 7b, 33a, 33b, 43a, 43b can be adjusted, the adsorption removal process and the adsorption capacity regeneration process can be executed without operating the heat pump unit 3 (refrigeration cycle 11) and the pumps 12a and 12b with unnecessarily high processing capacity. is possible.

なお、本例の除去システム1では、制御部15が、吸着除去処理を行う吸着塔2および吸着能力再生処理を行う吸着塔2を切り換える「第2の処理」を実行する条件として、次に説明する4つの切換え条件のうちから除去システム1の使用環境に応じて任意の条件を選択することが可能となっている。 In the removal system 1 of the present embodiment, the conditions for executing the "second process" in which the control unit 15 switches between the adsorption tower 2 that performs the adsorption removal process and the adsorption tower 2 that performs the adsorption capacity regeneration process are described below. An arbitrary condition can be selected from among the four switching conditions according to the usage environment of the removal system 1 .

具体的には、第1の切換え条件(「第1の条件」の一例)が選択されているときに、制御部15は、吸着除去処理を行う吸着塔2を通過させられた水素ガスGに含まれている水分の量に応じて変化するパラメータ(一例として、湿度センサ10によって検出される水素ガスGの湿度:「第1のパラメータ」の一例)が、予め規定された許容範囲(排出用配管Poに排出される水素ガスGに含まれる水分の量として許容されている範囲:「第1の範囲」の一例)の上限に達したときに、吸着除去処理を行う吸着塔2内の吸着剤の吸着能力が予め規定された能力(水素ガスGに含まれる水分を好適に吸着することが可能な吸着能力:「第1の能力」の一例)を下回る状態になったと判別して吸着塔2を切り換える。 Specifically, when the first switching condition (an example of the “first condition”) is selected, the control unit 15 causes the hydrogen gas G passed through the adsorption tower 2 to perform the adsorption removal process to A parameter that changes according to the amount of moisture contained (for example, the humidity of the hydrogen gas G detected by the humidity sensor 10: an example of a “first parameter”) is within a predetermined allowable range (emission Allowable range for the amount of water contained in the hydrogen gas G discharged to the pipe Po: an example of the "first range") When the upper limit is reached, the adsorption in the adsorption tower 2 that performs the adsorption removal process It is determined that the adsorption capacity of the agent is below a predetermined capacity (adsorption capacity capable of favorably adsorbing moisture contained in hydrogen gas G: an example of "first capacity"), and the adsorption tower Switch 2.

また、第2の切換え条件(「第2の条件」の一例)が選択されているときに、制御部15は、吸着能力再生処理を行う吸着塔2を通過させられた水素ガスGに含まれている水分の量に応じて変化するパラメータ(一例として、吸着能力再生処理を行う吸着塔2において水素ガスGから除去された水分の量:単位時間当りに貯水部8bから排出される水分の量:「第2のパラメータ」の一例)が、予め規定された許容範囲(合流点P2において合流させられる水素ガスGに含まれる水分の量として許容されている範囲:「第2の範囲」の一例)の上限に達したときに、吸着能力再生処理を行う吸着塔2内の吸着剤の吸着能力が予め規定された能力(水素ガスGに含まれる水分を好適に吸着することが可能な吸着能力:「第2の能力」の一例)を超える状態になったと判別して吸着塔2を切り換える。 Further, when the second switching condition (an example of the “second condition”) is selected, the control unit 15 controls the A parameter that changes according to the amount of water stored (for example, the amount of water removed from the hydrogen gas G in the adsorption tower 2 that performs the adsorption capacity regeneration process: the amount of water discharged from the water reservoir 8b per unit time : an example of a "second parameter") is a predetermined allowable range (a range allowed as the amount of water contained in the hydrogen gas G merged at the confluence point P2: an example of a "second range" ), the adsorption capacity of the adsorbent in the adsorption tower 2 that performs the adsorption capacity regeneration process is predetermined (adsorption capacity that can suitably adsorb moisture contained in the hydrogen gas G : an example of the "second capacity"), and switches the adsorption tower 2.

また、第3の切換え条件(「第3の条件」の一例)が選択されているときに、制御部15は、吸着除去処理を開始してからの経過時間が予め規定された時間(吸着除去処理を行っている吸着塔2の吸着除去能力が水分を好適に吸着することが困難となるまでの時間:「第1の時間」の一例)に達したときに吸着塔2を切り換える。また、第4の切換え条件(「第4の条件」の一例)が選択されているときに、制御部15は、吸着能力再生処理を開始してからの経過時間が予め規定された時間(吸着能力再生処理を行っている吸着塔2が水分を好適に吸着除去可能な状態に再生されるまでの時間:「第2の時間」の一例)に達したときに吸着塔2を切り換える。 Further, when the third switching condition (an example of the “third condition”) is selected, the control unit 15 sets the elapsed time from the start of the adsorption removal process to the predetermined time (adsorption removal The adsorption tower 2 is switched when the adsorption removal capacity of the adsorption tower 2 performing the treatment reaches the time until it becomes difficult to preferably adsorb moisture: an example of the “first time”). Further, when the fourth switching condition (an example of the “fourth condition”) is selected, the controller 15 sets the predetermined time (adsorption The adsorption tower 2 is switched when the time until the adsorption tower 2 undergoing the capacity regeneration process is regenerated to a state in which moisture can be preferably adsorbed and removed: an example of the “second time”).

この場合、吸着能力再生処理を行っている吸着塔2における吸着剤の吸着能力がどの程度再生されたかを問わず、吸着除去処理を行っている吸着塔2における吸着剤の吸着能力が限界に達するまで処理を継続させるときには、切換え条件1、または切換え条件3を選択する。また、吸着除去処理を行っている吸着塔2における吸着剤の吸着能力がどの程度であるかを問わず、吸着能力再生処理を行っている吸着塔2における吸着剤の吸着能力が十分に再生されたときに吸着塔2を切り換えるときには、切換え条件2、または切換え条件4を選択する。なお、この場合、本例の除去システム1では、上記の各切換え条件を単独で選択するだけでなく、2つ、または3つを任意に組み合わせて選択したり、4つすべてを選択したりすることが可能となっている。この場合、複数の切換え条件が選択されているときに、制御部15は、選択された各条件のうちのいずれかが満たされたときに吸着塔2を切り換える。 In this case, regardless of how much the adsorption capacity of the adsorbent in the adsorption tower 2 undergoing the adsorption capacity regeneration process has been regenerated, the adsorption capacity of the adsorbent in the adsorption tower 2 undergoing the adsorption removal process reaches its limit. If the process is to be continued until then, switching condition 1 or switching condition 3 is selected. In addition, regardless of the extent of the adsorption capacity of the adsorbent in the adsorption tower 2 undergoing the adsorption removal process, the adsorption capacity of the adsorbent in the adsorption tower 2 undergoing the adsorption capacity regeneration process is sufficiently regenerated. Switching condition 2 or switching condition 4 is selected when switching the adsorption tower 2 when In this case, in the removal system 1 of this example, not only each of the above switching conditions is selected alone, but also two or three in arbitrary combination, or all four are selected. It is possible. In this case, when a plurality of switching conditions are selected, the controller 15 switches the adsorption tower 2 when one of the selected conditions is satisfied.

以上の説明のように、本例の除去システム1では、2つの吸着塔2を備えて吸着除去処理および吸着能力再生処理を並行して実行し、選択された切換え条件が満たされたときに吸着塔2を切り換えることで、順次導入される水素ガスGから継続的に水分を除去することが可能となっている。 As described above, the removal system 1 of the present embodiment includes two adsorption towers 2 to execute the adsorption removal process and the adsorption capacity regeneration process in parallel, and when the selected switching condition is satisfied, the adsorption By switching the tower 2, it is possible to continuously remove moisture from the hydrogen gas G that is sequentially introduced.

このように、この「吸着剤再生装置(除去システム1における吸着塔2a,2bを除く構成要素からなる装置)」では、複数の吸着塔2(本例では、吸着塔2a,2bの2つ)を備えて各吸着塔2の一部を対象とする吸着除去処理と各吸着塔2の他の一部を対象とする加熱再生方式の吸着能力再生処理とを並行して実行可能に構成された除去システム1における吸着剤を再生可能に構成され、吸着能力再生処理を行う吸着塔2に流入させる水素ガスGを加熱する熱交換器4bと、吸着除去処理を行う吸着塔2および熱交換器4bに流入させられる水素ガスGを冷却する熱交換器4aと、吸着能力再生処理を行う吸着塔2を通過させられた水素ガスGを冷却する熱交換器4cと、冷凍サイクル11における凝縮器22からの放熱によって熱媒液Whを加熱可能な加熱部3h、および冷凍サイクル11における蒸発器24による吸熱によって熱媒液Wcを冷却可能な冷却部3cを備えたヒートポンプユニット3と、吸着除去処理を行う吸着塔2を通過させられた水素ガスGを、水分の除去が完了した水素ガスGを流入させるべき排出用配管Poに流入させると共に、熱交換器4bによって加熱された水素ガスGを、吸着能力再生処理を行う吸着塔2に流入させる流路切換え弁5bと、熱交換器4aによって冷却された水素ガスGを、吸着除去処理を行う吸着塔2に流入させると共に、吸着能力再生処理を行う吸着塔2を通過させられた水素ガスGを、熱交換器4cに流入させる流路切換え弁5aと、加熱部3hによる熱媒液Whの加熱、熱交換器4bへの熱媒液Whの供給、冷却部3cによる熱媒液Wcの冷却、熱交換器4aへの熱媒液Wcの供給、および熱交換器4cへの熱媒液Wcの供給を制御する「第1の処理」と、流路切換え弁5a,5bを制御して吸着除去処理を行う吸着塔2および吸着能力再生処理を行う吸着塔2を切り換える「第2の処理」とを実行する制御部15とを備え、熱交換器4cを通過させられた水素ガスGが、熱交換器4aを通過させられた水素ガスGに合流させられて流路切換え弁5aを介して吸着除去処理を行う吸着塔2に流入させられると共に、熱交換器4a,4cが、一次熱交換部31,41および二次熱交換部32,42を備え、導入口30i,40iから導入された水素ガスGが、一次熱交換部31,41、二次熱交換部32,42および一次熱交換部31,41をこの順で通過させられて排出口30o,40oから排出されるように水素ガスGの流路が形成されると共に、二次熱交換部32,42において熱媒液Wcとの熱交換によって水素ガスGに含まれている水分が液相化されて除去され、かつ、一次熱交換部31,41において二次熱交換部32,42によって冷却された水素ガスGとの熱交換によって導入口30i,40iから導入された水素ガスGに含まれている水分が液相化されて除去されるようにそれぞれ構成されている。また、この「吸着剤再生装置」では、「気体」としての水素ガスから「除去対象」としての水分を除去可能に構成された除去システム1における吸着剤の吸着能力を再生可能に構成されている。さらに、この除去システム1では、上記の「吸着剤再生装置」と各吸着塔2とを備えて水素ガスGから水分を除去可能に構成されている。 Thus, in this "adsorbent regeneration device (device consisting of components other than the adsorption towers 2a and 2b in the removal system 1)", a plurality of adsorption towers 2 (in this example, two adsorption towers 2a and 2b) Adsorption removal treatment targeting a part of each adsorption tower 2 and adsorption capacity regeneration treatment of a thermal regeneration method targeting another part of each adsorption tower 2 can be executed in parallel The heat exchanger 4b configured to regenerate the adsorbent in the removal system 1 heats the hydrogen gas G flowing into the adsorption tower 2 for performing the adsorption capacity regeneration process, and the adsorption tower 2 and the heat exchanger 4b for performing the adsorption removal process. A heat exchanger 4a that cools the hydrogen gas G flowing into, a heat exchanger 4c that cools the hydrogen gas G that has passed through the adsorption tower 2 that performs the adsorption capacity regeneration process, and a condenser 22 in the refrigeration cycle 11 and a cooling unit 3c capable of cooling the heat medium liquid Wc by absorbing heat from the evaporator 24 in the refrigerating cycle 11; The hydrogen gas G that has passed through the adsorption tower 2 is allowed to flow into the discharge pipe Po into which the hydrogen gas G whose moisture has been removed is to flow, and the hydrogen gas G heated by the heat exchanger 4b is transferred to the adsorption capacity The hydrogen gas G cooled by the flow path switching valve 5b and the heat exchanger 4a is flowed into the adsorption tower 2 for performing the adsorption removal treatment, and the adsorption capacity regeneration treatment is performed. A flow path switching valve 5a that allows the hydrogen gas G that has passed through the tower 2 to flow into the heat exchanger 4c, heating of the heat medium liquid Wh by the heating unit 3h, supply of the heat medium liquid Wh to the heat exchanger 4b, A “first process” for controlling cooling of the heat medium liquid Wc by the cooling unit 3c, supply of the heat medium liquid Wc to the heat exchanger 4a, and supply of the heat medium liquid Wc to the heat exchanger 4c; A control unit 15 for performing a "second process" for switching between the adsorption tower 2 for performing the adsorption removal process and the adsorption tower 2 for performing the adsorption capacity regeneration process by controlling the switching valves 5a and 5b, and the heat exchanger 4c. The hydrogen gas G passed through the heat exchanger 4a is combined with the hydrogen gas G passed through the heat exchanger 4a and flowed into the adsorption tower 2 for adsorption removal processing via the flow path switching valve 5a. The exchangers 4a and 4c are provided with primary heat exchange units 31 and 41 and secondary heat exchange units 32 and 42, and the hydrogen gas G introduced from the introduction ports 30i and 40i passes through the primary heat exchange units 31 and 41 and the secondary heat exchange units 32 and 42. The flow path of the hydrogen gas G is formed so that it passes through the heat exchange portions 32, 42 and the primary heat exchange portions 31, 41 in this order and is discharged from the discharge ports 30o, 40o, and the secondary heat exchange portion The moisture contained in the hydrogen gas G is liquefied and removed by heat exchange with the heat medium liquid Wc at 32 and 42, and is removed by the secondary heat exchange portions 32 and 42 at the primary heat exchange portions 31 and 41. By heat exchange with the cooled hydrogen gas G, water contained in the hydrogen gas G introduced from the inlets 30i and 40i is liquefied and removed. In addition, this "adsorbent regeneration device" is configured to regenerate the adsorption capacity of the adsorbent in the removal system 1 configured to be able to remove moisture as the "removal target" from hydrogen gas as the "gas". . Furthermore, the removal system 1 is provided with the above-described "adsorbent regeneration device" and each adsorption tower 2, and is configured to be able to remove moisture from the hydrogen gas G. As shown in FIG.

したがって、この「吸着剤再生装置」および除去システム1によれば、水素ガスGを冷却することで水素ガスGから水分を除去するための冷熱源(例えば、単独で動作する冷凍サイクル)と、加熱再生方式の吸着能力再生処理のために水素ガスGを加熱するための温熱源(例えば電気ヒータ)とを別個に動作させなくても、ヒートポンプユニット3を動作させるだけで、水素ガスGを冷却するための熱媒液Wcを冷却部3cにおいて冷却し、同時に水素ガスGを加熱するための熱媒液Whを加熱部3hにおいて加熱することができる。これにより、水素ガスGからの水分の除去および吸着剤の再生のために消費されるエネルギー量を十分に低減することができる。また、吸着除去処理を行う吸着塔2に水素ガスGを流入させる前に熱交換器4aにおいて水素ガスGに含まれる水分の一部を除去する分だけ、吸着除去処理を行う吸着塔2内の吸着剤の吸着能力の低下を抑制できるため、吸着除去処理を行う吸着塔2に流入させる水素ガスGの量を減少させたり、吸着除去処理を一時的に停止させたりする必要がなくなることから、導入される水素ガスGについての吸着除去処理を短時間で確実に完了させることができる。また、熱交換器4a,4c内に一次熱交換部31,41および二次熱交換部32,42を設けて二次熱交換部32,42において熱媒液Wcとの熱交換によって水素ガスGを冷却しつつ、一次熱交換部31,41において導入口30i,40iから導入される水素ガスGを排出口30o,40oから排出される水素ガスG(すなわち、二次熱交換部32,42において冷却された水素ガスG)との熱交換によって冷却することで、水素ガスGを効率よく冷却して水分を除去することができる。これにより、多量の水分を含んだ水素ガスGが吸着除去処理を行う吸着塔2に流入する事態を回避することができると共に、一次熱交換部31,41および二次熱交換部32,42を備えない構成の熱交換器を使用するのと比較して、水素ガスGからの水分を除去するのに消費されるエネルギー量を一層低減することができる。 Therefore, according to this "adsorbent regeneration device" and the removal system 1, a cold heat source (for example, a refrigeration cycle that operates independently) for removing moisture from the hydrogen gas G by cooling the hydrogen gas G, and a heating The hydrogen gas G is cooled only by operating the heat pump unit 3 without separately operating a heat source (for example, an electric heater) for heating the hydrogen gas G for the adsorption capacity regeneration treatment of the regeneration method. The heat transfer liquid Wc for heating the hydrogen gas G can be cooled in the cooling part 3c, and at the same time, the heat transfer liquid Wh for heating the hydrogen gas G can be heated in the heating part 3h. Thereby, the amount of energy consumed for removing moisture from the hydrogen gas G and regenerating the adsorbent can be sufficiently reduced. In addition, before the hydrogen gas G flows into the adsorption tower 2 where the adsorption removal process is performed, the amount of moisture contained in the hydrogen gas G is partially removed in the heat exchanger 4a. Since it is possible to suppress the deterioration of the adsorption capacity of the adsorbent, it is not necessary to reduce the amount of hydrogen gas G flowing into the adsorption tower 2 where the adsorption removal process is performed, or to temporarily stop the adsorption removal process. The adsorption removal process for the introduced hydrogen gas G can be reliably completed in a short time. Further, primary heat exchange portions 31, 41 and secondary heat exchange portions 32, 42 are provided in the heat exchangers 4a, 4c. while cooling the hydrogen gas G introduced from the inlets 30i, 40i in the primary heat exchange units 31, 41 to the hydrogen gas G discharged from the outlets 30o, 40o (that is, in the secondary heat exchange units 32, 42 By cooling by heat exchange with the cooled hydrogen gas G), the hydrogen gas G can be efficiently cooled and moisture can be removed. As a result, the hydrogen gas G containing a large amount of water can be prevented from flowing into the adsorption tower 2 where the adsorption removal process is performed, and the primary heat exchange parts 31 and 41 and the secondary heat exchange parts 32 and The amount of energy consumed to remove the moisture from the hydrogen gas G can be further reduced compared to using a heat exchanger that is not provided.

また、この「吸着剤再生装置」では、二次熱交換部42を通過させられた水素ガスGを、一次熱交換部41を再び通過させずに排出口40oから排出させるバイパス流路43が熱交換器4cに設けられると共に、バイパス流路43を通過する水素ガスGの流量を調整可能な流量調整弁43a,43bが配設され、制御部15が、導入口40iから導入された水素ガスGの「第1の温度(温度センサ44aの検出温度)」、導入口40iから導入されて一次熱交換部41を通過させられた水素ガスGの「第2の温度(温度センサ44bの検出温度)」、および二次熱交換部42を通過させられた水素ガスGの「第3の温度(温度センサ44cの検出温度)」をそれぞれ特定すると共に、「第1の温度」および「第3の温度」の「第1の温度差」と、「第2の温度」および「第3の温度」の「第2の温度差」との比に基づき、流量調整弁43a,43bを制御してバイパス流路43を通過する水素ガスGの流量を調整する「第3の処理」を実行する。したがって、この「吸着剤再生装置」および除去システム1によれば、過剰に低い温度の水素ガスGが吸着除去処理を行う吸着塔2などを通過させられる事態が回避されるため、吸着除去処理を行う吸着塔2と吸着能力再生処理を行う吸着塔2とを切り換えたときに、吸着除去処理を行っていた吸着塔2内等で結露が生じる事態を回避することができる。 In addition, in this "adsorbent regeneration device", the bypass flow path 43 for discharging the hydrogen gas G that has passed through the secondary heat exchange section 42 from the discharge port 40o without passing through the primary heat exchange section 41 again heats. Flow control valves 43a and 43b are provided in the exchanger 4c and capable of adjusting the flow rate of the hydrogen gas G passing through the bypass flow path 43, and the control unit 15 controls the flow rate of the hydrogen gas G introduced from the inlet 40i. The "first temperature (detected temperature of the temperature sensor 44a)", the "second temperature (detected temperature of the temperature sensor 44b)" of the hydrogen gas G introduced from the inlet 40i and passed through the primary heat exchange unit 41 ”, and the “third temperature (detected temperature of the temperature sensor 44c)” of the hydrogen gas G passed through the secondary heat exchange unit 42 are specified, and the “first temperature” and the “third temperature and the ratio of the "second temperature difference" between the "second temperature" and the "third temperature" to control the flow control valves 43a and 43b to adjust the bypass flow A “third process” for adjusting the flow rate of the hydrogen gas G passing through the path 43 is executed. Therefore, according to the "adsorbent regeneration device" and the removal system 1, the excessively low temperature hydrogen gas G is prevented from passing through the adsorption tower 2 or the like for performing the adsorption removal process, so that the adsorption removal process is performed. When switching between the adsorption tower 2 that performs the adsorption capacity regeneration treatment and the adsorption tower 2 that performs the adsorption removal treatment, it is possible to avoid a situation in which dew condensation occurs in the adsorption tower 2 that has been performing the adsorption removal treatment.

また、この「吸着剤再生装置」では、二次熱交換部32を通過させられた水素ガスGを、一次熱交換部31を再び通過させずに排出口30oから排出させるバイパス流路33が熱交換器4aに設けられると共に、バイパス流路33を通過させる水素ガスGの流量を調整可能な流量調整弁33a,33bが配設され、制御部15が、熱交換器4aにおける導入口30iから導入された水素ガスGの「第4の温度(温度センサ34aの検出温度)」、導入口30iから導入されて一次熱交換部31を通過させられた水素ガスGの「第5の温度(温度センサ34bの検出温度)」、および二次熱交換部32を通過させられた水素ガスGの「第6の温度(温度センサ34cの検出温度)」を特定すると共に、「第4の温度」および「第6の温度」の「第3の温度差」と、「第5の温度」および「第6の温度」の「第4の温度差」との比に基づき、流量調整弁33a,33bを制御してバイパス流路33を通過する水素ガスGの流量を調整させる「第4の処理」を実行する。したがって、この「吸着剤再生装置」および除去システム1によれば、過剰に低い温度の水素ガスGが吸着除去処理を行う吸着塔2などを通過させられる事態が回避されるため、吸着除去処理を行う吸着塔2と吸着能力再生処理を行う吸着塔2とを切り換えたときに、吸着除去処理を行っていた吸着塔2内等で結露が生じる事態を回避することができる。 In addition, in this "adsorbent regeneration device", the bypass flow path 33 for discharging the hydrogen gas G that has passed through the secondary heat exchange section 32 from the discharge port 30o without passing through the primary heat exchange section 31 again heats. Flow control valves 33a and 33b are provided in the heat exchanger 4a and capable of adjusting the flow rate of the hydrogen gas G passing through the bypass flow path 33, and the control unit 15 controls the introduction from the inlet 30i in the heat exchanger 4a. The "fourth temperature (temperature detected by the temperature sensor 34a)" of the hydrogen gas G introduced from the inlet 30i and the "fifth temperature (temperature sensor 34b detection temperature)”, and the “sixth temperature (detection temperature of the temperature sensor 34c)” of the hydrogen gas G passed through the secondary heat exchange unit 32 are specified, and the “fourth temperature” and “ Control the flow control valves 33a and 33b based on the ratio between the "third temperature difference" of the "sixth temperature" and the "fourth temperature difference" of the "fifth temperature" and the "sixth temperature" Then, the "fourth process" for adjusting the flow rate of the hydrogen gas G passing through the bypass channel 33 is executed. Therefore, according to the "adsorbent regeneration device" and the removal system 1, the excessively low temperature hydrogen gas G is prevented from passing through the adsorption tower 2 or the like for performing the adsorption removal process, so that the adsorption removal process is performed. When switching between the adsorption tower 2 that performs the adsorption capacity regeneration treatment and the adsorption tower 2 that performs the adsorption removal treatment, it is possible to avoid a situation in which dew condensation occurs in the adsorption tower 2 that has been performing the adsorption removal treatment.

また、この「吸着剤再生装置」では、熱交換器4cを通過させられる水素ガスGの流量を調整する流量調整弁7bを備え、制御部15が、熱交換器4cを通過させられた水素ガスGの温度(温度センサ9による検出温度)が予め規定された温度範囲内の温度となるように流量調整弁7bを制御して熱交換器4cを通過させられる水素ガスGの流量を調整する「第5の処理」を実行する。したがって、この「吸着剤再生装置」および除去システム1によれば、過剰に低い温度の水素ガスGが吸着除去処理を行う吸着塔2などを通過させられる事態が回避されるため、吸着除去処理を行う吸着塔2と吸着能力再生処理を行う吸着塔2とを切り換えたときに、吸着除去処理を行っていた吸着塔2内等で結露が生じる事態を回避することができる。 Further, this "adsorbent regeneration device" is provided with a flow rate adjustment valve 7b for adjusting the flow rate of the hydrogen gas G passed through the heat exchanger 4c, and the control unit 15 controls the flow rate of the hydrogen gas G passed through the heat exchanger 4c. The flow rate of the hydrogen gas G passing through the heat exchanger 4c is adjusted by controlling the flow control valve 7b so that the temperature of G (the temperature detected by the temperature sensor 9) falls within a predetermined temperature range. 5th process" is executed. Therefore, according to the "adsorbent regeneration device" and the removal system 1, the excessively low temperature hydrogen gas G is prevented from passing through the adsorption tower 2 or the like for performing the adsorption removal process, so that the adsorption removal process is performed. When switching between the adsorption tower 2 that performs the adsorption capacity regeneration treatment and the adsorption tower 2 that performs the adsorption removal treatment, it is possible to avoid a situation in which dew condensation occurs in the adsorption tower 2 that has been performing the adsorption removal treatment.

また、この「吸着剤再生装置」では、制御部15が、吸着除去処理を行う吸着塔2を通過させられた水素ガスGに含まれている水分の量に応じて変化する「第1のパラメータ」が予め規定された「第1の範囲」を外れたときに、吸着除去処理を行う吸着塔2内の吸着剤の吸着能力が予め規定された「第1の能力」を下回る「第1の条件(第1の切換え条件)」が満たされたと判別して「第2の処理」を実行する。したがって、この「吸着剤再生装置」および除去システム1によれば、吸着除去処理を行っている吸着塔2の吸着剤が、水素ガスGからの好適な水分の吸着が困難となる前に吸着能力再生処理を行っている吸着塔2、すなわち、水素ガスGからの好適な水分の吸着が可能な状態となっている吸着剤が収容されている吸着塔2において吸着除去処理を行うことができるため、十分に水分が除去された水素ガスGを継続的に排出用配管Poに排出することができる。 Further, in this "adsorbent regeneration device", the control unit 15 controls the "first parameter "is outside the predefined "first range", the adsorption capacity of the adsorbent in the adsorption tower 2 that performs the adsorption removal process is lower than the predefined "first capacity". condition (first switching condition)” is satisfied, and “second processing” is executed. Therefore, according to this "adsorbent regeneration device" and the removal system 1, the adsorbent in the adsorption tower 2, which is performing the adsorption removal process, has an adsorption capacity before it becomes difficult to adequately adsorb moisture from the hydrogen gas G. Since the adsorption removal process can be performed in the adsorption tower 2 that is performing the regeneration process, that is, in the adsorption tower 2 that contains the adsorbent that is in a state where it is possible to preferably adsorb moisture from the hydrogen gas G. , the hydrogen gas G from which moisture has been sufficiently removed can be continuously discharged to the discharge pipe Po.

また、この「吸着剤再生装置」では、制御部15が、吸着能力再生処理を行う吸着塔2を通過させられた水素ガスGに含まれている水分の量に応じて変化する「第2のパラメータ」が予め規定された「第2の範囲」を外れたときに、吸着能力再生処理を行う吸着塔2内の吸着剤の吸着能力が予め規定された「第2の能力」を超える「第2の条件(第2の切換え条件)」が満たされたと判別して「第2の処理」を実行する。したがって、この「吸着剤再生装置」および除去システム1によれば、吸着能力再生処理を行ったことで吸着剤の吸着能力が十分に向上した吸着塔2について、不要な吸着能力再生処理を継続せずに済むため、消費電力を一層低減することができる。 In addition, in this "adsorbent regeneration device", the control unit 15 controls the "second When the "parameter" deviates from the predefined "second range", the adsorption capacity of the adsorbent in the adsorption tower 2 that performs the adsorption capacity regeneration process exceeds the predefined "second capacity". 2 condition (second switching condition)” is satisfied, and “second processing” is executed. Therefore, according to the "adsorbent regeneration device" and the removal system 1, the unnecessary adsorption capacity regeneration process can be continued for the adsorption tower 2 in which the adsorption capacity of the adsorbent has been sufficiently improved by performing the adsorption capacity regeneration process. Therefore, power consumption can be further reduced.

また、この「吸着剤再生装置」では、制御部15が、吸着除去処理を開始してからの経過時間が予め規定された「第1の時間」に達する「第3の条件(第3の切換え条件)」、および吸着能力再生処理を開始してからの経過時間が予め規定された「第2の時間」に達する「第4の条件(第4の切換え条件)」の予め規定された一方が満たされたときに、「第2の処理」を実行する。したがって、この「吸着剤再生装置」および除去システム1によれば、使用環境に応じて「第1の時間」または「第2の時間」を予め規定しておくことで、水素ガスGの状態を把握するための複雑な構成を備えなくても、「第3の条件」が満たされたときに「第2の処理」を実行すれば、水素ガスGからの好適な水分の吸着が可能な状態となっている吸着剤が収容されている吸着塔2において吸着除去処理を行うことができるため、十分に水分が除去された水素ガスGを継続的に排出用配管Poに排出することが可能となり、「第4の条件」が満たされたときに「第2の処理」を実行すれば、不要な吸着能力再生処理を継続せずに済むため、消費電力を一層低減することが可能となる。 Further, in this "adsorbent regeneration device", the control unit 15 sets a "third condition (third switching condition)", and a "fourth condition (fourth switching condition)" in which the elapsed time from the start of the adsorption capacity regeneration process reaches a predetermined "second time" When satisfied, execute the "second process". Therefore, according to the "adsorbent regeneration device" and the removal system 1, the state of the hydrogen gas G can be controlled by prescribing the "first time" or the "second time" according to the usage environment. A state in which suitable moisture can be adsorbed from the hydrogen gas G by executing the "second process" when the "third condition" is satisfied without having a complicated configuration for grasping. Since the adsorption removal process can be performed in the adsorption tower 2 in which the adsorbent is stored as If the "second process" is executed when the "fourth condition" is satisfied, unnecessary adsorption capacity regeneration process need not be continued, so power consumption can be further reduced.

また、この「吸着剤再生装置」では、熱交換器4cを通過させられる熱媒液Wcの流量を調整する流量調整弁7bを備え、制御部15が、吸着除去処理を行う吸着塔2に流入させられる水素ガスGの温度(温度センサ9の検出温度)に基づき、流量調整弁7bを制御して、水素ガスGの温度が高いときに熱交換器4cを通過させられる熱媒液Wcの流量を増加させ、水素ガスGの温度が低いときに熱交換器4cを通過させられる熱媒液Wcの流量を減少させる。したがって、この「吸着剤再生装置」および除去システム1によれば、過剰に低い温度の水素ガスGが吸着除去処理を行う吸着塔2などを通過させられる事態が回避されるため、吸着除去処理を行う吸着塔2と吸着能力再生処理を行う吸着塔2とを切り換えたときに、吸着除去処理を行っていた吸着塔2内等で結露が生じる事態を回避することができる。 In addition, this "adsorbent regeneration device" is provided with a flow rate adjustment valve 7b that adjusts the flow rate of the heat transfer liquid Wc that is passed through the heat exchanger 4c. Based on the temperature of the hydrogen gas G (temperature detected by the temperature sensor 9), the flow control valve 7b is controlled to adjust the flow rate of the heat transfer liquid Wc that is passed through the heat exchanger 4c when the temperature of the hydrogen gas G is high. is increased to decrease the flow rate of the heat transfer fluid Wc that is passed through the heat exchanger 4c when the temperature of the hydrogen gas G is low. Therefore, according to the "adsorbent regeneration device" and the removal system 1, the excessively low temperature hydrogen gas G is prevented from passing through the adsorption tower 2 or the like for performing the adsorption removal process, so that the adsorption removal process is performed. When switching between the adsorption tower 2 that performs the adsorption capacity regeneration treatment and the adsorption tower 2 that performs the adsorption removal treatment, it is possible to avoid a situation in which dew condensation occurs in the adsorption tower 2 that has been performing the adsorption removal treatment.

なお、「吸着剤再生装置および除去システム」の構成は、上記の除去システム1の構成の例に限定されない。例えば、上記の除去システム1における熱交換器4aに代えて図5に示す熱交換器54aを採用して除去システム1を構成したり、熱交換器4cに代えて図6に示す熱交換器54cを採用して除去システム1を構成したりすることもできる。 The configuration of the "adsorbent regeneration device and removal system" is not limited to the example of the configuration of the removal system 1 described above. For example, instead of the heat exchanger 4a in the removal system 1 described above, a heat exchanger 54a shown in FIG. can be employed to configure the removal system 1.

熱交換器54aは、「第2の熱交換器」の他の一例であって、前述した熱交換器4aと同様にして、ヒートポンプユニット3(冷却部3c)から熱媒液循環路LC1を介して供給される熱媒液Wcとの熱交換によって、吸着除去処理を行う吸着塔2や熱交換器4bに流入させられる水素ガスGを冷却可能に構成されている。また、熱交換器54cは、「第3の熱交換器」の他の一例であって、前述した熱交換器4cと同様にして、ヒートポンプユニット3(冷却部3c)から熱媒液循環路LC2を介して供給される熱媒液Wcとの熱交換によって、吸着能力再生処理を行っている吸着塔2を通過させられた水素ガスGを冷却可能に構成されている。なお、これら熱交換器54a,54cにおいて、熱交換器4a,4cと同様の機能を有する構成要素については、同一の符号を付して重複する説明を省略する。 The heat exchanger 54a is another example of the "second heat exchanger", and in the same manner as the heat exchanger 4a described above, heat is supplied from the heat pump unit 3 (cooling unit 3c) through the heat transfer liquid circulation path LC1. The hydrogen gas G flowing into the adsorption tower 2 and the heat exchanger 4b, which perform the adsorption removal process, can be cooled by heat exchange with the heat transfer liquid Wc supplied through the cooling device. Further, the heat exchanger 54c is another example of the "third heat exchanger", and in the same manner as the heat exchanger 4c described above, the heat transfer liquid circulation path LC2 from the heat pump unit 3 (cooling unit 3c) The hydrogen gas G that has passed through the adsorption tower 2 that is undergoing the adsorption capacity regeneration process can be cooled by heat exchange with the heat transfer liquid Wc that is supplied through the . In these heat exchangers 54a and 54c, constituent elements having the same functions as those of the heat exchangers 4a and 4c are denoted by the same reference numerals, and overlapping descriptions are omitted.

この場合、図5に示すように、熱交換器54aには、導入口30iから導入されて一次熱交換部31を通過させられた水素ガスGの一部を、二次熱交換部32を通過させずに、二次熱交換部32を通過させられて一次熱交換部31に流入させられる水素ガスGに合流させるバイパス流路35(「バイパス流路B」の一例)が設けられると共に、このバイパス流路35を通過する水素ガスGの流量を調整可能な流量調整弁35a(「流量調整部B」の一例)が配設されている。また、熱交換器54aには、導入口30iから導入された水素ガスGの温度(「温度D」の一例)を検出可能な温度センサ34a、導入口30iから導入されて一次熱交換部31を通過させられた水素ガスGの温度(「温度E」の一例)を検出可能な温度センサ34b、および排出口30oから排出される水素ガスGの温度(「温度F」の一例)を検出可能な温度センサ34dが配設されている。 In this case, as shown in FIG. 5, a part of the hydrogen gas G introduced from the inlet 30i and passed through the primary heat exchange section 31 is passed through the secondary heat exchange section 32 to the heat exchanger 54a. A bypass flow path 35 (an example of a “bypass flow path B”) is provided to join the hydrogen gas G that is passed through the secondary heat exchange section 32 and flowed into the primary heat exchange section 31 without allowing the A flow control valve 35a (an example of a “flow control unit B”) capable of adjusting the flow rate of the hydrogen gas G passing through the bypass channel 35 is provided. In addition, the heat exchanger 54a includes a temperature sensor 34a capable of detecting the temperature of the hydrogen gas G introduced from the inlet 30i (an example of "temperature D"), and the primary heat exchange section 31 introduced from the inlet 30i. A temperature sensor 34b capable of detecting the temperature of the hydrogen gas G passed through (an example of "temperature E"), and a temperature sensor 34b capable of detecting the temperature of the hydrogen gas G discharged from the outlet 30o (an example of "temperature F") A temperature sensor 34d is provided.

また、図6に示すように、熱交換器54cには、導入口40iから導入されて一次熱交換部41を通過させられた水素ガスGの一部を、二次熱交換部42を通過させずに、二次熱交換部42を通過させられて一次熱交換部41に流入させられる水素ガスGに合流させるバイパス流路45(「バイパス流路A」の一例)が設けられると共に、このバイパス流路45を通過する水素ガスGの流量を調整可能な流量調整弁45a(「流量調整部A」の一例)が配設されている。また、熱交換器54cには、導入口40iから導入された水素ガスGの温度(「温度A」の一例)を検出可能な温度センサ44a、導入口40iから導入されて一次熱交換部41を通過させられた水素ガスGの温度(「温度B」の一例)を検出可能な温度センサ44b、および排出口40oから排出される水素ガスGの温度(「温度C」の一例)を検出可能な温度センサ44dが配設されている。 As shown in FIG. 6, the heat exchanger 54c allows part of the hydrogen gas G introduced from the inlet 40i and passed through the primary heat exchange section 41 to pass through the secondary heat exchange section 42. Instead, a bypass flow path 45 (an example of a "bypass flow path A") is provided to join the hydrogen gas G that is passed through the secondary heat exchange portion 42 and flowed into the primary heat exchange portion 41, and this bypass A flow control valve 45a (an example of a “flow control unit A”) capable of adjusting the flow rate of the hydrogen gas G passing through the flow path 45 is provided. Further, the heat exchanger 54c includes a temperature sensor 44a capable of detecting the temperature of the hydrogen gas G introduced from the inlet 40i (an example of "temperature A"), and the primary heat exchange section 41 introduced from the inlet 40i. A temperature sensor 44b capable of detecting the temperature of the hydrogen gas G passed through (an example of "temperature B"), and a temperature sensor 44b capable of detecting the temperature of the hydrogen gas G discharged from the outlet 40o (an example of "temperature C") A temperature sensor 44d is provided.

この場合、熱交換器4aに代えて熱交換器54aを採用した除去システム1において、処理対象の水素ガスGが導入されたとき(除去システム1による各処理を開始したとき)に、制御部15は、最初に、熱交換器54a内の流量調整弁35aを最小の開度となる開弁状態(全閉可能な弁構造の場合には全閉状態)に制御する。これにより、導入口30iから熱交換器54aに導入されて一次熱交換部31を通過させられた水素ガスGの大半(流量調整弁35aが全閉の場合には、一次熱交換部31を通過させられた水素ガスGのすべて)が二次熱交換部32を通過させられる。 In this case, in the removal system 1 that employs the heat exchanger 54a instead of the heat exchanger 4a, when the hydrogen gas G to be treated is introduced (when each treatment by the removal system 1 is started), the control unit 15 first, controls the flow control valve 35a in the heat exchanger 54a to the minimum open state (fully closed state in the case of a fully closable valve structure). As a result, most of the hydrogen gas G introduced into the heat exchanger 54a from the inlet 30i and passed through the primary heat exchange section 31 (when the flow rate adjustment valve 35a is fully closed, All of the hydrogen gas G that is allowed to pass through the secondary heat exchange section 32 .

また、二次熱交換部32における熱媒液Wcとの熱交換によって冷却された水素ガスG(排出口30oに向かって一次熱交換部31を通過させられる水素ガスG)と、導入口30iから一次熱交換部31に新たに導入された水素ガスGとの一次熱交換部31における熱交換によって、新たに導入された水素ガスGが冷却される。これにより、新たに導入された水素ガスGの相対湿度が上昇するため、水素ガスGに含まれている気相の水分の一部が一次熱交換部31において液相に変化して水素ガスGから離脱させられる(除去される)。この結果、前述の熱交換器4aを採用したときと同様にして、一次熱交換部31から二次熱交換部32に流入する水素ガスGの絶対湿度が十分に低下させられる(水素ガスGに含まれる水分の量が十分に減少させられる)ため、前述した二次熱交換部32における水分の除去と相俟って、水素ガスGに含まれていた水分が熱交換器54aにおいて十分に除去される。 In addition, the hydrogen gas G (the hydrogen gas G that is passed through the primary heat exchange section 31 toward the discharge port 30o) cooled by heat exchange with the heat transfer medium liquid Wc in the secondary heat exchange section 32 and from the introduction port 30i The newly introduced hydrogen gas G is cooled by heat exchange in the primary heat exchange section 31 with the hydrogen gas G newly introduced into the primary heat exchange section 31 . As a result, the relative humidity of the newly introduced hydrogen gas G increases, so that part of the vapor phase moisture contained in the hydrogen gas G changes to a liquid phase in the primary heat exchange section 31, and the hydrogen gas G is detached (removed) from As a result, the absolute humidity of the hydrogen gas G flowing from the primary heat exchange section 31 to the secondary heat exchange section 32 is sufficiently lowered (the hydrogen gas G is the amount of water contained in the hydrogen gas G is sufficiently reduced), the water contained in the hydrogen gas G is sufficiently removed in the heat exchanger 54a in combination with the water removal in the secondary heat exchange section 32 described above. be done.

また、排出口30oに向かって一次熱交換部31を通過させられる水素ガスGは、一次熱交換部31に新たに導入された水素ガスGとの熱交換によって温度上昇させられる。この場合、二次熱交換部32から一次熱交換部31に流入する水素ガスGは、二次熱交換部32における冷却(温度低下)によって相対湿度が100%程度となっている。したがって、排出口30oから排出されるのに先立って水素ガスGを温度上昇させて相対湿度を低下させることにより、熱交換器54aから吸着塔2aや熱交換器4bに向かう流路内等で水素ガスGに含まれている水分が結露する事態を好適に回避することが可能となる。 Further, the hydrogen gas G that is passed through the primary heat exchange section 31 toward the discharge port 30o is heated by heat exchange with the hydrogen gas G that is newly introduced into the primary heat exchange section 31 . In this case, the hydrogen gas G flowing from the secondary heat exchange section 32 into the primary heat exchange section 31 has a relative humidity of about 100% due to cooling (temperature drop) in the secondary heat exchange section 32 . Therefore, by raising the temperature of the hydrogen gas G and lowering the relative humidity before it is discharged from the discharge port 30o, the hydrogen is It is possible to suitably avoid the situation where the moisture contained in the gas G is condensed.

また、熱交換器4cに代えて熱交換器54cを採用した除去システム1において処理対象の水素ガスGが導入されたとき(除去システム1による各処理を開始したとき)に、制御部15は、最初に、熱交換器54c内の流量調整弁45aを最小の開度となる開弁状態(全閉可能な弁構造の場合には全閉状態)に制御する。これにより、導入口40iから熱交換器54cに導入されて一次熱交換部41を通過させられた水素ガスGの大半(流量調整弁45aが全閉の場合には、一次熱交換部41を通過させられた水素ガスGのすべて)が二次熱交換部42を通過させられる。 Further, when the hydrogen gas G to be treated is introduced into the removal system 1 that employs the heat exchanger 54c instead of the heat exchanger 4c (when each treatment by the removal system 1 is started), the control unit 15 First, the flow control valve 45a in the heat exchanger 54c is controlled to the minimum opening degree (fully closed state in the case of a fully closable valve structure). As a result, most of the hydrogen gas G introduced into the heat exchanger 54c from the inlet 40i and passed through the primary heat exchange section 41 (when the flow control valve 45a is fully closed, All of the hydrogen gas G that is allowed to pass through the secondary heat exchange section 42 .

また、二次熱交換部42における熱媒液Wcとの熱交換によって冷却された水素ガスG(排出口40oに向かって一次熱交換部41を通過させられる水素ガスG)と、導入口40iから一次熱交換部41に新たに導入された水素ガスGとの一次熱交換部41における熱交換によって、新たに導入された水素ガスGが冷却される。これにより、新たに導入された水素ガスGの相対湿度が上昇するため、水素ガスGに含まれている気相の水分の一部が一次熱交換部41において液相に変化して水素ガスGから離脱させられる(除去される)。この結果、一次熱交換部41から二次熱交換部42に流入する水素ガスGの絶対湿度が十分に低下させられる(水素ガスGに含まれる水分の量が十分に減少させられる)ため、前述した二次熱交換部42における水分の除去と相俟って、水素ガスGに含まれていた水分が熱交換器54cにおいて十分に除去される。 In addition, the hydrogen gas G cooled by heat exchange with the heat medium liquid Wc in the secondary heat exchange section 42 (the hydrogen gas G that is passed through the primary heat exchange section 41 toward the discharge port 40o) and the The newly introduced hydrogen gas G is cooled by heat exchange in the primary heat exchange section 41 with the hydrogen gas G newly introduced into the primary heat exchange section 41 . As a result, the relative humidity of the newly introduced hydrogen gas G increases, so that part of the vapor phase moisture contained in the hydrogen gas G changes to a liquid phase in the primary heat exchange section 41, and the hydrogen gas G is detached (removed) from As a result, the absolute humidity of the hydrogen gas G flowing from the primary heat exchange section 41 to the secondary heat exchange section 42 is sufficiently lowered (the amount of moisture contained in the hydrogen gas G is sufficiently reduced), so the above-described Together with the removal of water in the secondary heat exchange section 42, the water contained in the hydrogen gas G is sufficiently removed in the heat exchanger 54c.

また、排出口40oに向かって一次熱交換部41を通過させられる水素ガスGは、一次熱交換部41に新たに導入された水素ガスGとの熱交換によって温度上昇させられる。この場合、二次熱交換部42から一次熱交換部41に流入する水素ガスGは、二次熱交換部42における冷却(温度低下)によって相対湿度が100%程度となっている。したがって、排出口40oから排出されるのに先立って水素ガスGを温度上昇させて相対湿度を低下させることにより、熱交換器54cから吸着塔2aに向かう流路内等で水素ガスGに含まれている水分が結露する事態を好適に回避することが可能となる。 Further, the hydrogen gas G that is passed through the primary heat exchange section 41 toward the discharge port 40 o is heated by heat exchange with the hydrogen gas G that is newly introduced into the primary heat exchange section 41 . In this case, the hydrogen gas G flowing from the secondary heat exchange section 42 into the primary heat exchange section 41 has a relative humidity of about 100% due to cooling (temperature drop) in the secondary heat exchange section 42 . Therefore, by raising the temperature of the hydrogen gas G and lowering the relative humidity before it is discharged from the discharge port 40o, It is possible to suitably avoid the situation where the moisture in the container is condensed.

一方、吸着能力再生処理を継続することによって吸着剤に吸着された状態の水分が徐々に減少し、かつ高温の水素ガスGに接している耐圧容器や吸着剤の温度も十分に高い温度となったとき(処理開始からある程度経過したとき)には、吸着能力再生処理を行っている吸着塔2に供給する水素ガスGの温度をある程度低下させても、吸着剤から水分を十分に離脱させることが可能となる。このため、前述したように、加熱部3hから熱交換器4bに供給する熱媒液Whの温度を処理開始直後よりも低下させることでヒートポンプユニット3(冷凍サイクル11)の処理能力を低下させて電力消費量を低減することが可能となる。 On the other hand, by continuing the adsorption capacity regeneration process, the moisture adsorbed by the adsorbent gradually decreases, and the temperature of the pressure vessel and adsorbent in contact with the high-temperature hydrogen gas G reaches a sufficiently high temperature. (when a certain amount of time has passed since the start of the treatment), even if the temperature of the hydrogen gas G supplied to the adsorption tower 2 that is undergoing the adsorption capacity regeneration treatment is lowered to some extent, the moisture is sufficiently desorbed from the adsorbent. becomes possible. For this reason, as described above, the processing capacity of the heat pump unit 3 (refrigerating cycle 11) is reduced by lowering the temperature of the heat transfer fluid Wh supplied from the heating unit 3h to the heat exchanger 4b from that immediately after the start of processing. Power consumption can be reduced.

この際には、加熱部3hにおいて熱媒液Whを加熱する熱量を減少させるのに伴って冷却部3cにおいて熱媒液Wcを冷却する熱量、すなわち、熱交換器54a,54cにおいて水素ガスGから熱媒液Wcに吸熱する熱量を減少させる必要がある。したがって、制御部15は、ヒートポンプユニット3(冷凍サイクル11)の処理能力を低下させる制御と相俟って、流量調整弁7aの開度を大きくする制御、流量調整弁35aの開度を大きくする制御、流量調整弁7bの開度を大きくする制御、および流量調整弁45aの開度を大きくする制御を実行する。 At this time, the amount of heat for cooling the heat medium liquid Wc in the cooling section 3c is reduced as the amount of heat for heating the heat medium liquid Wh in the heating section 3h is reduced. It is necessary to reduce the amount of heat absorbed by the heat transfer fluid Wc. Therefore, the control unit 15 controls to increase the opening degree of the flow rate adjustment valve 7a and increases the opening degree of the flow rate adjustment valve 35a together with the control to reduce the processing capacity of the heat pump unit 3 (refrigerating cycle 11). control, control to increase the opening degree of the flow rate adjustment valve 7b, and control to increase the opening degree of the flow rate adjustment valve 45a.

この際に、流量調整弁7aの開度が大きくなることで、冷却部3cから熱媒液循環路LC1に流入した熱媒液Wcの一部が熱交換器54a(二次熱交換部32)を通過させずに冷却部3cに戻ることとなる。また、流量調整弁35aの開度が大きくなることで、導入口30iから熱交換器54aに流入して一次熱交換部31を通過させられた水素ガスGの一部が、二次熱交換部32を通過せずにバイパス流路35を通過させられて一次熱交換部31に流入し、排出口30oから排出される。したがって、流量調整弁7aの開度や流量調整弁35aの開度が大きくなることで、熱交換器54aにおいて水素ガスGから熱媒液Wcに吸熱される熱量が減少する。 At this time, as the opening degree of the flow rate adjustment valve 7a increases, part of the heat medium liquid Wc that has flowed into the heat medium liquid circulation path LC1 from the cooling section 3c is transferred to the heat exchanger 54a (secondary heat exchange section 32). It returns to the cooling part 3c without passing through. Further, by increasing the opening degree of the flow rate adjustment valve 35a, part of the hydrogen gas G that has flowed into the heat exchanger 54a from the inlet 30i and passed through the primary heat exchange section 31 is transferred to the secondary heat exchange section. Without passing through 32, it passes through the bypass channel 35, flows into the primary heat exchange section 31, and is discharged from the discharge port 30o. Therefore, the amount of heat absorbed by the heat transfer liquid Wc from the hydrogen gas G in the heat exchanger 54a is reduced by increasing the opening degree of the flow rate control valve 7a and the flow rate control valve 35a.

また、流量調整弁7bの開度が大きくなることで、冷却部3cから熱媒液循環路LC2に流入した熱媒液Wcの一部が熱交換器54c(二次熱交換部42)を通過させずに冷却部3cに戻ることとなる。また、流量調整弁45aの開度が大きくなることで、導入口40iから熱交換器54cに流入して一次熱交換部41を通過させられた水素ガスGの一部が、二次熱交換部42を通過せずにバイパス流路45を通過させられて一次熱交換部41に流入し、排出口40oから排出される。したがって、流量調整弁7bの開度や流量調整弁45aの開度が大きくなることで、熱交換器54cにおいて水素ガスGから熱媒液Wcに吸熱される熱量が減少する。 In addition, as the opening degree of the flow rate adjustment valve 7b increases, part of the heat medium liquid Wc that has flowed into the heat medium liquid circulation path LC2 from the cooling section 3c passes through the heat exchanger 54c (secondary heat exchange section 42). It returns to the cooling part 3c without cooling. Further, by increasing the opening degree of the flow rate adjustment valve 45a, part of the hydrogen gas G that has flowed into the heat exchanger 54c from the inlet 40i and passed through the primary heat exchange section 41 is transferred to the secondary heat exchange section. It passes through the bypass channel 45 without passing through 42, flows into the primary heat exchange section 41, and is discharged from the discharge port 40o. Therefore, the amount of heat absorbed by the heat transfer liquid Wc from the hydrogen gas G in the heat exchanger 54c is reduced by increasing the opening degree of the flow rate control valve 7b and the flow rate control valve 45a.

これにより、ヒートポンプユニット3(冷凍サイクル11)の処理能力を低下させた状態において、加熱部3hにおける熱媒液Whの加熱および冷却部3cにおける熱媒液Wcの冷却を均衡させることができる。この場合、前述したように、吸着能力再生処理を継続することによって吸着剤に吸着されている水分が徐々に減少するため、熱交換器54cに流入する水素ガスGに含まれる水分、すなわち、熱交換器54cにおいて水素ガスGから除去可能な水分が徐々に減少する。このため、熱交換器54cにおいて水素ガスGを冷却するのに必要となる冷熱の熱量が徐々に低下する。その一方では、導入用配管Piに導入される水素ガスGに含まれる水分の量は、吸着能力再生処理の進捗状況とは無関係であるため、熱交換器54aにおいて水素ガスGから水分を除去するのに必要となる冷熱の熱量は大きく変化しないものの、導入される水素ガスGに含まれる水分の量が多いときには、熱交換器54aにおいて必要となる冷熱の熱量が多くなり、導入される水素ガスGに含まれる水分の量が少ないときには、熱交換器54aにおいて必要となる冷熱の熱量が少なくなる。 Thus, in a state where the processing capacity of the heat pump unit 3 (refrigerating cycle 11) is reduced, the heating of the heat transfer fluid Wh in the heating portion 3h and the cooling of the heat transfer fluid Wc in the cooling portion 3c can be balanced. In this case, as described above, the water adsorbed by the adsorbent gradually decreases by continuing the adsorption capacity regeneration process. Moisture that can be removed from the hydrogen gas G in the exchanger 54c gradually decreases. Therefore, the amount of cold heat required to cool the hydrogen gas G in the heat exchanger 54c gradually decreases. On the other hand, since the amount of water contained in the hydrogen gas G introduced into the introduction pipe Pi is irrelevant to the progress of the adsorption capacity regeneration process, the water is removed from the hydrogen gas G in the heat exchanger 54a. Although the heat amount of the cold heat required for this does not change greatly, when the amount of moisture contained in the hydrogen gas G to be introduced is large, the heat amount of the cold heat required in the heat exchanger 54a increases, and the introduced hydrogen gas When the amount of moisture contained in G is small, the amount of cooling heat required in the heat exchanger 54a is small.

したがって、制御部15は、熱交換器54aにおいて必要とされる冷熱の熱量(熱交換器54aに流入する水素ガスGに含まれている水分の量)、および熱交換器54cにおいて必要とされる冷熱の熱量(熱交換器54cに流入する水素ガスGに含まれている水分の量)に応じて、流量調整弁7aおよび流量調整弁35aの開度や、流量調整弁7bおよび流量調整弁45aの開度を調整する。 Therefore, the control unit 15 controls the amount of cold heat required in the heat exchanger 54a (the amount of water contained in the hydrogen gas G flowing into the heat exchanger 54a) and the amount of water required in the heat exchanger 54c. Depending on the amount of cold heat (the amount of water contained in the hydrogen gas G flowing into the heat exchanger 54c), the opening degrees of the flow control valves 7a and 35a, and the flow control valves 7b and 45a adjust the opening of the

この場合、熱交換器54aでは、導入口30iから導入された水素ガスGと、排出口30oから排出される水素ガスGとの一次熱交換部31における熱交換(一次熱交換:予冷)によって水素ガスGから水分が除去されると共に、一次熱交換部31を通過させられた水素ガスGと熱媒液Wcとの二次熱交換部32における熱交換(二次熱交換:本冷)によって水素ガスGから水分がさらに除去される。 In this case, in the heat exchanger 54a, the hydrogen gas G introduced from the inlet 30i and the hydrogen gas G discharged from the outlet 30o are heat-exchanged (primary heat exchange: precooling) in the primary heat exchange section 31 to generate hydrogen gas. Moisture is removed from the gas G, and heat exchange (secondary heat exchange: main cooling) in the secondary heat exchange section 32 between the hydrogen gas G that has passed through the primary heat exchange section 31 and the heat medium liquid Wc causes hydrogen Moisture is further removed from the gas G.

この際に、前述の流量調整弁35aの開度が小さいとき(二次熱交換部32を通過させられる水素ガスGの量が多いとき)には、導入された水素ガスGと熱媒液Wcとの二次熱交換部32における熱交換量が多くなるため、二次熱交換部32において水素ガスGから水分が好適に除去されると共に、一次熱交換部31における予冷の熱交換量も増加して一次熱交換部31においても水素ガスGから水分が好適に除去される。しかしながら、排出口30oから排出される水素ガスGの温度が低くなるため、この水素ガスGが吸着除去処理を行う吸着塔2を通過させられることで、吸着塔2(耐圧容器や吸着剤)や流路切換え弁5bの温度が低下する結果、吸着塔2を切り換えたときに、温度低下した状態の吸着塔2や流路切換え弁5bに高温の吸着塔2が接することで結露が生じることがある。このような状態では、吸着塔2を再び切り換えたときに、結露水が排出用配管Poに流入するおそれがある。また、排出口30oから排出される水素ガスGの温度が低い状態では、吸着能力再生処理のために熱交換器4bにおいて水素ガスGを好適な温度まで加熱するのに必要となる温熱の熱量が増加する。 At this time, when the degree of opening of the flow control valve 35a described above is small (when the amount of hydrogen gas G passed through the secondary heat exchange section 32 is large), the introduced hydrogen gas G and heat transfer liquid Wc Since the amount of heat exchanged in the secondary heat exchange section 32 with increases, moisture is preferably removed from the hydrogen gas G in the secondary heat exchange section 32, and the amount of heat exchanged for precooling in the primary heat exchange section 31 also increases. As a result, moisture is preferably removed from the hydrogen gas G in the primary heat exchange section 31 as well. However, since the temperature of the hydrogen gas G discharged from the discharge port 30o becomes low, the hydrogen gas G is allowed to pass through the adsorption tower 2 that performs adsorption removal processing, so that the adsorption tower 2 (pressure vessel or adsorbent) or As a result of the decrease in the temperature of the flow path switching valve 5b, when the adsorption tower 2 is switched, dew condensation may occur due to the high-temperature adsorption tower 2 coming into contact with the adsorption tower 2 and the flow path switching valve 5b in a state where the temperature has decreased. be. In such a state, when the adsorption tower 2 is switched again, the condensed water may flow into the discharge pipe Po. In addition, when the temperature of the hydrogen gas G discharged from the discharge port 30o is low, the amount of thermal heat required to heat the hydrogen gas G to a suitable temperature in the heat exchanger 4b for the adsorption capacity regeneration process is To increase.

一方、流量調整弁35aの開度が大きいとき(二次熱交換部32を通過する水素ガスGの量が少ないとき)には、導入口30iから導入された水素ガスGと熱媒液Wcとの二次熱交換部32における熱交換量が少なくなるため、二次熱交換部32において水素ガスGから水分を好適に除去するのが困難となると共に、一次熱交換部31における予冷の熱交換量も減少するため、一次熱交換部31においても水素ガスGから水分を好適に除去するのが困難となる。したがって、結露水が排出用配管Poに流入したり、熱交換器4bにおいて必要となる温熱の熱量が過剰に多くなったりする事態を招くことなく、一次熱交換部31および二次熱交換部32の双方において水素ガスGから水分を好適に除去することができるように、流量調整弁35aの開度(すなわち、導入口30iから導入された水素ガスGの二次熱交換部32における冷却の度合い)を調整するのが好ましい。 On the other hand, when the opening degree of the flow rate adjustment valve 35a is large (when the amount of hydrogen gas G passing through the secondary heat exchange section 32 is small), the hydrogen gas G introduced from the inlet 30i and the heat transfer medium liquid Wc Since the amount of heat exchanged in the secondary heat exchange section 32 is reduced, it becomes difficult to preferably remove moisture from the hydrogen gas G in the secondary heat exchange section 32, and precooling heat exchange in the primary heat exchange section 31 Since the amount of water also decreases, it becomes difficult to preferably remove water from the hydrogen gas G in the primary heat exchange section 31 as well. Therefore, the primary heat exchange section 31 and the secondary heat exchange section 32 are prevented from flowing into the discharge pipe Po or excessively increasing the amount of thermal heat required in the heat exchanger 4b. The degree of opening of the flow control valve 35a (that is, the degree of cooling of the hydrogen gas G introduced from the inlet 30i in the secondary heat exchange section 32 so that moisture can be preferably removed from the hydrogen gas G in both ) is preferably adjusted.

この場合、熱交換器54aにおける流量調整弁35aの開度の調整(二次熱交換部32における水素ガスGの冷却の度合いの調整)については、熱交換器54a内における水素ガスGの温度変化に基づいて制御される。まず、導入口30iから導入された水素ガスGの温度(温度センサ34aによって検出される温度:「温度D」の一例)、導入口30iから導入されて一次熱交換部31を通過させられた水素ガスGの温度(温度センサ34bによって検出される温度:「温度E」の一例)、および排出口30oから排出される水素ガスGの温度(温度センサ34dによって検出される温度:「温度F」の一例)をそれぞれ特定する。 In this case, the adjustment of the degree of opening of the flow rate adjustment valve 35a in the heat exchanger 54a (adjustment of the degree of cooling of the hydrogen gas G in the secondary heat exchange section 32) involves the temperature change of the hydrogen gas G in the heat exchanger 54a. controlled based on First, the temperature of the hydrogen gas G introduced from the inlet 30i (the temperature detected by the temperature sensor 34a: an example of "temperature D"), the hydrogen introduced from the inlet 30i and passed through the primary heat exchange section 31 The temperature of the gas G (temperature detected by the temperature sensor 34b: an example of "temperature E") and the temperature of the hydrogen gas G discharged from the discharge port 30o (temperature detected by the temperature sensor 34d: "temperature F" example) are specified respectively.

次いで、上記の「温度D」および「温度E」の温度差(「温度差C」の一例)と、「温度D」および「温度F」の温度差「温度差D」とを特定すると共に、「温度差C」と「温度差D」との比が予め規定された目標範囲内の比となるように、流量調整弁35aを制御してバイパス流路35を通過する水素ガスGの流量を調整する(「処理B」の一例)。なお、上記の「目標範囲」については、除去システム1の使用環境下に応じて、結露水が排出用配管Poに流入したり、熱交換器4bにおいて必要となる温熱の熱量が過剰に多くなったりする事態を招くことなく、一次熱交換部31および二次熱交換部32の双方において水素ガスGから水分を好適に除去することができる状態となる「温度差Cと温度差Dとの比」を予め特定することで、各処理の開始に先立って規定される。 Next, the temperature difference between "temperature D" and "temperature E" (an example of "temperature difference C") and the temperature difference "temperature difference D" between "temperature D" and "temperature F" are specified, The flow rate of the hydrogen gas G passing through the bypass flow path 35 is adjusted by controlling the flow control valve 35a so that the ratio between the "temperature difference C" and the "temperature difference D" is within a predetermined target range. Adjust (an example of “processing B”). Regarding the above "target range", depending on the usage environment of the removal system 1, dew condensation water may flow into the discharge pipe Po, or the amount of thermal heat required in the heat exchanger 4b may be excessive. "The ratio of the temperature difference C and the temperature difference D ” is defined prior to the start of each process.

なお、本例の除去システム1では、上記のように流量調整弁35aの開度を調整する制御と並行して、制御部15が、流量調整弁7aの開度を調整する制御を実行する。この流量調整弁7aの開度の調整については、前述の例において流量調整弁33a,33bの開度の調整と並行して行う流量調整弁7aの開度の調整と同様のため、重複する説明を省略する。 In addition, in the removal system 1 of this example, in parallel with the control for adjusting the opening degree of the flow rate adjustment valve 35a as described above, the control section 15 executes control for adjusting the opening degree of the flow rate adjustment valve 7a. Since the adjustment of the opening degree of the flow rate adjusting valve 7a is the same as the adjustment of the opening degree of the flow rate adjusting valve 7a performed in parallel with the adjustment of the opening degrees of the flow rate adjusting valves 33a and 33b in the above-described example, redundant description will be given. omitted.

一方、前述の流量調整弁45aの開度が小さいとき(二次熱交換部42を通過させられる水素ガスGの量が多いとき)には、導入された水素ガスGと熱媒液Wcとの二次熱交換部42における熱交換量が多くなるため、二次熱交換部42において水素ガスGから水分が好適に除去されると共に、一次熱交換部41における予冷の熱交換量も増加して一次熱交換部41においても水素ガスGから水分が好適に除去される。しかしながら、排出口40oから排出される水素ガスGの温度が低くなるため、この水素ガスGが吸着除去処理を行う吸着塔2を通過させられることで、吸着塔2(耐圧容器や吸着剤)や流路切換え弁5bの温度が低下する結果、吸着塔2を切り換えたときに、温度低下した状態の吸着塔2や流路切換え弁5bに高温の吸着塔2が接することで結露が生じることがある。このような状態では、吸着塔2を再び切り換えたときに、結露水が排出用配管Poに流入するおそれがある。 On the other hand, when the opening degree of the flow control valve 45a described above is small (when the amount of hydrogen gas G passed through the secondary heat exchange section 42 is large), the introduced hydrogen gas G and the heat transfer fluid Wc Since the amount of heat exchanged in the secondary heat exchange section 42 increases, moisture is preferably removed from the hydrogen gas G in the secondary heat exchange section 42, and the amount of precooling heat exchanged in the primary heat exchange section 41 also increases. Moisture is preferably removed from the hydrogen gas G in the primary heat exchange section 41 as well. However, since the temperature of the hydrogen gas G discharged from the discharge port 40o is lowered, the hydrogen gas G is allowed to pass through the adsorption tower 2 that performs adsorption removal processing, so that the adsorption tower 2 (pressure vessel or adsorbent) or As a result of the decrease in the temperature of the flow path switching valve 5b, when the adsorption tower 2 is switched, dew condensation may occur due to the high-temperature adsorption tower 2 coming into contact with the adsorption tower 2 and the flow path switching valve 5b in a state where the temperature has decreased. be. In such a state, when the adsorption tower 2 is switched again, the condensed water may flow into the discharge pipe Po.

また、流量調整弁45aの開度が大きいとき(二次熱交換部42を通過する水素ガスGの量が少ないとき)には、導入口40iから導入された水素ガスGと熱媒液Wcとの二次熱交換部42における熱交換量が少なくなるため、二次熱交換部42において水素ガスGから水分を好適に除去するのが困難となると共に、一次熱交換部41における予冷の熱交換量も減少するため、一次熱交換部41においても水素ガスGから水分を好適に除去するのが困難となる。したがって、結露水が排出用配管Poに流入する事態を招くことなく、一次熱交換部41および二次熱交換部42の双方において水素ガスGから水分を好適に除去することができるように、流量調整弁45aの開度(すなわち、導入口40iから導入された水素ガスGの二次熱交換部42における冷却の度合い)を調整するのが好ましい。 Further, when the opening degree of the flow rate adjustment valve 45a is large (when the amount of hydrogen gas G passing through the secondary heat exchange section 42 is small), the hydrogen gas G introduced from the inlet 40i and the heat transfer medium liquid Wc Since the amount of heat exchanged in the secondary heat exchange section 42 is reduced, it becomes difficult to preferably remove moisture from the hydrogen gas G in the secondary heat exchange section 42, and precooling heat exchange in the primary heat exchange section 41 Since the amount of water also decreases, it becomes difficult to preferably remove water from the hydrogen gas G in the primary heat exchange section 41 as well. Therefore, the flow rate of It is preferable to adjust the degree of opening of the adjustment valve 45a (that is, the degree of cooling in the secondary heat exchange section 42 of the hydrogen gas G introduced from the inlet 40i).

この場合、熱交換器54cにおける流量調整弁45aの開度の調整(二次熱交換部42における水素ガスGの冷却の度合いの調整)については、熱交換器54c内における水素ガスGの温度変化に基づいて制御される。まず、導入口40iから導入された水素ガスGの温度(温度センサ44aによって検出される温度:「温度A」の一例)と、導入口40iから導入されて一次熱交換部41を通過させられた水素ガスGの温度(温度センサ44bによって検出される温度:「温度B」の一例)との温度差(「温度差A」の一例)を特定する。また、上記の「温度A」と排出口40oから排出される水素ガスGの温度(温度センサ44dによって検出される温度:「温度C」の一例)との温度差(「温度差B」の一例)を特定する。 In this case, the adjustment of the degree of opening of the flow rate adjustment valve 45a in the heat exchanger 54c (adjustment of the degree of cooling of the hydrogen gas G in the secondary heat exchange section 42) involves the temperature change of the hydrogen gas G in the heat exchanger 54c. controlled based on First, the temperature of the hydrogen gas G introduced from the inlet 40i (the temperature detected by the temperature sensor 44a: an example of “temperature A”) and the temperature of the hydrogen gas G introduced from the inlet 40i and passed through the primary heat exchange section 41 A temperature difference (an example of a "temperature difference A") from the temperature of the hydrogen gas G (the temperature detected by the temperature sensor 44b: an example of a "temperature B") is specified. Further, the temperature difference (an example of the "temperature difference B") between the above "temperature A" and the temperature of the hydrogen gas G discharged from the outlet 40o (the temperature detected by the temperature sensor 44d: an example of the "temperature C") ).

次いで、上記の「温度差A」と「温度差B」との比が予め規定された目標範囲内の比となるように、流量調整弁45aを制御してバイパス流路45を通過する水素ガスGの流量を調整する(「処理A」の一例)。なお、この「目標範囲」については、除去システム1の使用環境下に応じて、結露水が排出用配管Poに流入する事態を招くことなく、一次熱交換部41および二次熱交換部42の双方において水素ガスGから水分を好適に除去することができる状態となる「温度差Aと温度差Bとの比」を予め特定することで、各処理の開始に先立って規定される。 Next, the hydrogen gas passing through the bypass flow path 45 by controlling the flow rate adjustment valve 45a so that the ratio between the "temperature difference A" and the "temperature difference B" is within a predetermined target range. Adjust the flow rate of G (an example of "processing A"). Regarding this “target range”, the primary heat exchange section 41 and the secondary heat exchange section 42 can be adjusted according to the usage environment of the removal system 1 without causing a situation in which condensed water flows into the discharge pipe Po. By specifying in advance the "ratio between the temperature difference A and the temperature difference B" that allows the moisture to be preferably removed from the hydrogen gas G in both cases, it is defined prior to the start of each process.

また、本例の除去システム1では、上記のように流量調整弁45aの開度を調整する制御と並行して、制御部15が、流量調整弁7bの開度を調整する制御を実行する。具体的には、制御部15は、吸着除去処理を行う吸着塔2に流入させられる水素ガスGの温度(温度センサ9によって検出される温度)に基づき、流量調整弁7bを制御して、水素ガスGの温度が高いときに熱交換器54cを通過させられる熱媒液Wcの流量を増加させ、水素ガスGの温度が低いときに熱交換器54cを通過させられる熱媒液Wcの流量を減少させる。これにより、吸着除去処理を行う吸着塔2に対して過剰に低い温度の水素ガスGが流入する事態が回避され、結露水が排出用配管Poに流入する事態を好適に回避することが可能となる。 In addition, in the removal system 1 of this example, in parallel with the control for adjusting the opening degree of the flow rate adjustment valve 45a as described above, the control section 15 executes control for adjusting the opening degree of the flow rate adjustment valve 7b. Specifically, the control unit 15 controls the flow rate adjustment valve 7b based on the temperature of the hydrogen gas G flowing into the adsorption tower 2 where the adsorption removal process is performed (the temperature detected by the temperature sensor 9), The flow rate of the heat transfer liquid Wc passed through the heat exchanger 54c is increased when the temperature of the gas G is high, and the flow rate of the heat transfer liquid Wc passed through the heat exchanger 54c is increased when the temperature of the hydrogen gas G is low. Decrease. As a result, it is possible to prevent the hydrogen gas G having an excessively low temperature from flowing into the adsorption tower 2 that performs the adsorption removal process, and to suitably prevent the flow of condensed water into the discharge pipe Po. Become.

以上の説明のように、熱交換器4a,4cに代えて熱交換器54a,54cを備えて構成された除去システム1では、熱交換器4a,4cを備えて構成された前述の除去システム1と同様にして、吸着除去処理および吸着能力再生処理を並行して好適に実施することが可能となっている。 As described above, in the removal system 1 configured with the heat exchangers 54a and 54c instead of the heat exchangers 4a and 4c, the aforementioned removal system 1 configured with the heat exchangers 4a and 4c In the same manner as in , it is possible to suitably perform the adsorption removal process and the adsorption capacity regeneration process in parallel.

このように、この「吸着剤再生装置(熱交換器54a,54cを備えて構成された除去システム1における吸着塔2a,2bを除く構成要素からなる装置)」では、複数の吸着塔2(本例では、吸着塔2a,2bの2つ)を備えて各吸着塔2の一部を対象とする吸着除去処理と各吸着塔2の他の一部を対象とする加熱再生方式の吸着能力再生処理とを並行して実行可能に構成された除去システム1における吸着剤を再生可能に構成され、吸着能力再生処理を行う吸着塔2に流入させる水素ガスGを加熱する熱交換器4bと、吸着除去処理を行う吸着塔2および熱交換器4bに流入させられる水素ガスGを冷却する熱交換器54aと、吸着能力再生処理を行う吸着塔2を通過させられた水素ガスGを冷却する熱交換器54cと、冷凍サイクル11における凝縮器22からの放熱によって熱媒液Whを加熱可能な加熱部3h、および冷凍サイクル11における蒸発器24による吸熱によって熱媒液Wcを冷却可能な冷却部3cを備えたヒートポンプユニット3と、吸着除去処理を行う吸着塔2を通過させられた水素ガスGを、水分の除去が完了した水素ガスGを流入させるべき排出用配管Poに流入させると共に、熱交換器4bによって加熱された水素ガスGを、吸着能力再生処理を行う吸着塔2に流入させる流路切換え弁5bと、熱交換器54aによって冷却された水素ガスGを、吸着除去処理を行う吸着塔2に流入させると共に、吸着能力再生処理を行う吸着塔2を通過させられた水素ガスGを、熱交換器54cに流入させる流路切換え弁5aと、加熱部3hによる熱媒液Whの加熱、熱交換器4bへの熱媒液Whの供給、冷却部3cによる熱媒液Wcの冷却、熱交換器54aへの熱媒液Wcの供給、および熱交換器54cへの熱媒液Wcの供給を制御する「第1の処理」と、流路切換え弁5a,5bを制御して吸着除去処理を行う吸着塔2および吸着能力再生処理を行う吸着塔2を切り換える「第2の処理」とを実行する制御部15とを備え、熱交換器54cを通過させられた水素ガスGが、熱交換器54aを通過させられた水素ガスGに合流させられて流路切換え弁5aを介して吸着除去処理を行う吸着塔2に流入させられると共に、熱交換器54a,54cが、一次熱交換部31,41および二次熱交換部32,42を備え、導入口30i,40iから導入された水素ガスGが、一次熱交換部31,41、二次熱交換部32,42および一次熱交換部31,41をこの順で通過させられて排出口30o,40oから排出されるように水素ガスGの流路が形成されると共に、二次熱交換部32,42において熱媒液Wcとの熱交換によって水素ガスGに含まれている水分が液相化されて除去され、かつ、一次熱交換部31,41において二次熱交換部32,42によって冷却された水素ガスGとの熱交換によって導入口30i,40iから導入された水素ガスGに含まれている水分が液相化されて除去されるようにそれぞれ構成されている。また、この「吸着剤再生装置」では、「気体」としての水素ガスから「除去対象」としての水分を除去可能に構成された除去システム1における吸着剤の吸着能力を再生可能に構成されている。さらに、この除去システム1では、上記の「吸着剤再生装置」と各吸着塔2とを備えて水素ガスGから水分を除去可能に構成されている。 Thus, in this "adsorbent regeneration device (a device consisting of components other than the adsorption towers 2a and 2b in the removal system 1 configured with heat exchangers 54a and 54c)", a plurality of adsorption towers 2 (this In the example, two adsorption towers 2a and 2b) are provided, and adsorption removal treatment for a part of each adsorption tower 2 and adsorption capacity regeneration of a heat regeneration method for another part of each adsorption tower 2 a heat exchanger 4b configured to regenerate the adsorbent in the removal system 1 configured to be able to perform the treatment in parallel and heating the hydrogen gas G to be flowed into the adsorption tower 2 where the adsorption capacity regeneration process is performed; A heat exchanger 54a that cools the hydrogen gas G that flows into the adsorption tower 2 and the heat exchanger 4b that perform the removal process, and a heat exchange that cools the hydrogen gas G that has passed through the adsorption tower 2 that performs the adsorption capacity regeneration process. a heater 3h capable of heating the heat transfer fluid Wh by heat radiation from the condenser 22 in the refrigeration cycle 11; The hydrogen gas G that has passed through the heat pump unit 3 provided and the adsorption tower 2 that performs the adsorption removal process is made to flow into the discharge pipe Po into which the hydrogen gas G whose moisture has been removed is to flow, and the heat exchanger The flow switching valve 5b that allows the hydrogen gas G heated by 4b to flow into the adsorption tower 2 that performs the adsorption capacity regeneration process, and the hydrogen gas G that has been cooled by the heat exchanger 54a is transferred to the adsorption tower 2 that performs the adsorption removal process. and the flow switching valve 5a that causes the hydrogen gas G that has passed through the adsorption tower 2 to perform the adsorption capacity regeneration process to flow into the heat exchanger 54c, and the heating of the heat transfer liquid Wh by the heating unit 3h. The heat transfer liquid Wh is supplied to the heat exchanger 4b, the heat transfer liquid Wc is cooled by the cooling unit 3c, the heat transfer liquid Wc is supplied to the heat exchanger 54a, and the heat transfer liquid Wc is supplied to the heat exchanger 54c. Execution of the "first process" to control and the "second process" of switching between the adsorption tower 2 that performs the adsorption removal process and the adsorption tower 2 that performs the adsorption capacity regeneration process by controlling the flow path switching valves 5a and 5b. The hydrogen gas G passed through the heat exchanger 54c is combined with the hydrogen gas G passed through the heat exchanger 54a, and the adsorption removal process is performed via the flow path switching valve 5a. and the heat exchangers 54a, 54c are provided with primary heat exchange units 31, 41 and secondary heat exchange units 32, 42, and the hydrogen gas G introduced from the inlets 30i, 40i However, the flow of hydrogen gas G is passed through the primary heat exchange units 31 and 41, the secondary heat exchange units 32 and 42, and the primary heat exchange units 31 and 41 in this order and discharged from the discharge ports 30o and 40o. Along with the formation of the passage, moisture contained in the hydrogen gas G is liquefied and removed by heat exchange with the heat medium liquid Wc in the secondary heat exchange units 32 and 42, and the primary heat exchange units 31 , 41, the moisture contained in the hydrogen gas G introduced from the inlets 30i, 40i is liquefied and removed by heat exchange with the hydrogen gas G cooled by the secondary heat exchange units 32, 42. Each is configured as follows. In addition, this "adsorbent regeneration device" is configured to regenerate the adsorption capacity of the adsorbent in the removal system 1 configured to be able to remove moisture as the "removal target" from hydrogen gas as the "gas". . Furthermore, the removal system 1 is provided with the above-described "adsorbent regeneration device" and each adsorption tower 2, and is configured to be able to remove moisture from the hydrogen gas G. As shown in FIG.

したがって、この「吸着剤再生装置」および除去システム1によれば、水素ガスGを冷却することで水素ガスGから水分を除去するための冷熱源(例えば、単独で動作する冷凍サイクル)と、加熱再生方式の吸着能力再生処理のために水素ガスGを加熱するための温熱源(例えば電気ヒータ)とを別個に動作させなくても、ヒートポンプユニット3を動作させるだけで、水素ガスGを冷却するための熱媒液Wcを冷却部3cにおいて冷却し、同時に水素ガスGを加熱するための熱媒液Whを加熱部3hにおいて加熱することができる。これにより、水素ガスGからの水分の除去および吸着剤の再生のために消費されるエネルギー量を十分に低減することができる。また、吸着除去処理を行う吸着塔2に水素ガスGを流入させる前に熱交換器54aにおいて水素ガスGに含まれる水分の一部を除去する分だけ、吸着除去処理を行う吸着塔2内の吸着剤の吸着能力の低下を抑制できるため、吸着除去処理を行う吸着塔2に流入させる水素ガスGの量を減少させたり、吸着除去処理を一時的に停止させたりする必要がなくなることから、導入される水素ガスGについての吸着除去処理を短時間で確実に完了させることができる。また、熱交換器54a,54c内に一次熱交換部31,41および二次熱交換部32,42を設けて二次熱交換部32,42において熱媒液Wcとの熱交換によって水素ガスGを冷却しつつ、一次熱交換部31,41において導入口30i,40iから導入される水素ガスGを排出口30o,40oから排出される水素ガスG(すなわち、二次熱交換部32,42において冷却された水素ガスG)との熱交換によって冷却することで、水素ガスGを効率よく冷却して水分を除去することができる。これにより、多量の水分を含んだ水素ガスGが吸着除去処理を行う吸着塔2に流入する事態を回避することができると共に、一次熱交換部31,41および二次熱交換部32,42を備えない構成の熱交換器を使用するのと比較して、水素ガスGからの水分を除去するのに消費されるエネルギー量を一層低減することができる。 Therefore, according to this "adsorbent regeneration device" and the removal system 1, a cold heat source (for example, a refrigeration cycle that operates independently) for removing moisture from the hydrogen gas G by cooling the hydrogen gas G, and a heating The hydrogen gas G is cooled only by operating the heat pump unit 3 without separately operating a heat source (for example, an electric heater) for heating the hydrogen gas G for the adsorption capacity regeneration treatment of the regeneration method. The heat transfer liquid Wc for heating the hydrogen gas G can be cooled in the cooling part 3c, and at the same time, the heat transfer liquid Wh for heating the hydrogen gas G can be heated in the heating part 3h. Thereby, the amount of energy consumed for removing moisture from the hydrogen gas G and regenerating the adsorbent can be sufficiently reduced. In addition, before the hydrogen gas G flows into the adsorption tower 2 where the adsorption removal process is performed, the amount of moisture contained in the hydrogen gas G is partially removed in the heat exchanger 54a. Since it is possible to suppress the deterioration of the adsorption capacity of the adsorbent, it is not necessary to reduce the amount of hydrogen gas G flowing into the adsorption tower 2 where the adsorption removal process is performed, or to temporarily stop the adsorption removal process. The adsorption removal process for the introduced hydrogen gas G can be reliably completed in a short time. Further, primary heat exchange portions 31, 41 and secondary heat exchange portions 32, 42 are provided in the heat exchangers 54a, 54c. while cooling the hydrogen gas G introduced from the inlets 30i, 40i in the primary heat exchange units 31, 41 to the hydrogen gas G discharged from the outlets 30o, 40o (that is, in the secondary heat exchange units 32, 42 By cooling by heat exchange with the cooled hydrogen gas G), the hydrogen gas G can be efficiently cooled and moisture can be removed. As a result, the hydrogen gas G containing a large amount of water can be prevented from flowing into the adsorption tower 2 where the adsorption removal process is performed, and the primary heat exchange parts 31 and 41 and the secondary heat exchange parts 32 and The amount of energy consumed to remove the moisture from the hydrogen gas G can be further reduced compared to using a heat exchanger that is not provided.

また、この「吸着剤再生装置」では、導入口40iから導入されて一次熱交換部41を通過させられた水素ガスGの一部を、二次熱交換部42を通過させずに、二次熱交換部42を通過させられて一次熱交換部41に流入させられる水素ガスGに合流させるバイパス流路45が熱交換器54cに設けられると共に、バイパス流路45を通過する水素ガスGの流量を調整可能な流量調整弁45aが配設され、制御部15が、導入口40iから導入された水素ガスGの「温度A(温度センサ44aの検出温度)」、導入口40iから導入されて一次熱交換部41を通過させられた水素ガスGの「温度B(温度センサ44bの検出温度)」、および熱交換器54cにおける排出口40oから排出される水素ガスGの「温度C(温度センサ44dの検出温度)」をそれぞれ特定すると共に、「温度A」および「温度B」の「温度差A」と、「温度A」および「温度C」の「温度差B」との比に基づき、流量調整弁45aを制御してバイパス流路45を通過する水素ガスGの流量を調整する「処理A」を実行する。したがって、この「吸着剤再生装置」および除去システム1によれば、過剰に低い温度の水素ガスGが吸着除去処理を行う吸着塔2などを通過させられる事態が回避されるため、吸着除去処理を行う吸着塔2と吸着能力再生処理を行う吸着塔2とを切り換えたときに、吸着除去処理を行っていた吸着塔2内等で結露が生じる事態を回避することができる。 Further, in this "adsorbent regeneration device", part of the hydrogen gas G introduced from the inlet 40i and passed through the primary heat exchange section 41 is not passed through the secondary heat exchange section 42, The heat exchanger 54c is provided with a bypass flow path 45 that joins the hydrogen gas G that is passed through the heat exchange section 42 and flowed into the primary heat exchange section 41, and the flow rate of the hydrogen gas G that passes through the bypass flow path 45. is provided, and the control unit 15 controls the “temperature A (detected temperature of the temperature sensor 44a)” of the hydrogen gas G introduced from the inlet 40i, the primary The "temperature B (temperature detected by the temperature sensor 44b)" of the hydrogen gas G passed through the heat exchange section 41, and the "temperature C (temperature sensor 44d Detected temperature)”, and based on the ratio of “temperature difference A” between “temperature A” and “temperature B” and “temperature difference B” between “temperature A” and “temperature C”, the flow rate "Processing A" is executed to adjust the flow rate of the hydrogen gas G passing through the bypass flow path 45 by controlling the adjustment valve 45a. Therefore, according to the "adsorbent regeneration device" and the removal system 1, the excessively low temperature hydrogen gas G is prevented from passing through the adsorption tower 2 or the like for performing the adsorption removal process, so that the adsorption removal process is performed. When switching between the adsorption tower 2 that performs the adsorption capacity regeneration treatment and the adsorption tower 2 that performs the adsorption removal treatment, it is possible to avoid a situation in which dew condensation occurs in the adsorption tower 2 that has been performing the adsorption removal treatment.

また、この「吸着剤再生装置」では、導入口30iから導入されて一次熱交換部31を通過させられた水素ガスGの一部を、二次熱交換部32を通過させずに、二次熱交換部32を通過させられて一次熱交換部31に流入させられる水素ガスGに合流させるバイパス流路35が熱交換器54aに設けられると共に、バイパス流路35を通過する水素ガスGの流量を調整可能な流量調整弁35aが配設され、制御部15が、導入口30iから導入された水素ガスGの「温度D(温度センサ34aの検出温度)」、導入口30iから導入されて一次熱交換部31を通過させられた水素ガスGの「温度E(温度センサ34bの検出温度)」、および熱交換器54aにおける排出口30oから排出される水素ガスGの「温度F(温度センサ34dの検出温度)」をそれぞれ特定すると共に、「温度D」および「温度E」の「温度差C」と、「温度D」および「温度F」の「温度差D」との比に基づき、流量調整弁35aを制御してバイパス流路35を通過する水素ガスGの流量を調整する「処理B」を実行する。したがって、この「吸着剤再生装置」および除去システム1によれば、過剰に低い温度の水素ガスGが吸着除去処理を行う吸着塔2などを通過させられる事態が回避されるため、吸着除去処理を行う吸着塔2と吸着能力再生処理を行う吸着塔2とを切り換えたときに、吸着除去処理を行っていた吸着塔2内等で結露が生じる事態を回避することができる。 Further, in this "adsorbent regeneration device", part of the hydrogen gas G introduced from the inlet 30i and passed through the primary heat exchange section 31 is not passed through the secondary heat exchange section 32, The heat exchanger 54a is provided with a bypass flow path 35 that joins the hydrogen gas G that is passed through the heat exchange section 32 and flowed into the primary heat exchange section 31, and the flow rate of the hydrogen gas G that passes through the bypass flow path 35. is provided, and the control unit 15 controls the “temperature D (detected temperature of the temperature sensor 34a)” of the hydrogen gas G introduced from the inlet 30i, the primary The "temperature E (temperature detected by the temperature sensor 34b)" of the hydrogen gas G passed through the heat exchange section 31, and the "temperature F (temperature sensor 34d Detected temperature)”, and based on the ratio of “temperature difference C” between “temperature D” and “temperature E” and “temperature difference D” between “temperature D” and “temperature F”, the flow rate “Process B” is executed to adjust the flow rate of the hydrogen gas G passing through the bypass channel 35 by controlling the regulating valve 35a. Therefore, according to the "adsorbent regeneration device" and the removal system 1, the excessively low temperature hydrogen gas G is prevented from passing through the adsorption tower 2 or the like for performing the adsorption removal process, so that the adsorption removal process is performed. When switching between the adsorption tower 2 that performs the adsorption capacity regeneration treatment and the adsorption tower 2 that performs the adsorption removal treatment, it is possible to avoid a situation in which dew condensation occurs in the adsorption tower 2 that has been performing the adsorption removal treatment.

また、この「吸着剤再生装置」では、熱交換器54cを通過させられる水素ガスGの流量を調整する流量調整弁7bを備え、制御部15が、熱交換器54cを通過させられた水素ガスGの温度(温度センサ9による検出温度)が予め規定された温度範囲内の温度となるように流量調整弁7bを制御して熱交換器54cを通過させられる水素ガスGの流量を調整する「第5の処理」を実行する。したがって、この「吸着剤再生装置」および除去システム1によれば、過剰に低い温度の水素ガスGが吸着除去処理を行う吸着塔2などを通過させられる事態が回避されるため、吸着除去処理を行う吸着塔2と吸着能力再生処理を行う吸着塔2とを切り換えたときに、吸着除去処理を行っていた吸着塔2内等で結露が生じる事態を回避することができる。 Further, this "adsorbent regeneration device" is provided with a flow rate adjustment valve 7b for adjusting the flow rate of the hydrogen gas G passed through the heat exchanger 54c, and the control unit 15 controls the flow rate of the hydrogen gas G passed through the heat exchanger 54c. The flow rate of the hydrogen gas G passing through the heat exchanger 54c is adjusted by controlling the flow control valve 7b so that the temperature of G (the temperature detected by the temperature sensor 9) falls within a predetermined temperature range. 5th process" is executed. Therefore, according to the "adsorbent regeneration device" and the removal system 1, the excessively low temperature hydrogen gas G is prevented from passing through the adsorption tower 2 or the like for performing the adsorption removal process, so that the adsorption removal process is performed. When switching between the adsorption tower 2 that performs the adsorption capacity regeneration treatment and the adsorption tower 2 that performs the adsorption removal treatment, it is possible to avoid a situation in which dew condensation occurs in the adsorption tower 2 that has been performing the adsorption removal treatment.

また、この「吸着剤再生装置」では、熱交換器54cを通過させられる熱媒液Wcの流量を調整する流量調整弁7bを備え、制御部15が、吸着除去処理を行う吸着塔2に流入させられる水素ガスGの温度(温度センサ9の検出温度)に基づき、流量調整弁7bを制御して、水素ガスGの温度が高いときに熱交換器54cを通過させられる熱媒液Wcの流量を増加させ、水素ガスGの温度が低いときに熱交換器54cを通過させられる熱媒液Wcの流量を減少させる。したがって、この「吸着剤再生装置」および除去システム1によれば、過剰に低い温度の水素ガスGが吸着除去処理を行う吸着塔2などを通過させられる事態が回避されるため、吸着除去処理を行う吸着塔2と吸着能力再生処理を行う吸着塔2とを切り換えたときに、吸着除去処理を行っていた吸着塔2内等で結露が生じる事態を回避することができる。 In addition, this "adsorbent regeneration device" is provided with a flow rate adjustment valve 7b that adjusts the flow rate of the heat transfer liquid Wc that is passed through the heat exchanger 54c. Based on the temperature of the hydrogen gas G (detected temperature of the temperature sensor 9), the flow control valve 7b is controlled to adjust the flow rate of the heat transfer liquid Wc that is passed through the heat exchanger 54c when the temperature of the hydrogen gas G is high. is increased to decrease the flow rate of the heat transfer fluid Wc that is passed through the heat exchanger 54c when the temperature of the hydrogen gas G is low. Therefore, according to the "adsorbent regeneration device" and the removal system 1, the excessively low temperature hydrogen gas G is prevented from passing through the adsorption tower 2 or the like for performing the adsorption removal process, so that the adsorption removal process is performed. When switching between the adsorption tower 2 that performs the adsorption capacity regeneration treatment and the adsorption tower 2 that performs the adsorption removal treatment, it is possible to avoid a situation in which dew condensation occurs in the adsorption tower 2 that has been performing the adsorption removal treatment.

また、上記の構成の例に代えて、熱交換器4aと熱交換器54cとを備えて除去システム1を構成したり、熱交換器54aと熱交換器4cとを備えて除去システム1を構成したりすることもできる。さらに、予冷用の一次熱交換部31や本冷用の二次熱交換部32を備えない通常の熱交換器(図示せず)で「第2の熱交換器」を構成したり、予冷用の一次熱交換部41や本冷用の二次熱交換部42を備えない通常の熱交換器(図示せず)で「第3の熱交換器」を構成したりすることもできる。 Alternatively, the removal system 1 may include the heat exchanger 4a and the heat exchanger 54c, or the removal system 1 may include the heat exchanger 54a and the heat exchanger 4c. You can also Furthermore, a normal heat exchanger (not shown) that does not include the primary heat exchange section 31 for precooling and the secondary heat exchange section 32 for main cooling may be used as a "second heat exchanger". The "third heat exchanger" can also be constituted by a normal heat exchanger (not shown) that does not include the primary heat exchange section 41 and the secondary heat exchange section 42 for main cooling.

また、2つの吸着塔2を備えた構成を例に挙げて説明したが、3つ以上の複数の吸着塔2を備えて「除去システム」およびその「吸着剤再生装置」を構成することもできる。具体的には、吸着除去処理を行う吸着塔2内の吸着剤が好適に水分を吸着するのが困難となるまでの時間よりも、吸着能力再生処理を行う吸着塔2内の吸着剤から水分を好適に離脱させるのに要する時間が長いときには、一例として、3つの吸着塔2を備え、そのうちの1つにおいて吸着除去処理を行いつつ、他の2つにおいて吸着能力再生処理を行うことで、吸着除去処理を継続的に行うことが可能となる。また、吸着能力再生処理を行う吸着塔2内の吸着剤から水分を好適に離脱させるのに要する時間よりも、吸着除去処理を行う吸着塔2内の吸着剤が好適に水分を吸着するのが困難となるまでの時間が長いときには、一例として、3つの吸着塔2を備え、そのうちの1つにおいて吸着能力再生処理を順次行いつつ、他の2つにおいて吸着除去処理を行うことで、吸着除去処理および吸着能力除去処理を効率よく行うことが可能となる。 In addition, although the configuration including two adsorption towers 2 has been described as an example, it is also possible to configure a "removal system" and its "adsorbent regeneration device" by including a plurality of adsorption towers 2 of three or more. . Specifically, the amount of moisture from the adsorbent in the adsorption tower 2 that performs the adsorption capacity regeneration process is longer than the time until it becomes difficult for the adsorbent in the adsorption tower 2 that performs the adsorption removal process to preferably adsorb moisture. When it takes a long time to suitably desorb, as an example, three adsorption towers 2 are provided, one of which performs adsorption removal processing, and the other two perform adsorption capacity regeneration processing. It is possible to continuously perform the adsorption removal process. In addition, it takes more time for the adsorbent in the adsorption tower 2 to perform the adsorption removal process to preferably adsorb moisture than the time required to desorb the moisture from the adsorbent in the adsorption tower 2 to perform the adsorption capacity regeneration process. When the time until it becomes difficult is long, as an example, three adsorption towers 2 are provided, one of which performs adsorption capacity regeneration treatment sequentially, and the other two perform adsorption removal treatment. It is possible to efficiently perform treatment and adsorption capacity removal treatment.

また、「第2の流量調整部」としての流量調整弁33a,33bが配設された熱交換器4aを「第2の熱交換器」として備えた構成、および「第1の流量調整部」としての流量調整弁43a,43bが配設された熱交換器4cを「第3の熱交換器」として備えた構成を例に挙げて説明したが、流量調整弁33a,33bに代えて、二次熱交換部32を通過させられた水素ガスGを、バイパス流路33に流入させる流路、および一次熱交換部31に再び流入させる流路のいずれかに流入させる三方弁を「第2の流量調整部」として備えて「第2の熱交換器」を構成したり、流量調整弁43a,43bに代えて、二次熱交換部42を通過させられた水素ガスGを、バイパス流路43に流入させる流路、および一次熱交換部41に再び流入させる流路のいずれかに流入させる三方弁を「第1の流量調整部」として備えて「第3の熱交換器」を構成したりすることもできる。 In addition, the heat exchanger 4a in which the flow rate adjustment valves 33a and 33b are arranged as the "second flow rate adjustment section" is provided as the "second heat exchanger", and the "first flow rate adjustment section" Although the heat exchanger 4c in which the flow control valves 43a and 43b are arranged as the “third heat exchanger” has been described as an example, instead of the flow control valves 33a and 33b, two The three-way valve that causes the hydrogen gas G that has passed through the secondary heat exchange section 32 to flow into either the flow path that flows into the bypass flow path 33 or the flow path that flows into the primary heat exchange section 31 again is the "second Alternatively, instead of the flow rate adjustment valves 43a and 43b, the hydrogen gas G passed through the secondary heat exchange section 42 is passed through the bypass flow path 43. A "third heat exchanger" is configured by providing a three-way valve as a "first flow rate adjustment unit" that allows the flow to flow into either the flow path that flows into the primary heat exchange unit 41 or the flow path that flows into the primary heat exchange unit 41 again. You can also

また、「温度調整部」については、前述の除去システム1におけるヒートポンプユニット3のような「1つの冷凍サイクル11」を備えた構成に限定されず、一例として、カスケードコンデンサを介して連設された「多段冷凍サイクル」によって「温度調整部」を構成することができる。この場合、一例として、低温側冷凍サイクルにおける凝縮器、および高温側冷凍サイクルにおける蒸発器に相当する要素をカスケードコンデンサで構成した「二段冷凍サイクル」を備えて「温度調整部」を構成した場合には、低温側冷凍サイクルにおける蒸発器を備えて「冷却部」を構成すると共に、高温側冷凍サイクルにおける凝縮器を備えて「加熱部」を構成することで、「冷却部」から供給可能な冷熱の熱量、および「加熱部」から供給可能な温熱の熱量を十分に増加させる(熱媒液Wcを十分に冷却し、かつ熱媒液Whを十分に加熱する)ことが可能となる。 In addition, the "temperature adjustment unit" is not limited to the configuration including "one refrigeration cycle 11" like the heat pump unit 3 in the removal system 1 described above, and as an example, A "temperature adjustment unit" can be configured by a "multistage refrigeration cycle". In this case, as an example, the case where the "temperature adjustment unit" is configured with a "two-stage refrigeration cycle" in which the elements corresponding to the condenser in the low-temperature side refrigeration cycle and the evaporator in the high-temperature side refrigeration cycle are configured with cascade condensers. is provided with an evaporator in the low-temperature side refrigeration cycle to form a "cooling section", and is provided with a condenser in the high-temperature side refrigeration cycle to form a "heating section". It is possible to sufficiently increase the amount of cold heat and the amount of hot heat that can be supplied from the "heating unit" (sufficiently cool the heat transfer fluid Wc and sufficiently heat the heat transfer fluid Wh).

また、「気体」の一例である水素ガスGから「吸着剤」としての「ゼオライト(合成ゼオライト)」等を用いて「除去対象」の一例である水分を除去可能な構成を例に挙げて説明したが、「気体」、「吸着剤」および「除去対象」はこの例に限定されない。例えば、「気体」としての「酸素」から「吸着剤」としての「ゼオライト(合成ゼオライト)」等を用いて「除去対象」としての「水分」等を吸着除去する「除去システム」およびその「吸着剤再生装置」において本願発明の構成を採用することができる。また、「気体」としての「排気ガス(内燃機関等における燃焼によって排出される気体)」から「吸着剤」としての「活性炭」等を用いて「除去対象」としての「揮発性有機化合物(VOC)」等を吸着除去する「除去システム」およびその「吸着剤再生装置」において本願発明の構成を採用することができる。さらに、「気体」としての「大気(外気)」から「吸着剤」としてのゼオライト(合成ゼオライト)」等を用いて「除去対象」としての「水分」等を吸着除去する「除去システム」およびその「吸着剤再生装置」において本願発明の構成を採用することができる。 In addition, a configuration capable of removing moisture, which is an example of a "removal target", from hydrogen gas G, which is an example of a "gas", using "zeolite (synthetic zeolite)" as an "adsorbent" will be described as an example. However, the "gas", "adsorbent" and "removal target" are not limited to this example. For example, a "removal system" that adsorbs and removes "moisture" as a "removal target" using "zeolite (synthetic zeolite)" as an "adsorbent" from "oxygen" as a "gas" and its "adsorption The configuration of the present invention can be adopted in the agent regeneration device. In addition, "Volatile organic compounds (VOC )” and its “adsorbent regeneration device” can adopt the configuration of the present invention. In addition, a "removal system" that adsorbs and removes "moisture" as a "removal target" using zeolite (synthetic zeolite) as an "adsorbent" from "atmosphere (outside air)" as a "gas" and its The configuration of the present invention can be adopted in the "adsorbent regeneration device".

1 除去システム
2a,2b 吸着塔
3 ヒートポンプユニット
3c 冷却部
3h 加熱部
4a~4c,54a,54c 熱交換器
5a,5b 流路切換え弁
6,7a,7b 流量調整弁
8a,8b 貯水部
9 温度センサ
10 湿度センサ
11 冷凍サイクル
12a,12b ポンプ
13 操作部
14 表示部
15 制御部
16 記憶部
21 圧縮機
22 凝縮器
23 膨張弁
24 蒸発器
30i,40i 導入口
30o,40o 排出口
31,41 一次熱交換部
32,42 二次熱交換部
33,35,43,45 バイパス流路
33a,33b,35a,43a,43b,45a 流量調整弁
34a~34d,44a~44d 温度センサ
G 水素ガス
LC1,LC2,LH 熱媒液循環路
P1 分岐点
P2 合流点
Pi 導入用配管
Po 排出用配管
Wc,Wh 熱媒液
1 removal system 2a, 2b adsorption tower 3 heat pump unit 3c cooling unit 3h heating unit 4a to 4c, 54a, 54c heat exchanger 5a, 5b flow switching valve 6, 7a, 7b flow control valve 8a, 8b water storage unit 9 temperature sensor 10 humidity sensor 11 refrigeration cycle 12a, 12b pump 13 operation unit 14 display unit 15 control unit 16 storage unit 21 compressor 22 condenser 23 expansion valve 24 evaporator 30i, 40i inlet 30o, 40o outlet 31, 41 primary heat exchange Sections 32, 42 Secondary heat exchange sections 33, 35, 43, 45 Bypass passages 33a, 33b, 35a, 43a, 43b, 45a Flow control valves 34a to 34d, 44a to 44d Temperature sensor G Hydrogen gas LC1, LC2, LH Heat medium liquid circulation path P1 Branch point P2 Junction point Pi Introduction pipe Po Discharge pipe Wc, Wh Heat medium liquid

Claims (7)

気体に含まれている除去対象を吸着塔内の吸着剤に吸着させて当該気体から除去する吸着除去処理を実行可能な除去システムにおける当該吸着剤を加熱再生方式の吸着能力再生処理によって再生可能に構成された吸着剤再生装置であって、
複数の前記吸着塔を備えて当該各吸着塔の一部を対象とする前記吸着除去処理と当該各吸着塔の他の一部を対象とする前記吸着能力再生処理とを並行して実行可能に構成された前記除去システムにおける前記吸着剤を再生可能に構成され、
前記吸着能力再生処理を行う前記吸着塔に流入させる前記気体を加熱する第1の熱交換器と、
前記吸着除去処理を行う前記吸着塔および前記第1の熱交換器に流入させられる前記気体を冷却する第2の熱交換器と、
前記吸着能力再生処理を行う前記吸着塔を通過させられた前記気体を冷却する第3の熱交換器と、
冷凍サイクルを有すると共に当該冷凍サイクルにおける凝縮器からの放熱によって加熱用熱媒液を加熱可能な加熱部、および当該冷凍サイクルにおける蒸発器による吸熱によって冷却用熱媒液を冷却可能な冷却部を備えた温度調整部と、
前記吸着除去処理を行う前記吸着塔を通過させられた前記気体を、前記除去対象の除去が完了した前記気体を流入させるべき排出用配管に流入させると共に、前記第1の熱交換器によって加熱された前記気体を、前記吸着能力再生処理を行う前記吸着塔に流入させる第1の流路切替え部と、
前記第2の熱交換器によって冷却された前記気体を、前記吸着除去処理を行う前記吸着塔に流入させると共に、前記吸着能力再生処理を行う前記吸着塔を通過させられた前記気体を、前記第3の熱交換器に流入させる第2の流路切替え部と、
前記加熱部による前記加熱用熱媒液の加熱、前記第1の熱交換器への当該加熱用熱媒液の供給、前記冷却部による前記冷却用熱媒液の冷却、前記第2の熱交換器への当該冷却用熱媒液の供給、および前記第3の熱交換器への当該冷却用熱媒液の供給を制御する第1の処理と、前記第1の流路切替え部および前記第2の流路切替え部を制御して前記吸着除去処理を行う前記吸着塔および前記吸着能力再生処理を行う前記吸着塔を切り換える第2の処理とを実行する制御部とを備え、
前記第3の熱交換器を通過させられた前記気体が、前記第2の熱交換器を通過させられた気体に合流させられて前記第2の流路切替え部を介して前記吸着除去処理を行う前記吸着塔に流入させられると共に、
前記第3の熱交換器は、一次熱交換部および二次熱交換部を備え、気体導入口から導入された前記気体が、当該一次熱交換部、当該二次熱交換部および当該一次熱交換部をこの順で通過させられて気体排出口から排出されるように気体流路が形成されると共に、当該二次熱交換部において前記冷却用熱媒液との熱交換によって前記気体に含まれている前記除去対象が液相化されて除去され、かつ、当該一次熱交換部において当該二次熱交換部によって冷却された前記気体との熱交換によって前記気体導入口から導入された前記気体に含まれている前記除去対象が液相化されて除去されるように構成され、かつ当該二次熱交換部を通過させられた前記気体を、当該一次熱交換部を再び通過させずに当該気体排出口から排出させる第1のバイパス流路が設けられると共に、当該第1のバイパス流路を通過させる前記気体の流量を調整可能な第1の流量調整部が配設され、
前記制御部は、前記第3の熱交換器における前記気体導入口から導入された前記気体の第1の温度、当該気体導入口から導入されて前記一次熱交換部を通過させられた前記気体の第2の温度、および前記二次熱交換部を通過させられた前記気体の第3の温度を特定すると共に、当該第1の温度および当該第3の温度の第1の温度差と、当該第2の温度および当該第3の温度の第2の温度差との比に基づき、前記第1の流量調整部を制御して前記第1のバイパス流路を通過する前記気体の流量を調整させる第3の処理を実行する吸着剤再生装置。
Regenerate the adsorbent in a removal system capable of performing adsorption removal processing in which the target to be removed contained in the gas is adsorbed on the adsorbent in the adsorption tower and removed from the gas by the adsorption capacity regeneration processing of the heat regeneration method. An adsorbent regeneration device comprising:
A plurality of the adsorption towers are provided, and the adsorption removal process for a part of each adsorption tower and the adsorption capacity regeneration process for another part of each adsorption tower can be executed in parallel. configured to regenerate the adsorbent in the configured removal system,
a first heat exchanger for heating the gas flowing into the adsorption tower where the adsorption capacity regeneration process is performed;
a second heat exchanger for cooling the gas flowing into the adsorption tower and the first heat exchanger for performing the adsorption removal process;
a third heat exchanger that cools the gas that has passed through the adsorption tower that performs the adsorption capacity regeneration process;
A heating part having a refrigeration cycle and capable of heating the heating heat transfer fluid by heat radiation from the condenser in the refrigeration cycle, and a cooling part capable of cooling the cooling heat transfer fluid by heat absorption by the evaporator in the refrigeration cycle. a temperature control unit;
The gas that has passed through the adsorption tower that performs the adsorption removal treatment is allowed to flow into a discharge pipe into which the gas that has been completely removed from the removal target is to flow, and is heated by the first heat exchanger. a first flow switching unit that causes the gas to flow into the adsorption tower that performs the adsorption capacity regeneration process;
The gas cooled by the second heat exchanger is allowed to flow into the adsorption tower that performs the adsorption removal treatment, and the gas that has passed through the adsorption tower that performs the adsorption capacity regeneration treatment is transferred to the second heat exchanger. a second flow switching unit for flowing into the heat exchanger of 3;
Heating of the heating heat transfer fluid by the heating unit, supply of the heating heat transfer fluid to the first heat exchanger, cooling of the cooling heat transfer fluid by the cooling unit, and second heat exchange. a first process for controlling supply of the cooling heat transfer liquid to the vessel and supply of the cooling heat transfer liquid to the third heat exchanger; a second process for controlling the flow path switching part of 2 to switch the adsorption tower for performing the adsorption removal process and the adsorption tower for performing the adsorption capacity regeneration process;
The gas that has passed through the third heat exchanger is combined with the gas that has passed through the second heat exchanger to perform the adsorption removal process through the second flow path switching unit. While flowing into the adsorption tower to perform
The third heat exchanger includes a primary heat exchange section and a secondary heat exchange section, and the gas introduced from the gas introduction port passes through the primary heat exchange section, the secondary heat exchange section, and the primary heat exchange section. A gas flow path is formed so that the gas passes through the parts in this order and is discharged from the gas outlet, and is contained in the gas by heat exchange with the cooling heat transfer liquid in the secondary heat exchange part. The object to be removed is liquefied and removed, and the gas introduced from the gas inlet by heat exchange with the gas cooled by the secondary heat exchange section in the primary heat exchange section The gas that is configured to be removed by liquefying the contained object to be removed and that has passed through the secondary heat exchange unit is removed without passing through the primary heat exchange unit again. A first bypass flow path for discharging from the discharge port is provided, and a first flow rate adjustment unit capable of adjusting the flow rate of the gas passing through the first bypass flow path is provided,
The control unit controls a first temperature of the gas introduced from the gas inlet in the third heat exchanger, and a temperature of the gas introduced from the gas inlet and passed through the primary heat exchange unit. A second temperature and a third temperature of the gas passed through the secondary heat exchange section are specified, and a first temperature difference between the first temperature and the third temperature; Controlling the first flow rate adjusting unit to adjust the flow rate of the gas passing through the first bypass flow path based on the ratio of the second temperature and the third temperature to the second temperature difference 3. An adsorbent regeneration device that performs the process of 3.
気体に含まれている除去対象を吸着塔内の吸着剤に吸着させて当該気体から除去する吸着除去処理を実行可能な除去システムにおける当該吸着剤を加熱再生方式の吸着能力再生処理によって再生可能に構成された吸着剤再生装置であって、
複数の前記吸着塔を備えて当該各吸着塔の一部を対象とする前記吸着除去処理と当該各吸着塔の他の一部を対象とする前記吸着能力再生処理とを並行して実行可能に構成された前記除去システムにおける前記吸着剤を再生可能に構成され、
前記吸着能力再生処理を行う前記吸着塔に流入させる前記気体を加熱する第1の熱交換器と、
前記吸着除去処理を行う前記吸着塔および前記第1の熱交換器に流入させられる前記気体を冷却する第2の熱交換器と、
前記吸着能力再生処理を行う前記吸着塔を通過させられた前記気体を冷却する第3の熱交換器と、
冷凍サイクルを有すると共に当該冷凍サイクルにおける凝縮器からの放熱によって加熱用熱媒液を加熱可能な加熱部、および当該冷凍サイクルにおける蒸発器による吸熱によって冷却用熱媒液を冷却可能な冷却部を備えた温度調整部と、
前記吸着除去処理を行う前記吸着塔を通過させられた前記気体を、前記除去対象の除去が完了した前記気体を流入させるべき排出用配管に流入させると共に、前記第1の熱交換器によって加熱された前記気体を、前記吸着能力再生処理を行う前記吸着塔に流入させる第1の流路切替え部と、
前記第2の熱交換器によって冷却された前記気体を、前記吸着除去処理を行う前記吸着塔に流入させると共に、前記吸着能力再生処理を行う前記吸着塔を通過させられた前記気体を、前記第3の熱交換器に流入させる第2の流路切替え部と、
前記加熱部による前記加熱用熱媒液の加熱、前記第1の熱交換器への当該加熱用熱媒液の供給、前記冷却部による前記冷却用熱媒液の冷却、前記第2の熱交換器への当該冷却用熱媒液の供給、および前記第3の熱交換器への当該冷却用熱媒液の供給を制御する第1の処理と、前記第1の流路切替え部および前記第2の流路切替え部を制御して前記吸着除去処理を行う前記吸着塔および前記吸着能力再生処理を行う前記吸着塔を切り換える第2の処理とを実行する制御部とを備え、
前記第3の熱交換器を通過させられた前記気体が、前記第2の熱交換器を通過させられた気体に合流させられて前記第2の流路切替え部を介して前記吸着除去処理を行う前記吸着塔に流入させられると共に、
前記第3の熱交換器は、一次熱交換部および二次熱交換部を備え、気体導入口から導入された前記気体が、当該一次熱交換部、当該二次熱交換部および当該一次熱交換部をこの順で通過させられて気体排出口から排出されるように気体流路が形成されると共に、当該二次熱交換部において前記冷却用熱媒液との熱交換によって前記気体に含まれている前記除去対象が液相化されて除去され、かつ、当該一次熱交換部において当該二次熱交換部によって冷却された前記気体との熱交換によって前記気体導入口から導入された前記気体に含まれている前記除去対象が液相化されて除去されるように構成され、かつ当該気体導入口から導入されて当該一次熱交換部を通過させられた前記気体の一部を、当該二次熱交換部を通過させずに、当該二次熱交換部を通過させられて当該一次熱交換部に流入させられる前記気体に合流させるバイパス流路Aが設けられると共に、当該バイパス流路Aを通過させる前記気体の流量を調整可能な流量調整部Aが配設され、
前記制御部は、前記第3の熱交換器における前記気体導入口から導入された前記気体の温度A、当該気体導入口から導入されて前記一次熱交換部を通過させられた前記気体の温度B、および当該第3の熱交換器における前記気体排出口から排出される前記気体の温度Cを特定すると共に、当該温度Aおよび当該温度Bの温度差Aと、当該温度Aおよび当該温度Cの温度差Bとの比に基づき、前記流量調整部Aを制御して前記バイパス流路Aを通過する前記気体の流量を調整させる処理Aを実行する吸着剤再生装置。
Regenerate the adsorbent in a removal system capable of performing adsorption removal processing in which the target to be removed contained in the gas is adsorbed on the adsorbent in the adsorption tower and removed from the gas by the adsorption capacity regeneration processing of the heat regeneration method. An adsorbent regeneration device comprising:
A plurality of the adsorption towers are provided, and the adsorption removal process for a part of each adsorption tower and the adsorption capacity regeneration process for another part of each adsorption tower can be executed in parallel. configured to regenerate the adsorbent in the configured removal system,
a first heat exchanger for heating the gas flowing into the adsorption tower where the adsorption capacity regeneration process is performed;
a second heat exchanger for cooling the gas flowing into the adsorption tower and the first heat exchanger for performing the adsorption removal process;
a third heat exchanger that cools the gas that has passed through the adsorption tower that performs the adsorption capacity regeneration process;
A heating part having a refrigeration cycle and capable of heating the heating heat transfer fluid by heat radiation from the condenser in the refrigeration cycle, and a cooling part capable of cooling the cooling heat transfer fluid by heat absorption by the evaporator in the refrigeration cycle. a temperature control unit;
The gas that has passed through the adsorption tower that performs the adsorption removal treatment is allowed to flow into a discharge pipe into which the gas that has been completely removed from the removal target is to flow, and is heated by the first heat exchanger. a first flow path switching unit that causes the gas to flow into the adsorption tower that performs the adsorption capacity regeneration process;
The gas cooled by the second heat exchanger is allowed to flow into the adsorption tower that performs the adsorption removal treatment, and the gas that has passed through the adsorption tower that performs the adsorption capacity regeneration treatment is transferred to the second heat exchanger. a second flow switching unit for flowing into the heat exchanger of 3;
Heating of the heating heat transfer fluid by the heating unit, supply of the heating heat transfer fluid to the first heat exchanger, cooling of the cooling heat transfer fluid by the cooling unit, and second heat exchange. a first process for controlling supply of the cooling heat transfer liquid to the vessel and supply of the cooling heat transfer liquid to the third heat exchanger; a second process for controlling the flow path switching part of 2 to switch the adsorption tower for performing the adsorption removal process and the adsorption tower for performing the adsorption capacity regeneration process;
The gas that has passed through the third heat exchanger is combined with the gas that has passed through the second heat exchanger to perform the adsorption removal process through the second flow path switching unit. While flowing into the adsorption tower to perform
The third heat exchanger includes a primary heat exchange section and a secondary heat exchange section, and the gas introduced from the gas introduction port passes through the primary heat exchange section, the secondary heat exchange section, and the primary heat exchange section. A gas flow path is formed so that the gas passes through the parts in this order and is discharged from the gas outlet, and is contained in the gas by heat exchange with the cooling heat transfer liquid in the secondary heat exchange part. The object to be removed is liquefied and removed, and the gas introduced from the gas inlet by heat exchange with the gas cooled by the secondary heat exchange section in the primary heat exchange section Part of the gas introduced from the gas introduction port and passed through the primary heat exchange section is configured to be removed by liquefying the removal target contained in the secondary heat exchange section. A bypass flow path A is provided to merge the gas that is allowed to pass through the secondary heat exchange part and flow into the primary heat exchange part without passing through the heat exchange part, and passes through the bypass flow path A. A flow rate adjustment unit A capable of adjusting the flow rate of the gas that causes
The control unit controls the temperature A of the gas introduced from the gas inlet in the third heat exchanger, the temperature B of the gas introduced from the gas inlet and passed through the primary heat exchange unit , and specifying the temperature C of the gas discharged from the gas outlet in the third heat exchanger, the temperature difference A between the temperature A and the temperature B, and the temperature between the temperature A and the temperature C An adsorbent regeneration device for executing a process A for controlling the flow rate adjustment unit A to adjust the flow rate of the gas passing through the bypass flow path A based on the ratio to the difference B.
気体に含まれている除去対象を吸着塔内の吸着剤に吸着させて当該気体から除去する吸着除去処理を実行可能な除去システムにおける当該吸着剤を加熱再生方式の吸着能力再生処理によって再生可能に構成された吸着剤再生装置であって、
複数の前記吸着塔を備えて当該各吸着塔の一部を対象とする前記吸着除去処理と当該各吸着塔の他の一部を対象とする前記吸着能力再生処理とを並行して実行可能に構成された前記除去システムにおける前記吸着剤を再生可能に構成され、
前記吸着能力再生処理を行う前記吸着塔に流入させる前記気体を加熱する第1の熱交換器と、
前記吸着除去処理を行う前記吸着塔および前記第1の熱交換器に流入させられる前記気体を冷却する第2の熱交換器と、
前記吸着能力再生処理を行う前記吸着塔を通過させられた前記気体を冷却する第3の熱交換器と、
冷凍サイクルを有すると共に当該冷凍サイクルにおける凝縮器からの放熱によって加熱用熱媒液を加熱可能な加熱部、および当該冷凍サイクルにおける蒸発器による吸熱によって冷却用熱媒液を冷却可能な冷却部を備えた温度調整部と、
前記吸着除去処理を行う前記吸着塔を通過させられた前記気体を、前記除去対象の除去が完了した前記気体を流入させるべき排出用配管に流入させると共に、前記第1の熱交換器によって加熱された前記気体を、前記吸着能力再生処理を行う前記吸着塔に流入させる第1の流路切替え部と、
前記第2の熱交換器によって冷却された前記気体を、前記吸着除去処理を行う前記吸着塔に流入させると共に、前記吸着能力再生処理を行う前記吸着塔を通過させられた前記気体を、前記第3の熱交換器に流入させる第2の流路切替え部と、
前記加熱部による前記加熱用熱媒液の加熱、前記第1の熱交換器への当該加熱用熱媒液の供給、前記冷却部による前記冷却用熱媒液の冷却、前記第2の熱交換器への当該冷却用熱媒液の供給、および前記第3の熱交換器への当該冷却用熱媒液の供給を制御する第1の処理と、前記第1の流路切替え部および前記第2の流路切替え部を制御して前記吸着除去処理を行う前記吸着塔および前記吸着能力再生処理を行う前記吸着塔を切り換える第2の処理とを実行する制御部とを備え、
前記第3の熱交換器を通過させられた前記気体が、前記第2の熱交換器を通過させられた気体に合流させられて前記第2の流路切替え部を介して前記吸着除去処理を行う前記吸着塔に流入させられると共に、
前記第2の熱交換器は、一次熱交換部および二次熱交換部を備え、気体導入口から導入された前記気体が、当該一次熱交換部、当該二次熱交換部および当該一次熱交換部をこの順で通過させられて気体排出口から排出されるように気体流路が形成されると共に、当該二次熱交換部において前記冷却用熱媒液との熱交換によって前記気体に含まれている前記除去対象が液相化されて除去され、かつ、当該一次熱交換部において当該二次熱交換部によって冷却された前記気体との熱交換によって前記気体導入口から導入された前記気体に含まれている前記除去対象が液相化されて除去されるように構成され、かつ当該二次熱交換部を通過させられた前記気体を、当該一次熱交換部を再び通過させずに当該気体排出口から排出させる第2のバイパス流路が設けられると共に、当該第2のバイパス流路を通過させる前記気体の流量を調整可能な第2の流量調整部が配設され、
前記制御部は、前記第2の熱交換器における前記気体導入口から導入された前記気体の第4の温度、当該気体導入口から導入されて前記一次熱交換部を通過させられた前記気体の第5の温度、および前記二次熱交換部を通過させられた前記気体の第6の温度を特定すると共に、当該第4の温度および当該第6の温度の第3の温度差と、当該第5の温度および当該第6の温度の第4の温度差との比に基づき、前記第2の流量調整部を制御して前記第2のバイパス流路を通過する前記気体の流量を調整させる第4の処理を実行する吸着剤再生装置。
Regenerate the adsorbent in a removal system capable of performing adsorption removal processing in which the target to be removed contained in the gas is adsorbed on the adsorbent in the adsorption tower and removed from the gas by the adsorption capacity regeneration processing of the heat regeneration method. An adsorbent regeneration device comprising:
A plurality of the adsorption towers are provided, and the adsorption removal process for a part of each adsorption tower and the adsorption capacity regeneration process for another part of each adsorption tower can be executed in parallel. configured to regenerate the adsorbent in the configured removal system,
a first heat exchanger for heating the gas flowing into the adsorption tower where the adsorption capacity regeneration process is performed;
a second heat exchanger for cooling the gas flowing into the adsorption tower and the first heat exchanger for performing the adsorption removal process;
a third heat exchanger that cools the gas that has passed through the adsorption tower that performs the adsorption capacity regeneration process;
A heating part having a refrigeration cycle and capable of heating the heating heat transfer fluid by heat radiation from the condenser in the refrigeration cycle, and a cooling part capable of cooling the cooling heat transfer fluid by heat absorption by the evaporator in the refrigeration cycle. a temperature control unit;
The gas that has passed through the adsorption tower that performs the adsorption removal treatment is allowed to flow into a discharge pipe into which the gas that has been completely removed from the removal target is to flow, and is heated by the first heat exchanger. a first flow switching unit that causes the gas to flow into the adsorption tower that performs the adsorption capacity regeneration process;
The gas cooled by the second heat exchanger is allowed to flow into the adsorption tower that performs the adsorption removal treatment, and the gas that has passed through the adsorption tower that performs the adsorption capacity regeneration treatment is transferred to the second heat exchanger. a second flow switching unit for flowing into the heat exchanger of 3;
Heating of the heating heat transfer fluid by the heating unit, supply of the heating heat transfer fluid to the first heat exchanger, cooling of the cooling heat transfer fluid by the cooling unit, and second heat exchange. a first process for controlling supply of the cooling heat transfer liquid to the vessel and supply of the cooling heat transfer liquid to the third heat exchanger; a second process for controlling the flow path switching part of 2 to switch the adsorption tower for performing the adsorption removal process and the adsorption tower for performing the adsorption capacity regeneration process;
The gas that has passed through the third heat exchanger is combined with the gas that has passed through the second heat exchanger to perform the adsorption removal process through the second flow path switching unit. While flowing into the adsorption tower to perform
The second heat exchanger includes a primary heat exchange section and a secondary heat exchange section, and the gas introduced from the gas introduction port flows through the primary heat exchange section, the secondary heat exchange section, and the primary heat exchange section. A gas flow path is formed so that the gas passes through the parts in this order and is discharged from the gas outlet, and is contained in the gas by heat exchange with the cooling heat transfer liquid in the secondary heat exchange part. The object to be removed is liquefied and removed, and the gas introduced from the gas inlet by heat exchange with the gas cooled by the secondary heat exchange section in the primary heat exchange section The gas that is configured to be removed by liquefying the contained object to be removed and that has passed through the secondary heat exchange unit is removed without passing through the primary heat exchange unit again. A second bypass flow path for discharging from the discharge port is provided, and a second flow rate adjustment unit capable of adjusting the flow rate of the gas passing through the second bypass flow path is provided,
The control unit controls a fourth temperature of the gas introduced from the gas introduction port in the second heat exchanger, a fourth temperature of the gas introduced from the gas introduction port and passed through the primary heat exchange unit. A fifth temperature and a sixth temperature of the gas passed through the secondary heat exchange section are specified, and a third temperature difference between the fourth temperature and the sixth temperature; 5 and the ratio of the sixth temperature to the fourth temperature difference, the second flow rate adjusting unit is controlled to adjust the flow rate of the gas passing through the second bypass flow path. 4. An adsorbent regeneration device that performs the process of 4.
気体に含まれている除去対象を吸着塔内の吸着剤に吸着させて当該気体から除去する吸着除去処理を実行可能な除去システムにおける当該吸着剤を加熱再生方式の吸着能力再生処理によって再生可能に構成された吸着剤再生装置であって、
複数の前記吸着塔を備えて当該各吸着塔の一部を対象とする前記吸着除去処理と当該各吸着塔の他の一部を対象とする前記吸着能力再生処理とを並行して実行可能に構成された前記除去システムにおける前記吸着剤を再生可能に構成され、
前記吸着能力再生処理を行う前記吸着塔に流入させる前記気体を加熱する第1の熱交換器と、
前記吸着除去処理を行う前記吸着塔および前記第1の熱交換器に流入させられる前記気体を冷却する第2の熱交換器と、
前記吸着能力再生処理を行う前記吸着塔を通過させられた前記気体を冷却する第3の熱交換器と、
冷凍サイクルを有すると共に当該冷凍サイクルにおける凝縮器からの放熱によって加熱用熱媒液を加熱可能な加熱部、および当該冷凍サイクルにおける蒸発器による吸熱によって冷却用熱媒液を冷却可能な冷却部を備えた温度調整部と、
前記吸着除去処理を行う前記吸着塔を通過させられた前記気体を、前記除去対象の除去が完了した前記気体を流入させるべき排出用配管に流入させると共に、前記第1の熱交換器によって加熱された前記気体を、前記吸着能力再生処理を行う前記吸着塔に流入させる第1の流路切替え部と、
前記第2の熱交換器によって冷却された前記気体を、前記吸着除去処理を行う前記吸着塔に流入させると共に、前記吸着能力再生処理を行う前記吸着塔を通過させられた前記気体を、前記第3の熱交換器に流入させる第2の流路切替え部と、
前記加熱部による前記加熱用熱媒液の加熱、前記第1の熱交換器への当該加熱用熱媒液の供給、前記冷却部による前記冷却用熱媒液の冷却、前記第2の熱交換器への当該冷却用熱媒液の供給、および前記第3の熱交換器への当該冷却用熱媒液の供給を制御する第1の処理と、前記第1の流路切替え部および前記第2の流路切替え部を制御して前記吸着除去処理を行う前記吸着塔および前記吸着能力再生処理を行う前記吸着塔を切り換える第2の処理とを実行する制御部とを備え、
前記第3の熱交換器を通過させられた前記気体が、前記第2の熱交換器を通過させられた気体に合流させられて前記第2の流路切替え部を介して前記吸着除去処理を行う前記吸着塔に流入させられると共に、
前記第2の熱交換器は、一次熱交換部および二次熱交換部を備え、気体導入口から導入された前記気体が、当該一次熱交換部、当該二次熱交換部および当該一次熱交換部をこの順で通過させられて気体排出口から排出されるように気体流路が形成されると共に、当該二次熱交換部において前記冷却用熱媒液との熱交換によって前記気体に含まれている前記除去対象が液相化されて除去され、かつ、当該一次熱交換部において当該二次熱交換部によって冷却された前記気体との熱交換によって前記気体導入口から導入された前記気体に含まれている前記除去対象が液相化されて除去されるように構成され、かつ当該気体導入口から導入されて当該一次熱交換部を通過させられた前記気体の一部を、当該二次熱交換部を通過させずに、当該二次熱交換部を通過させられて当該一次熱交換部に流入させられる前記気体に合流させるバイパス流路Bが設けられると共に、当該バイパス流路Bを通過させる前記気体の流量を調整可能な流量調整部Bが配設され、
前記制御部は、前記第2の熱交換器における前記気体導入口から導入された前記気体の温度D、当該気体導入口から導入されて前記一次熱交換部を通過させられた前記気体の温度E、および当該第2の熱交換器における前記気体排出口から排出される前記気体の温度Fを特定すると共に、当該温度Dおよび当該温度Eの温度差Cと、当該温度Dおよび当該温度Fの温度差Dとの比に基づき、前記流量調整部Bを制御して前記バイパス流路Bを通過する前記気体の流量を調整させる処理Bを実行する吸着剤再生装置。
Regenerate the adsorbent in a removal system capable of performing adsorption removal processing in which the target to be removed contained in the gas is adsorbed on the adsorbent in the adsorption tower and removed from the gas by the adsorption capacity regeneration processing of the heat regeneration method. An adsorbent regeneration device comprising:
A plurality of the adsorption towers are provided, and the adsorption removal process for a part of each adsorption tower and the adsorption capacity regeneration process for another part of each adsorption tower can be executed in parallel. configured to regenerate the adsorbent in the configured removal system,
a first heat exchanger for heating the gas flowing into the adsorption tower where the adsorption capacity regeneration process is performed;
a second heat exchanger for cooling the gas flowing into the adsorption tower and the first heat exchanger for performing the adsorption removal process;
a third heat exchanger that cools the gas that has passed through the adsorption tower that performs the adsorption capacity regeneration process;
A heating part having a refrigeration cycle and capable of heating the heating heat transfer fluid by heat radiation from the condenser in the refrigeration cycle, and a cooling part capable of cooling the cooling heat transfer fluid by heat absorption by the evaporator in the refrigeration cycle. a temperature control unit;
The gas that has passed through the adsorption tower that performs the adsorption removal treatment is allowed to flow into a discharge pipe into which the gas that has been completely removed from the removal target is to flow, and is heated by the first heat exchanger. a first flow switching unit that causes the gas to flow into the adsorption tower that performs the adsorption capacity regeneration process;
The gas cooled by the second heat exchanger is allowed to flow into the adsorption tower that performs the adsorption removal treatment, and the gas that has passed through the adsorption tower that performs the adsorption capacity regeneration treatment is transferred to the second heat exchanger. a second flow switching unit for flowing into the heat exchanger of 3;
Heating of the heating heat transfer fluid by the heating unit, supply of the heating heat transfer fluid to the first heat exchanger, cooling of the cooling heat transfer fluid by the cooling unit, and second heat exchange. a first process for controlling supply of the cooling heat transfer liquid to the vessel and supply of the cooling heat transfer liquid to the third heat exchanger; a second process for controlling the flow path switching part of 2 to switch the adsorption tower for performing the adsorption removal process and the adsorption tower for performing the adsorption capacity regeneration process;
The gas that has passed through the third heat exchanger is combined with the gas that has passed through the second heat exchanger to perform the adsorption removal process through the second flow path switching unit. While flowing into the adsorption tower to perform
The second heat exchanger includes a primary heat exchange section and a secondary heat exchange section, and the gas introduced from the gas introduction port flows through the primary heat exchange section, the secondary heat exchange section, and the primary heat exchange section. A gas flow path is formed so that the gas passes through the parts in this order and is discharged from the gas outlet, and is contained in the gas by heat exchange with the cooling heat transfer liquid in the secondary heat exchange part. The object to be removed is liquefied and removed, and the gas introduced from the gas inlet by heat exchange with the gas cooled by the secondary heat exchange section in the primary heat exchange section Part of the gas introduced from the gas introduction port and passed through the primary heat exchange section is configured to be removed by liquefying the removal target contained in the secondary heat exchange section. A bypass flow path B is provided to merge the gas that is allowed to pass through the secondary heat exchange part and flow into the primary heat exchange part without passing through the heat exchange part, and passes through the bypass flow path B. A flow rate adjustment unit B is provided that can adjust the flow rate of the gas that causes
The control unit controls the temperature D of the gas introduced from the gas introduction port in the second heat exchanger, the temperature E of the gas introduced from the gas introduction port and passed through the primary heat exchange unit , and specifying the temperature F of the gas discharged from the gas outlet in the second heat exchanger, the temperature difference C between the temperature D and the temperature E, and the temperature between the temperature D and the temperature F An adsorbent regeneration device for executing a process B of controlling the flow rate adjusting unit B to adjust the flow rate of the gas passing through the bypass flow path B based on the ratio to the difference D.
前記第3の熱交換器を通過させられる前記気体の流量を調整する第3の流量調整部を備え、
前記制御部は、前記第3の熱交換器を通過させられた前記気体の温度に基づいて前記第3の流量調整部を制御して当該第3の熱交換器を通過する当該気体の流量を調整させる第5の処理を実行する請求項1から4のいずれかに記載の吸着剤再生装置。
A third flow rate adjustment unit that adjusts the flow rate of the gas that is allowed to pass through the third heat exchanger,
The control unit adjusts the flow rate of the gas passing through the third heat exchanger by controlling the third flow rate adjusting unit based on the temperature of the gas passed through the third heat exchanger. 5. The adsorbent regeneration device according to any one of claims 1 to 4, wherein a fifth adjustment process is performed.
前記気体としての水素ガスから前記除去対象としての水分を除去可能に構成された前記除去システムにおける前記吸着剤の吸着能力を再生可能に構成されている請求項1から5のいずれかに記載の吸着剤再生装置。 6. The adsorption according to any one of claims 1 to 5, wherein the adsorption capacity of the adsorbent in the removal system configured to be capable of removing water as the removal target from the hydrogen gas as the gas can be regenerated. Agent regeneration device. 請求項1から6のいずれかに記載の吸着剤再生装置と前記各吸着塔とを備えて前記気体から前記除去対象を除去可能に構成されている除去システム。 A removal system comprising the adsorbent regeneration device according to any one of claims 1 to 6 and each of the adsorption towers, and is configured to be capable of removing the object to be removed from the gas.
JP2022025415A 2022-02-22 2022-02-22 Adsorbent regeneration device and removal system Pending JP2023122004A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022025415A JP2023122004A (en) 2022-02-22 2022-02-22 Adsorbent regeneration device and removal system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022025415A JP2023122004A (en) 2022-02-22 2022-02-22 Adsorbent regeneration device and removal system

Publications (1)

Publication Number Publication Date
JP2023122004A true JP2023122004A (en) 2023-09-01

Family

ID=87798996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022025415A Pending JP2023122004A (en) 2022-02-22 2022-02-22 Adsorbent regeneration device and removal system

Country Status (1)

Country Link
JP (1) JP2023122004A (en)

Similar Documents

Publication Publication Date Title
KR101906531B1 (en) Non-purge and adsorption type air dryer using a blower
EP2730860B1 (en) Method for controlling adsorption heat pump, information processing system, and control device
JP2010510472A (en) Adjusting device for air supply in drying chamber of coating equipment and method for adjusting air supply
JPH11316061A (en) Air conditioning system and its operation method
JP2010107156A (en) Engine-driven heat pump
WO2016059837A1 (en) Heat pump heating apparatus
KR100793980B1 (en) Absorption type air drying system for both purge process and non-purge process of using compression heat
KR101883736B1 (en) Hybrid type absorption air-drying system
JP2010190495A (en) Humidity conditioning device
JP2008008582A (en) Adsorption type space heating/hot water supplying device
JP5333507B2 (en) Heat pump water heater
JP2023122004A (en) Adsorbent regeneration device and removal system
JP2023122006A (en) Adsorbent regeneration device and removal system
JPH0842935A (en) Adsorption type cooler and cold heat output controlling method therefor
KR101728241B1 (en) compressed air dryer that recycling the compress air in cooling process and compressed air drying method
JP2002162130A (en) Air conditioner
KR100825391B1 (en) Non-purge processing absorption type air drying system and method for preventing hunting dew point and keeping up very low dew point
JP2015021643A (en) Heat pump device
KR101988550B1 (en) Adsorption cooling device having multi adsorption tower and methdo for cooling using the same
JP2017044386A (en) Dehumidification system
JP2020116545A (en) Low-temperature refining device and operation method of low-temperature refining device
JP5600048B2 (en) Solvent recovery device
JP2019027715A (en) Heat storage system
CN218545021U (en) Purification system and air separation device
JP3316932B2 (en) Adsorption refrigeration equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240619