JP7523008B2 - Powder and granular material hopper, powder and granular material hopper operation method - Google Patents

Powder and granular material hopper, powder and granular material hopper operation method Download PDF

Info

Publication number
JP7523008B2
JP7523008B2 JP2021003364A JP2021003364A JP7523008B2 JP 7523008 B2 JP7523008 B2 JP 7523008B2 JP 2021003364 A JP2021003364 A JP 2021003364A JP 2021003364 A JP2021003364 A JP 2021003364A JP 7523008 B2 JP7523008 B2 JP 7523008B2
Authority
JP
Japan
Prior art keywords
layer thickness
hopper body
hopper
powder
granular material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021003364A
Other languages
Japanese (ja)
Other versions
JP2022108401A (en
Inventor
隆昌 松永
卓 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2021003364A priority Critical patent/JP7523008B2/en
Publication of JP2022108401A publication Critical patent/JP2022108401A/en
Application granted granted Critical
Publication of JP7523008B2 publication Critical patent/JP7523008B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Chutes (AREA)
  • Filling Or Emptying Of Bunkers, Hoppers, And Tanks (AREA)

Description

本発明は、ベルトコンベア上に粉粒体を連続的に払い出す粉粒体ホッパ、粉粒体ホッパの運転方法に関する。 The present invention relates to a powder hopper that continuously dispenses powder onto a belt conveyor, and a method for operating the powder hopper.

火力発電所において、燃料用の石炭や木質ペレットなどの粉粒体を搬送するときにベルトコンベアが利用されている。近年、植物から得られるバイオマス燃料が使用されるようになっている。この際、コンベア設備のコストを抑えることを目的として種類の異なる燃料を同じコンベア設備を用いて搬送している。木質ペレットを石炭の燃料と同じコンベア設備で搬送する場合、物性の違いによって搬送作業に支障が生じることがある。特に、各燃料の水分と粒径の違いから、ベルトやホッパへ付着し、ペレット燃料がホッパ内に流動しないで詰まってしまい、円滑な搬送作業が行えないことがある。 At thermal power plants, belt conveyors are used to transport powdered materials such as coal and wood pellets for fuel. In recent years, biomass fuel obtained from plants has come to be used. In this case, different types of fuel are transported using the same conveyor equipment in order to reduce the cost of the conveyor equipment. When transporting wood pellets using the same conveyor equipment as coal fuel, differences in physical properties can cause problems in the transport operation. In particular, due to differences in moisture and particle size of each fuel, pellets can adhere to the belt and hopper, causing the pellet fuel to not flow inside the hopper and becoming clogged, preventing smooth transport operations.

また各コンベアの乗り継ぎ部のホッパにおいて、供給側と払い出し側のコンベア搬送量にバラつきがある場合、一時的にホッパ内に堆積することがある。このとき、搬送物自身の層厚重量が下層の粉粒体とホッパ内壁に作用、換言すると突っ張りを入れたように力がバランスして、粉粒体下面がブリッジのようになってしまい、コンベアベルトの搬送力が粉粒体に伝わらずに空回り(スリップ)してしまう。さらに粉粒体内部も圧縮され流動できない場合には、粉粒体と払い出し側のコンベアの間でスリップして排出できない。特に、円柱形状の木質ペレットは堆積層内の流動性が良くないため、この不都合が発生しやすい。 In addition, in the hopper where each conveyor transfers, if there is variation in the conveyed amount between the supply side and the discharge side, it may temporarily pile up inside the hopper. When this happens, the layer thickness and weight of the transported material itself acts on the powder and granular material in the lower layer and the inner wall of the hopper; in other words, the forces are balanced as if a brace was inserted, causing the underside of the powder and granular material to act like a bridge, and the conveying force of the conveyor belt is not transmitted to the powder and it will spin freely (slip). Furthermore, if the inside of the powder and granular material is compressed and cannot flow, it will slip between the powder and the discharge side conveyor and cannot be discharged. This problem is particularly likely to occur with cylindrical wood pellets, which do not have good fluidity in the piled layer.

従来、ホッパ(シュートともいう)内の堆積を防止する種々の対策が講じられている。特許文献1に開示のシュートは、シュート本体の荷重を検知するロードセルを備え、シュート本体内部で搬送物が堆積して本体が加重されたときに警告、停止している。
特許文献2に開示の詰まり検出装置は、シュート内部の詰まり検出用空間に石炭流入穴と回動本体を備え、石炭流入穴を介して回動本体に溜まった石炭が所定重量に達したときにスイッチが入り、詰まりを検出できる。
しかしながら、特許文献1、2に開示の技術はいずれもシュート内部の搬送物詰まりを検出することはできるものの、詰まりが発生した時点では既にこの詰まりを解消することはできない。従って目詰まり検出後は、コンベアを停止してメンテナンスしなければならず、非生産時間となり稼働効率が悪い。
Conventionally, various measures have been taken to prevent accumulation inside hoppers (also called chutes). The chute disclosed in Patent Document 1 is equipped with a load cell that detects the load on the chute body, and issues an alarm and stops operation when transported objects accumulate inside the chute body and the body becomes loaded.
The clog detection device disclosed in Patent Document 2 has a coal inlet hole and a rotating body in the clog detection space inside the chute, and when the coal accumulated in the rotating body through the coal inlet hole reaches a predetermined weight, a switch is turned on to detect the clog.
However, although the techniques disclosed in Patent Documents 1 and 2 can detect clogging of the conveyed material inside the chute, they are unable to clear the clogging once it has occurred. Therefore, after clogging is detected, the conveyor must be stopped for maintenance, resulting in non-productive time and poor operating efficiency.

また木質ペレットのような搬送物は比重が小さく、内部係数が小さいためベルト面で加速せずに排出口を塞ぐことがある。特にコンベアの傾斜が大きく、かつベルト速度が速い場合は、ホッパ下のスカート内での滞留が生じやすく、コンベアベルト表面と搬送物がスリップして搬送不良の原因となる。ホッパ内から排出されず、ホッパ内の搬送物の堆積量が増加すると、層厚が高くなり摩擦、付着によって、ある層に達するとそれより上の圧力とつり合う支持力が発生して閉塞してしまい、ホッパ内からコンベアへの排出が不能となってしまう。 In addition, materials such as wood pellets have a low specific gravity and a small internal coefficient, so they do not accelerate on the belt surface and can block the discharge outlet. In particular, when the conveyor is steeply inclined and the belt speed is fast, they are prone to becoming stuck in the skirt below the hopper, causing the conveyor belt surface to slip and resulting in poor transport. If the materials are not discharged from the hopper and the amount of material piled up inside the hopper increases, the layer becomes thicker, and friction and adhesion cause a supporting force to be generated that balances the pressure above it when a certain layer is reached, causing a blockage and making it impossible to discharge the materials from inside the hopper to the conveyor.

特開2005-96939号公報JP 2005-96939 A 特開2000-53219号公報JP 2000-53219 A

本発明が解決しようとする課題は、上記従来技術の問題点に鑑み、ホッパ本体内で落下してベルトコンベア上に堆積する搬送物を適正層厚に維持して安定した払い出しができる粉粒体ホッパ、粉粒体ホッパの運転方法を提供することにある。 In view of the problems of the conventional technology described above, the problem that the present invention aims to solve is to provide a powder/granular material hopper and a method of operating the powder/granular material hopper that can maintain an appropriate layer thickness of the material that falls inside the hopper body and accumulates on the belt conveyor, and can dispense the material stably.

本発明は、上記課題を解決するための第1の手段として、ベルトコンベア上方に配置して内部で所定層厚を形成した搬送物を前記ベルトコンベア上方に払い出すホッパ本体の側面の開口を覆う可撓性プレートと、前記可撓性プレートの高さ方向に沿って取り付けた複数の歪みゲージと、前記歪みゲージを覆う保護カバーを備え、前記ホッパ本体の外部から取り付けて前記ホッパ本体の内部で堆積した前記搬送物によって内壁面の高さ方向の複数個所にかかる側圧を測定する層厚測定部と、
前記層厚測定部の測定値に基づいて前記搬送物の堆積速度を算出して異常層厚を回避する制御を行う制御部と、
を備えたことを特徴とする粉粒体ホッパを提供することにある。
上記第1の手段によれば、ホッパ本体内での搬送物の堆積途中で過度の堆積を原因とする運転不良(異常堆積)を回避できる運転制御が行える。
また簡易構成により、ホッパ本体の外部からの着脱が可能であり、点検、交換作業を容易に行える。
As a first means for solving the above-mentioned problems, the present invention provides a layer thickness measuring unit that includes a flexible plate that covers an opening on a side of a hopper body that is disposed above a belt conveyor and discharges transported goods that have formed a predetermined layer thickness inside above the belt conveyor, a plurality of strain gauges that are attached along the height direction of the flexible plate, and a protective cover that covers the strain gauges, and that is attached from the outside of the hopper body to measure the side pressure applied to a plurality of points in the height direction of an inner wall surface by the transported goods that have accumulated inside the hopper body ;
a control unit that calculates a deposition rate of the transported object based on the measurement value of the layer thickness measurement unit and performs control to avoid an abnormal layer thickness;
To provide a powder hopper comprising:
According to the first means, it is possible to carry out operation control that can avoid operational problems (abnormal accumulation) caused by excessive accumulation of the transported objects in the hopper body.
In addition, due to its simple structure, it can be attached and detached from the outside of the hopper body, making inspection and replacement work easy.

本発明は、上記課題を解決するための第2の手段として、第1の手段において、前記制御部は、前記層厚測定部の測定値に基づいて前記ホッパ本体の内壁面の高さ方向の複数個所の層厚、単位時間当たりの層厚変化から堆積時間の予測、層厚変動から前記ホッパ本体の排出又は投入のバランスのいずれか1つ以上を求めることを特徴とする粉粒体ホッパを提供することにある。
上記第2の手段によれば、内壁面の高さ方向の複数個所の測定値(層厚)から堆積速度、堆積時間の予測、ホッパ本体の排出又は投入のバランスなどの異常堆積を回避する判断基準が得られる。
As a second means for solving the above-mentioned problems, the present invention provides a powdered or granular material hopper, characterized in that in the first means, the control unit determines one or more of the layer thicknesses at multiple points in the height direction of the inner wall surface of the hopper body based on the measurements of the layer thickness measuring unit, a prediction of the deposition time from the change in layer thickness per unit time, and a balance of discharge or input of the hopper body from the layer thickness fluctuation.
According to the second means, from the measured values (layer thickness) at multiple points in the height direction of the inner wall surface, judgment criteria for avoiding abnormal deposition, such as prediction of deposition speed, deposition time, and balance of discharge or input of the hopper body, can be obtained.

本発明は、上記課題を解決するための第3の手段として、第1又は第2の手段において、前記制御部は、前記ホッパ本体の投入量調整、前記ホッパ本体の下部に設けたゲートによる開口面積の拡大、前記ゲートによる急傾斜の形成、前記ホッパへの振動付与のいずれか1つ以上の制御により前記異常層厚を回避することを特徴とする粉粒体ホッパを提供することにある。
上記第3の手段によれば、異常堆積を回避して、稼働時間のロスを低減できる。
As a third means for solving the above-mentioned problems, the present invention provides a powdered or granular material hopper as described in the first or second means, characterized in that the control unit avoids the abnormal layer thickness by controlling one or more of the following: adjusting the input amount of the hopper body, enlarging the opening area by a gate provided at the bottom of the hopper body, forming a steep slope by the gate, and applying vibration to the hopper.
According to the third means, abnormal deposition can be avoided and loss of operating time can be reduced.

本発明は、上記課題を解決するための第の手段として、ベルトコンベア上方に配置して内部で所定層厚を形成した搬送物を前記ベルトコンベア上方に払い出すホッパ本体の側面の開口を覆う可撓性プレートと、前記可撓性プレートの高さ方向に沿って取り付けた複数の歪みゲージと、前記歪みゲージを覆う保護カバーを備え、前記ホッパ本体の外部から取り付けた層厚測定部で前記ホッパ本体の内部で堆積した前記搬送物によって内壁面の高さ方向の複数個所にかかる側圧を測定する工程と、
前記層厚測定部の測定値に基づいて前記搬送物の堆積速度を算出して異常層厚を回避する制御を行う工程と、
を有することを特徴とする粉粒体ホッパの運転方法を提供することにある。
上記第の手段によれば、ホッパ本体内での搬送物の堆積途中で過度の堆積を原因とする運転不良(異常堆積)を回避できる運転制御が行える。
As a fourth means for solving the above-mentioned problems, the present invention provides a hopper body that is disposed above a belt conveyor and discharges transported materials that have formed a predetermined layer thickness inside above the belt conveyor, the hopper body includes a flexible plate that covers an opening on a side surface of the hopper body, a plurality of strain gauges that are attached along the height direction of the flexible plate, and a protective cover that covers the strain gauges, and a step of measuring the side pressure applied to a plurality of points in the height direction of an inner wall surface by the transported materials that have accumulated inside the hopper body with a layer thickness measuring unit attached from the outside of the hopper body;
A step of calculating a deposition rate of the transported object based on the measurement value of the layer thickness measuring unit and performing control to avoid an abnormal layer thickness;
The object of the present invention is to provide a method for operating a powder/granular material hopper, comprising the steps of:
According to the fourth means, operation control can be performed that can avoid operational problems (abnormal accumulation) caused by excessive accumulation of the transported objects in the hopper body.

本発明によれば、ホッパ本体内での搬送物の堆積途中で過度の堆積を原因とする運転不良(異常堆積)を回避できる運転制御が行える。 According to the present invention, operational control can be performed to avoid operational problems (abnormal accumulation) caused by excessive accumulation of transported materials in the hopper body.

本発明の粉粒体ホッパの構成概略図である。FIG. 2 is a schematic diagram of a powder/granular material hopper according to the present invention. 層厚測定部の説明図である。FIG. 4 is an explanatory diagram of a layer thickness measuring unit. 層厚と時間の関係を示すグラフである。1 is a graph showing the relationship between layer thickness and time.

本発明の粉粒体ホッパ、粉粒体ホッパの運転方法の実施形態について、図面を参照しながら、以下詳細に説明する。 The following describes in detail an embodiment of the powder/granular material hopper and the method of operating the powder/granular material hopper of the present invention with reference to the drawings.

[粉粒体ホッパ10]
図1は、本発明の粉粒体ホッパの構成概略図である。図示のように本発明の粉粒体ホッパ10は、ベルトコンベア12上方に配置して内部で所定層厚を形成した搬送物14を前記ベルトコンベア12上に払い出すホッパ本体16の内部で堆積した前記搬送物14によって内壁面の高さ方向の複数個所にかかる側圧を測定する層厚測定部20と、前記層厚測定部20の測定値に基づいて前記搬送物14の堆積速度を算出して異常層厚を回避する制御を行う制御部30を備えている。
[Powder and granular material hopper 10]
1 is a schematic diagram of a powder/granular material hopper according to the present invention. As shown in the figure, the powder/granular material hopper 10 according to the present invention is provided with a layer thickness measuring section 20 for measuring the side pressure applied at a plurality of points in the height direction of the inner wall surface by the transported material 14 accumulated inside a hopper body 16, which is disposed above a belt conveyor 12 and discharges the transported material 14 that has formed a predetermined layer thickness inside onto the belt conveyor 12, and a control section 30 for calculating the accumulation speed of the transported material 14 based on the measured value of the layer thickness measuring section 20 and performing control to avoid an abnormal layer thickness.

ホッパ本体16は、上面に開口を有する箱状容器である。ベルトコンベア12は、搬送面をホッパ本体16の下部開口と対向するように所定間隔を開けて取り付けて、ホッパ本体16から落下する搬送物14を後工程の所定箇所へ搬送するものである。本発明の搬送物14は、一例として火力発電所の燃料用の石炭や木質ペレットなどの粉粒体を用いて以下説明する。 The hopper body 16 is a box-shaped container with an opening on the top surface. The belt conveyor 12 is attached with a predetermined distance between it and the bottom opening of the hopper body 16, and transports the transported object 14 that drops from the hopper body 16 to a predetermined location in the subsequent process. The transported object 14 of the present invention will be described below using powdered material such as coal and wood pellets used as fuel in thermal power plants as an example.

ゲート18は、ホッパ本体16の搬送方向下流側の側面に取り付けて、搬送物14の払い出し量を調整するものである。ゲート18は主面をベルトコンベア12の搬送方向に沿って(向かって)形成している。
このゲート18はホッパ本体16の搬送方向下流側の側面に回転支持部18aを介して取り付けている。回転支持部18aはベルトコンベア12の搬送方向と直交する方向に軸心を配置して、ゲート18を扇状、換言するとコンベア上に接近又は離間する方向に回転自在となるように配置している。またゲート18はピストンが接続し、ロッドをホッパ本体16の周囲に取り付けた駆動シリンダ18bを有している。
このようなゲート18の構成によりゲート18による開口面積の拡大、ゲート18による急傾斜を形成して、ベルトコンベア12上の搬送物14とコンベア面の摩擦係数が小さい場合に、例えば、圧密性の小さい搬送物をゲート18で圧密して、層厚を形成した搬送物14の重量を大きくすることで搬送に十分なベルト搬送速度を確保できる。
The gate 18 is attached to a side surface of the hopper body 16 on the downstream side in the conveying direction to adjust the amount of the conveyed objects 14 to be discharged. The main surface of the gate 18 is formed along (facing) the conveying direction of the belt conveyor 12.
The gate 18 is attached to the side surface of the hopper body 16 downstream in the conveying direction via a rotation support part 18a. The rotation support part 18a is arranged with its axis in a direction perpendicular to the conveying direction of the belt conveyor 12, so that the gate 18 can rotate in a fan shape, in other words, in a direction approaching or moving away from the conveyor. The gate 18 also has a drive cylinder 18b to which a piston is connected and a rod is attached around the hopper body 16.
By configuring the gate 18 in this manner, the opening area is increased by the gate 18 and a steep slope is formed by the gate 18. When the coefficient of friction between the material 14 on the belt conveyor 12 and the conveyor surface is small, for example, the material with low compactibility can be compacted by the gate 18, and the weight of the material 14 that has formed a layer thickness can be increased, thereby ensuring a belt conveying speed sufficient for transportation.

(層厚測定部20)
図2は層厚測定部の説明図である。ホッパ本体16は、搬送物14の層厚が形成されたときに、側圧を測定する層厚測定部20を設置している。
層厚測定部20は、ホッパ本体16の内壁面に設けた開口を覆う可撓性プレート22と、可撓性プレート22の高さ方向に沿って取り付けた複数の歪みゲージ24と、歪みゲージ24を覆う保護カバー26を備えている。
可撓性プレート22は、ホッパ本体16の側面に設けた開口を覆う可撓性、耐摩耗性を備えた金属板である。
歪みゲージ24は、可撓性プレート22の外面の高さ方向に沿って複数並べたセンサである。
保護カバー26は、歪みゲージを覆うカバーであり、防塵、防水機能を備えている。
このような構成の層厚測定部20は、ホッパ本体16に搬送物が堆積して行くと、下方の可撓性プレートから順に搬送物14の圧力によって撓んで行く。この撓みを歪みゲージ24で検出する。測定値は後述する制御部30へ送信可能に構成している。また、層厚測定部20は、可撓性プレート22と歪みゲージ24と保護カバー26を一体構造とするユニット化し、ホッパ本体16の側面開口に締結ボルト等を用いて着脱可能とし、点検、交換作業を容易な構成としている。
(Layer Thickness Measuring Unit 20)
2 is an explanatory diagram of the layer thickness measuring unit. The hopper body 16 is provided with a layer thickness measuring unit 20 for measuring the side pressure when the layer thickness of the transported object 14 is formed.
The layer thickness measuring section 20 comprises a flexible plate 22 covering an opening provided on the inner wall surface of the hopper body 16, a plurality of strain gauges 24 attached along the height direction of the flexible plate 22, and a protective cover 26 covering the strain gauges 24.
The flexible plate 22 is a flexible, wear-resistant metal plate that covers an opening provided in the side surface of the hopper body 16 .
The strain gauges 24 are sensors arranged in a plurality along the height direction of the outer surface of the flexible plate 22 .
The protective cover 26 is a cover for covering the strain gauge, and has dust-proof and waterproof functions.
In the layer thickness measuring unit 20 configured as above, as the transported goods are piled up in the hopper body 16, the flexible plate 22, the strain gauge 24, and the protective cover 26 are deflected in order by the pressure of the transported goods 14. This deflection is detected by the strain gauge 24. The measured value is configured to be transmittable to the control unit 30 described later. The layer thickness measuring unit 20 is also made into a unit with an integral structure of the flexible plate 22, the strain gauge 24, and the protective cover 26, and is detachable from the side opening of the hopper body 16 using fastening bolts or the like, facilitating inspection and replacement work.

(制御部30)
制御部30は、層厚測定部20と電気的に接続し、層厚測定部20の測定値に基づいて搬送物14の堆積速度を算出して異常層厚を回避する制御を行っている。
図3は層厚と時間の関係を示すグラフである。同図は縦軸が層厚、横軸が時間を示し、層厚測定部20の歪みゲージ24a~eとし、搬送物14を一定量、一定速で投入した場合の各ゲージの測定値をプロットしたものである。
歪みゲージ24a~eの測定値により、個々の層厚(負荷)、搬送物14の堆積によってホッパ本体16の下方から上方の歪みゲージで層厚が検出できる。
各歪みゲージ24a~eの層厚の測定時間、換言すると負荷発生時間から堆積速度が得られる。
各歪みゲージ24a~eの傾き(負荷勾配ΔH/Δt)から層厚と堆積速度を推定し単位時間当たりの層厚変化から堆積時間を予測できる。
歪みゲージ24a~eの測定値が一定となる負荷平衡値になった状態で、層厚変動からホッパ本体16の排出と投入のバランスが判断でき、また歪みゲージ24a-b間のH1、歪みゲージ24a-c間のH2、歪みゲージ24a-d間のH3、歪みゲージ24a-e間のH4の値から圧力を推定できる。
制御部30は、堆積途中の測定値から堆積速度、圧力を求め、異常層厚が発生する可能性がある場合、以下のような回避方法を実行する。
制御部30による具体的な異常層厚の回避方法は、ホッパ本体16の搬送物14を投入する投入コンベア11と電気的に接続しており、搬送物14の供給量を低減する制御を行える。また制御部30は、駆動シリンダ18bと電気的に接続しており、ホッパ本体16の下部開口の開口面積を(拡大するなど)調整する制御を行える。また制御部30は、駆動シリンダ18bの進退移動によってゲート18に急傾斜を形成して過度に堆積した搬送物14の排出を促進させる制御を行える。さらに制御部30は、ホッパ本体16への振動付与(槌打手段(不図示)によってホッパ本体を振動するなど)によって堆積した搬送物14の排出を促進させる制御を行える。
(Control unit 30)
The control unit 30 is electrically connected to the layer thickness measuring unit 20, and calculates the deposition rate of the transported object 14 based on the measurement value of the layer thickness measuring unit 20, thereby performing control to avoid an abnormal layer thickness.
3 is a graph showing the relationship between layer thickness and time, with the vertical axis representing layer thickness and the horizontal axis representing time, and the graph plots the measured values of the strain gauges 24a-e of the layer thickness measuring unit 20 when a constant amount of the transported object 14 is fed at a constant speed.
The individual layer thicknesses (loads) can be detected from the measurements of the strain gauges 24a to 24e, and the layer thickness can be detected from the bottom to the top of the hopper body 16 due to the accumulation of the transported goods 14.
The deposition rate can be obtained from the measurement time of the layer thickness of each of the strain gauges 24a to 24e, in other words, the load generation time.
The layer thickness and deposition rate can be estimated from the gradient of each strain gauge 24a-e (load gradient ΔH/Δt), and the deposition time can be predicted from the change in layer thickness per unit time.
When the measured values of the strain gauges 24a-e reach a constant load equilibrium value, the balance between discharge and input of the hopper body 16 can be determined from the fluctuation in layer thickness, and the pressure can be estimated from the values of H1 between strain gauges 24a-b, H2 between strain gauges 24a-c, H3 between strain gauges 24a-d, and H4 between strain gauges 24a-e.
The control unit 30 determines the deposition rate and pressure from measurements taken during deposition, and if there is a possibility that an abnormal layer thickness will occur, executes the following avoidance measures.
The specific method of avoiding the abnormal layer thickness by the control unit 30 is to electrically connect to the input conveyor 11 that inputs the transported material 14 of the hopper body 16, and to control the supply amount of the transported material 14 to be reduced. The control unit 30 is also electrically connected to the drive cylinder 18b, and can control the adjustment (such as enlarging) of the opening area of the lower opening of the hopper body 16. The control unit 30 can also control the forward and backward movement of the drive cylinder 18b to form a steep incline in the gate 18, thereby facilitating the discharge of the excessively accumulated transported material 14. Furthermore, the control unit 30 can also control the application of vibration to the hopper body 16 (such as vibrating the hopper body with a hammering means (not shown)) to promote the discharge of the accumulated transported material 14.

[粉粒体ホッパの運転方法]
本発明の粉粒体ホッパの運転方法は、ベルトコンベア12上方に配置して内部で所定層厚を形成した搬送物14をベルトコンベア12上方に排出するホッパ本体16の内部で堆積した搬送物14によって内壁面の高さ方向の複数個所にかかる側圧を層厚測定部20で測定する。
層厚測定部20の測定値に基づいて、制御部30により搬送物14の堆積速度を算出して異常層厚を回避する制御を行う。
制御部30は、層厚測定部20の測定値から、各歪みゲージ24a~eの層厚(負荷)、堆積速度、堆積時間の予測、ホッパ本体16の排出と投入のバランスを求める。この層厚などの1つ以上の情報から、異常堆積が発生する可能性がある場合、投入コンベア11による搬送物14の投入量を調整(減少など)、駆動シリンダ18bによりゲート18の急傾斜の形成、ホッパ本体への振動付与のいずれか1つ以上の制御を行い異常な堆積を回避する。
以上、本発明の好ましい実施形態について説明した。しかしながら、本発明は、上記実施形態に何ら制限されることなく、本発明の主旨を逸脱しない範囲において、種々の変更が可能である。
また、本発明は、実施形態において示された組み合わせに限定されることなく、種々の組み合わせによって実施可能である。
[Method of operating a powder hopper]
The operating method of the powdered or granular material hopper of the present invention involves measuring the lateral pressure applied at multiple points in the height direction of the inner wall surface by the transported material 14 piled up inside the hopper body 16, which is positioned above the belt conveyor 12 and discharges the transported material 14, which has formed a predetermined layer thickness inside, above the belt conveyor 12, using a layer thickness measuring unit 20.
Based on the measurement value of the layer thickness measuring unit 20, the control unit 30 calculates the deposition rate of the transported object 14 and performs control to avoid an abnormal layer thickness.
The control unit 30 obtains the layer thickness (load) of each of the strain gauges 24a-e, the accumulation speed, the prediction of the accumulation time, and the balance between discharge and input of the hopper body 16 from the measured values of the layer thickness measurement unit 20. If it is determined that there is a possibility of abnormal accumulation occurring from one or more pieces of information such as this layer thickness, the control unit 30 controls one or more of the following to avoid abnormal accumulation: adjusting (e.g., decreasing) the amount of the transported material 14 input by the input conveyor 11, forming a steep incline of the gate 18 by the drive cylinder 18b, and applying vibration to the hopper body.
Although the preferred embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments and various modifications can be made without departing from the spirit and scope of the present invention.
Furthermore, the present invention is not limited to the combinations shown in the embodiments, but can be implemented in various combinations.

10 粉粒体ホッパ
11 投入コンベア
12 ベルトコンベア
14 搬送物
16 ホッパ本体
18 ゲート
18a 回転支持部
18b 駆動シリンダ
20 層厚測定部
22 可撓性プレート
24 歪みゲージ
26 保護カバー
30 制御部
REFERENCE SIGNS LIST 10 Powder/granular material hopper 11 Feeding conveyor 12 Belt conveyor 14 Transported object 16 Hopper body 18 Gate 18a Rotation support portion 18b Drive cylinder 20 Layer thickness measuring portion 22 Flexible plate 24 Strain gauge 26 Protective cover 30 Control portion

Claims (4)

ベルトコンベア上方に配置して内部で所定層厚を形成した搬送物を前記ベルトコンベア上方に払い出すホッパ本体の側面の開口を覆う可撓性プレートと、前記可撓性プレートの高さ方向に沿って取り付けた複数の歪みゲージと、前記歪みゲージを覆う保護カバーを備え、前記ホッパ本体の外部から取り付けて前記ホッパ本体の内部で堆積した前記搬送物によって内壁面の高さ方向の複数個所にかかる側圧を測定する層厚測定部と、
前記層厚測定部の測定値に基づいて前記搬送物の堆積速度を算出して異常層厚を回避する制御を行う制御部と、
を備えたことを特徴とする粉粒体ホッパ。
a layer thickness measuring section that is attached from the outside of the hopper body and measures the side pressure applied to multiple points in the height direction of an inner wall surface by the transported materials accumulated inside the hopper body, the layer thickness measuring section comprising: a flexible plate that covers an opening in a side of a hopper body that is disposed above a belt conveyor and discharges transported materials that have formed a predetermined layer thickness inside the hopper body above the belt conveyor; a plurality of strain gauges that are attached along the height direction of the flexible plate; and a protective cover that covers the strain gauges.
a control unit that calculates a deposition rate of the transported object based on the measurement value of the layer thickness measurement unit and performs control to avoid an abnormal layer thickness;
A powder or granular material hopper comprising:
請求項1に記載の粉粒体ホッパにおいて、
前記制御部は、前記層厚測定部の測定値に基づいて前記ホッパ本体の内壁面の高さ方向の複数個所の層厚、単位時間当たりの層厚変化から堆積時間の予測、層厚変動から前記ホッパ本体の排出又は投入のバランスのいずれか1つ以上を求めることを特徴とする粉粒体ホッパ。
2. The powder/granular material hopper according to claim 1,
The control unit determines one or more of the following based on the measurement values of the layer thickness measuring unit: layer thickness at multiple locations in the height direction of the inner wall surface of the hopper body; prediction of deposition time from the change in layer thickness per unit time; and balance of discharge or input of the hopper body from layer thickness fluctuations.
請求項1又は2に記載の粉粒体ホッパにおいて、
前記制御部は、前記ホッパ本体の投入量調整、前記ホッパ本体の下部に設けたゲートによる開口面積の拡大、前記ゲートによる急傾斜の形成、前記ホッパ本体への振動付与のいずれか1つ以上の制御により前記異常層厚を回避することを特徴とする粉粒体ホッパ。
3. The powder/granular material hopper according to claim 1,
The control unit avoids the abnormal layer thickness by controlling one or more of the following: adjusting the input amount of the hopper body, enlarging the opening area by a gate provided at the bottom of the hopper body, forming a steep slope by the gate, and applying vibration to the hopper body.
ベルトコンベア上方に配置して内部で所定層厚を形成した搬送物を前記ベルトコンベア上方に払い出すホッパ本体の側面の開口を覆う可撓性プレートと、前記可撓性プレートの高さ方向に沿って取り付けた複数の歪みゲージと、前記歪みゲージを覆う保護カバーを備え、前記ホッパ本体の外部から取り付けた層厚測定部で前記ホッパ本体の内部で堆積した前記搬送物によって内壁面の高さ方向の複数個所にかかる側圧を測定する工程と、
前記層厚測定部の測定値に基づいて前記搬送物の堆積速度を算出して異常層厚を回避する制御を行う工程と、
を有することを特徴とする粉粒体ホッパの運転方法。
a step of measuring side pressures applied to a plurality of points in the height direction of an inner wall surface by the materials accumulated inside the hopper body with a layer thickness measuring unit attached from the outside of the hopper body, the step comprising: a flexible plate covering an opening in a side of a hopper body which is disposed above a belt conveyor and discharges materials having a predetermined layer thickness therein above the belt conveyor; a plurality of strain gauges attached along the height direction of the flexible plate; and a protective cover which covers the strain gauges;
A step of calculating a deposition rate of the transported object based on the measurement value of the layer thickness measuring unit and performing control to avoid an abnormal layer thickness;
A method for operating a powder or granular material hopper, comprising the steps of:
JP2021003364A 2021-01-13 2021-01-13 Powder and granular material hopper, powder and granular material hopper operation method Active JP7523008B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021003364A JP7523008B2 (en) 2021-01-13 2021-01-13 Powder and granular material hopper, powder and granular material hopper operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021003364A JP7523008B2 (en) 2021-01-13 2021-01-13 Powder and granular material hopper, powder and granular material hopper operation method

Publications (2)

Publication Number Publication Date
JP2022108401A JP2022108401A (en) 2022-07-26
JP7523008B2 true JP7523008B2 (en) 2024-07-26

Family

ID=82556629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021003364A Active JP7523008B2 (en) 2021-01-13 2021-01-13 Powder and granular material hopper, powder and granular material hopper operation method

Country Status (1)

Country Link
JP (1) JP7523008B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006298629A (en) 2005-04-25 2006-11-02 Matsushita Electric Ind Co Ltd Material supply device and material supply method
JP2011025982A (en) 2009-07-28 2011-02-10 Akatake Engineering Kk Powder hopper apparatus
JP2015045463A (en) 2013-08-29 2015-03-12 三菱日立パワーシステムズ株式会社 Supply system for particulate matter and combustion device
CN207030070U (en) 2017-08-08 2018-02-23 浙江中吉新能源有限公司 A kind of biomass fuel storage device
CN109733887A (en) 2018-12-31 2019-05-10 广州科里时机械工程有限公司 A kind of anti-bias analysis air-transport system of mixed powder

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006298629A (en) 2005-04-25 2006-11-02 Matsushita Electric Ind Co Ltd Material supply device and material supply method
JP2011025982A (en) 2009-07-28 2011-02-10 Akatake Engineering Kk Powder hopper apparatus
JP2015045463A (en) 2013-08-29 2015-03-12 三菱日立パワーシステムズ株式会社 Supply system for particulate matter and combustion device
CN207030070U (en) 2017-08-08 2018-02-23 浙江中吉新能源有限公司 A kind of biomass fuel storage device
CN109733887A (en) 2018-12-31 2019-05-10 广州科里时机械工程有限公司 A kind of anti-bias analysis air-transport system of mixed powder

Also Published As

Publication number Publication date
JP2022108401A (en) 2022-07-26

Similar Documents

Publication Publication Date Title
EP0152923B1 (en) Device for portioning products
US4804111A (en) Mechanism for metering solid materials which flow in a manner similar to liquids
US7534970B2 (en) Counterbalanced dispensing system
JP4038333B2 (en) Chain conveyor
JP2013112483A (en) Control method of belt conveyor device and belt conveyor facility
CN101927902A (en) Device and method for fluidizing and conveying powder in conic section of powder storage bin
CN102753892A (en) Passive solids supply system and method for supplying solids
JP7523008B2 (en) Powder and granular material hopper, powder and granular material hopper operation method
RU2698361C1 (en) Method for loading mixture of charge and cullet into bins of glass melting furnace loaders
JP7521273B2 (en) Powder and granular material hopper
CN209720062U (en) A kind of feeding mechanism of packing scale
JP4745343B2 (en) Weighing device for bulk products
US5339943A (en) Bucket lift distribution system
CN107486071A (en) One kind matches somebody with somebody fertile equipment
CN201472980U (en) Dynamic weighing belt feeding machine
KR100778677B1 (en) Apparatus and method for preventing sinter overload
JP7504604B2 (en) Supply system control device, supply system equipped with the same, and control method and control program thereof
CN108507652B (en) Full-automatic electronic metering batching and supplementing equipment
CN1714689A (en) Unloading tobacco material from an intermediate reservoir
Carson et al. How to design efficient and reliable feeders for bulk solids
CN209506932U (en) A kind of hinged split type Weighing feeder
JP2022185795A (en) Jamming detector and jamming detection method
CN106379724B (en) A kind of adhesive tape chain-drive section transhipment baffle suppression dust control device
Farzana et al. Handling and transportation of food grains
Hilgraf Bulk Material Locks

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240423

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240613

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240626

R150 Certificate of patent or registration of utility model

Ref document number: 7523008

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150