JP2022108401A - Powder and granular material hopper, operation method for powder and granular material hopper - Google Patents

Powder and granular material hopper, operation method for powder and granular material hopper Download PDF

Info

Publication number
JP2022108401A
JP2022108401A JP2021003364A JP2021003364A JP2022108401A JP 2022108401 A JP2022108401 A JP 2022108401A JP 2021003364 A JP2021003364 A JP 2021003364A JP 2021003364 A JP2021003364 A JP 2021003364A JP 2022108401 A JP2022108401 A JP 2022108401A
Authority
JP
Japan
Prior art keywords
layer thickness
hopper
granular material
material hopper
belt conveyor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021003364A
Other languages
Japanese (ja)
Inventor
隆昌 松永
Takamasa Matsunaga
卓 原田
Taku Harada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Machinery Corp Ltd
Original Assignee
Ube Machinery Corp Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Machinery Corp Ltd filed Critical Ube Machinery Corp Ltd
Priority to JP2021003364A priority Critical patent/JP2022108401A/en
Publication of JP2022108401A publication Critical patent/JP2022108401A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Chutes (AREA)
  • Filling Or Emptying Of Bunkers, Hoppers, And Tanks (AREA)

Abstract

To provide powder and granular material hopper that can maintain an appropriate layer thickness and stably discharge a conveyance material that falls in a hopper body and deposits on a belt conveyor, and an operation method for the powder and granular material hopper.SOLUTION: A powder and a granular material hopper 10 of the present invention includes: a layer thickness measurement part 20 which measures lateral pressure applied to a plurality of locations in a height direction of an inner wall surface due to a conveyance article 14 deposited inside of a hopper body 16 that is arranged above a belt conveyor 12 and discharge the conveyance article 14 having a predetermined layer thickness formed inside above the belt conveyor 12; and a control part 30 which calculates a deposition speed of the conveyance article 14 based on a measurement value of the layer thickness measurement part 20 and controls to avoid an abnormal layer thickness.SELECTED DRAWING: Figure 1

Description

本発明は、ベルトコンベア上に粉粒体を連続的に払い出す粉粒体ホッパ、粉粒体ホッパの運転方法に関する。 TECHNICAL FIELD The present invention relates to a granular material hopper that continuously discharges granular material onto a belt conveyor, and a method of operating the granular material hopper.

火力発電所において、燃料用の石炭や木質ペレットなどの粉粒体を搬送するときにベルトコンベアが利用されている。近年、植物から得られるバイオマス燃料が使用されるようになっている。この際、コンベア設備のコストを抑えることを目的として種類の異なる燃料を同じコンベア設備を用いて搬送している。木質ペレットを石炭の燃料と同じコンベア設備で搬送する場合、物性の違いによって搬送作業に支障が生じることがある。特に、各燃料の水分と粒径の違いから、ベルトやホッパへ付着し、ペレット燃料がホッパ内に流動しないで詰まってしまい、円滑な搬送作業が行えないことがある。 2. Description of the Related Art In thermal power plants, belt conveyors are used to convey powders such as coal for fuel and wood pellets. In recent years, biomass fuel obtained from plants has come to be used. At this time, in order to reduce the cost of the conveyor equipment, different types of fuel are conveyed using the same conveyor equipment. When wood pellets are transported on the same conveyor as coal fuel, differences in physical properties may cause problems in transportation. In particular, due to the difference in water content and particle size of each fuel, the fuel pellets adhere to the belt and the hopper, and the fuel pellets do not flow into the hopper and clog the hopper, hindering smooth transportation.

また各コンベアの乗り継ぎ部のホッパにおいて、供給側と払い出し側のコンベア搬送量にバラつきがある場合、一時的にホッパ内に堆積することがある。このとき、搬送物自身の層厚重量が下層の粉粒体とホッパ内壁に作用、換言すると突っ張りを入れたように力がバランスして、粉粒体下面がブリッジのようになってしまい、コンベアベルトの搬送力が粉粒体に伝わらずに空回り(スリップ)してしまう。さらに粉粒体内部も圧縮され流動できない場合には、粉粒体と払い出し側のコンベアの間でスリップして排出できない。特に、円柱形状の木質ペレットは堆積層内の流動性が良くないため、この不都合が発生しやすい。 In addition, in the hoppers of the transfer section of each conveyor, if there is a variation in the conveying amount of the conveyer on the supply side and the discharge side, it may temporarily accumulate in the hopper. At this time, the layer thickness weight of the conveyed material acts on the lower layer of powder and granules and the inner wall of the hopper. The conveying force of the belt is not transmitted to the powder and the belt slips. Furthermore, if the inside of the granular material is also compressed and cannot flow, it slips between the granular material and the conveyer on the delivery side and cannot be discharged. In particular, cylindrical wood pellets tend to cause this problem because they do not have good fluidity in sedimentary layers.

従来、ホッパ(シュートともいう)内の堆積を防止する種々の対策が講じられている。特許文献1に開示のシュートは、シュート本体の荷重を検知するロードセルを備え、シュート本体内部で搬送物が堆積して本体が加重されたときに警告、停止している。
特許文献2に開示の詰まり検出装置は、シュート内部の詰まり検出用空間に石炭流入穴と回動本体を備え、石炭流入穴を介して回動本体に溜まった石炭が所定重量に達したときにスイッチが入り、詰まりを検出できる。
しかしながら、特許文献1、2に開示の技術はいずれもシュート内部の搬送物詰まりを検出することはできるものの、詰まりが発生した時点では既にこの詰まりを解消することはできない。従って目詰まり検出後は、コンベアを停止してメンテナンスしなければならず、非生産時間となり稼働効率が悪い。
Conventionally, various measures are taken to prevent deposits in the hopper (also called chute). The chute disclosed in Patent Document 1 is equipped with a load cell for detecting the load of the chute body, and warns and stops when the body is weighted due to accumulation of conveyed objects inside the chute body.
The clogging detection device disclosed in Patent Document 2 includes a coal inflow hole and a rotating body in a clogging detection space inside a chute, and when coal accumulated in the rotating body reaches a predetermined weight through the coal inflow hole. It can switch on and detect jams.
However, although the technologies disclosed in Patent Literatures 1 and 2 are capable of detecting clogging of the transported material inside the chute, they cannot eliminate the clogging at the time the clogging occurs. Therefore, after clogging is detected, the conveyor must be stopped for maintenance, resulting in non-productive time and poor operating efficiency.

また木質ペレットのような搬送物は比重が小さく、内部係数が小さいためベルト面で加速せずに排出口を塞ぐことがある。特にコンベアの傾斜が大きく、かつベルト速度が速い場合は、ホッパ下のスカート内での滞留が生じやすく、コンベアベルト表面と搬送物がスリップして搬送不良の原因となる。ホッパ内から排出されず、ホッパ内の搬送物の堆積量が増加すると、層厚が高くなり摩擦、付着によって、ある層に達するとそれより上の圧力とつり合う支持力が発生して閉塞してしまい、ホッパ内からコンベアへの排出が不能となってしまう。 Conveyed materials such as wood pellets have a small specific gravity and a small internal coefficient. In particular, when the conveyor has a large inclination and the belt speed is high, the material tends to stay in the skirt under the hopper, causing slippage between the conveyor belt surface and the material to be transported, resulting in poor transport. As the amount of material deposited in the hopper increases without being discharged from the hopper, the layer thickness increases and due to friction and adhesion, when it reaches a certain layer, a supporting force that balances the pressure above it is generated and closed. As a result, it becomes impossible to discharge from the hopper to the conveyor.

特開2005-96939号公報JP-A-2005-96939 特開2000-53219号公報JP-A-2000-53219

本発明が解決しようとする課題は、上記従来技術の問題点に鑑み、ホッパ本体内で落下してベルトコンベア上に堆積する搬送物を適正層厚に維持して安定した払い出しができる粉粒体ホッパ、粉粒体ホッパの運転方法を提供することにある。 The problem to be solved by the present invention, in view of the above-mentioned problems of the prior art, is to maintain an appropriate layer thickness of the material to be conveyed that falls in the hopper body and accumulates on the belt conveyor, and can stably dispense the material. To provide a method for operating a hopper and a granular material hopper.

本発明は、上記課題を解決するための第1の手段として、ベルトコンベア上方に配置して内部で所定層厚を形成した搬送物を前記ベルトコンベア上方に払い出すホッパ本体の内部で堆積した前記搬送物によって内壁面の高さ方向の複数個所にかかる側圧を測定する層厚測定部と、
前記層厚測定部の測定値に基づいて前記搬送物の堆積速度を算出して異常層厚を回避する制御を行う制御部と、
を備えたことを特徴とする粉粒体ホッパを提供することにある。
上記第1の手段によれば、ホッパ本体内での搬送物の堆積途中で過度の堆積を原因とする運転不良(異常堆積)を回避できる運転制御が行える。
As a first means for solving the above problems, the present invention is arranged above a belt conveyor and inside a hopper body that discharges a conveyed product having a predetermined layer thickness inside the belt conveyor. a layer thickness measuring unit that measures the lateral pressure applied to multiple points in the height direction of the inner wall surface by the conveyed object;
a control unit that calculates the deposition rate of the conveyed object based on the measured value of the layer thickness measurement unit and performs control to avoid an abnormal layer thickness;
To provide a granular material hopper characterized by comprising
According to the first means, it is possible to perform operation control capable of avoiding an operation failure (abnormal accumulation) caused by excessive accumulation during accumulation of the conveyed material in the hopper main body.

本発明は、上記課題を解決するための第2の手段として、第1の手段において、前記制御部は、前記層厚測定部の測定値に基づいて前記ホッパ本体の内壁面の高さ方向の複数個所の層厚、単位時間当たりの層厚変化から堆積時間の予測、層厚変動から前記ホッパ本体の排出又は投入のバランスのいずれか1つ以上を求めることを特徴とする粉粒体ホッパを提供することにある。
上記第2の手段によれば、内壁面の高さ方向の複数個所の測定値(層厚)から堆積速度、堆積時間の予測、ホッパ本体の排出又は投入のバランスなどの異常堆積を回避する判断基準が得られる。
According to the present invention, as a second means for solving the above problems, in the first means, the control unit measures the thickness of the inner wall surface of the hopper body in the height direction based on the measured value of the layer thickness measurement unit. A granular material hopper characterized in that one or more of the balance of discharge or charging of the hopper main body is obtained from the layer thickness at a plurality of locations, the deposition time is predicted from the layer thickness change per unit time, and the layer thickness variation is obtained. to provide.
According to the second means, the deposition speed and deposition time are predicted from the measured values (layer thickness) at multiple points in the height direction of the inner wall surface, and the judgment to avoid abnormal deposition such as the balance of discharging or loading of the hopper main body is performed. A reference is obtained.

本発明は、上記課題を解決するための第3の手段として、第1又は第2の手段において、前記制御部は、前記ホッパ本体の投入量調整、前記ホッパ本体の下部に設けたゲートによる開口面積の拡大、前記ゲートによる急傾斜の形成、前記ホッパへの振動付与のいずれか1つ以上の制御により前記異常層厚を回避することを特徴とする粉粒体ホッパを提供することにある。
上記第3の手段によれば、異常堆積を回避して、稼働時間のロスを低減できる。
As a third means for solving the above-mentioned problems, the present invention provides, in the first or second means, the control unit adjusts the input amount of the hopper body and the opening by a gate provided at the bottom of the hopper body. The object of the present invention is to provide a granular material hopper characterized by avoiding the abnormal layer thickness by controlling any one or more of expansion of the area, formation of a steep slope by the gate, and application of vibration to the hopper.
According to the third means, it is possible to avoid abnormal deposition and reduce the loss of operating time.

本発明は、上記課題を解決するための第4の手段として、第1ないし第3のいずれか1に記載の粉粒体ホッパにおいて、前記層厚測定部は、前記ホッパ本体の側面の開口を覆う可撓性プレートと、前記可撓性プレートの高さ方向に沿って取り付けた複数の歪みゲージと、前記歪みゲージを覆う保護カバーを備え、前記ホッパ本体の外部から取り付けたことを特徴とする粉粒体ホッパとしている。
上記第4の手段によれば、簡易構成により、ホッパ本体の外部からの着脱が可能であり、点検、交換作業を容易に行える。
According to the present invention, as a fourth means for solving the above problems, in the powdery or granular material hopper according to any one of the first to third aspects, the layer thickness measuring section measures the opening of the side surface of the hopper body. A flexible plate for covering, a plurality of strain gauges attached along the height direction of the flexible plate, and a protective cover for covering the strain gauges, which are attached from the outside of the hopper body. A powder hopper is used.
According to the fourth means, the hopper body can be attached and detached from the outside with a simple structure, and inspection and replacement work can be easily performed.

本発明は、上記課題を解決するための第5の手段として、ベルトコンベア上方に配置して内部で所定層厚を形成した搬送物を前記ベルトコンベア上方に払い出すホッパ本体の内部で堆積した前記搬送物によって内壁面の高さ方向の複数個所にかかる側圧を層厚測定部で測定する工程と、
前記層厚測定部の測定値に基づいて前記搬送物の堆積速度を算出して異常層厚を回避する制御を行う工程と、
を有することを特徴とする粉粒体ホッパの運転方法を提供することにある。
上記第5の手段によれば、ホッパ本体内での搬送物の堆積途中で過度の堆積を原因とする運転不良(異常堆積)を回避できる運転制御が行える。
As a fifth means for solving the above-mentioned problems, the present invention provides a hopper body that discharges a conveyed product arranged above a belt conveyor and formed with a predetermined layer thickness inside the belt conveyor. A step of measuring lateral pressure applied to a plurality of locations in the height direction of the inner wall surface by the conveyed object with a layer thickness measuring unit;
a step of calculating the deposition rate of the conveyed object based on the measured value of the layer thickness measuring unit and performing control to avoid an abnormal layer thickness;
It is to provide a method for operating a granular material hopper characterized by having
According to the fifth means, it is possible to perform operational control that can avoid operational failures (abnormal accumulation) caused by excessive accumulation during accumulation of conveyed materials in the hopper main body.

本発明によれば、ホッパ本体内での搬送物の堆積途中で過度の堆積を原因とする運転不良(異常堆積)を回避できる運転制御が行える。 According to the present invention, it is possible to perform operation control capable of avoiding operational failure (abnormal accumulation) caused by excessive accumulation during accumulation of the conveyed material in the hopper main body.

本発明の粉粒体ホッパの構成概略図である。It is a structural schematic diagram of the granular material hopper of the present invention. 層厚測定部の説明図である。It is explanatory drawing of a layer thickness measurement part. 層厚と時間の関係を示すグラフである。It is a graph which shows the relationship between layer thickness and time.

本発明の粉粒体ホッパ、粉粒体ホッパの運転方法の実施形態について、図面を参照しながら、以下詳細に説明する。 Embodiments of the granular material hopper and the method for operating the granular material hopper of the present invention will be described in detail below with reference to the drawings.

[粉粒体ホッパ10]
図1は、本発明の粉粒体ホッパの構成概略図である。図示のように本発明の粉粒体ホッパ10は、ベルトコンベア12上方に配置して内部で所定層厚を形成した搬送物14を前記ベルトコンベア12上に払い出すホッパ本体16の内部で堆積した前記搬送物14によって内壁面の高さ方向の複数個所にかかる側圧を測定する層厚測定部20と、前記層厚測定部20の測定値に基づいて前記搬送物14の堆積速度を算出して異常層厚を回避する制御を行う制御部30を備えている。
[Particle hopper 10]
FIG. 1 is a schematic diagram of the configuration of the granular material hopper of the present invention. As shown in the figure, the granular material hopper 10 of the present invention is arranged above the belt conveyor 12 and deposited inside the hopper body 16 that discharges the conveyed material 14 formed with a predetermined layer thickness on the belt conveyor 12. A layer thickness measuring unit 20 for measuring the side pressure applied to a plurality of locations in the height direction of the inner wall surface by the conveyed object 14, and calculating the deposition rate of the conveyed object 14 based on the measured values of the layer thickness measuring unit 20. A control unit 30 is provided to perform control to avoid an abnormal layer thickness.

ホッパ本体16は、上面に開口を有する箱状容器である。ベルトコンベア12は、搬送面をホッパ本体16の下部開口と対向するように所定間隔を開けて取り付けて、ホッパ本体16から落下する搬送物14を後工程の所定箇所へ搬送するものである。本発明の搬送物14は、一例として火力発電所の燃料用の石炭や木質ペレットなどの粉粒体を用いて以下説明する。 The hopper body 16 is a box-shaped container having an opening on its top surface. The belt conveyor 12 has a conveying surface facing the lower opening of the hopper main body 16 with a predetermined gap therebetween, and conveys the articles 14 dropped from the hopper main body 16 to a predetermined location in the subsequent process. The conveyed object 14 of the present invention will be described below using, as an example, powdery material such as coal for fuel of a thermal power plant or wood pellets.

ゲート18は、ホッパ本体16の搬送方向下流側の側面に取り付けて、搬送物14の払い出し量を調整するものである。ゲート18は主面をベルトコンベア12の搬送方向に沿って(向かって)形成している。
このゲート18はホッパ本体16の搬送方向下流側の側面に回転支持部18aを介して取り付けている。回転支持部18aはベルトコンベア12の搬送方向と直交する方向に軸心を配置して、ゲート18を扇状、換言するとコンベア上に接近又は離間する方向に回転自在となるように配置している。またゲート18はピストンが接続し、ロッドをホッパ本体16の周囲に取り付けた駆動シリンダ18bを有している。
このようなゲート18の構成によりゲート18による開口面積の拡大、ゲート18による急傾斜を形成して、ベルトコンベア12上の搬送物14とコンベア面の摩擦係数が小さい場合に、例えば、圧密性の小さい搬送物をゲート18で圧密して、層厚を形成した搬送物14の重量を大きくすることで搬送に十分なベルト搬送速度を確保できる。
The gate 18 is attached to the side surface of the hopper main body 16 on the downstream side in the conveying direction, and adjusts the discharge amount of the conveyed article 14 . The main surface of the gate 18 is formed along (toward) the conveying direction of the belt conveyor 12 .
The gate 18 is attached to the side surface of the hopper body 16 on the downstream side in the conveying direction via a rotation support portion 18a. The rotation support portion 18a is arranged with its axis perpendicular to the conveying direction of the belt conveyor 12, and the gate 18 is fan-shaped, in other words, it is arranged so as to be rotatable toward or away from the conveyor. The gate 18 also has a drive cylinder 18b to which a piston connects and to which a rod is mounted around the hopper body 16. As shown in FIG.
With such a configuration of the gate 18, the opening area of the gate 18 is enlarged and the gate 18 forms a steep slope, so that when the friction coefficient between the conveyed object 14 on the belt conveyor 12 and the conveyor surface is small, for example, compaction can be achieved. A belt conveying speed sufficient for conveying can be ensured by consolidating a small conveyed article by the gate 18 and increasing the weight of the conveyed article 14 in which a layer thickness is formed.

(層厚測定部20)
図2は層厚測定部の説明図である。ホッパ本体16は、搬送物14の層厚が形成されたときに、側圧を測定する層厚測定部20を設置している。
層厚測定部20は、ホッパ本体16の内壁面に設けた開口を覆う可撓性プレート22と、可撓性プレート22の高さ方向に沿って取り付けた複数の歪みゲージ24と、歪みゲージ24を覆う保護カバー26を備えている。
可撓性プレート22は、ホッパ本体16の側面に設けた開口を覆う可撓性、耐摩耗性を備えた金属板である。
歪みゲージ24は、可撓性プレート22の外面の高さ方向に沿って複数並べたセンサである。
保護カバー26は、歪みゲージを覆うカバーであり、防塵、防水機能を備えている。
このような構成の層厚測定部20は、ホッパ本体16に搬送物が堆積して行くと、下方の可撓性プレートから順に搬送物14の圧力によって撓んで行く。この撓みを歪みゲージ24で検出する。測定値は後述する制御部30へ送信可能に構成している。また、層厚測定部20は、可撓性プレート22と歪みゲージ24と保護カバー26を一体構造とするユニット化し、ホッパ本体16の側面開口に締結ボルト等を用いて着脱可能とし、点検、交換作業を容易な構成としている。
(Layer thickness measurement unit 20)
FIG. 2 is an explanatory diagram of the layer thickness measuring section. The hopper main body 16 is provided with a layer thickness measuring section 20 for measuring the lateral pressure when the layer thickness of the conveyed material 14 is formed.
The layer thickness measuring unit 20 includes a flexible plate 22 covering an opening provided in the inner wall surface of the hopper body 16, a plurality of strain gauges 24 attached along the height direction of the flexible plate 22, and the strain gauges 24 A protective cover 26 is provided to cover the
The flexible plate 22 is a flexible and wear-resistant metal plate that covers the opening provided on the side surface of the hopper body 16 .
The strain gauges 24 are sensors arranged along the height direction of the outer surface of the flexible plate 22 .
The protective cover 26 is a cover that covers the strain gauge and has dustproof and waterproof functions.
In the layer thickness measuring unit 20 having such a configuration, as the material is accumulated on the hopper body 16, the lower flexible plate is bent by the pressure of the material 14 in order. This deflection is detected by the strain gauge 24 . The measured value is configured to be able to be transmitted to the control section 30, which will be described later. In addition, the layer thickness measuring unit 20 is made into a unit that has a flexible plate 22, a strain gauge 24, and a protective cover 26 as an integral structure, and can be attached and detached using a fastening bolt or the like to the side opening of the hopper body 16, and can be inspected and replaced. It has a structure that facilitates work.

(制御部30)
制御部30は、層厚測定部20と電気的に接続し、層厚測定部20の測定値に基づいて搬送物14の堆積速度を算出して異常層厚を回避する制御を行っている。
図3は層厚と時間の関係を示すグラフである。同図は縦軸が層厚、横軸が時間を示し、層厚測定部20の歪みゲージ24a~eとし、搬送物14を一定量、一定速で投入した場合の各ゲージの測定値をプロットしたものである。
歪みゲージ24a~eの測定値により、個々の層厚(負荷)、搬送物14の堆積によってホッパ本体16の下方から上方の歪みゲージで層厚が検出できる。
各歪みゲージ24a~eの層厚の測定時間、換言すると負荷発生時間から堆積速度が得られる。
各歪みゲージ24a~eの傾き(負荷勾配ΔH/Δt)から層厚と堆積速度を推定し単位時間当たりの層厚変化から堆積時間を予測できる。
歪みゲージ24a~eの測定値が一定となる負荷平衡値になった状態で、層厚変動からホッパ本体16の排出と投入のバランスが判断でき、また歪みゲージ24a-b間のH1、歪みゲージ24a-c間のH2、歪みゲージ24a-d間のH3、歪みゲージ24a-e間のH4の値から圧力を推定できる。
制御部30は、堆積途中の測定値から堆積速度、圧力を求め、異常層厚が発生する可能性がある場合、以下のような回避方法を実行する。
制御部30による具体的な異常層厚の回避方法は、ホッパ本体16の搬送物14を投入する投入コンベア11と電気的に接続しており、搬送物14の供給量を低減する制御を行える。また制御部30は、駆動シリンダ18bと電気的に接続しており、ホッパ本体16の下部開口の開口面積を(拡大するなど)調整する制御を行える。また制御部30は、駆動シリンダ18bの進退移動によってゲート18に急傾斜を形成して過度に堆積した搬送物14の排出を促進させる制御を行える。さらに制御部30は、ホッパ本体16への振動付与(槌打手段(不図示)によってホッパ本体を振動するなど)によって堆積した搬送物14の排出を促進させる制御を行える。
(control unit 30)
The control unit 30 is electrically connected to the layer thickness measuring unit 20, calculates the deposition rate of the conveyed object 14 based on the measured value of the layer thickness measuring unit 20, and performs control to avoid an abnormal layer thickness.
FIG. 3 is a graph showing the relationship between layer thickness and time. In the figure, the vertical axis indicates the layer thickness and the horizontal axis indicates time. The strain gauges 24a to 24e of the layer thickness measuring unit 20 are plotted, and the measurement values of each gauge when the conveyed object 14 is put in at a constant amount and at a constant speed are plotted. It is what I did.
By measuring the strain gauges 24a-e, individual layer thicknesses (loads) can be detected with the strain gauges above the hopper body 16 depending on the build-up of the material being conveyed.
The deposition rate is obtained from the measurement time of the layer thickness of each of the strain gauges 24a-e, in other words, the load generation time.
The layer thickness and the deposition rate can be estimated from the slopes (load gradients ΔH/Δt) of the strain gauges 24a to 24e, and the deposition time can be predicted from the change in layer thickness per unit time.
In a state where the measured values of the strain gauges 24a to 24e are at a constant load balance value, the balance between discharging and loading of the hopper main body 16 can be determined from the layer thickness variation. The pressure can be estimated from the values of H2 between 24a-c, H3 between strain gauges 24a-d, and H4 between strain gauges 24a-e.
The control unit 30 obtains the deposition rate and pressure from the measured values during the deposition, and if there is a possibility that an abnormal layer thickness will occur, the following avoidance method is executed.
A specific method for avoiding the abnormal layer thickness by the control unit 30 is that the hopper main body 16 is electrically connected to the input conveyor 11 for inputting the conveyed articles 14 , and control can be performed to reduce the supply amount of the conveyed articles 14 . The control unit 30 is electrically connected to the drive cylinder 18b, and can control the opening area of the lower opening of the hopper body 16 (for example, to enlarge it). Further, the control unit 30 can perform control to form a steep slope in the gate 18 by forward and backward movement of the drive cylinder 18b, thereby promoting discharge of the excessively deposited material 14 to be conveyed. Furthermore, the control unit 30 can perform control to accelerate the discharge of the accumulated conveyed materials 14 by applying vibration to the hopper body 16 (eg, vibrating the hopper body by hammering means (not shown)).

[粉粒体ホッパの運転方法]
本発明の粉粒体ホッパの運転方法は、ベルトコンベア12上方に配置して内部で所定層厚を形成した搬送物14をベルトコンベア12上方に排出するホッパ本体16の内部で堆積した搬送物14によって内壁面の高さ方向の複数個所にかかる側圧を層厚測定部20で測定する。
層厚測定部20の測定値に基づいて、制御部30により搬送物14の堆積速度を算出して異常層厚を回避する制御を行う。
制御部30は、層厚測定部20の測定値から、各歪みゲージ24a~eの層厚(負荷)、堆積速度、堆積時間の予測、ホッパ本体16の排出と投入のバランスを求める。この層厚などの1つ以上の情報から、異常堆積が発生する可能性がある場合、投入コンベア11による搬送物14の投入量を調整(減少など)、駆動シリンダ18bによりゲート18の急傾斜の形成、ホッパ本体への振動付与のいずれか1つ以上の制御を行い異常な堆積を回避する。
以上、本発明の好ましい実施形態について説明した。しかしながら、本発明は、上記実施形態に何ら制限されることなく、本発明の主旨を逸脱しない範囲において、種々の変更が可能である。
また、本発明は、実施形態において示された組み合わせに限定されることなく、種々の組み合わせによって実施可能である。
[Method of operating powder hopper]
According to the method of operating the granular material hopper of the present invention, the conveyed material 14 disposed above the belt conveyor 12 and having a predetermined layer thickness formed therein is discharged above the belt conveyor 12. The layer thickness measuring unit 20 measures the lateral pressure applied to a plurality of points in the height direction of the inner wall surface.
Based on the measured value of the layer thickness measuring unit 20, the control unit 30 calculates the deposition rate of the conveyed object 14 and performs control to avoid an abnormal layer thickness.
From the measured values of the layer thickness measuring unit 20, the control unit 30 obtains the layer thickness (load) of each of the strain gauges 24a to 24e, the deposition rate, the estimation of the deposition time, and the balance between the discharging and loading of the hopper body 16. Based on one or more pieces of information such as this layer thickness, if there is a possibility that abnormal deposition will occur, the input amount of the material 14 to be fed by the input conveyor 11 is adjusted (decreased, etc.), and the steep inclination of the gate 18 is adjusted by the drive cylinder 18b. Abnormal deposition is avoided by controlling one or more of formation and application of vibration to the hopper body.
The preferred embodiments of the present invention have been described above. However, the present invention is not limited to the above embodiments, and various modifications are possible without departing from the gist of the present invention.
Moreover, the present invention is not limited to the combinations shown in the embodiments, and can be implemented in various combinations.

10 粉粒体ホッパ
11 投入コンベア
12 ベルトコンベア
14 搬送物
16 ホッパ本体
18 ゲート
18a 回転支持部
18b 駆動シリンダ
20 層厚測定部
22 可撓性プレート
24 歪みゲージ
26 保護カバー
30 制御部
10 Granular material hopper 11 Input conveyor 12 Belt conveyor 14 Conveyed object 16 Hopper main body 18 Gate 18a Rotation support part 18b Drive cylinder 20 Layer thickness measurement part 22 Flexible plate 24 Strain gauge 26 Protective cover 30 Control part

Claims (5)

ベルトコンベア上方に配置して内部で所定層厚を形成した搬送物を前記ベルトコンベア上方に払い出すホッパ本体の内部で堆積した前記搬送物によって内壁面の高さ方向の複数個所にかかる側圧を測定する層厚測定部と、
前記層厚測定部の測定値に基づいて前記搬送物の堆積速度を算出して異常層厚を回避する制御を行う制御部と、
を備えたことを特徴とする粉粒体ホッパ。
The lateral pressure applied to multiple points in the height direction of the inner wall surface by the accumulated material inside the hopper body, which is placed above the belt conveyor and has a predetermined layer thickness formed inside, is discharged to the upper side of the belt conveyor is measured. a layer thickness measuring unit to
a control unit that calculates the deposition rate of the conveyed object based on the measured value of the layer thickness measurement unit and performs control to avoid an abnormal layer thickness;
A powder or granular material hopper comprising:
請求項1に記載の粉粒体ホッパにおいて、
前記制御部は、前記層厚測定部の測定値に基づいて前記ホッパ本体の内壁面の高さ方向の複数個所の層厚、単位時間当たりの層厚変化から堆積時間の予測、層厚変動から前記ホッパ本体の排出又は投入のバランスのいずれか1つ以上を求めることを特徴とする粉粒体ホッパ。
In the granular material hopper according to claim 1,
Based on the measured value of the layer thickness measuring unit, the control unit predicts the layer thickness at a plurality of locations in the height direction of the inner wall surface of the hopper body, the deposition time from the layer thickness change per unit time, and the layer thickness variation A granular material hopper, characterized in that one or more of the balance of discharging or charging the hopper main body is obtained.
請求項1又は2に記載の粉粒体ホッパにおいて、
前記制御部は、前記ホッパ本体の投入量調整、前記ホッパ本体の下部に設けたゲートによる開口面積の拡大、前記ゲートによる急傾斜の形成、前記ホッパ本体への振動付与のいずれか1つ以上の制御により前記異常層厚を回避することを特徴とする粉粒体ホッパ。
In the granular material hopper according to claim 1 or 2,
The control unit controls one or more of the following: adjustment of the input amount of the hopper body, enlargement of an opening area by a gate provided at the bottom of the hopper body, formation of a steep slope by the gate, and application of vibration to the hopper body. A granular material hopper characterized by avoiding the abnormal layer thickness by control.
請求項1ないし3のいずれか1項に記載の粉粒体ホッパにおいて、
前記層厚測定部は、前記ホッパ本体の側面の開口を覆う可撓性プレートと、前記可撓性プレートの高さ方向に沿って取り付けた複数の歪みゲージと、前記歪みゲージを覆う保護カバーを備え、前記ホッパ本体の外部から取り付けたことを特徴とする粉粒体ホッパ。
In the granular material hopper according to any one of claims 1 to 3,
The layer thickness measuring unit includes a flexible plate covering the side opening of the hopper body, a plurality of strain gauges attached along the height direction of the flexible plate, and a protective cover covering the strain gauges. and attached from the outside of the hopper main body.
ベルトコンベア上方に配置して内部で所定層厚を形成した搬送物を前記ベルトコンベア上方に払い出すホッパ本体の内部で堆積した前記搬送物によって内壁面の高さ方向の複数個所にかかる側圧を層厚測定部で測定する工程と、
前記層厚測定部の測定値に基づいて前記搬送物の堆積速度を算出して異常層厚を回避する制御を行う工程と、
を有することを特徴とする粉粒体ホッパの運転方法。
Side pressure applied to a plurality of points in the height direction of the inner wall surface by the accumulated material inside the hopper body that discharges the material that has been placed above the belt conveyor and has a predetermined layer thickness formed therein is layered. a step of measuring with a thickness measuring part;
a step of calculating the deposition rate of the conveyed object based on the measured value of the layer thickness measuring unit and performing control to avoid an abnormal layer thickness;
A method for operating a granular material hopper, comprising:
JP2021003364A 2021-01-13 2021-01-13 Powder and granular material hopper, operation method for powder and granular material hopper Pending JP2022108401A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021003364A JP2022108401A (en) 2021-01-13 2021-01-13 Powder and granular material hopper, operation method for powder and granular material hopper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021003364A JP2022108401A (en) 2021-01-13 2021-01-13 Powder and granular material hopper, operation method for powder and granular material hopper

Publications (1)

Publication Number Publication Date
JP2022108401A true JP2022108401A (en) 2022-07-26

Family

ID=82556629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021003364A Pending JP2022108401A (en) 2021-01-13 2021-01-13 Powder and granular material hopper, operation method for powder and granular material hopper

Country Status (1)

Country Link
JP (1) JP2022108401A (en)

Similar Documents

Publication Publication Date Title
EP0152923B1 (en) Device for portioning products
JP5483589B2 (en) Reduced iron material supply system
KR101482475B1 (en) Mobile discharge device for powder and granular material storage silo and powder and granular material storage silo
JP2013112483A (en) Control method of belt conveyor device and belt conveyor facility
CN102753892A (en) Passive solids supply system and method for supplying solids
Ilic Bulk solid interactions in belt conveying systems
JP2022108401A (en) Powder and granular material hopper, operation method for powder and granular material hopper
Maynard Ten steps to an effective bin design
RU2698361C1 (en) Method for loading mixture of charge and cullet into bins of glass melting furnace loaders
KR20120127822A (en) Apparatus for separating transportation article of belt conveyor
KR100778677B1 (en) Apparatus and method for preventing sinter overload
JP2018020879A (en) Chute
JP3045716B1 (en) Detecting device for stored amount of powder
JP2022007272A (en) Granular powder hopper
CN101687554B (en) Packing machine
JP2007112608A (en) Carrying article supply quantity control method
CN108507652B (en) Full-automatic electronic metering batching and supplementing equipment
JPH11268836A (en) Fixed quantity belt conveyor device
Ilic et al. Simulation of Transfer Chutes
Carson et al. How to design efficient and reliable feeders for bulk solids
CN209719975U (en) A kind of meausring apparatus for fertilizer packaging
CN211282702U (en) Quantitative feeding system
CN219078341U (en) Quartz sand automatic weighing and feeding machine
JP2016145782A (en) Measuring device
JP4405240B2 (en) Quantitative powder feeder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240423