JP7515645B1 - Bearing condition monitoring system - Google Patents

Bearing condition monitoring system Download PDF

Info

Publication number
JP7515645B1
JP7515645B1 JP2023028359A JP2023028359A JP7515645B1 JP 7515645 B1 JP7515645 B1 JP 7515645B1 JP 2023028359 A JP2023028359 A JP 2023028359A JP 2023028359 A JP2023028359 A JP 2023028359A JP 7515645 B1 JP7515645 B1 JP 7515645B1
Authority
JP
Japan
Prior art keywords
bearing
diagnosis
speed
vibration
precision
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2023028359A
Other languages
Japanese (ja)
Other versions
JP2024121320A (en
Inventor
勇大 中野
航 畠山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to JP2023028359A priority Critical patent/JP7515645B1/en
Priority to PCT/JP2024/006486 priority patent/WO2024181292A1/en
Application granted granted Critical
Publication of JP7515645B1 publication Critical patent/JP7515645B1/en
Publication of JP2024121320A publication Critical patent/JP2024121320A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/24Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for radial load mainly
    • F16C19/26Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for radial load mainly with a single row of rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/52Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C41/00Other accessories, e.g. devices integrated in the bearing not relating to the bearing function as such
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • G01M13/04Bearings

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

【課題】高回転速度で使用される軸受が組み込まれる設備の生産性を著しく低下させることなく、その軸受の異常診断を精度よく行うことができる状態監視システムを提供する。【解決手段】軸受の回転速度、振動および軸受に負荷されている外力を検出するセンサ部1と、センサ部1で検出した外力に基づいて軸受の運転状態を判断する運転状態判断手段2と、運転状態判断手段2で軸受が軽負荷運転状態にあると判断されたときにセンサ部1で検出した軸受の回転速度および振動に基づいて、軸受の精密診断を行う際の精密診断速度を設定する診断速度設定手段3と、軸受の回転速度を精密診断速度に変更して軸受の精密診断を行う異常診断手段4とを備え、軸受の速度低下を抑えた適切な精密診断速度で精密診断を行うようにした。【選択図】図2[Problem] To provide a condition monitoring system capable of accurately diagnosing abnormalities in bearings used at high rotational speeds without significantly reducing the productivity of equipment in which the bearings are installed. [Solution] The system comprises a sensor unit 1 that detects the rotational speed and vibration of the bearing and the external force applied to the bearing, an operating state determination means 2 that determines the operating state of the bearing based on the external force detected by the sensor unit 1, a diagnosis speed setting means 3 that sets a precision diagnosis speed for performing a precision diagnosis of the bearing based on the rotational speed and vibration of the bearing detected by the sensor unit 1 when the operating state determination means 2 determines that the bearing is in a lightly loaded operating state, and an abnormality diagnosis means 4 that changes the rotational speed of the bearing to the precision diagnosis speed and performs a precision diagnosis of the bearing, so that a precision diagnosis is performed at an appropriate precision diagnosis speed that suppresses a decrease in bearing speed. [Selected Figure] Figure 2

Description

本発明は、工作機械の主軸を支持する軸受等、高回転速度で使用される軸受の状態監視システムに関する。 The present invention relates to a condition monitoring system for bearings used at high rotational speeds, such as bearings that support the spindles of machine tools.

工作機械の主軸を支持する軸受は、1分間に数万回転という高回転速度で使用されることが多い。このような工作機械用軸受では、その損傷を早期に発見するために、軸受の振動を検出して異常診断を行う状態監視システムを付設することが多くなってきている(例えば、特許文献1参照。)。 Bearings that support the main spindles of machine tools are often used at high rotational speeds of tens of thousands of revolutions per minute. In order to detect damage to such machine tool bearings early, condition monitoring systems that detect bearing vibrations and diagnose abnormalities are increasingly being attached (see, for example, Patent Document 1).

特開2009-20090号公報JP 2009-20090 A

ところが、高回転速度で使用される軸受では、主軸の回転に伴うベース振動や潤滑油の吹き付けに伴う風切り音を含むノイズが広い周波数帯に分布しており、そのノイズによる振動成分と軸受の損傷によって発生する振動成分の分離が困難である。このため、状態監視システムで精度よく異常診断を行うには、ノイズによる振動成分の影響を受けにくい回転速度での振動データを用いる必要がある。 However, in bearings used at high rotational speeds, noise including base vibrations caused by the rotation of the main shaft and wind noise caused by the spraying of lubricating oil is distributed over a wide frequency band, making it difficult to separate the vibration components caused by this noise from those caused by damage to the bearing. For this reason, in order to accurately diagnose abnormalities using a condition monitoring system, it is necessary to use vibration data at rotational speeds that are less susceptible to the influence of vibration components caused by noise.

これに対しては、状態監視システムで異常診断を行う際に主軸の回転速度を下げることが考えられるが、使用している軸受が定位置予圧を負荷されたアンギュラ玉軸受や、円すいころ軸受、円筒ころ軸受である場合は、その予圧荷重や転動体荷重が小さいので、回転速度が下がるにしたがって、軸受から発せられる振動自体が低くなり、主軸や軸受の損傷を精度よく検出することは難しくなる。 One way to deal with this is to reduce the rotational speed of the spindle when diagnosing abnormalities using a condition monitoring system, but if the bearings used are angular ball bearings, tapered roller bearings, or cylindrical roller bearings that are preloaded in a fixed position, the preload load and rolling element load are small, so as the rotational speed decreases, the vibration emitted by the bearings themselves becomes weaker, making it difficult to accurately detect damage to the spindle or bearings.

また、主に高回転速度領域で使用される工作機械の場合は、異常診断のために回転速度を低速域まで下げてしまうと、その主軸や軸受の温度変化が大きくなって、もとの回転速度の温度平衡状態まで回復するのに時間を要してしまい、生産性の著しい低下を招く。 In addition, in the case of machine tools that are primarily used in the high rotational speed range, if the rotational speed is reduced to a low speed range to diagnose an abnormality, the temperature change in the spindle and bearings will be large, and it will take time to recover to the temperature equilibrium state at the original rotational speed, resulting in a significant decrease in productivity.

そこで、本発明は、高回転速度で使用される軸受が組み込まれる設備の生産性を著しく低下させることなく、その軸受の異常診断を精度よく行うことができる状態監視システムを提供することを課題とする。 The present invention aims to provide a condition monitoring system that can accurately diagnose abnormalities in bearings used at high rotational speeds without significantly reducing the productivity of the equipment in which the bearings are installed.

上記の課題を解決するために、本発明は、軸受の状態監視システムにおいて、前記軸受の回転速度を検出する回転速度検出手段と、前記軸受の振動を検出する振動検出手段と、前記軸受が負荷運転状態にあるか軽負荷運転状態にあるかを判断する運転状態判断手段と、前記運転状態判断手段により軸受が軽負荷運転状態にあると判断されたときに前記回転速度検出手段で検出した回転速度および前記振動検出手段で検出した振動に基づいて、前記軸受の精密診断を行う際の精密診断速度を設定する診断速度設定手段と、前記軸受の回転速度を前記診断速度設定手段によって設定された精密診断速度に変更して軸受の精密診断を行う異常診断手段とを備えている構成(構成1)を採用した。 In order to solve the above problems, the present invention employs a configuration (configuration 1) for a bearing condition monitoring system, comprising: a rotational speed detection means for detecting the rotational speed of the bearing; a vibration detection means for detecting the vibration of the bearing; an operating state determination means for determining whether the bearing is in a loaded operating state or a light-load operating state; a diagnosis speed setting means for setting a precision diagnosis speed for performing a precision diagnosis of the bearing based on the rotational speed detected by the rotational speed detection means and the vibration detected by the vibration detection means when the operating state determination means determines that the bearing is in a light-load operating state; and an abnormality diagnosis means for changing the rotational speed of the bearing to the precision diagnosis speed set by the diagnosis speed setting means and performing a precision diagnosis of the bearing.

上記の構成1によれば、診断速度設定手段が、軸受の軽負荷運転状態の回転速度と振動のデータを用いて、軸受が通常使用される回転速度からの速度低下を抑えた適切な精密診断速度を設定し、その精密診断速度で異常診断手段が精密診断を行うので、軸受が組み込まれる設備の生産性を著しく低下させることなく、軸受の異常診断を精度よく行うことができる。 According to the above configuration 1, the diagnostic speed setting means uses the rotational speed and vibration data of the bearing in a light-load operating state to set an appropriate precision diagnostic speed that minimizes any speed reduction from the rotational speed at which the bearing is normally used, and the abnormality diagnosis means performs a precision diagnosis at that precision diagnostic speed, so that it is possible to perform accurate abnormality diagnosis of the bearing without significantly reducing the productivity of the equipment in which the bearing is installed.

上記構成1において、前記異常診断手段としては、前記軸受が任意の回転速度で運転されているときに、前記振動検出手段で検出した振動の波形から少なくとも1つの簡易診断値を算出して、その簡易診断値を所定の閾値と比較することにより、前記軸受の簡易診断を行う簡易診断手段と、前記軸受の回転速度を前記精密診断速度に変更して、前記回転速度検出手段で検出した回転速度に基づいて前記軸受が損傷したときに発生する損傷周波数を算出し、その損傷周波数と前記振動検出手段で検出した振動から得られるスペクトルデータに含まれる周波数成分とを比較することにより、前記軸受の精密診断を行う精密診断手段とを含み、前記簡易診断手段で軸受の異常が検出されたときにのみ、前記精密診断手段による軸受の回転速度の変更および精密診断を行うものを採用することができる(構成2)。 In the above configuration 1, the abnormality diagnosis means may include a simple diagnosis means for performing a simple diagnosis of the bearing by calculating at least one simple diagnosis value from the waveform of the vibration detected by the vibration detection means when the bearing is operating at an arbitrary rotation speed and comparing the simple diagnosis value with a predetermined threshold value, and a precision diagnosis means for performing a precision diagnosis of the bearing by changing the rotation speed of the bearing to the precision diagnosis speed, calculating a damage frequency that occurs when the bearing is damaged based on the rotation speed detected by the rotation speed detection means, and comparing the damage frequency with a frequency component included in the spectrum data obtained from the vibration detected by the vibration detection means, and changing the rotation speed of the bearing and performing a precision diagnosis by the precision diagnosis means only when an abnormality in the bearing is detected by the simple diagnosis means (configuration 2).

上記構成1または2における前記診断速度設定手段は、前記振動検出手段で検出した単位時間あたりの振動イベント数に基づいて前記精密診断速度を設定するものとすることができる(構成3)。この構成3において、前記診断速度設定手段は、前記精密診断時に予め想定された単位時間あたりの振動イベント数が得られているかを確認するイベント数確認手段を含むものとすることが望ましい(構成4)。さらに、この構成4における前記イベント数確認手段は、前記軸受が損傷したときに発生する損傷周波数に基づいて前記精密診断時の単位時間あたりの振動イベント数を想定するものとすることが望ましい(構成5)。 The diagnostic speed setting means in the above configuration 1 or 2 can set the precision diagnosis speed based on the number of vibration events per unit time detected by the vibration detection means (Configuration 3). In this configuration 3, it is preferable that the diagnostic speed setting means includes an event number confirmation means for confirming whether a predetermined number of vibration events per unit time is obtained during the precision diagnosis (Configuration 4). Furthermore, it is preferable that the event number confirmation means in this configuration 4 assumes the number of vibration events per unit time during the precision diagnosis based on a damage frequency that occurs when the bearing is damaged (Configuration 5).

あるいは、上記構成1または2における前記診断速度設定手段として、前記振動検出手段で検出した振動のオーバーオール値に基づいて前記精密診断速度を設定するものを採用することもできる(構成6)。 Alternatively, the diagnostic speed setting means in the above configuration 1 or 2 can be one that sets the precision diagnostic speed based on the overall value of the vibration detected by the vibration detection means (configuration 6).

また、上記構成1乃至6のいずれにおいても、前記軸受に負荷されている外力を検出する外力検出手段をさらに備え、前記運転状態判断手段は、前記外力検出手段で検出した外力が所定の大きさ未満であるときに前記軸受が軽負荷運転状態にあると判断するものである構成を採用することができる(構成7)。 In addition, in any of the above configurations 1 to 6, a configuration can be adopted in which an external force detection means is further provided for detecting an external force applied to the bearing, and the operating state determination means determines that the bearing is in a light load operating state when the external force detected by the external force detection means is less than a predetermined magnitude (configuration 7).

そして、本発明は、上記構成1乃至7のいずれにおいても、前記軸受が工作機械の主軸を回転可能に支持するものである場合に、特に効果的に適用することができる。 And in any of the above configurations 1 to 7, the present invention can be particularly effectively applied when the bearing rotatably supports the main shaft of a machine tool.

本発明の軸受の状態監視システムは、上述したように、軸受の通常使用時の回転速度からの速度低下の少ない精密診断速度で精密診断を行うので、その軸受が組み込まれる設備の生産性を著しく低下させることなく、精度の高い軸受診断を行うことができる。 As described above, the bearing condition monitoring system of the present invention performs precision diagnosis at a precision diagnosis speed that results in minimal speed reduction from the rotational speed of the bearing during normal use, making it possible to perform highly accurate bearing diagnosis without significantly reducing the productivity of the equipment in which the bearing is installed.

実施形態の状態監視システムの監視対象となる軸受の縦断面図FIG. 1 is a vertical cross-sectional view of a bearing to be monitored by a condition monitoring system according to an embodiment of the present invention. 実施形態の状態監視システムの概念図Conceptual diagram of a state monitoring system according to an embodiment a、bはそれぞれ図2のセンサ部の振動センサで検出される振動イベント数を説明する模式的なグラフであり、aが高速回転時のグラフ、bが低速回転時のグラフ3A and 3B are schematic graphs for explaining the number of vibration events detected by the vibration sensor of the sensor unit in FIG. 2, where A is the graph during high-speed rotation and B is the graph during low-speed rotation. 図2のセンサ部の振動センサで検出される振動のオーバーオール値比(異常時の値/正常時の値)と軸受回転速度の関係を示すグラフGraph showing the relationship between the overall value ratio (abnormal value/normal value) of vibration detected by the vibration sensor of the sensor unit in FIG. 2 and the bearing rotation speed

以下、図面に基づき本発明の実施形態を説明する。図1は実施形態の状態監視システムの監視対象となる軸受30を示す。この軸受30は、内輪31と外輪32との間に転動体としてのボール33が保持器34で保持され、軸受空間の一端側がシール35でシールされ、シール35でシールされた側と反対側に、監視システムの一部を構成するセンサ部1が取り付けられた深溝玉軸受であり、図示省略した工作機械の主軸を回転可能に支持するものである。 The following describes an embodiment of the present invention with reference to the drawings. Figure 1 shows a bearing 30 that is the subject of monitoring by the condition monitoring system of the embodiment. This bearing 30 is a deep groove ball bearing in which balls 33 as rolling elements are held by a cage 34 between an inner ring 31 and an outer ring 32, one end of the bearing space is sealed by a seal 35, and a sensor unit 1 that constitutes part of the monitoring system is attached to the side opposite the side sealed by the seal 35, and the bearing 30 rotatably supports the spindle of a machine tool (not shown).

センサ部1は、軸受30の回転速度を検出する回転速度検出手段としての回転センサ10と、軸受30の振動を検出する振動検出手段としての振動センサ20と、軸受30に負荷されている外力を検出する外力検出手段としての荷重センサ21とからなる。その回転センサ10は、内輪31の外周面に嵌合された芯金11と、芯金11に装着された磁気エンコーダ12と、外輪32の内周面に嵌合された外環13と、外環13に装着されたセンサハウジング14とを備えている。センサハウジング14には、磁気エンコーダ12と対向し、磁気エンコーダ12とともに回転センサを構成するホールIC15と、ホールIC15の脚15aに接続されたプリント基板16とが、モールド樹脂14aで固定されている。そのプリント基板16には電子回路を構成する電気部品17が取り付けられている。また、振動センサ20は、加速度センサであり、固定輪である外輪32の振動を検出するようになっている。荷重センサ21は、ひずみゲージまたは圧電素子を用いたものが外輪32の外周の凹部に組み込まれている。 The sensor unit 1 is composed of a rotation sensor 10 as a rotation speed detection means for detecting the rotation speed of the bearing 30, a vibration sensor 20 as a vibration detection means for detecting the vibration of the bearing 30, and a load sensor 21 as an external force detection means for detecting the external force applied to the bearing 30. The rotation sensor 10 is equipped with a core 11 fitted to the outer peripheral surface of the inner ring 31, a magnetic encoder 12 attached to the core 11, an outer ring 13 fitted to the inner peripheral surface of the outer ring 32, and a sensor housing 14 attached to the outer ring 13. The sensor housing 14 is fixed with molded resin 14a with a Hall IC 15 that faces the magnetic encoder 12 and constitutes a rotation sensor together with the magnetic encoder 12, and a printed circuit board 16 connected to the leg 15a of the Hall IC 15. An electric component 17 that constitutes an electronic circuit is attached to the printed circuit board 16. The vibration sensor 20 is an acceleration sensor and is designed to detect the vibration of the outer ring 32, which is a fixed ring. The load sensor 21 uses a strain gauge or a piezoelectric element and is embedded in a recess on the outer periphery of the outer ring 32.

この実施形態の状態監視システムは、図2に示すように、前述の軸受30の周辺部に設けられるセンサ部1(回転センサ10、振動センサ20および荷重センサ21)と、荷重センサ21で検出した外力に基づいて軸受30の運転状態を判断する運転状態判断手段2と、運転状態判断手段2により軸受30が軽負荷運転状態にあると判断されたときに回転センサ10で検出した回転速度および振動センサ20で検出した振動に基づいて、軸受30の精密診断を行う際の精密診断速度を設定する診断速度設定手段3と、軸受30の回転速度を診断速度設定手段3によって設定された精密診断速度に変更して軸受30の精密診断を行う異常診断手段4とを備えている。 As shown in FIG. 2, the condition monitoring system of this embodiment includes a sensor unit 1 (rotation sensor 10, vibration sensor 20, and load sensor 21) provided around the aforementioned bearing 30, an operating state determination means 2 that determines the operating state of the bearing 30 based on the external force detected by the load sensor 21, a diagnostic speed setting means 3 that sets a precision diagnosis speed for performing a precision diagnosis of the bearing 30 based on the rotation speed detected by the rotation sensor 10 and the vibration detected by the vibration sensor 20 when the operating state determination means 2 determines that the bearing 30 is in a light load operating state, and an abnormality diagnosis means 4 that changes the rotation speed of the bearing 30 to the precision diagnosis speed set by the diagnostic speed setting means 3 and performs a precision diagnosis of the bearing 30.

運転状態判断手段2は、荷重センサ21で検出した外力(軸受30に負荷されている外力)が所定の大きさ以上であるときは軸受30が負荷運転状態(工作機械が加工中)であると判断し、外力が所定の大きさ未満であるときは軸受30が軽負荷運転状態(工作機械が非加工中)であると判断するものである。 The operating state determination means 2 determines that the bearing 30 is in a loaded operating state (the machine tool is processing) when the external force (external force applied to the bearing 30) detected by the load sensor 21 is equal to or greater than a predetermined magnitude, and determines that the bearing 30 is in a light-load operating state (the machine tool is not processing) when the external force is less than the predetermined magnitude.

診断速度設定手段3は、振動センサ20で検出した単位時間あたりの振動イベント数に基づいて精密診断速度を設定する方法を用いている。振動イベント数(以下、単に「イベント数」とも称する。)とは、図3(a)、(b)に示すように、振動値(この例では加速度)の波形において観測されるピーク(図中の黒丸)の数のことであり、当然ながら単位時間あたりのイベント数は低速回転時(図3(b))の方が高速回転時(図3(a))よりも少なくなる。 The diagnostic speed setting means 3 uses a method of setting the precision diagnostic speed based on the number of vibration events per unit time detected by the vibration sensor 20. The number of vibration events (hereinafter simply referred to as the "event number") refers to the number of peaks (black circles in the figure) observed in the waveform of the vibration value (acceleration in this example), as shown in Figures 3(a) and (b), and the number of events per unit time is naturally less during low-speed rotation (Figure 3(b)) than during high-speed rotation (Figure 3(a)).

そして、一般的な軸受の異常診断では、異常時に発生する振動波形のピークを検出して周波数解析(FFT)することによって異常の判定を行っており、高速回転中は判定に必要な波形のピークの数すなわちイベント数は得られやすいが、ピークがノイズ成分に紛れて特徴を見出すことができず、判定が困難になる場合が多い。これに対して、回転速度を下げると、ノイズ成分の影響は小さくなるが、振動値も低くなって波形のピークを検出しにくくなる場合があり、また、判定に必要なイベント数を得るための診断時間が長くなるうえ、主軸や軸受の温度変化が大きくなって、加工を再開するまでに時間がかかるようになり、生産性が低下するという問題が生じる。 In general bearing abnormality diagnosis, the vibration waveform peaks that occur when an abnormality occurs are detected and frequency analysis (FFT) is performed to determine whether an abnormality exists. During high-speed rotation, the number of waveform peaks required for judgment, i.e. the number of events, is easy to obtain, but the peaks are often hidden by noise components, making it difficult to find their characteristics and making a judgment. In contrast, if the rotation speed is reduced, the influence of noise components is reduced, but the vibration value also decreases, making it difficult to detect the waveform peaks. Also, the diagnosis time required to obtain the number of events required for judgment increases, and the temperature changes in the spindle and bearings increase, making it take longer to resume machining, resulting in reduced productivity.

そこで、この診断速度設定手段3では、過去に正しく精密診断できた際のイベント数等に基づいて判定に必要なイベント数を算出し、精密診断を行える時間(例えば、工作機械におけるワーク交換等のインターバル時間)で必要なイベント数を得られる回転速度範囲を導出し、その回転速度範囲内の適切な速度を精密診断速度として設定するようにしている。 The diagnostic speed setting means 3 calculates the number of events required for judgment based on the number of events when a precision diagnosis was performed correctly in the past, derives a rotational speed range that can obtain the required number of events within the time in which a precision diagnosis can be performed (for example, the interval time for changing a workpiece in a machine tool), and sets an appropriate speed within that rotational speed range as the precision diagnosis speed.

ここで、診断速度設定手段3は、軸受30が損傷したときに発生する損傷周波数に基づいて精密診断時の単位時間あたりのイベント数を想定し、精密診断時に予め想定された単位時間あたりのイベント数が得られているかを確認するイベント数確認手段を含むものとすることが望ましい。 Here, it is preferable that the diagnostic speed setting means 3 includes an event number confirmation means for estimating the number of events per unit time during precision diagnosis based on the damage frequency that occurs when the bearing 30 is damaged, and for confirming whether the previously estimated number of events per unit time is obtained during precision diagnosis.

異常診断手段4は、軸受30が任意の回転速度で運転されているときに軸受30の簡易診断を行う簡易診断手段4aと、軸受30の回転速度を前述の精密診断速度に変更して軸受30の精密診断を行う精密診断手段4bと、簡易診断手段4aおよび精密診断手段4bの診断結果情報を工作機の制御部40とパソコンやサーバ等の外部装置50に出力する診断結果出力部4cとを備えており、簡易診断手段4aで軸受30の異常が検出されたときにのみ、精密診断手段4bによる軸受30の回転速度の変更および精密診断を行うようになっている。 The abnormality diagnosis means 4 includes a simple diagnosis means 4a that performs a simple diagnosis of the bearing 30 when the bearing 30 is operating at an arbitrary rotation speed, a precise diagnosis means 4b that changes the rotation speed of the bearing 30 to the precise diagnosis speed described above and performs a precise diagnosis of the bearing 30, and a diagnosis result output unit 4c that outputs the diagnosis result information of the simple diagnosis means 4a and the precise diagnosis means 4b to the control unit 40 of the machine tool and an external device 50 such as a personal computer or server. Only when an abnormality in the bearing 30 is detected by the simple diagnosis means 4a, is the precise diagnosis means 4b used to change the rotation speed of the bearing 30 and perform a precise diagnosis.

その簡易診断手段4aは、振動センサ20で検出した振動の波形から少なくとも1つの簡易診断値を算出して、その簡易診断値を所定の閾値と比較することにより軸受30の診断を行うものである。その簡易診断値とは、例えば、振動波形データの実効値の時間的変化率を用いることができる。 The simplified diagnostic means 4a calculates at least one simplified diagnostic value from the vibration waveform detected by the vibration sensor 20, and diagnoses the bearing 30 by comparing the simplified diagnostic value with a predetermined threshold value. The simplified diagnostic value can be, for example, the rate of change over time of the effective value of the vibration waveform data.

一方、精密診断手段4bは、軸受30の回転速度を前述の精密診断速度に変更して(工作機の制御部40に速度変更情報を出力して)、回転センサ10で検出した回転速度に基づいて軸受30が損傷したときに発生する損傷周波数を算出し、その損傷周波数と振動センサ20で検出した振動から得られるスペクトルデータに含まれる周波数成分とを比較することにより軸受30の診断を行うものである。具体的な診断方法としては、例えば、振動波形をエンベロープ処理して周波数解析した結果のスペクトルデータ(横軸:振動周波数、縦軸:振動レベル)において、振動レベルのピークが現れる周波数と軸受30の部品ごとの損傷周波数とを比較して、一致するものがあれば、その一致する損傷周波数に対応する部品に異常があると判定する方法を採用することができる。 On the other hand, the precision diagnosis means 4b changes the rotation speed of the bearing 30 to the precision diagnosis speed (outputs speed change information to the control unit 40 of the machine tool), calculates the damage frequency that occurs when the bearing 30 is damaged based on the rotation speed detected by the rotation sensor 10, and diagnoses the bearing 30 by comparing the damage frequency with the frequency components contained in the spectrum data obtained from the vibration detected by the vibration sensor 20. As a specific diagnosis method, for example, a method can be adopted in which the frequency at which the vibration level peak appears in the spectrum data (horizontal axis: vibration frequency, vertical axis: vibration level) resulting from frequency analysis of the vibration waveform after envelope processing is compared with the damage frequency of each part of the bearing 30, and if there is a match, it is determined that the part corresponding to the matching damage frequency is abnormal.

この状態監視システムは、上記の構成であり、異常診断手段4に含まれる簡易診断手段4aで軸受30の異常が検出されたときにのみ、精密診断手段4bが軸受30の回転速度を、正確に異常判定できるイベント数が得られる速度範囲内の適切な精密診断速度に下げたうえで精密診断を行うようにしているので、精密診断速度をなるべく高く(例えば、軸受30の通常使用中の回転速度からの速度低下が最低限となるように)設定して、生産性を著しく低下させることなく、精度の高い診断を行うことができる。 This condition monitoring system has the above-mentioned configuration, and only when an abnormality in the bearing 30 is detected by the simple diagnosis means 4a included in the abnormality diagnosis means 4, the precise diagnosis means 4b performs a precise diagnosis after lowering the rotation speed of the bearing 30 to an appropriate precise diagnosis speed within the speed range where the number of events that can be accurately determined to be abnormal is obtained. Therefore, by setting the precise diagnosis speed as high as possible (for example, so that the speed reduction from the rotation speed of the bearing 30 during normal use is minimized), it is possible to perform a highly accurate diagnosis without significantly reducing productivity.

なお、診断速度設定手段3による精密診断速度の設定は、上述の単位時間あたりのイベント数に基づいて行う方法のほか、振動センサ20で検出した振動のオーバーオール値(OA値)に基づいて行う方法を用いることもできる。具体的には、図4に示すように、正常な状態の軸受の振動のOA値に対する異常の生じた軸受のOA値の比(OA値比)は回転速度によって変化するので、予め正常な状態の軸受30のOA値を記憶しておき、軸受30の使用中に、対応する回転速度で異常の生じた軸受30のOA値比が得られる回転速度を特定し、精密診断速度とする。 The precise diagnosis speed can be set by the diagnosis speed setting means 3 based on the number of events per unit time as described above, or based on the overall value (OA value) of the vibration detected by the vibration sensor 20. Specifically, as shown in FIG. 4, the ratio of the OA value of a bearing in an abnormal state to the OA value of the vibration of a bearing in a normal state (OA value ratio) varies depending on the rotation speed. Therefore, the OA value of a bearing 30 in a normal state is stored in advance, and the rotation speed at which the OA value ratio of a bearing 30 in an abnormal state is obtained at the corresponding rotation speed during the use of the bearing 30 is identified and used as the precise diagnosis speed.

すなわち、一般に、軸受に異常が生じると、OA値比が異常振動成分の影響により1以上になる。しかし、高速回転域では、その異常振動成分(損傷周波数に一致するピーク)がノイズに紛れ、OA値比が1に近い値を示す。そのため、ノイズの影響を受けず、OA値比が1よりもある程度以上高くなる回転数で、通常使用中の回転速度からの速度低下が最低限となる回転数を精密診断速度とする(図4では、中高速回転となる。)。この方法を採用しても、なるべく高い精密診断速度で精度よく診断を行える。この方法は、工作機械の起動時等、主軸回転速度を通常使用回転速度になるように徐々に上昇させるとき等にも有効である。 In other words, generally, when an abnormality occurs in a bearing, the OA value ratio becomes 1 or more due to the influence of abnormal vibration components. However, at high speed rotational speeds, the abnormal vibration components (peaks corresponding to the damage frequency) blend in with the noise, and the OA value ratio indicates a value close to 1. Therefore, the precision diagnosis speed is the rotational speed at which the OA value ratio is somewhat higher than 1 without being affected by noise, and at which the speed drop from the rotational speed during normal use is minimized (in Figure 4, this is medium to high speed rotation). Even with this method, accurate diagnosis can be performed at as high a precision diagnosis speed as possible. This method is also effective when gradually increasing the spindle rotational speed to the normal rotational speed, such as when starting up a machine tool.

また、上述した実施形態の変形例として、軸受30周辺のセンサ部1のうち、外力検出手段としての荷重センサ21を省略し、運転状態判断手段2は、工作機械自体に備わっているセンサの情報に基づいて負荷運転状態と軽負荷運転状態とを判別するものや、工作機械のシーケンスプログラムから非加工時のタイミングの情報を取得して軽負荷運転状態と判断するものとした構成を採用することもできる。 As a modification of the above-mentioned embodiment, the load sensor 21 as an external force detection means may be omitted from the sensor section 1 around the bearing 30, and the operating state determination means 2 may be configured to distinguish between a loaded operating state and a light-load operating state based on information from a sensor provided in the machine tool itself, or to obtain information on non-machining timing from the sequence program of the machine tool and determine that the machine tool is in a light-load operating state.

今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。この発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiments disclosed herein should be considered to be illustrative and not restrictive in all respects. The scope of the present invention is indicated by the claims, not the above description, and is intended to include all modifications within the meaning and scope of the claims.

例えば、実施形態の異常診断手段における簡易診断では、簡易診断値と閾値との比較により異常判定を行っているが、軸受の通常使用中の回転速度がFFTを実施できる許容範囲にあれば、簡易診断でもFFTによる異常判定を行うようにしてもよい。 For example, in the simplified diagnosis in the abnormality diagnosis means of the embodiment, abnormality determination is performed by comparing the simplified diagnosis value with a threshold value, but if the rotational speed of the bearing during normal use is within an allowable range in which FFT can be performed, abnormality determination using FFT may also be performed in the simplified diagnosis.

また、実施形態の異常診断手段のうちの簡易診断手段を省略し、定期的にあるいは任意のタイミングで精密診断を行うようにすることもできる。 In addition, the simplified diagnosis means of the abnormality diagnosis means of the embodiment can be omitted, and a detailed diagnosis can be performed periodically or at any timing.

そして、本発明は、実施形態のように軸受が工作機械の主軸を回転可能に支持するものである場合に特に効果的に適用できるが、これに限らず、高回転速度で使用される軸受の状態監視システムに広く適用することができる。 The present invention is particularly effective when the bearing rotatably supports the spindle of a machine tool, as in the embodiment, but is not limited to this and can be widely applied to condition monitoring systems for bearings used at high rotational speeds.

1 センサ部
2 運転状態判断手段
3 診断速度設定手段
4 異常診断手段
4a 簡易診断手段
4b 精密診断手段
4c 診断結果出力部
10 回転センサ(回転速度検出手段)
20 振動センサ(振動検出手段)
21 荷重センサ(外力検出手段)
30 軸受
1 Sensor section 2 Operating state determination means 3 Diagnostic speed setting means 4 Abnormality diagnosis means 4a Simple diagnosis means 4b Precision diagnosis means 4c Diagnostic result output section 10 Rotation sensor (rotation speed detection means)
20 Vibration sensor (vibration detection means)
21 Load sensor (external force detection means)
30 Bearing

Claims (8)

軸受の状態監視システムにおいて、
前記軸受の回転速度を検出する回転速度検出手段と、
前記軸受の振動を検出する振動検出手段と、
前記軸受が負荷運転状態にあるか軽負荷運転状態にあるかを判断する運転状態判断手段と、
前記運転状態判断手段により軸受が軽負荷運転状態にあると判断されたときに前記回転速度検出手段で検出した回転速度および前記振動検出手段で検出した振動に基づいて、前記軸受の精密診断を行う際の精密診断速度を設定する診断速度設定手段と、
前記軸受の回転速度を前記診断速度設定手段によって設定された精密診断速度に変更して軸受の精密診断を行う異常診断手段とを備えていることを特徴とする軸受の状態監視システム。
In bearing condition monitoring systems,
a rotational speed detection means for detecting a rotational speed of the bearing;
a vibration detection means for detecting vibration of the bearing;
an operating state determination means for determining whether the bearing is in a loaded operating state or a light loaded operating state;
a diagnosis speed setting means for setting a precision diagnosis speed for performing a precision diagnosis of the bearing, based on the rotational speed detected by the rotational speed detection means and the vibration detected by the vibration detection means when the operating state determination means determines that the bearing is in a light load operating state;
a diagnosis speed setting means for setting the rotational speed of the bearing to a precision diagnosis speed set by the diagnosis speed setting means, thereby performing a precision diagnosis of the bearing;
前記異常診断手段は、
前記軸受が任意の回転速度で運転されているときに、前記振動検出手段で検出した振動の波形から少なくとも1つの簡易診断値を算出して、その簡易診断値を所定の閾値と比較することにより、前記軸受の簡易診断を行う簡易診断手段と、
前記軸受の回転速度を前記精密診断速度に変更して、前記回転速度検出手段で検出した回転速度に基づいて前記軸受が損傷したときに発生する損傷周波数を算出し、その損傷周波数と前記振動検出手段で検出した振動から得られるスペクトルデータに含まれる周波数成分とを比較することにより、前記軸受の精密診断を行う精密診断手段とを含み、
前記簡易診断手段で軸受の異常が検出されたときにのみ、前記精密診断手段による軸受の回転速度の変更および精密診断を行うことを特徴とする請求項1に記載の軸受の状態監視システム。
The abnormality diagnosis means includes:
simple diagnosis means for performing a simple diagnosis of the bearing by calculating at least one simple diagnosis value from a waveform of vibration detected by the vibration detection means when the bearing is operated at a given rotational speed and comparing the simple diagnosis value with a predetermined threshold value;
a precision diagnosis means for performing a precision diagnosis of the bearing by changing the rotation speed of the bearing to the precision diagnosis speed, calculating a damage frequency that will occur when the bearing is damaged based on the rotation speed detected by the rotation speed detection means, and comparing the damage frequency with a frequency component contained in spectrum data obtained from the vibration detected by the vibration detection means,
2. A bearing condition monitoring system according to claim 1, wherein said precise diagnosis means changes the rotational speed of the bearing and performs a precise diagnosis only when said simple diagnosis means detects an abnormality in the bearing.
前記診断速度設定手段は、前記振動検出手段で検出した単位時間あたりの振動イベント数に基づいて前記精密診断速度を設定することを特徴とする請求項1または2に記載の軸受の状態監視システム。 The bearing condition monitoring system according to claim 1 or 2, characterized in that the diagnostic speed setting means sets the precision diagnostic speed based on the number of vibration events per unit time detected by the vibration detection means. 前記診断速度設定手段は、前記精密診断時に予め想定された単位時間あたりの振動イベント数が得られているかを確認するイベント数確認手段を含むことを特徴とする請求項3に記載の軸受の状態監視システム。 The bearing condition monitoring system according to claim 3, characterized in that the diagnostic speed setting means includes an event number confirmation means for confirming whether a predetermined number of vibration events per unit time is obtained during the detailed diagnosis. 前記イベント数確認手段は、前記軸受が損傷したときに発生する損傷周波数に基づいて前記精密診断時の単位時間あたりの振動イベント数を想定することを特徴とする請求項4に記載の軸受の状態監視システム。 The bearing condition monitoring system according to claim 4, characterized in that the event number confirmation means estimates the number of vibration events per unit time during the precision diagnosis based on the damage frequency that occurs when the bearing is damaged. 前記診断速度設定手段は、前記振動検出手段で検出した振動のオーバーオール値に基づいて前記精密診断速度を設定することを特徴とする請求項1または2に記載の軸受の状態監視システム。 The bearing condition monitoring system according to claim 1 or 2, characterized in that the diagnostic speed setting means sets the precision diagnostic speed based on an overall value of the vibration detected by the vibration detection means. 前記軸受に負荷されている外力を検出する外力検出手段をさらに備え、
前記運転状態判断手段は、前記外力検出手段で検出した外力が所定の大きさ未満であるときに前記軸受が軽負荷運転状態にあると判断するものであることを特徴とする請求項1または2に記載の軸受の状態監視システム。
Further, an external force detection means for detecting an external force applied to the bearing is provided.
3. A bearing condition monitoring system as claimed in claim 1 or 2, characterized in that the operating state determination means determines that the bearing is in a light load operating state when the external force detected by the external force detection means is less than a predetermined magnitude.
前記軸受は、工作機械の主軸を回転可能に支持するものであることを特徴とする請求項1または2に記載の軸受の状態監視システム。 The bearing condition monitoring system according to claim 1 or 2, characterized in that the bearing rotatably supports a main shaft of a machine tool.
JP2023028359A 2023-02-27 2023-02-27 Bearing condition monitoring system Active JP7515645B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023028359A JP7515645B1 (en) 2023-02-27 2023-02-27 Bearing condition monitoring system
PCT/JP2024/006486 WO2024181292A1 (en) 2023-02-27 2024-02-22 Bearing condition monitoring system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2023028359A JP7515645B1 (en) 2023-02-27 2023-02-27 Bearing condition monitoring system

Publications (2)

Publication Number Publication Date
JP7515645B1 true JP7515645B1 (en) 2024-07-12
JP2024121320A JP2024121320A (en) 2024-09-06

Family

ID=91810491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023028359A Active JP7515645B1 (en) 2023-02-27 2023-02-27 Bearing condition monitoring system

Country Status (2)

Country Link
JP (1) JP7515645B1 (en)
WO (1) WO2024181292A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6526829B1 (en) 1999-08-16 2003-03-04 Pruftechnik Dieter Busch Ag Process and apparatus for determining damage to cyclically moving machine components
JP4608564B2 (en) 2008-03-28 2011-01-12 株式会社高田工業所 Abnormality diagnosis method for low-speed rotating machinery
JP5067979B2 (en) 2010-06-01 2012-11-07 三菱電機エンジニアリング株式会社 Bearing diagnostic device
JP6508017B2 (en) 2015-11-30 2019-05-08 日本精工株式会社 Evaluation method of machinery and equipment
JP6735183B2 (en) 2016-08-19 2020-08-05 オークマ株式会社 Machine tool with rotating shaft
JP2022120875A (en) 2021-02-08 2022-08-19 Ntn株式会社 Vibration analysis device and vibration analysis system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023009580A (en) * 2021-07-07 2023-01-20 日本精工株式会社 State monitoring device of rolling bearing, wind turbine generator, state monitoring method, and program

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6526829B1 (en) 1999-08-16 2003-03-04 Pruftechnik Dieter Busch Ag Process and apparatus for determining damage to cyclically moving machine components
JP4608564B2 (en) 2008-03-28 2011-01-12 株式会社高田工業所 Abnormality diagnosis method for low-speed rotating machinery
JP5067979B2 (en) 2010-06-01 2012-11-07 三菱電機エンジニアリング株式会社 Bearing diagnostic device
JP6508017B2 (en) 2015-11-30 2019-05-08 日本精工株式会社 Evaluation method of machinery and equipment
JP6735183B2 (en) 2016-08-19 2020-08-05 オークマ株式会社 Machine tool with rotating shaft
JP2022120875A (en) 2021-02-08 2022-08-19 Ntn株式会社 Vibration analysis device and vibration analysis system

Also Published As

Publication number Publication date
WO2024181292A1 (en) 2024-09-06
JP2024121320A (en) 2024-09-06

Similar Documents

Publication Publication Date Title
CN106168534B (en) Abnormality detection device and abnormality detection method having abnormality detection function for machine tool
CN109839270B (en) Method and device for diagnosing abnormality of feed shaft
JP6308922B2 (en) Rolling bearing abnormality diagnosis apparatus, wind power generation apparatus, and rolling bearing abnormality diagnosis method
US8315826B2 (en) Diagnostic method for a ball bearing, in particular for an angular-contact ball bearing, a corresponding diagnostic system, and use of the diagnostic system
US9689777B2 (en) Fault detection for bearings
US20120095724A1 (en) Operating history management method and operating history management apparatus
WO2018025634A1 (en) Method and device for diagnosing abnormality in feed shaft
WO2019221251A1 (en) Bearing state monitoring method and state monitoring device
JP7515645B1 (en) Bearing condition monitoring system
WO2020050129A1 (en) Bearing device
JP2012251858A (en) Bearing self-diagnostic structure of angle detector and angle detector with bearing diagnosis sensor
JP2004169756A (en) Bearing device with sensor
JP6637844B2 (en) Method for determining warm-up operation time before bearing diagnosis in machine tool, machine tool
JP2010149244A (en) Main spindle device of machine tool
JP2005344842A (en) Monitor and monitoring method
JP2018040456A (en) Rotary shaft device and abnormality diagnostic method of bearing on rotary shaft device
CN113056620B (en) Bearing device
CN111609032B (en) Gas bearing spindle
JP2019027788A (en) Abnormality detection sensitivity setting device and abnormality detection sensitivity setting method for rotation mechanism
JPH112239A (en) Device to measure various property of rolling bearing
JP5541054B2 (en) Physical quantity measuring device for rotating members
KR102712821B1 (en) System and method for detecting an abnormal state of a spindle unit of a cnc machine
JP2020056771A (en) Method for monitoring state and rotary drive system
JP2020070862A (en) Bearing device
JP2020204555A (en) Abnormality diagnostic method of rotating machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240516

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20240516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240702

R150 Certificate of patent or registration of utility model

Ref document number: 7515645

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150