JP2010149244A - Main spindle device of machine tool - Google Patents

Main spindle device of machine tool Download PDF

Info

Publication number
JP2010149244A
JP2010149244A JP2008331087A JP2008331087A JP2010149244A JP 2010149244 A JP2010149244 A JP 2010149244A JP 2008331087 A JP2008331087 A JP 2008331087A JP 2008331087 A JP2008331087 A JP 2008331087A JP 2010149244 A JP2010149244 A JP 2010149244A
Authority
JP
Japan
Prior art keywords
machine tool
bearing
encoder
revolution speed
spindle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008331087A
Other languages
Japanese (ja)
Other versions
JP5359262B2 (en
Inventor
Ichiu Tanaka
一宇 田中
Yoshiaki Katsuno
美昭 勝野
Mitsuho Aoki
満穂 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2008331087A priority Critical patent/JP5359262B2/en
Publication of JP2010149244A publication Critical patent/JP2010149244A/en
Application granted granted Critical
Publication of JP5359262B2 publication Critical patent/JP5359262B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Machine Tool Sensing Apparatuses (AREA)
  • Turning (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a main spindle device of a machine tool predicting abnormality inside bearings and quickly detecting the abnormality occurred. <P>SOLUTION: In the main spindle device provided with two or more bearings, an encoder 9 is arranged in a retainer 15 retaining rolling elements 14 of the bearings 5-8, and a rotation sensor 10 detecting the rotational speed of the encoder 9 is arranged in a non-rotating member. Abnormality inside the bearings can be predicted and the abnormality occurred there can be quickly detected by detecting the revolving speed ratio of the retainer 15 from the rotational speed of the encoder 9 detected by the rotation sensor 10 and calculating the temperature difference between inner and outer rings of the bearing from the revolving speed ratio. Also, by calculating the load of a main spindle 1 from the revolving speed ratio of the retainer 15, setting an appropriate working condition and appropriate determination of wear of a tool can be performed. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は工作機械の主軸装置に関し、特に旋盤、フライス盤、マシニングセンタなどの切削加工を行う工作機械の主軸に好適なものである。   The present invention relates to a spindle device of a machine tool, and is particularly suitable for a spindle of a machine tool that performs a cutting process such as a lathe, a milling machine, or a machining center.

特に、旋盤やフライス盤、マシニングセンタなどの切削加工を行う工作機械の中には、20000rpmといった高速で主軸を回転するものがある。このような高速で回転する主軸を支持する軸受では、潤滑油が遠心力作用によって、内輪軌道輪から外輪軌道輪に移動してしまい、内輪と転動体との転がり接触面の潤滑油膜が不足して金属接触となり、焼付などの異常が発生する恐れがある。焼付きが発生すると、軸受が損傷するばかりでなく、主軸やハウジングなどの周辺部材が高温となり、モータ(ロータ・ステータ・巻線)など、その他の部品への悪影響が発生する。
そこで、下記特許文献1では、軸受が組込まれた主軸ユニットのハウジングに温度センサを取付け、この温度センサで検出される温度が閾値以上になったら、軸受などに異常が発生したとして工作機械を停止するなどの方法が採られている。
特開平9−79915号公報
In particular, some machine tools that perform cutting such as a lathe, a milling machine, and a machining center rotate the spindle at a high speed of 20000 rpm. In such a bearing that supports the main shaft that rotates at high speed, the lubricating oil moves from the inner ring raceway to the outer ring raceway due to the centrifugal force, and the lubricating oil film on the rolling contact surface between the inner ring and the rolling element is insufficient. There is a risk of abnormalities such as seizure. When seizure occurs, not only the bearing is damaged, but also peripheral members such as the main shaft and the housing become high temperature, which adversely affects other parts such as a motor (rotor, stator, winding).
Therefore, in Patent Document 1 below, a temperature sensor is attached to the housing of the spindle unit in which the bearing is incorporated, and when the temperature detected by the temperature sensor exceeds a threshold value, the machine tool is stopped because an abnormality has occurred in the bearing or the like. The method of doing is taken.
JP 9-79915 A

しかしながら、主軸ユニットのハウジング温度だけでは、異常箇所の特定が困難なため、主軸ユニットを分解するなどせざるを得ず、異常箇所の特定に時間がかかる。また、工作機械の回転速度の上昇時や、潤滑環境の変化によっても温度は上昇するため、異常時と正常時の区別がつかず、異常状態と正常状態との判断を誤る恐れもある。
本発明は、上記のような問題点に着目してなされたものであり、軸受内部の異常を予見したり、発生した異常を速やかに検出したりすることが可能な工作機械の主軸装置を提供することを目的とするものである。
However, since it is difficult to identify an abnormal part only by the housing temperature of the main spindle unit, it is necessary to disassemble the main spindle unit, and it takes time to specify the abnormal part. Further, since the temperature rises when the rotational speed of the machine tool is increased or due to a change in the lubrication environment, it is not possible to distinguish between an abnormal state and a normal state, and there is a possibility of misjudging the abnormal state and the normal state.
The present invention has been made paying attention to the above-described problems, and provides a spindle device for a machine tool capable of predicting an abnormality inside a bearing or quickly detecting an abnormality that has occurred. It is intended to do.

上記課題を解決するため、本発明の工作機械の主軸装置は、二個以上の複数の軸受を備えた工作機械の主軸装置であって、軸受の転動体を保持する保持器に設けられたエンコーダと、非回転部材に取付けられ且つ前記エンコーダの回転速度を検出する回転センサと、前記回転センサで検出されたエンコーダの回転速度から前記保持器の公転速度の変化を検出し、その公転速度の変化から軸受内外輪の温度差を算出する検出装置を備えたことを特徴とするものである。   In order to solve the above-described problems, a spindle device for a machine tool according to the present invention is a spindle device for a machine tool including two or more bearings, and an encoder provided in a cage that holds rolling elements of the bearings A rotation sensor that is attached to a non-rotating member and detects the rotation speed of the encoder; and a change in the revolution speed of the cage is detected from the rotation speed of the encoder detected by the rotation sensor, and the change in the revolution speed And a detecting device for calculating a temperature difference between the inner and outer rings of the bearing.

また、本発明の工作機械の主軸装置は、二個以上の複数の軸受を備えた工作機械の主軸装置であって、軸受の転動体を保持する保持器に設けられたエンコーダと、非回転部材に取付けられ且つ前記エンコーダの回転速度を検出する回転センサと、前記回転センサで検出されたエンコーダの回転速度から前記保持器の公転速度の変化を検出し、その公転速度の変化から主軸の荷重を算出する検出装置を備えたことを特徴とするものである。   A spindle device for a machine tool according to the present invention is a spindle device for a machine tool having two or more bearings, an encoder provided in a cage for holding rolling elements of the bearing, and a non-rotating member And a rotation sensor for detecting the rotation speed of the encoder, and a change in the revolution speed of the cage is detected from the rotation speed of the encoder detected by the rotation sensor, and the spindle load is calculated from the change in the revolution speed. It is characterized by comprising a detection device for calculating.

また、本発明の工作機械の主軸装置は、前記公転速度の変化を、主軸の回転速度に対する保持器の公転速度の比としたことを特徴とするものである。
また、本発明の工作機械の主軸装置は、前記検出装置は、主軸内部の軸受異常を検出するものであることを特徴とするものである。
また、本発明の工作機械の主軸装置は、高速回転する工作機械の主軸に用いたことを特徴とするものである。
The spindle device of the machine tool according to the present invention is characterized in that the change in the revolution speed is a ratio of the revolution speed of the cage to the rotation speed of the spindle.
The spindle device of the machine tool of the present invention is characterized in that the detection device detects a bearing abnormality in the spindle.
The spindle device for a machine tool according to the present invention is used for a spindle of a machine tool that rotates at high speed.

而して、本発明の工作機械の主軸装置によれば、軸受内部の異常を予見したり、発生した異常を速やかに検出したりすることが可能となる。   Thus, according to the spindle device of the machine tool of the present invention, it is possible to foresee an abnormality inside the bearing or to quickly detect an abnormality that has occurred.

次に、本発明の工作機械の主軸装置の実施形態について図面を参照しながら説明する。
図1は、本実施形態の工作機械の主軸装置のユニット全体構成図であり、例えば旋盤やフライス盤、マシニングセンタなどの高速回転型汎用工作機械を始め、種々の高速回転型専用工作機械にも用いられるものである。図中の符号1が主軸、符号2はユニットのハウジングである。主軸1は、図の左方からハウジング2内に差し込まれ、ハウジング2の左端開口部にキャップ3を固定して密閉されている。また、差し込まれた主軸1の右方端部にはストッパ4が取付けられ、抜けが防止されている。
Next, an embodiment of a spindle device for a machine tool according to the present invention will be described with reference to the drawings.
FIG. 1 is an overall configuration diagram of a spindle unit of a machine tool according to the present embodiment, and is used for various high-speed rotation type dedicated machine tools such as a high-speed rotation general-purpose machine tool such as a lathe, a milling machine, and a machining center. Is. Reference numeral 1 in the figure denotes a main shaft, and reference numeral 2 denotes a unit housing. The main shaft 1 is inserted into the housing 2 from the left side of the figure, and is sealed with a cap 3 fixed to the left end opening of the housing 2. A stopper 4 is attached to the right end portion of the inserted main shaft 1 to prevent it from coming off.

主軸1とハウジング2との間には、図示右方の駆動側に二個、図示左方の作動側に二個、夫々軸受5〜8が介装されている。このうち、最も図示右方端の軸受5及び最も図示左方端の軸受8の保持器にはエンコーダ9が取付けられ、ハウジング2には、それらのエンコーダ9の回転速度を検出する回転センサ10が取付けられている。回転センサ10の出力は検出装置11で読込まれる。   Between the main shaft 1 and the housing 2, two bearings 5 to 8 are interposed on the right driving side in the drawing and two on the left operating side in the drawing, respectively. Among them, an encoder 9 is attached to the cage of the rightmost bearing 5 and the leftmost bearing 8 shown in the figure, and the housing 2 has a rotation sensor 10 for detecting the rotation speed of the encoder 9. Installed. The output of the rotation sensor 10 is read by the detection device 11.

図2は、本発明の工作機械の主軸装置の異なる実施形態を示すユニット全体構成図であり、図1の実施形態と同様に、旋盤やフライス盤など、高速回転型工作機械に用いられるものである。この実施形態では、主軸1にロータ41を取付け、ハウジング2内のロータ41外周部にはステータ42を配設した、所謂モータ内蔵型(モータビルトインタイプ)の工作機械主軸ユニットである。この実施形態でも、図示右方の支持側に二個、図示左方の作動側に二個、夫々軸受5〜8が介装され、本実施形態の場合、図示右方の右から2番目の軸受6及び図示左方の左から2番目の軸受7の保持器にエンコーダ9が取付けられ、ハウジング2には、それらのエンコーダの回転速度を検出する回転センサ10が取付けられている。回転センサ10の出力は検出装置11で読込まれる。   FIG. 2 is an overall configuration diagram of a unit showing a different embodiment of the spindle device of the machine tool of the present invention, and is used for a high-speed rotary type machine tool such as a lathe or a milling machine as in the embodiment of FIG. . In this embodiment, it is a so-called motor built-in type machine tool spindle unit in which a rotor 41 is attached to the spindle 1 and a stator 42 is disposed on the outer periphery of the rotor 41 in the housing 2. Also in this embodiment, two bearings 5 to 8 are interposed on the right support side in the drawing and two on the left operation side in the drawing, respectively, and in the case of this embodiment, the second from the right on the right side in the drawing. Encoders 9 are attached to the bearings 6 and the cage of the second bearing 7 from the left on the left in the drawing, and the housing 2 is provided with a rotation sensor 10 that detects the rotational speed of these encoders. The output of the rotation sensor 10 is read by the detection device 11.

モータ内蔵型の主軸ユニットでは、ロータやステータの熱が軸受に伝達され、内外輪温度差が発生し易く、軸受が焼付き易い。また、モータの発熱による主軸の昇温を抑制する目的で軸受やステータの周辺部に冷却液を通す、所謂外筒冷却などが行われるため、外輪外径に温度センサなどを付けても、センサ近傍部の発熱分を冷却液が吸収し、軸受の昇温を検出しにくい場合がある。このような場合、本実施形態の温度検出装置が有効に機能する。   In the spindle unit with a built-in motor, the heat of the rotor and the stator is transmitted to the bearing, the temperature difference between the inner and outer rings is likely to occur, and the bearing is easily seized. In order to suppress the temperature rise of the main shaft due to the heat generated by the motor, so-called outer cylinder cooling is performed by passing coolant through the periphery of the bearings and stator. Therefore, even if a temperature sensor is attached to the outer diameter of the outer ring, the sensor In some cases, the coolant absorbs the heat generated in the vicinity and it is difficult to detect the temperature rise of the bearing. In such a case, the temperature detection device of this embodiment functions effectively.

図3には、エンコーダ9が取付けられた軸受5,8の詳細を示す。図の符号12は外輪、符号13は内輪、符号14は転動体、符号15は、転動体14を保持する保持器である。前述したように、主軸1を支持する両端の軸受5,8では、保持器14にエンコーダ9が取付けられ、その対向部分に、エンコーダ9の回転速度を検出する回転センサ10が設けられている。エンコーダ9は、例えば多極磁石エンコーダであり、例えば保持器14が所定角度回転する毎にパルスを発生するものである。このような多極磁石エンコーダとしては、例えば本出願人が先に提案した特開2008−26042号公報に詳細に記載されている。具体的には、例えば保持器14の軸方向端面に設けられたエンコーダ9の軸方向端面を所定角度毎にN極及びS極に交互に着磁し、これらの磁極が通過するときの電流の変化を回転センサ10で検出し、そのとき生じる正弦波形の電流値からパルスを生成出力する。   FIG. 3 shows details of the bearings 5 and 8 to which the encoder 9 is attached. In the figure, reference numeral 12 denotes an outer ring, reference numeral 13 denotes an inner ring, reference numeral 14 denotes a rolling element, and reference numeral 15 denotes a cage for holding the rolling element 14. As described above, in the bearings 5 and 8 at both ends that support the main shaft 1, the encoder 9 is attached to the retainer 14, and the rotation sensor 10 that detects the rotational speed of the encoder 9 is provided at the opposite portion. The encoder 9 is a multipolar magnet encoder, for example, and generates a pulse each time the retainer 14 rotates by a predetermined angle. Such a multipole magnet encoder is described in detail, for example, in Japanese Patent Application Laid-Open No. 2008-26042 previously proposed by the present applicant. Specifically, for example, the axial end surface of the encoder 9 provided on the axial end surface of the cage 14 is magnetized alternately at N and S poles at predetermined angles, and the current when these magnetic poles pass is determined. The change is detected by the rotation sensor 10, and a pulse is generated and output from the current value of the sine waveform generated at that time.

例えば、軸受が正常に運転しているときの転動体と軌道輪の接触角の角度を図3とすると、例えば内輪温度が外輪温度より高くなったときのように軸受に内外輪温度差が生じたときの転動体と軌道輪の接触角の角度を図4に示す。この場合、外輪に比べて内輪の温度が高くなるため、内外輪に熱膨張差が発生し、軸受内部ラジアル隙間が減少する。軸受内部ラジアル隙間が減少すると、図4に示すように接触角の角度が小さくなる。接触角が小さくなると、正常時に比べて転動体の自転速度が小さくなり、保持器の公転速度も小さくなる。なお、このとき保持器の公転速度のみを検出すると、主軸の回転速度が変化することに伴って公転速度が変化することも考えられるため、主軸の回転速度に対する保持器の公転速度の比(以下、公転速度比とも記す)で評価することが望ましい。   For example, assuming that the contact angle between the rolling element and the bearing ring during normal operation of the bearing is FIG. 3, for example, the inner and outer ring temperature difference occurs in the bearing as when the inner ring temperature becomes higher than the outer ring temperature. The contact angle between the rolling element and the race is shown in FIG. In this case, since the temperature of the inner ring is higher than that of the outer ring, a difference in thermal expansion occurs between the inner and outer rings, and the bearing internal radial gap is reduced. When the bearing internal radial clearance is reduced, the contact angle is reduced as shown in FIG. When the contact angle becomes smaller, the rotation speed of the rolling element becomes smaller than that in the normal state, and the revolution speed of the cage also becomes smaller. In addition, if only the revolution speed of the cage is detected at this time, the revolution speed may change as the rotation speed of the main spindle changes. Therefore, the ratio of the revolution speed of the cage to the rotation speed of the main spindle (hereinafter referred to as “revolution speed”) It is desirable that the evaluation is also expressed as a revolution speed ratio).

例えば工作機械の運転時に、潤滑油の量が変化すると、軸受の温度も変化する。潤滑油の量が多いと、軸受内部で冷却効果が得られ、温度が下がる。逆に、潤滑油の量が少ないと、軸受内部の冷却効果が失われ、温度が上昇する。このとき、軸受内部の潤滑油での冷却効果となるため、内外輪の温度の影響は等価であるため、内外輪温度差は発生しにくい。そのため、異常の発生検出や早期予測には、軸受の特性を利用した方法が望ましい。   For example, when the amount of lubricating oil changes during operation of a machine tool, the temperature of the bearing also changes. If the amount of lubricating oil is large, a cooling effect is obtained inside the bearing, and the temperature decreases. Conversely, if the amount of lubricating oil is small, the cooling effect inside the bearing is lost and the temperature rises. At this time, since it becomes a cooling effect by the lubricating oil inside the bearing, the influence of the temperature of the inner and outer rings is equivalent, and therefore, the temperature difference between the inner and outer rings hardly occurs. For this reason, a method using the characteristics of the bearing is desirable for detecting the occurrence of abnormality and for early prediction.

軸受で焼付きが発生する場合、前述のように、潤滑油の不足によって、転動体と軌道輪溝との転がり接触面間に油膜が形成できず、金属接触が発生する。そのため、軸受の温度上昇が高くなるが、回転軸に同期して回転している内輪側の温度が外輪側の温度より高くなることは周知である。これは、静止輪である外輪側は熱容量のあるハウジングやその他の部材と接触しており、放熱し易いのに対し、回転輪である内輪側は熱容量の小さい主軸と同期回転しており、放熱しにくいためである。   When seizure occurs in the bearing, as described above, due to the lack of lubricating oil, an oil film cannot be formed between the rolling contact surfaces of the rolling elements and the raceway grooves, and metal contact occurs. For this reason, the temperature rise of the bearing is increased, but it is well known that the temperature on the inner ring side rotating in synchronization with the rotating shaft is higher than the temperature on the outer ring side. This is because the outer ring, which is a stationary wheel, is in contact with a heat-capacity housing and other members, and it is easy to dissipate heat, whereas the inner ring, which is a rotating wheel, rotates synchronously with the main shaft having a small heat capacity. This is because it is difficult to do.

内輪温度が外輪温度より高いという内外輪の温度差が発生すると、前述したように、熱膨張量が外輪に比べて内輪の方が大きくなるため、軸受内部のラジアル隙間が減少する。ラジアル隙間が減少することで、転動体と軌道輪溝が接触する接触角が小さくなるため、転動体の自転速度が小さくなり、保持器の公転速度が小さくなるという特性を持っている。この特性を利用することで、内外輪温度差−ラジアル隙間変化量−接触角変化−公転速度比の換算データを予め取得しておくことによって、公転速度比から内外輪の温度差を検出することが可能になる。また、内外輪温度差に閾値を設けることによって、焼付きが発生する前に機械を停止させて焼付きを未然に防いだり、焼付き発生時に直ちに機械を停止させて、二次被害を防いだりすることが可能となる。具体的には、工作機械の制御装置側に内外輪温度差情報を伝え、焼付き発生を予兆する閾値、又は焼付き発生を検出する閾値を予め設定しておき、その閾値を超えたら回転速度を減少したり回転を停止したりすればよい。
軸受の内部ラジアル隙間と接触角の関係は、下記1式で表れる。この1式中の変化した内部ラジアル隙間Δrから接触角αの変化値を算出できる。
When a temperature difference between the inner and outer rings occurs in which the inner ring temperature is higher than the outer ring temperature, as described above, the amount of thermal expansion in the inner ring is larger than that in the outer ring, so that the radial clearance inside the bearing is reduced. By reducing the radial gap, the contact angle between the rolling element and the raceway groove is reduced, so that the rotating speed of the rolling element is reduced and the revolution speed of the cage is reduced. By using this characteristic, it is possible to detect the temperature difference between the inner and outer rings from the revolution speed ratio by acquiring conversion data of the inner and outer ring temperature difference, radial gap change amount, contact angle change, revolution speed ratio in advance. Is possible. In addition, by setting a threshold for the temperature difference between the inner and outer rings, the machine can be stopped before seizure occurs to prevent seizure, or the machine can be stopped immediately when seizure occurs to prevent secondary damage. It becomes possible to do. Specifically, the temperature difference information between the inner and outer rings is transmitted to the control device side of the machine tool, and a threshold value for predicting seizure occurrence or a threshold value for detecting seizure occurrence is set in advance. Can be reduced or rotation can be stopped.
The relationship between the internal radial clearance of the bearing and the contact angle is expressed by the following formula (1). The change value of the contact angle α can be calculated from the changed internal radial gap Δr in the one expression.

Figure 2010149244
Figure 2010149244

図5には、公転速度比と内外輪温度差の関係を示す。同図より明らかなように、内外輪の温度差が大きくなると公転速度比が小さくなっていることが分かる。従って、予め図5のような内外輪温度差と公転速度比の関係を事前にデータ取得しておくことによって、公転速度比から内外輪の温度差を検出することが可能となる。
また、公転速度比を測定することによって、軸受に作用するアキシャル荷重の検出が可能となる。正常運転時であれば、内外輪の温度変化が小さいため、内外輪の熱膨張差によるラジアル隙間の変化は少ない。ここで、アキシャル荷重が発生した場合を考える。図6、図7に示すように、アキシャル荷重が発生すると、内輪と外輪にアキシャル方向の相対変位が発生する。このアキシャル変位によって、転動体と転動輪との接触角が変化する。この接触角の変化に伴い、転動体の自転速度が変化し、保持器の公転速度が変化する。
FIG. 5 shows the relationship between the revolution speed ratio and the inner / outer ring temperature difference. As can be seen from the figure, the revolution speed ratio decreases as the temperature difference between the inner and outer rings increases. Therefore, by previously acquiring the relationship between the inner and outer ring temperature difference and the revolution speed ratio as shown in FIG. 5, it is possible to detect the temperature difference between the inner and outer rings from the revolution speed ratio.
Moreover, the axial load acting on the bearing can be detected by measuring the revolution speed ratio. During normal operation, the change in the radial gap due to the difference in thermal expansion between the inner and outer rings is small because the temperature change of the inner and outer rings is small. Here, consider a case where an axial load is generated. As shown in FIGS. 6 and 7, when an axial load is generated, a relative displacement in the axial direction occurs between the inner ring and the outer ring. Due to this axial displacement, the contact angle between the rolling elements and the rolling wheels changes. With this change in the contact angle, the rotation speed of the rolling element changes, and the revolution speed of the cage changes.

工作機械において、切削時の荷重を検出することは、以下の理由から有益であると考えられる。つまり、切削荷重が判明すると、適正な加工条件を選定することが可能となる。例えば、切粉排出量が同じで、切削荷重が小さいという加工条件を見出すことが可能になれば、それは効率的な加工条件となり、省エネや工具寿命の延長につながる。また、同じ加工条件のときに、切削荷重が増加した場合、工具の切削性、所謂切れ味の低下や摩耗などが発生したことが推定され、工具交換時期や工具寿命の判断が可能になる。加えて、検出した切削荷重の履歴を保存することによって、軸受が損傷した際に、損傷要因を推定することが可能になる。履歴の検索から得られる損傷要因の例としては、無理な荷重条件での切削や、工具先端がワークなどに衝突した衝撃荷重などである。   In a machine tool, detecting a load at the time of cutting is considered beneficial for the following reasons. That is, when the cutting load is determined, it is possible to select appropriate machining conditions. For example, if it becomes possible to find a machining condition in which the amount of chips discharged is the same and the cutting load is small, it becomes an efficient machining condition, which leads to energy saving and extension of the tool life. Further, when the cutting load increases under the same processing conditions, it is estimated that the cutting performance of the tool, that is, the so-called sharpness reduction or wear has occurred, and it is possible to judge the tool replacement time and the tool life. In addition, by storing the history of the detected cutting load, it is possible to estimate the damage factor when the bearing is damaged. Examples of the damage factor obtained from the history search include cutting under an unreasonable load condition and impact load in which the tool tip collides with a workpiece.

工作機械の切削荷重を検出する方法として、軸受異常が発生した際に用いた方法と同様に、公転速度比の変化を読み取る。軸受異常が発生した際は、内外輪温度差が発生するために、内外輪の熱膨張差によって軸受内部ラジアル隙間が減少し、接触角が小さくなるため、公転速度比が小さくなると説明した。ここでは、切削荷重を検出する方法について以下に示す。   As a method for detecting the cutting load of the machine tool, the change in the revolution speed ratio is read in the same manner as the method used when a bearing abnormality occurs. It has been explained that when a bearing abnormality occurs, the inner and outer ring temperature difference is generated, and therefore, the bearing internal radial gap is reduced due to the difference in thermal expansion between the inner and outer rings, and the contact angle is reduced, so that the revolution speed ratio is reduced. Here, a method for detecting a cutting load will be described below.

正常運転時であれば、内外輪の温度変化は小さいため、内外輪の熱膨張差によるラジアル隙間の変動は少ない。即ち、ラジアル隙間の減少による接触角の変化はなくなるため、接触角が変化する要因としては、アキシャル荷重が変化したときのみになる。アキシャル荷重が作用すると、転動輪と軌道輪溝の接触角は大きくなる方向に作用し、公転速度比が大きくなる。予めアキシャル荷重と接触角の関係を取得しておけば、公転速度比を検出することでアキシャル荷重の検出が可能になる。図8に、公転速度比とアキシャル荷重の関係の一例を示す。   Since the temperature change of the inner and outer rings is small during normal operation, the variation in the radial gap due to the difference in thermal expansion between the inner and outer rings is small. That is, since the change in the contact angle due to the reduction in the radial gap is eliminated, the only factor that changes the contact angle is when the axial load changes. When an axial load is applied, the contact angle between the rolling wheel and the raceway groove is increased, and the revolution speed ratio is increased. If the relationship between the axial load and the contact angle is acquired in advance, the axial load can be detected by detecting the revolution speed ratio. FIG. 8 shows an example of the relationship between the revolution speed ratio and the axial load.

但し、焼付き異常発生時は正確な荷重検出ができないが、異常時のみの問題であるから、通常時は活用可能である。逆に荷重による公転変化が存在する場合でも、焼付きなどの異常検出は可能である。これは、内外輪温度差とアキシャル荷重とでは、公転速度比の変化しろが異なるためである。図9には、内外輪温度差とアキシャル荷重による公転速度比の変化しろを示す。この図から明らかなように、内外輪温度差による公転速度比の変化しろの方が、アキシャル荷重による公転速度比の変化しろに比べると約5〜6倍大きい。この特性を利用し、例えば図9に示す公転速度比が温度以上の閾値以上に到達したら内外輪温度差が大きくなり、軸受異常が発生したとして、機械を停止させるなどすればよい。   However, accurate load detection cannot be performed when seizure abnormality occurs, but it can be used in normal times because it is a problem only at the time of abnormality. Conversely, even when there is a revolution change due to a load, an abnormality such as seizure can be detected. This is because the margin of change in the revolution speed ratio differs between the inner and outer ring temperature differences and the axial load. FIG. 9 shows the margin of change in the revolution speed ratio due to the temperature difference between the inner and outer rings and the axial load. As is clear from this figure, the amount of change in the revolution speed ratio due to the temperature difference between the inner and outer rings is about 5 to 6 times greater than the amount of change in the revolution speed ratio due to the axial load. Using this characteristic, for example, when the revolution speed ratio shown in FIG. 9 reaches a threshold value equal to or higher than the temperature, the temperature difference between the inner and outer rings becomes large, and it is sufficient to stop the machine if a bearing abnormality occurs.

このように本実施形態の工作機械の主軸装置によれば、軸受5〜8の転動体14を保持する保持器15にエンコーダ9を設け、非回転部材には、エンコーダ9の回転速度を検出する回転センサ10を設け、回転センサ10で検出されたエンコーダ9の回転速度から保持器14の公転速度比(公転速度の変化)を検出し、その公転速度比(公転速度の変化)から軸受内外輪の温度差を算出する構成としたため、軸受内部の異常を予見したり、発生した異常を速やかに検出したりすることができる。   As described above, according to the spindle device of the machine tool of the present embodiment, the encoder 9 is provided in the retainer 15 that holds the rolling elements 14 of the bearings 5 to 8, and the rotational speed of the encoder 9 is detected in the non-rotating member. A rotation sensor 10 is provided, the revolution speed ratio (change in revolution speed) of the cage 14 is detected from the rotation speed of the encoder 9 detected by the rotation sensor 10, and the bearing inner and outer rings are determined from the revolution speed ratio (change in revolution speed). Therefore, it is possible to foresee an abnormality inside the bearing and to quickly detect an abnormality that has occurred.

また、軸受5〜8の転動体14を保持する保持器15にエンコーダ9を設け、非回転部材には、エンコーダ9の回転速度を検出する回転センサ10を設け、回転センサ10で検出されたエンコーダ9の回転速度から保持器14の公転速度比(公転速度の変化)を検出し、その公転速度比(公転速度の変化)から主軸1の荷重を算出する構成としたため、適正な加工条件の設定や工具摩耗の適正な判断を行うことができる。
また、公転速度の変化を、主軸1の回転速度に対する保持器15の公転速度の比としたことにより、軸受内外輪の温度差や主軸の荷重を適正に検出することができる。
Further, the encoder 9 is provided in the cage 15 that holds the rolling elements 14 of the bearings 5 to 8, and the rotation sensor 10 that detects the rotation speed of the encoder 9 is provided in the non-rotating member, and the encoder detected by the rotation sensor 10. Since the revolution speed ratio (change in revolution speed) of the cage 14 is detected from the rotational speed 9 and the load on the spindle 1 is calculated from the revolution speed ratio (change in revolution speed), appropriate machining conditions are set. And proper tool wear can be determined.
Further, by making the change in the revolution speed the ratio of the revolution speed of the cage 15 to the rotation speed of the main shaft 1, the temperature difference between the bearing inner and outer rings and the load on the main shaft can be properly detected.

本発明の工作機械の主軸装置を用いたユニットの一実施形態を示す全体構成図である。It is a whole lineblock diagram showing one embodiment of a unit using a spindle device of a machine tool of the present invention. 本発明の工作機械の主軸装置を用いたユニットの異なる実施形態を示す全体構成図である。It is a whole block diagram which shows different embodiment of the unit using the spindle apparatus of the machine tool of this invention. 図1、図2の軸受の詳細図である。FIG. 3 is a detailed view of the bearing of FIGS. 1 and 2. 図1、図2の軸受の詳細図である。FIG. 3 is a detailed view of the bearing of FIGS. 1 and 2. 保持器の公転速度比と軸受内外輪の温度差の関係を示す説明図である。It is explanatory drawing which shows the relationship between the revolution speed ratio of a holder | retainer, and the temperature difference of a bearing inner / outer ring. 図1、図2の軸受の詳細図である。FIG. 3 is a detailed view of the bearing of FIGS. 1 and 2. 図1、図2の軸受の詳細図である。FIG. 3 is a detailed view of the bearing of FIGS. 1 and 2. 保持器の公転速度比と荷重の関係を示す説明図である。It is explanatory drawing which shows the relationship between the revolution speed ratio of a holder | retainer, and a load. 保持器の公転速度比と荷重の関係を示す説明図である。It is explanatory drawing which shows the relationship between the revolution speed ratio of a holder | retainer, and a load.

符号の説明Explanation of symbols

1は主軸、2はハウジング、5〜8は軸受、9はエンコーダ、10は回転センサ、11は検出装置、12は外輪、13は内輪、14は転動体、15は保持器   1 is a main shaft, 2 is a housing, 5 to 8 are bearings, 9 is an encoder, 10 is a rotation sensor, 11 is a detection device, 12 is an outer ring, 13 is an inner ring, 14 is a rolling element, and 15 is a cage.

Claims (5)

二個以上の複数の軸受を備えた工作機械の主軸装置であって、軸受の転動体を保持する保持器に設けられたエンコーダと、非回転部材に取付けられ且つ前記エンコーダの回転速度を検出する回転センサと、前記回転センサで検出されたエンコーダの回転速度から前記保持器の公転速度の変化を検出し、その公転速度の変化から軸受内外輪の温度差を算出する検出装置を備えたことを特徴とする工作機械の主軸装置。   A spindle device of a machine tool including two or more bearings, an encoder provided in a cage that holds rolling elements of the bearing, and a rotational speed of the encoder that is attached to a non-rotating member A rotation sensor and a detection device that detects a change in revolution speed of the cage from the rotation speed of the encoder detected by the rotation sensor and calculates a temperature difference between the inner and outer rings of the bearing from the change in revolution speed. A machine tool spindle device. 二個以上の複数の軸受を備えた工作機械の主軸装置であって、軸受の転動体を保持する保持器に設けられたエンコーダと、非回転部材に取付けられ且つ前記エンコーダの回転速度を検出する回転センサと、前記回転センサで検出されたエンコーダの回転速度から前記保持器の公転速度の変化を検出し、その公転速度の変化から主軸の荷重を算出する検出装置を備えたことを特徴とする工作機械の主軸装置。   A spindle device of a machine tool including two or more bearings, an encoder provided in a cage that holds rolling elements of the bearing, and a rotational speed of the encoder that is attached to a non-rotating member A rotation sensor and a detection device that detects a change in the revolution speed of the cage from the rotation speed of the encoder detected by the rotation sensor and calculates a load on the spindle from the change in the revolution speed. Machine tool spindle device. 前記公転速度の変化を、主軸の回転速度に対する保持器の公転速度の比としたことを特徴とする請求項1又は2に記載の工作機械の主軸装置。   3. The spindle device for a machine tool according to claim 1, wherein the change in the revolution speed is a ratio of the revolution speed of the cage to the rotation speed of the spindle. 前記検出装置は、主軸内部の軸受異常を検出するものであることを特徴とする請求項1乃至3の何れか一項に記載の工作機械の主軸装置。   The spindle device for a machine tool according to any one of claims 1 to 3, wherein the detection device detects a bearing abnormality inside the spindle. 高速回転する工作機械の主軸に用いたことを特徴とする請求項1乃至4の何れか一項に記載の工作機械の主軸装置。   The spindle device for a machine tool according to any one of claims 1 to 4, wherein the spindle device is used for a spindle of a machine tool that rotates at a high speed.
JP2008331087A 2008-12-25 2008-12-25 Spindle device of machine tool and machine tool Active JP5359262B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008331087A JP5359262B2 (en) 2008-12-25 2008-12-25 Spindle device of machine tool and machine tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008331087A JP5359262B2 (en) 2008-12-25 2008-12-25 Spindle device of machine tool and machine tool

Publications (2)

Publication Number Publication Date
JP2010149244A true JP2010149244A (en) 2010-07-08
JP5359262B2 JP5359262B2 (en) 2013-12-04

Family

ID=42568914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008331087A Active JP5359262B2 (en) 2008-12-25 2008-12-25 Spindle device of machine tool and machine tool

Country Status (1)

Country Link
JP (1) JP5359262B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3275593A1 (en) 2016-07-25 2018-01-31 DMG Mori Co., Ltd. Machine tool and detection method
CN107716953A (en) * 2017-11-20 2018-02-23 广东工业大学 A kind of high-speed motorized spindles of embedded cooling air unit
JP2020037963A (en) * 2018-09-03 2020-03-12 Ntn株式会社 Bearing device
WO2021009973A1 (en) * 2019-07-12 2021-01-21 Ntn株式会社 Data collection device
US11592499B2 (en) 2019-12-10 2023-02-28 Barnes Group Inc. Wireless sensor with beacon technology

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005172794A (en) * 2003-11-19 2005-06-30 Nsk Ltd Load-measuring apparatus for roller bearing unit
JP2008019933A (en) * 2006-07-12 2008-01-31 Nsk Ltd Bearing device with sensor and bearing system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005172794A (en) * 2003-11-19 2005-06-30 Nsk Ltd Load-measuring apparatus for roller bearing unit
JP2008019933A (en) * 2006-07-12 2008-01-31 Nsk Ltd Bearing device with sensor and bearing system

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3275593A1 (en) 2016-07-25 2018-01-31 DMG Mori Co., Ltd. Machine tool and detection method
US10439537B2 (en) 2016-07-25 2019-10-08 Dmg Mori Co., Ltd. Machine tool and detection method
CN107716953A (en) * 2017-11-20 2018-02-23 广东工业大学 A kind of high-speed motorized spindles of embedded cooling air unit
CN107716953B (en) * 2017-11-20 2023-11-17 广东工业大学 Super-high-speed electric spindle with embedded cold air device
JP2020037963A (en) * 2018-09-03 2020-03-12 Ntn株式会社 Bearing device
WO2020050129A1 (en) * 2018-09-03 2020-03-12 Ntn株式会社 Bearing device
TWI815960B (en) * 2018-09-03 2023-09-21 日商Ntn股份有限公司 Bearing apparatus
WO2021009973A1 (en) * 2019-07-12 2021-01-21 Ntn株式会社 Data collection device
CN114127530A (en) * 2019-07-12 2022-03-01 Ntn株式会社 Data collection device
US11592499B2 (en) 2019-12-10 2023-02-28 Barnes Group Inc. Wireless sensor with beacon technology
US11899081B2 (en) 2019-12-10 2024-02-13 Barnes Group Inc. Wireless sensor with beacon technology

Also Published As

Publication number Publication date
JP5359262B2 (en) 2013-12-04

Similar Documents

Publication Publication Date Title
EP2918845B1 (en) Rotary machine and method for manufacturing a rotary machine
JP5359262B2 (en) Spindle device of machine tool and machine tool
JP5794358B2 (en) Bearing device and spindle device of machine tool
JP2010162634A (en) Spindle device
JP4993492B2 (en) Bearing device
JP2019138464A (en) Bearing device and spindle device
JP5640635B2 (en) Bearing device, spindle device of machine tool, and machine tool
JP2009061571A (en) Spindle device for machine tool spindle
JP2014232109A (en) Main spindle device of machine tool having bearing device with load sensor
JP5560892B2 (en) Machine tool spindle equipment
JP5601091B2 (en) Spindle device for machine tool
JP5644358B2 (en) Bearing device with load sensor, spindle device of machine tool, and machine tool
CN112639311B (en) Bearing device
JP6637844B2 (en) Method for determining warm-up operation time before bearing diagnosis in machine tool, machine tool
WO2019159838A1 (en) Bearing device and spindle device
WO2022059573A1 (en) Bearing device
US20220252482A1 (en) Data collection apparatus
JP2005226675A (en) Sealed roller bearing
JP5862411B2 (en) Magnetic bearing spindle device
CN112996618B (en) Spindle device with built-in motor
JP7067423B2 (en) Motor built-in spindle device
JP5487450B2 (en) Processing method of encoder in bearing device
JP2020070862A (en) Bearing device
JP2013230550A (en) Main spindle device
JP5589540B2 (en) Machine tool spindle equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130402

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130819

R150 Certificate of patent or registration of utility model

Ref document number: 5359262

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150