JP7509835B2 - Battery pack - Google Patents

Battery pack Download PDF

Info

Publication number
JP7509835B2
JP7509835B2 JP2022142590A JP2022142590A JP7509835B2 JP 7509835 B2 JP7509835 B2 JP 7509835B2 JP 2022142590 A JP2022142590 A JP 2022142590A JP 2022142590 A JP2022142590 A JP 2022142590A JP 7509835 B2 JP7509835 B2 JP 7509835B2
Authority
JP
Japan
Prior art keywords
battery
battery group
narrow surface
group
heat transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022142590A
Other languages
Japanese (ja)
Other versions
JP2022168098A (en
Inventor
将成 織田
宏文 高橋
茂樹 牧野
航 佐藤
独志 西森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vehicle Energy Japan Inc
Original Assignee
Vehicle Energy Japan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vehicle Energy Japan Inc filed Critical Vehicle Energy Japan Inc
Priority to JP2022142590A priority Critical patent/JP7509835B2/en
Publication of JP2022168098A publication Critical patent/JP2022168098A/en
Priority to JP2024100003A priority patent/JP2024111222A/en
Application granted granted Critical
Publication of JP7509835B2 publication Critical patent/JP7509835B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)

Description

本発明は、電池パックに関する。 The present invention relates to a battery pack.

近年、環境規制を背景に車載用二次電池への需要が高まっている。この中で、リチウムイオン二次電池は一般に、鉛電池やニッケル水素電池などに比べて放電電位が高いため、小型・高エネルギー密度化が可能であるため有望視されている。本格適用に向けてリチウムイオン二次電池に求められる点には例えば、更なる高エネルギー密度化、高出力密度化、長寿命化等があげられる。電池を高出力化するためには高電位化とともに、例えば、大電流を電池から入・出力させる事が有効である。しかし大電流を電池から入・出力させる場合、電池の内部抵抗に由来する発熱が電池内部で生じる。発生した熱を十分に電池から取り除く事ができなかった場合、電池温度が上昇する。リチウムイオン電池の電池容量や内部抵抗等の電池特性は、電池温度によって劣化傾向が異なり、特に電池温度が高ければ高いほど電池特性が低下する事が多い。そこで、電池の放熱性能を向上させる技術開発が必要となっている。 In recent years, the demand for secondary batteries for vehicles has been increasing due to environmental regulations. Among them, lithium-ion secondary batteries are generally considered promising because they have a higher discharge potential than lead batteries and nickel-metal hydride batteries, and therefore can be made small and have a high energy density. For full-scale application, lithium-ion secondary batteries are required to have higher energy density, higher output density, and longer life. In order to increase the output of a battery, it is effective to input and output a large current from the battery, as well as to increase the potential. However, when a large current is input and output from the battery, heat is generated inside the battery due to the internal resistance of the battery. If the generated heat cannot be sufficiently removed from the battery, the battery temperature will rise. The battery characteristics of lithium-ion batteries, such as the battery capacity and internal resistance, tend to deteriorate depending on the battery temperature, and in particular, the higher the battery temperature, the more the battery characteristics tend to deteriorate. Therefore, technology development to improve the heat dissipation performance of batteries is required.

複数のリチウムイオン単電池(以下、単電池と呼ぶ)が組み合わされ、電池群として用いられる場合(例えば、電池モジュール、電池パックとして使用する場合)、電池群中の単電池間の温度差を小さくする事が望まれる。これは、単電池間での温度差が大きい場合、単電池間で劣化の差が生じやすいためである。電池群の特性は、電池群に含まれる単電
池の中で最も劣化した電池の特性に律速される傾向があるため、特定の電池が劣化する構造をさけた電池群の設計が必要である。
When multiple lithium-ion cells (hereinafter referred to as cells) are combined and used as a battery group (for example, when used as a battery module or battery pack), it is desirable to reduce the temperature difference between the cells in the battery group. This is because if the temperature difference between the cells is large, differences in deterioration are likely to occur between the cells. Since the characteristics of the battery group tend to be determined by the characteristics of the most deteriorated battery among the cells in the battery group, it is necessary to design the battery group in a way that avoids a structure that deteriorates a specific battery.

そこで、複数の単電池が組み合わされて形成された電池群において、単電池間の温度差を小さくする技術が開発されている。具体的には特許文献1には単電池を収容した電槽が幅の狭い短側面と幅の広い長側面とからなる直方体に形成されてなり、この電槽の前記短側面間で隣接させて複数の単電池を連結して所要電力容量の集合電池に形成した蓄電池が記載されている。 Therefore, technology has been developed to reduce the temperature difference between cells in a battery group formed by combining multiple cells. Specifically, Patent Document 1 describes a storage battery in which a battery case containing the cells is formed into a rectangular parallelepiped with narrow short sides and wide long sides, and multiple cells are connected adjacent to each other between the short sides of the battery case to form an assembled battery with the required power capacity.

一方で大電流を電池から入・出力させる場合、電池に接続するケーブルの断面積も大きくする必要がある。ケーブルに用いられる部材としては銅に代表される金属が用いられているが、金属は一般に熱伝導率が高いために放熱性能が高い。 On the other hand, when large currents are input and output from a battery, the cross-sectional area of the cable connected to the battery must also be large. Metals such as copper are used as materials for the cables, and metals generally have high thermal conductivity and therefore high heat dissipation performance.

特開2000-164186号公報JP 2000-164186 A

特許文献1に記載の技術においては、それぞれの単電池の電槽の長側面に複数のリブが形成されている。そして、このリブ間に空気等を強制流通させることにより、単電池の冷却が行われている。このような構成では、冷却効率が低下した場合(例えば強制流通させる空気の流量が小さい場合や、入出力電流が大きく単電池の発熱量が大きい場合)、構成される電池群内の電池温度に分布が生じ、特に電池群の長側面の中心付近に配置された単電池の電池温度が高く、劣化が進む恐れがある。本発明は、前記課題に鑑みてなされたものであり、電池群間の温度差が小さい電池パックを提供する事を課題とする。 In the technology described in Patent Document 1, multiple ribs are formed on the long side of the battery case of each unit cell. The unit cells are cooled by forcing air or the like to circulate between these ribs. In such a configuration, if the cooling efficiency decreases (for example, if the flow rate of the forced air is small, or if the input/output current is large and the unit cells generate a lot of heat), a distribution of battery temperatures will occur within the battery group that is configured, and the battery temperature of the unit cells located near the center of the long side of the battery group will be particularly high, and deterioration may progress. The present invention was made in consideration of the above problems, and aims to provide a battery pack with a small temperature difference between battery groups.

本発明に記載の電池パックは、電池缶側面と電池缶側面とつながる電池缶底面を有する蓄電池を複数個電池缶側面を対向させて積層させた第一の電池群と、電池缶側面と電池缶側面とつながる電池缶底面を有する蓄電池を複数個電池缶側面を対向させて積層させた第二の電池群と、第一の電池群及び第二の電池群を収納する筐体を備え、第一の電池群と第二の電池群とは互いに対向面を同士が直接または間接的に熱的に接続されることを特徴とする。 The battery pack described in the present invention comprises a first battery group in which a plurality of storage batteries, each having a battery can side surface and a battery can bottom surface connected to the battery can side surface, are stacked with the battery can side surfaces facing each other, a second battery group in which a plurality of storage batteries, each having a battery can side surface and a battery can bottom surface connected to the battery can side surface, are stacked with the battery can side surfaces facing each other, and a housing that houses the first battery group and the second battery group, and the first battery group and the second battery group are characterized in that the opposing surfaces of the first battery group and the second battery group are directly or indirectly thermally connected to each other.

本発明によれば、電池群間の温度差を小さくした電池パックを提供することができる。 The present invention provides a battery pack that reduces the temperature difference between battery groups.

実施例1における電池群の具体的な構成の一例を説明するための図。FIG. 2 is a diagram for explaining an example of a specific configuration of a battery group in the first embodiment. 実施例2における電池群の具体的な構成の一例を説明するための図。FIG. 11 is a diagram for explaining an example of a specific configuration of a battery group in the second embodiment. 実施例5における電池群の具体的な構成の一例を説明するための図。FIG. 13 is a diagram for explaining an example of a specific configuration of a battery group in a fifth embodiment. 実施例6における電池群の具体的な構成の一例を説明するための図。FIG. 23 is a diagram for explaining an example of a specific configuration of a battery group in a sixth embodiment. 実施例7における電池群の具体的な構成の一例を説明するための図。FIG. 23 is a diagram for explaining an example of a specific configuration of a battery group in Example 7. 比較例1における電池群の具体的な構成の一例を説明するための図。FIG. 4 is a diagram for explaining an example of a specific configuration of a battery group in Comparative Example 1. 比較例2における電池群の具体的な構成の一例を説明するための図。FIG. 11 is a diagram for explaining an example of a specific configuration of a battery group in Comparative Example 2. 実施例1,2の構成と従来構成との各単電池温度の環境温度からの温度上昇を、電池群の中での最低温度からの比率で示した温度上昇比率図。FIG. 11 is a temperature rise ratio diagram showing the temperature rise of each single cell from the environmental temperature in the configurations of Examples 1 and 2 and the conventional configuration, expressed as a ratio from the lowest temperature in the battery group. 実施例3,4の構成と従来構成との各単電池温度の環境温度からの温度上昇を、電池群の中での最低温度からの比率で示した温度上昇比率図。FIG. 11 is a temperature rise ratio diagram showing the temperature rise of each cell from the environmental temperature in the configurations of Examples 3 and 4 and a conventional configuration, expressed as a ratio from the lowest temperature in the battery group. 実施例5,6の構成と従来構成との各単電池温度の環境温度からの温度上昇を、電池群の中での最低温度からの比率で示した温度上昇比率図。FIG. 13 is a temperature rise ratio diagram showing the temperature rise of each single cell from the environmental temperature in the configurations of Examples 5 and 6 and the conventional configuration, expressed as a ratio from the lowest temperature in the battery group. 実施例7の構成と従来構成との各単電池温度の環境温度からの温度上昇を、電池群の中での最低温度からの比率で示した温度上昇比率図。FIG. 13 is a temperature rise ratio diagram showing the temperature rise of each single cell from the environmental temperature in the configuration of Example 7 and the conventional configuration, expressed as a ratio from the lowest temperature in the battery group. 図2の電池パックを上面から見た図。FIG. 3 is a top view of the battery pack of FIG. 2 . 図12の一つ目の変形例。The first modified example of FIG. 図12の二つ目の変形例。A second modification of FIG. 本発明の二次電池の斜視図。FIG. 1 is a perspective view of a secondary battery of the present invention.

本発明を実施するための形態について説明する。ただし、本実施形態は以下の内容に何ら制限されるものではなく、本発明の要旨を逸脱しない範囲内で任意に変更して実施可能である。 The following describes the form for implementing the present invention. However, this embodiment is not limited to the following content in any way, and can be modified as desired without departing from the gist of the present invention.

本実施形態について詳細に説明する。本実施形態における二次電池には、リチウムイオン二次電池を用いたが、本構成を他の種類の蓄電池に対しても適用できる。またリチウムイオン二次電池の構成部材はどのようなものであっても効果が得られる。つまり本発明では正極としてAl集電箔と層状構造を持つ正極材などからなる電極と、負極としてCu集電箔と炭素材料からなる電極を用いているが、その他の構成でも良い。例えば実施例3,4にも記載のとおり、負極にAl箔を用いた場合においても放熱性を向上可能である。冷却環境は例示でありその他の冷媒を用いた場合にも適用できる。またリチウムイオン電池の形状として本実施例では角形電池を用いたが、その他の形状として知られる例えばラミネート型、円筒型等電池であっても効果が得られる。 This embodiment will be described in detail. In this embodiment, a lithium ion secondary battery is used as the secondary battery, but this configuration can be applied to other types of storage batteries. In addition, the effect can be obtained regardless of the constituent materials of the lithium ion secondary battery. In other words, in this invention, an electrode made of Al current collecting foil and a positive electrode material having a layered structure is used as the positive electrode, and an electrode made of Cu current collecting foil and a carbon material is used as the negative electrode, but other configurations are also possible. For example, as described in Examples 3 and 4, it is possible to improve heat dissipation even when Al foil is used as the negative electrode. The cooling environment is an example and can be applied to cases where other refrigerants are used. In addition, in this embodiment, a rectangular battery is used as the shape of the lithium ion battery, but the effect can be obtained even with batteries of other shapes known, such as laminated type and cylindrical type.

単電池を電池群とする際には単電池同士を直列あるいは並列接続する。この際、安全性を担保するため、単電池の周囲に対し、例えば実施例7に示すように、電池間に絶縁を確保できる部材を導入してもよい。前記部材の形状は自由であり、素材も自由に選択することができるが、好ましくは熱伝達部材が含まれると良い。単電池同士を直列あるいは並列接続する場合、用いる配線は特に限定されないが、例えばバスバーが挙げられる。直列あるいは並列接続の形式がどの様であっても、本発明にかかる電池配置および外部端子の構成を用いれば効果が現れる。例えば、2並列にした電池群を6直列にしたような電池群であっても本発明における効果が得られる。また電池群は、単電池同士を電気的に直列あるいは並列接続することに加え、固定用の治具を用いて単電池同士を物理的に拘束することが好ましい。ただし拘束の方法には本発明は限定されない。例えば、二つの電池群を固定用の治具一セットを用いて固縛した場合でも、固縛用の治具2セットを用いて固縛した場合でも効果が表れた。 When the cells are connected to form a battery group, the cells are connected in series or in parallel. In this case, in order to ensure safety, a member that can ensure insulation between the cells may be introduced around the cells, as shown in Example 7, for example. The shape of the member is free, and the material can be freely selected, but it is preferable that a heat transfer member is included. When the cells are connected in series or in parallel, the wiring to be used is not particularly limited, but for example, a bus bar can be used. Regardless of the type of series or parallel connection, the effect can be obtained by using the battery arrangement and external terminal configuration of the present invention. For example, the effect of the present invention can be obtained even with a battery group in which two parallel battery groups are connected in series to six battery groups. In addition to electrically connecting the cells in series or in parallel, it is preferable that the cells are physically restrained using a fixing jig. However, the present invention is not limited to the method of restraint. For example, the effect was obtained whether the two battery groups were fastened using one set of fixing jigs or two sets of fastening jigs.

本発明では上述する手段で接続されてなる第一の電池群と第二の電池群を基本構成として電池パックを構成するが、電池パックにはこれらに加えてさらに、電池の制御装置(例えば、Battery Management System;BMSなどがあげられる)や、安全機構(例えばヒューズなど)を具備しても良く、これらを前記電池群中の配線に接続しても本発明における効果が得られる。 In the present invention, the battery pack is basically composed of a first battery group and a second battery group connected by the means described above, but the battery pack may also be equipped with a battery control device (e.g., a Battery Management System; BMS) and a safety mechanism (e.g., a fuse), and the effects of the present invention can be obtained by connecting these to the wiring in the battery groups.

筐体底面と電池群同士の接触方法は特に限定されず、例えば接着剤などによる接着や、ボルトやナットを用いて固定器具を介しての接続でも本発明における効果はあらわれる。筐体の形状は本実施形態においては直方体を例示するが、その形状は特に限定されない。また本発明における効果は電池パックへの電流印加条件や冷却条件に限定されない。 The method of contacting the bottom surface of the housing with the battery groups is not particularly limited, and the effects of the present invention can be achieved by, for example, bonding with an adhesive or connecting via a fixing device using bolts and nuts. In this embodiment, the shape of the housing is exemplified as a rectangular parallelepiped, but the shape is not particularly limited. Furthermore, the effects of the present invention are not limited to the conditions for applying current to the battery pack or the cooling conditions.

以下、実施例及び比較例に基づいて、本発明をさらに詳細に説明する。図1は本発明の電池パック100の分解斜視図である。なお、以降の説明で上下左右前後という場合には
、各図面の左下に記載の方向に従うものとする。
The present invention will be described in more detail below with reference to examples and comparative examples. Fig. 1 is an exploded perspective view of a battery pack 100 of the present invention. In the following description, the terms up, down, left, right, front, and rear refer to the directions shown in the lower left corner of each drawing.

電池パック100は、第一の電池群10Aと第二の電池群10Bと、第一の電池群10A及び第二の電池群10Bを収納する筐体5(5a、5b)からなる。この筐体5は、ケース5aとケース開口を塞ぐ蓋5bからなる。なお、本実施形態では底面5bを別部材としたが、ケース5aに底面を設けて上面に開口を備える構造として、上面側に蓋5bを配置する構造としてもよい。 The battery pack 100 is composed of a first battery group 10A, a second battery group 10B, and a housing 5 (5a, 5b) that houses the first battery group 10A and the second battery group 10B. The housing 5 is composed of a case 5a and a lid 5b that covers the case opening. Note that, although the bottom surface 5b is a separate member in this embodiment, a structure in which the case 5a has a bottom surface and an opening on the top surface may also be used, with the lid 5b disposed on the top surface.

図15は本発明で使用される蓄電池1を示す図である。蓄電池1は一対の幅広面1a、一対の幅狭面1b、底面1c、蓋1dからなる。蓋1dには正極外部端子2a及び負極外部端子2bが設けられる。 Figure 15 is a diagram showing a storage battery 1 used in the present invention. The storage battery 1 consists of a pair of wide surfaces 1a, a pair of narrow surfaces 1b, a bottom surface 1c, and a lid 1d. The lid 1d is provided with a positive external terminal 2a and a negative external terminal 2b.

再び図1に戻って、第一の電池群10A、第二の電池群10Bをそれぞれ説明する。第一の電池群10Aは蓄電池1の幅広面1aを互いに対向させて複数個(本実施形態では6個)積層させたものである。第二の電池群10Bについても第一の電池群10A同様、蓄電池の幅広面を対向させて積層した構造となっている。 Returning to FIG. 1, the first battery group 10A and the second battery group 10B will be described. The first battery group 10A is made by stacking multiple storage batteries 1 (six in this embodiment) with their wide surfaces 1a facing each other. The second battery group 10B is also made by stacking the storage batteries with their wide surfaces facing each other, just like the first battery group 10A.

第一の電池群10Aを構成する蓄電池1は、バスバー2で互いに直列に接続されている。また、第二の電池群10Bも同様に、蓄電池1がバスバー2で互いに直列に接続されている。また、第一の電池群10Aの底面5b側の蓄電池1と、第二の電池群10Bno底面5b側の蓄電池1は互いにバスバー2で接続される構造となっている。そして二つの電池群10A、10Bはそれぞれ電池パック100の上面中央側に電池パック100に収納されるその他の電子部品(たとえばジャンクションボックス等)と接続される外部端子3が配置されるようになっている。本発明ではいくつかの置き方(図1から図7)で電池パック100の温度変化を測定した。 The storage batteries 1 constituting the first battery group 10A are connected in series to each other by a bus bar 2. Similarly, the storage batteries 1 of the second battery group 10B are connected in series to each other by a bus bar 2. The storage battery 1 on the bottom surface 5b side of the first battery group 10A and the storage battery 1 on the bottom surface 5b side of the second battery group 10B are connected to each other by a bus bar 2. The two battery groups 10A and 10B are each arranged so that an external terminal 3 connected to other electronic components (such as a junction box) housed in the battery pack 100 is arranged on the center side of the upper surface of the battery pack 100. In the present invention, the temperature change of the battery pack 100 was measured in several positions (Figs. 1 to 7).

(実施例1)
まず実施例1について説明する。第一の電池群と第二の電池群を図1のように平置きにした後に、熱的に直接接続させた後、正極外部端子及び負極外部端子の先に直径95mmの銅製のHVケーブルを取り付けて電流を印加した。この際の電池からの発熱量は平均して3Wであった。
Example 1
First, a description will be given of Example 1. The first and second battery groups were placed flat as shown in Fig. 1, and then directly thermally connected to each other. Then, a copper HV cable having a diameter of 95 mm was attached to the tip of the positive electrode external terminal and the negative electrode external terminal, and a current was applied. The amount of heat generated by the batteries at this time was 3 W on average.

また、冷却条件としては電池群下部にある筐体を介した底板にのみ5m/secの風速の空気をあてた。図1では筐体上面を示す。図8に本条件を電池パックに与えた後、ほぼ定常状態となった際の結果を示す。 As for cooling conditions, air was blown at a speed of 5 m/sec only onto the bottom plate of the casing located below the battery group. Figure 1 shows the top surface of the casing. Figure 8 shows the results when the battery pack reached a nearly steady state after these conditions were applied.

(実施例2)
続いて実施例2について説明する。実施例2は実施例1と比較して、第一の電池群と第二の電池群を平置きにした後に、平板状の熱伝導部材4を介している点が異なる。
Example 2
Next, a description will be given of Example 2. Example 2 differs from Example 1 in that after the first battery group and the second battery group are placed flat, a flat plate-shaped thermally conductive member 4 is interposed between them.

図2に本実施例の構造を示す。本実施例では上述の通り、第一の電池群10Aと第二の電池群10Bとの間に熱伝導部材4を配置した。この熱伝導部材の厚みは厚さ3mmと15mmの2つを用意し、それぞれを用いた場合の電池パック100の温度上昇を測定した。その結果は図8に示す。なお、冷却条件や電流印加条件は実施例1と同様である。 Figure 2 shows the structure of this embodiment. As described above, in this embodiment, a thermally conductive member 4 was placed between the first battery group 10A and the second battery group 10B. Two thicknesses of this thermally conductive member, 3 mm and 15 mm, were prepared, and the temperature rise of the battery pack 100 was measured when each was used. The results are shown in Figure 8. The cooling conditions and current application conditions were the same as in Example 1.

(実施例3)
続いて実施例3について説明する。実施例3は実施例1と比較して、負極集電箔の材料を銅箔からアルミ集電箔を用いた点が異なる。
Example 3
Next, a description will be given of Example 3. Example 3 is different from Example 1 in that the material of the negative electrode current collector foil is aluminum current collector foil instead of copper foil.

具体的な電池パック100の構造は図1と同様の配置関係なので説明を省略する。電池
パック100の温度上昇の結果は図9に記載する。なお、冷却条件や電流印加条件は実施例1と同様である。
The specific structure of the battery pack 100 has the same layout as in Fig. 1, so a description thereof will be omitted. The results of the temperature rise of the battery pack 100 are shown in Fig. 9. The cooling conditions and current application conditions are the same as in the first embodiment.

(実施例4)
続いて実施例4について説明する。実施例4は実施例2と比較して、負極集電箔の材料を銅箔からアルミ集電箔を用いた点が異なる。具体的な電池パック100の構造は図2と同様の配置関係なので説明を省略する。本実施形態では、熱伝導部材4には厚さ15mmの部材を用いている。電池パック100の温度上昇の結果は図9に記載する。なお、冷却条件や電流印加条件は実施例1と同様である。
Example 4
Next, Example 4 will be described. Example 4 is different from Example 2 in that the material of the negative electrode current collector foil is changed from copper foil to aluminum current collector foil. The specific structure of the battery pack 100 has the same layout relationship as in FIG. 2, so a description thereof will be omitted. In this embodiment, a member having a thickness of 15 mm is used for the thermal conductive member 4. The result of the temperature rise of the battery pack 100 is shown in FIG. 9. The cooling conditions and current application conditions are the same as those in Example 1.

(実施例5)
続いて実施例5について説明する。実施例5は実施例1と比較して、第一の電池群10Aと第二の電池群10Bを図3のように縦置きにして電池群を構成する蓄電池の幅狭側面を電池パック100の筐体5の底面に接触させた点が異なる。電池パック100の温度上昇の結果は図10に記載する。なお、冷却条件や電流印加条件は実施例1と同様である。
Example 5
Next, Example 5 will be described. Example 5 is different from Example 1 in that the first battery group 10A and the second battery group 10B are vertically placed as shown in FIG. 3, and the narrow side surfaces of the storage batteries constituting the battery groups are in contact with the bottom surface of the housing 5 of the battery pack 100. The results of the temperature rise of the battery pack 100 are shown in FIG. 10. The cooling conditions and current application conditions are the same as those of Example 1.

(実施例6)
続いて実施例6について説明する。実施例6は実施例2と比較して、第一の電池群と第二の電池群を図4のように縦置きにし、電池群を構成する蓄電池の幅狭側面を電池パック100の筐体5の底面に接触させた点が異なる。また、本実施例では熱伝導部材4の厚みは実施例2と同様、厚さ3mmのものと厚さ15mmのものを2つ用意し、それぞれの測定結果を図10に示す。なお、冷却条件や電流印加条件は実施例1と同様である。
Example 6
Next, Example 6 will be described. Example 6 differs from Example 2 in that the first battery group and the second battery group are vertically placed as shown in FIG. 4, and the narrow side surfaces of the storage batteries constituting the battery groups are in contact with the bottom surface of the housing 5 of the battery pack 100. In this example, the thickness of the thermal conductive member 4 is the same as in Example 2, and two thermal conductive members 4 having a thickness of 3 mm and a thickness of 15 mm are prepared, and the measurement results for each are shown in FIG. 10. The cooling conditions and current application conditions are the same as in Example 1.

(実施例7)
続いて実施例7について説明する。本実施例は実施例1から6とは異なり、蓄電池1をそれぞれ6直列にした第一の電池群と第二の電池群を互いに直列に接続し、蓄電池1の底面が電池パック100の筐体の底面5bと接触するように設けられた構造となっている。なお、本実施形態でも第一の電池群10Aと第二の電池群10Bの間には熱伝導部材4を配置する。熱伝導部材4に板厚15mmのアルミニウム平板を用いている。電池パック100の温度上昇の結果は図11に記載する。なお、冷却条件や電流印加条件は実施例1と同様である。
(Example 7)
Next, Example 7 will be described. This example is different from Examples 1 to 6 in that a first battery group and a second battery group, each of which has six storage batteries 1 in series, are connected in series with each other, and the bottom surface of the storage battery 1 is provided so as to contact the bottom surface 5b of the housing of the battery pack 100. In this embodiment, a thermally conductive member 4 is also disposed between the first battery group 10A and the second battery group 10B. An aluminum plate having a thickness of 15 mm is used as the thermally conductive member 4. The results of the temperature rise of the battery pack 100 are shown in FIG. 11. The cooling conditions and current application conditions are the same as those of Example 1.

(比較例1)
続いて比較例1について説明する。比較例1は実施例1から7とは異なり、電池群を2つに分けず、単一の電池群として積層させている点が異なる。
(Comparative Example 1)
Next, a description will be given of Comparative Example 1. Comparative Example 1 differs from Examples 1 to 7 in that the battery group is not divided into two, but is stacked as a single battery group.

図6は比較例1の電池パック100の図である。12個の電池1を直列につなげることで単一の電池群とし、それを単電池1の幅広面1aが筐体5の底面5bに接触するように配置している。電池パック100の温度上昇の結果は図8及び図9に記載する。なお、冷却条件や電流印加条件は実施例1と同様である。 Figure 6 is a diagram of a battery pack 100 of Comparative Example 1. Twelve batteries 1 are connected in series to form a single battery group, which is arranged so that the wide surface 1a of the single battery 1 contacts the bottom surface 5b of the housing 5. The results of the temperature rise of the battery pack 100 are shown in Figures 8 and 9. The cooling conditions and current application conditions are the same as those of Example 1.

(比較例2)
続いて比較例2について説明する。比較例2は実施例1から7とは異なり、電池群を2つに分けず、単一の電池群として積層させており、さらに単電池1の幅狭面1bが筐体5の底面5bと接触している点が異なる。
(Comparative Example 2)
Next, a description will be given of Comparative Example 2. Comparative Example 2 differs from Examples 1 to 7 in that the battery group is not divided into two but is stacked as a single battery group, and further in that the narrow surface 1b of the cell 1 is in contact with the bottom surface 5b of the housing 5.

図7は比較例2の電池パック100の図である。12個の電池を直列につなげることで
単一の電池群とし、それを単電池1の幅狭面1bが筐体5の底面5bに接触するように配置している。電池パック100の温度上昇の結果は図10及び図11に記載する。なお、冷却条件や電流印加条件は実施例1と同様である。以下、実施例と比較例の結果に基づき本特許の効果を説明する。
Fig. 7 is a diagram of a battery pack 100 of Comparative Example 2. A single battery group is formed by connecting 12 batteries in series, and is arranged so that the narrow surface 1b of the cell 1 contacts the bottom surface 5b of the housing 5. The results of the temperature rise of the battery pack 100 are shown in Figs. 10 and 11. The cooling conditions and current application conditions are the same as those of Example 1. Below, the effects of the present invention will be explained based on the results of the Example and Comparative Example.

本実施例や比較例に示す条件を電池群に与えた結果、電池群の温度はほぼ定常状態に達した際に、環境温度に比べて電池温度が上昇した。図8~11は、電池群中の各単電池が、環境温度に対する上昇温度を、温度上昇が最も小さかった単電池の上昇温度との比率を電池毎に示した図である。図中のセルNoは、それぞれの実施例や比較例に対応する図に記載されているセルNoと対応している。この際、実施例における二つの電池群について、電池群同士で対向した場所に存在する単電池同士は、温度がほぼ同じであったために簡単のために記載を省略した。以下に各図の結果について詳細に説明する。 When the conditions shown in the present embodiment and comparative example were applied to the battery group, the battery temperature rose compared to the ambient temperature when the temperature of the battery group reached a nearly steady state. Figures 8 to 11 are diagrams showing, for each battery, the ratio of the temperature rise relative to the ambient temperature for each cell in the battery group to the temperature rise of the cell with the smallest temperature rise. The cell numbers in the figures correspond to the cell numbers shown in the figures corresponding to each embodiment or comparative example. In this case, for the two battery groups in the embodiment, the cells located at opposing positions in the battery groups have been omitted for simplicity, since they had nearly the same temperature. The results of each figure are explained in detail below.

図8には比較例1とおなじく平置きにした電池配置に対し本発明を適用した例である、実施例1~2の構成の温度上昇比率を示す。図から従来の構成である比較例では電池を積層させた中心部分であるセルNo.7の温度が最大となる事が分かる。これはセルNo.7付近の電池では、周囲の電池で発生した熱量が放熱されないため、自身の電池温度だけでなく周囲の電池温度も高くなっており、温度差がつかないために熱が流れにくくなり、結果として電池温度が高くなっているためである。一方で筐体底面に接しているセルNo1の単電池や外部端子が存在するセルNo12の電池は放熱経路が存在するために温度上昇が抑制されている。以上の結果から、セルNo1やセルNo12とセルNo7の上昇温度に差が表れたため、比較例1では同じ電池群の中でも温度上昇比率が大きく変化した。従って比較例1では単電池間の温度に差が表れやすい事が分かる。 Figure 8 shows the temperature rise ratios of the configurations of Examples 1 and 2, which are examples of applying the present invention to a battery arrangement placed flat like Comparative Example 1. From the figure, it can be seen that in the Comparative Example, which is a conventional configuration, the temperature of cell No. 7, which is the center part of the stacked batteries, is the highest. This is because the heat generated by the surrounding batteries is not dissipated in the battery near cell No. 7, so not only the battery temperature but also the temperature of the surrounding batteries is high, and there is no temperature difference, making it difficult for heat to flow, resulting in a high battery temperature. On the other hand, the temperature rise of the cell No. 1 single battery in contact with the bottom surface of the case and the cell No. 12 battery with an external terminal is suppressed because there is a heat dissipation path. From the above results, there was a difference in the temperature rise between cell No. 1, cell No. 12, and cell No. 7, so the temperature rise ratio changed significantly even within the same battery group in Comparative Example 1. Therefore, it can be seen that the temperature difference between the single batteries is likely to appear in Comparative Example 1.

一方で、図8には同時に、本発明の実施例を示す。本発明では電池間の温度上昇率を同じ配置に存在する全セルにおいて比較することから比較例に比べ全セルにおいて温度上昇率が低減できると分かる。また実施例2に示すように電池群の間に熱伝達部材を配置することでさらにその効果が現れ、電池間の温度差が緩和されることが分かる。これは、外部端子を最も温度が高くなるセルNo6に配置することで効果的に放熱経路が確保できていることを意味している。加えて、実施例2ではAl板を導入することでも放熱経路が確保できるため有効に電池間の上昇温度差を低減できたことが分かる。 At the same time, Figure 8 also shows an example of the present invention. In the present invention, the rate of temperature rise between batteries is compared for all cells present in the same arrangement, and it can be seen that the rate of temperature rise can be reduced in all cells compared to the comparative example. Also, as shown in Example 2, the effect is further enhanced by arranging a heat transfer member between the battery groups, and it can be seen that the temperature difference between the batteries is mitigated. This means that by arranging the external terminal on cell No. 6, which has the highest temperature, a heat dissipation path can be effectively secured. In addition, in Example 2, it can be seen that a heat dissipation path can also be secured by introducing an Al plate, and therefore the temperature rise difference between the batteries can be effectively reduced.

図9には比較例1と同じく平置きにした電池構成に対して本発明を適用した例である、実施例3~4の構成の温度上昇率を示す。図から負極集電箔をAlとした場合にも図8で示したのと同様に、電池間の温度差が緩和される傾向があることが分かる。図9で起きた熱挙動は図8で起きたのと同じ現象に起因するものである。 Figure 9 shows the temperature rise rate for the configurations of Examples 3 and 4, which are examples in which the present invention is applied to a battery configuration laid flat like Comparative Example 1. As can be seen from the figure, there is a tendency for the temperature difference between batteries to be mitigated, as shown in Figure 8, even when the negative electrode current collector foil is made of Al. The thermal behavior that occurs in Figure 9 is caused by the same phenomenon that occurs in Figure 8.

図10は比較例2と同じく縦置きにした電池構成に対して本発明を適用した例である、実施例5~6の構成を示す。図から、従来の構成である比較例では電池を積層させた中心部分であるセルNo.6の温度が最大となる事が分かる。ここで起きている温度上昇は図8に示した比較例1であらわれた挙動と同じ現象に起因するものである。 Figure 10 shows the configurations of Examples 5 to 6, which are examples in which the present invention is applied to a vertically-positioned battery configuration, just like Comparative Example 2. From the figure, it can be seen that in the Comparative Example, which has a conventional configuration, the temperature of cell No. 6, which is the center part of the stacked batteries, is the highest. The temperature rise that occurs here is due to the same phenomenon as the behavior that appeared in Comparative Example 1, shown in Figure 8.

更に図から、縦置きとした場合にも図8~9と同様に電池間の温度差が緩和されることが分かる。平置きではなく縦置きにした場合も、長側面の中心付近の温度が高くなる傾向がある。その部分に外部端子および外部端子を配置することで、図8,9と同様の効果が得られ、上昇温度差が低減できたと分かる。 The figure also shows that the temperature difference between the batteries is mitigated when placed vertically, as in Figures 8 and 9. When placed vertically instead of flat, the temperature tends to be higher near the center of the long side. By placing the external terminals in this area, it is possible to obtain the same effect as in Figures 8 and 9, and reduce the temperature difference.

図11は比較例2と同じく縦置きにした電池構成に対して、実施例7に示した構成で本発明を適用した場合の温度差を比較する。図から、本発明でも温度差が緩和される傾向があることが分かる。実施例7でも、電池温度が最も高温となるセルNo6に外部端子を設置することで電池群外部に有効に放熱できたためであると分かる。 Figure 11 compares the temperature difference when the present invention is applied to the configuration shown in Example 7 with the battery configuration in which it is placed vertically as in Comparative Example 2. From the figure, it can be seen that the present invention also tends to reduce the temperature difference. This is because, in Example 7, the heat can be effectively dissipated to the outside of the battery group by installing an external terminal on cell No. 6, which has the highest battery temperature.

本発明に記載の電池パックは、電池缶側面(1a、1b)と電池缶側面(1a、1b)とつながる電池缶底面(1c)を有する蓄電池(1)を複数個前記電池缶側面(1a、1b)を対向させて積層させた第一の電池群(10A)と、電池缶側面(1a、1b)と電池缶側面(1a、1b)とつながる電池缶底面(1c)を有する蓄電池(1)を複数個前記電池缶側面(1a、1b)を対向させて積層させた第二の電池群(10B)と、第一の電池群(10A)及び第二の電池群(10B)を収納する筐体(5)を備え、第一の電池群(10A)と第二の電池群(10B)とは互いに対向面を同士が直接または間接的に熱的に接続されることを特徴とする。このような構造にすることによって、電池群間の温度差を小さくした電池パックを提供することができる。 The battery pack according to the present invention comprises a first battery group (10A) in which a plurality of storage batteries (1) having a battery can bottom surface (1c) connected to the battery can side surfaces (1a, 1b) and a battery can side surface (1a, 1b) are stacked with the battery can side surfaces (1a, 1b) facing each other, a second battery group (10B) in which a plurality of storage batteries (1) having a battery can bottom surface (1c) connected to the battery can side surfaces (1a, 1b) and a battery can side surface (1a, 1b) are stacked with the battery can side surfaces (1a, 1b) facing each other, and a housing (5) for housing the first battery group (10A) and the second battery group (10B), and the first battery group (10A) and the second battery group (10B) are directly or indirectly thermally connected to each other at their opposing surfaces. This structure makes it possible to provide a battery pack with a small temperature difference between the battery groups.

また、本発明では二つの電池群の幅広面(1a)を筐体(5)の底面と対向させるような構造にした。このような構造にすることによって、冷却面積が大きくなり、幅狭面1bを筐体5と接触させるよりも冷却性能が向上する。 In addition, the present invention is structured so that the wide surfaces (1a) of the two battery groups face the bottom surface of the housing (5). This structure increases the cooling area, improving cooling performance compared to when the narrow surfaces 1b are in contact with the housing 5.

また、本発明に記載の電池パックでは、電池1の幅広面1aを下にした場合、外部端子3を電池パックの中央側とすることによって、より熱が逃げにくい電池パックの中央側の冷却を、外部端子を介して行うことができる。そのため、より放熱性が向上し、電池群間の温度差を小さくした電池パックを提供することが可能となる。 In addition, in the battery pack described in the present invention, when the wide surface 1a of the battery 1 is placed downward, the external terminal 3 is located at the center of the battery pack, so that the center of the battery pack, where heat is less likely to escape, can be cooled via the external terminal. This makes it possible to provide a battery pack with improved heat dissipation and reduced temperature differences between battery groups.

また、図12に示す通り、本発明に記載の電池パックでは、第一の電池群(10A)と前記第二の電池群(10B)との間には第一の熱伝達部材(6)が配置され、熱伝達部材(6)は、第一の電池群(10A)と第二の電池群(10B)とに互いに密着される。このような構造にすることによって、熱伝達部材により、より熱拡散を促し、電池群間の温度差を小さくした電池パックを提供することができる。なお、図12は図2を上面から見た図である。 As shown in FIG. 12, in the battery pack described in the present invention, a first heat transfer member (6) is disposed between the first battery group (10A) and the second battery group (10B), and the heat transfer member (6) is in close contact with the first battery group (10A) and the second battery group (10B). With this structure, it is possible to provide a battery pack in which the heat transfer member promotes heat diffusion and reduces the temperature difference between the battery groups. Note that FIG. 12 is a top view of FIG. 2.

また、本発明に記載の電池パックでは、図13に示す通り、第一の電池群10Aと第二の電池群10Bの両脇に第二の熱伝達部材61及び第三の熱伝達部材62を配置してもよい。この場合、第一の電池群10Aは熱伝達部材6と第二の熱伝達部材61で挟まれ、第二の電池群10Bは熱伝達部材6と第三の熱伝達部材10Bで挟まれることとなり、電池群10A及び10Bの両側でも放熱性が向上し、より電池群間の温度差を小さくした電池パックを提供することが可能となる。 In addition, in the battery pack described in the present invention, as shown in FIG. 13, a second heat transfer member 61 and a third heat transfer member 62 may be arranged on both sides of the first battery group 10A and the second battery group 10B. In this case, the first battery group 10A is sandwiched between the heat transfer member 6 and the second heat transfer member 61, and the second battery group 10B is sandwiched between the heat transfer member 6 and the third heat transfer member 10B, improving heat dissipation on both sides of the battery groups 10A and 10B, making it possible to provide a battery pack with a smaller temperature difference between the battery groups.

また、本発明に記載の電池パックでは、第二の熱伝達部材61と第三の熱伝達部材62が共に第一の熱伝達部材6よりも幅が大きなものを用いる構造となっている。このような構造にすることによって、筐体5と熱伝達部材61及び62をねじ等で止められるだけ大きな構造となり、筐体5と熱伝達部材61、62をよりしっかりと密着させることができる。そのため、電池1の発熱をより筐体5に伝達しやすくなり、冷却性能が向上した電池パックを提供することが可能となる。 The battery pack described in the present invention is also structured so that the second heat transfer member 61 and the third heat transfer member 62 are both wider than the first heat transfer member 6. This structure allows the housing 5 and the heat transfer members 61 and 62 to be secured together with screws or the like, and the housing 5 and the heat transfer members 61 and 62 can be more firmly attached to each other. This makes it easier to transfer heat from the battery 1 to the housing 5, making it possible to provide a battery pack with improved cooling performance.

また、本発明に記載の電池パックでは、図14に示すように他の形態として、第一の熱伝達部材6が第二の熱伝達部材61及び第三の熱伝達部材62よりも厚みが厚くなっている。このような構造にすることによって、最も放熱性が悪くなる二つの電池群間において、より熱拡散が促進され、冷却性能が向上した電池パックを提供することが可能となる。なお、本発明においては、上述した電池1の幅広面1aを筐体5の底面と接触させるタイプの電池パックが、電池群間や単電池間に冷却風を流さないような自然冷却で使用した場合に非常に効果を発揮する。したがって、本発明は電池1を横置きにする構造に非常に適した発明となっている。また、本発明は、幅広面と幅狭面とからなる直方体に、夫々、形成されてなる複数の蓄電池を、前記幅広面を互いに対向させて積層させた電池群であって、第一の電池群と第二の電池群とを備え、前記第一の電池群と前記第二の電池群とを並べて、前記蓄電池の幅狭面が対向するように、筐体に収納させた電池パックであって、前記第一の電池群と前記第二の電池群との間には第一の熱伝達部材が配置され、前記第一の熱伝達部材は、前記第一の電池群と前記第二の電池群とに互いに密着され、前記第一の電池群と前記第二の電池群夫々の上面の蓄電池において、前記電池パックの中央側に、当該第一の電池群と当該第二の電池群夫々を前記筐体内の電子回路に接続する外部端子を設け、当該外部端子を介して放熱されるようにした電池パックであり、本発明は、さらにまた、この電池パックにおいて、第二の熱伝達部材と、第三の熱伝達部材を有し、前記第一の電池群は前記第一の熱伝達部材と前記第二の熱伝達部材に挟持され、前記第二の電池群は、前記第一の熱伝達部材と前記第三の熱伝達部材に挟持され、前記第二の熱伝達部材及び前記第三の熱伝達部材は、前記第一の熱伝達部材よりも厚さが厚いことを特徴とする電池パックであり、本発明は、また、さらに、前記第一の電池群は前記第一の熱伝達部材と前記第二の熱伝達部材に挟持され、前記第二の電池群は、前記第一の熱伝達部材と前記第三の熱伝達部材に挟持され、前記第一の熱伝達部材は、前記第二の熱伝達部材及び前記第三の熱伝達部材よりも厚さが薄いことを特徴とする電池パックである。 In addition, in the battery pack described in the present invention, as shown in FIG. 14, as another embodiment, the first heat transfer member 6 is thicker than the second heat transfer member 61 and the third heat transfer member 62. By adopting such a structure, it is possible to provide a battery pack with improved cooling performance by promoting heat diffusion between the two battery groups where heat dissipation is the worst. In addition, in the present invention, the above-mentioned battery pack in which the wide surface 1a of the battery 1 is in contact with the bottom surface of the housing 5 is very effective when used with natural cooling that does not flow cooling air between the battery groups or between the single cells. Therefore, the present invention is very suitable for a structure in which the battery 1 is placed horizontally. The present invention also provides a battery pack comprising a plurality of storage batteries, each formed in a rectangular parallelepiped having a wide side and a narrow side, stacked with the wide sides facing each other, the battery pack comprising a first battery group and a second battery group, the first battery group and the second battery group arranged side by side and housed in a housing so that the narrow sides of the storage batteries face each other, a first heat transfer member is disposed between the first battery group and the second battery group, the first heat transfer member is in close contact with the first battery group and the second battery group, external terminals are provided on the central side of the battery pack for connecting the first battery group and the second battery group to an electronic circuit within the housing, and heat is dissipated via the external terminals. The present invention further relates to a battery pack having a second heat transfer member and a third heat transfer member, the first battery group being sandwiched between the first heat transfer member and the second heat transfer member, the second battery group being sandwiched between the first heat transfer member and the third heat transfer member, and the second heat transfer member and the third heat transfer member being thicker than the first heat transfer member. The present invention further relates to a battery pack having a first battery group being sandwiched between the first heat transfer member and the second heat transfer member, the second battery group being sandwiched between the first heat transfer member and the third heat transfer member, and the first heat transfer member being thinner than the second heat transfer member and the third heat transfer member.

以上、本発明の実施形態について詳述したが、本発明は、前記の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の精神を逸脱しない範囲で、種々の設計変更を行うことができるものである。例えば、前記した実施の形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。さらに、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 Although the embodiments of the present invention have been described above in detail, the present invention is not limited to the above-described embodiments, and various design changes can be made without departing from the spirit of the present invention described in the claims. For example, the above-described embodiments have been described in detail to clearly explain the present invention, and are not necessarily limited to those having all of the configurations described. In addition, it is possible to replace part of the configuration of one embodiment with the configuration of another embodiment, and it is also possible to add the configuration of another embodiment to the configuration of one embodiment. Furthermore, it is possible to add, delete, or replace part of the configuration of each embodiment with other configurations.

1 単電池
2 配線
3 外部端子
4 筐体の底面
5 筐体上面
6、61、62 熱伝達部材
Reference Signs List 1: Single cell 2: Wiring 3: External terminal 4: Bottom surface of housing 5: Top surface of housing 6, 61, 62: Heat transfer member

Claims (4)

一対の幅広面と複数の幅狭面とを含み直方体に形成された蓄電池が前記幅広面同士を対向して並べられて複数の前記蓄電池が物理的に拘束された第一の電池群と第二の電池群とを筐体に収容させた電池パックであって、
前記幅狭面は、外部端子を有する第1の幅狭面と、前記第1の幅狭面に対向する第2の幅狭面と、前記第1の幅狭面と前記第2の幅狭面以外の第3の幅狭面と、を含み、
前記第一の電池群と前記第二の電池群とが、間に熱伝達部が形成されるように、前記第一の電池群の前記第3の幅狭面と、前記第二の電池群の前記第3の幅狭面とが相対されて、組み付けられ、当該組み付けられた前記第一の電池群と前記第二の電池群とを、前記筐体のケースに収容させた
前記ケースは蓋で塞がれている、
電池パック。
A battery pack in which a first battery group and a second battery group are housed in a housing, the first battery group and the second battery group being arranged with the wide sides facing each other and the plurality of storage batteries formed in a rectangular parallelepiped including a pair of wide sides and a plurality of narrow sides, and physically constrained,
the narrow surface includes a first narrow surface having an external terminal, a second narrow surface facing the first narrow surface, and a third narrow surface other than the first narrow surface and the second narrow surface;
the first battery group and the second battery group are assembled with the third narrow surface of the first battery group facing the third narrow surface of the second battery group so as to form a heat transfer portion therebetween , and the assembled first battery group and second battery group are housed in a case of the housing;
The case is closed with a lid.
Battery pack.
一対の幅広面と複数の幅狭面とを含み直方体に形成された蓄電池が前記幅広面同士を対向して並べられて複数の前記蓄電池が物理的に拘束された第一の電池群と第二の電池群とを筐体に収容させた電池パックであって、
前記幅狭面は、外部端子を有する第1の幅狭面と、前記第1の幅狭面に対向する第2の幅狭面と、前記第1の幅狭面と前記第2の幅狭面以外の第3の幅狭面と、を含み、
前記第一の電池群と前記第二の電池群とは、前記第一の電池群の前記第3の幅狭面と、前記第二の電池群の前記第3の幅狭面とが相対し、前記筐体のケースに収容され、
前記ケースは蓋で塞がれており、
互いに相対する、前記第一の電池群の前記第1の幅狭面と前記第二の電池群の前記第1の幅狭面との夫々について、前記電池パックの中央側に、前記第一の電池群及び前記第二の電池群の夫々と電池外機器とを接続する端子を、前記外部端子とは別に設けた、
電池パック。
A battery pack in which a first battery group and a second battery group are housed in a housing, the first battery group and the second battery group being arranged with the wide sides facing each other and the plurality of storage batteries formed in a rectangular parallelepiped including a pair of wide sides and a plurality of narrow sides, and physically constrained,
the narrow surface includes a first narrow surface having an external terminal, a second narrow surface facing the first narrow surface, and a third narrow surface other than the first narrow surface and the second narrow surface;
the first battery group and the second battery group are accommodated in a case of the housing such that the third narrow surface of the first battery group faces the third narrow surface of the second battery group;
The case is closed with a lid,
a terminal for connecting each of the first battery group and the second battery group to a device other than a battery is provided on a center side of the battery pack for each of the first narrow surface of the first battery group and the first narrow surface of the second battery group, the terminal being separate from the external terminal;
Battery pack.
前記第一の電池群と前記第二の電池群の夫々の前記蓄電池は隣接する蓄電池と接続部材により接続されている、
請求項1又は2記載の電池パック。
Each of the storage batteries of the first battery group and the second battery group is connected to an adjacent storage battery by a connecting member.
3. The battery pack according to claim 1 or 2.
熱伝達部を有し、
前記熱伝達部は前記第一の電池群及び前記第二の電池群から熱伝導され
前記第一の電池群と前記第二の電池群とが、間に前記熱伝達部が形成されるように、前記第一の電池群の前記第3の幅狭面と、前記第二の電池群の前記第3の幅狭面とが相対されて組み付けられ、当該組み付けられた前記第一の電池群と前記第二の電池群とを、前記筐体に収容させた、
請求項2記載の電池パック。
A heat transfer portion is provided.
the heat transfer portion is thermally transferred from the first battery group and the second battery group ;
the first battery group and the second battery group are assembled such that the third narrow surface of the first battery group and the third narrow surface of the second battery group face each other so that the heat transfer portion is formed therebetween, and the assembled first battery group and second battery group are housed in the housing;
3. The battery pack according to claim 2.
JP2022142590A 2021-03-18 2022-09-07 Battery pack Active JP7509835B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022142590A JP7509835B2 (en) 2021-03-18 2022-09-07 Battery pack
JP2024100003A JP2024111222A (en) 2021-03-18 2024-06-20 Battery pack

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2021045251A JP7111857B2 (en) 2021-03-18 2021-03-18 battery pack
JP2021070680A JP2021108295A (en) 2021-03-18 2021-04-19 Battery pack
JP2022142590A JP7509835B2 (en) 2021-03-18 2022-09-07 Battery pack

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2021070680A Division JP2021108295A (en) 2021-03-18 2021-04-19 Battery pack

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2024100003A Division JP2024111222A (en) 2021-03-18 2024-06-20 Battery pack

Publications (2)

Publication Number Publication Date
JP2022168098A JP2022168098A (en) 2022-11-04
JP7509835B2 true JP7509835B2 (en) 2024-07-02

Family

ID=76313232

Family Applications (4)

Application Number Title Priority Date Filing Date
JP2021045251A Active JP7111857B2 (en) 2021-03-18 2021-03-18 battery pack
JP2021070680A Pending JP2021108295A (en) 2021-03-18 2021-04-19 Battery pack
JP2022142590A Active JP7509835B2 (en) 2021-03-18 2022-09-07 Battery pack
JP2024100003A Pending JP2024111222A (en) 2021-03-18 2024-06-20 Battery pack

Family Applications Before (2)

Application Number Title Priority Date Filing Date
JP2021045251A Active JP7111857B2 (en) 2021-03-18 2021-03-18 battery pack
JP2021070680A Pending JP2021108295A (en) 2021-03-18 2021-04-19 Battery pack

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2024100003A Pending JP2024111222A (en) 2021-03-18 2024-06-20 Battery pack

Country Status (1)

Country Link
JP (4) JP7111857B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003249205A (en) 2002-02-26 2003-09-05 Toyota Motor Corp Collective battery and battery system
JP2013125612A (en) 2011-12-13 2013-06-24 Denso Corp Battery pack
JP2013242967A (en) 2012-05-17 2013-12-05 Denso Corp Battery pack
JP2014203747A (en) 2013-04-08 2014-10-27 株式会社Gsユアサ Power storage element module
WO2017002584A1 (en) 2015-06-30 2017-01-05 株式会社Gsユアサ Electricity storage device
JP2017027796A (en) 2015-07-22 2017-02-02 株式会社豊田自動織機 Battery module and battery pack

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003331812A (en) * 2002-05-10 2003-11-21 Japan Storage Battery Co Ltd Battery pack for electric vehicle
JP5618411B2 (en) * 2010-12-13 2014-11-05 株式会社リチウムエナジージャパン Battery module
JP5811796B2 (en) * 2011-11-18 2015-11-11 株式会社デンソー Assembled battery
JP5993615B2 (en) * 2012-05-22 2016-09-14 日立オートモティブシステムズ株式会社 Power storage module
JP5933344B2 (en) * 2012-05-31 2016-06-08 三洋電機株式会社 Power supply
JP6128047B2 (en) * 2014-04-09 2017-05-17 トヨタ自動車株式会社 Battery pack

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003249205A (en) 2002-02-26 2003-09-05 Toyota Motor Corp Collective battery and battery system
JP2013125612A (en) 2011-12-13 2013-06-24 Denso Corp Battery pack
JP2013242967A (en) 2012-05-17 2013-12-05 Denso Corp Battery pack
JP2014203747A (en) 2013-04-08 2014-10-27 株式会社Gsユアサ Power storage element module
WO2017002584A1 (en) 2015-06-30 2017-01-05 株式会社Gsユアサ Electricity storage device
JP2017027796A (en) 2015-07-22 2017-02-02 株式会社豊田自動織機 Battery module and battery pack

Also Published As

Publication number Publication date
JP2021108295A (en) 2021-07-29
JP2022168098A (en) 2022-11-04
JP2021093383A (en) 2021-06-17
JP2024111222A (en) 2024-08-16
JP7111857B2 (en) 2022-08-02

Similar Documents

Publication Publication Date Title
CN107369863B (en) Subassembly and battery pack having the same
KR20190064835A (en) Battery pack
US20240258608A1 (en) Battery Pack
JP2022543066A (en) Battery module and battery pack containing same
JP7531691B2 (en) Battery module, battery pack including same, and method of manufacturing same
JP2023535774A (en) Battery module and battery pack containing same
JP7509835B2 (en) Battery pack
JP7523593B2 (en) Battery module and battery pack including same
JP6860449B2 (en) Battery module
JP6921630B2 (en) Rechargeable battery module
JP2023524586A (en) Battery modules and battery packs containing the same
US11923519B2 (en) Battery pack
KR20220121594A (en) Battery module and battery pack including the same
JP7099807B2 (en) Battery pack
US20240178474A1 (en) Battery module and battery pack including the same
CN113711421B (en) Battery module and battery pack including the same
JP2024527420A (en) Battery module and battery pack including same
KR20240052319A (en) Battery module with improved cooling structure and battery pack including the same
KR20240071920A (en) Battery module with improved cooling structure and battery pack including the same
JP2023552124A (en) Battery module and battery pack containing it
KR20230012706A (en) Busbar assembly, battery pack including the same and device including the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221007

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221007

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231003

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20231201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240521

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240620