JP7111857B2 - battery pack - Google Patents

battery pack Download PDF

Info

Publication number
JP7111857B2
JP7111857B2 JP2021045251A JP2021045251A JP7111857B2 JP 7111857 B2 JP7111857 B2 JP 7111857B2 JP 2021045251 A JP2021045251 A JP 2021045251A JP 2021045251 A JP2021045251 A JP 2021045251A JP 7111857 B2 JP7111857 B2 JP 7111857B2
Authority
JP
Japan
Prior art keywords
battery
battery group
narrow
battery pack
narrow surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021045251A
Other languages
Japanese (ja)
Other versions
JP2021093383A (en
Inventor
将成 織田
宏文 高橋
茂樹 牧野
航 佐藤
独志 西森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vehicle Energy Japan Inc
Original Assignee
Vehicle Energy Japan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vehicle Energy Japan Inc filed Critical Vehicle Energy Japan Inc
Priority to JP2021045251A priority Critical patent/JP7111857B2/en
Priority to JP2021070680A priority patent/JP2021108295A/en
Publication of JP2021093383A publication Critical patent/JP2021093383A/en
Application granted granted Critical
Publication of JP7111857B2 publication Critical patent/JP7111857B2/en
Priority to JP2022142590A priority patent/JP2022168098A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)

Description

本発明は、電池パックに関する。 The present invention relates to battery packs.

近年、環境規制を背景に車載用二次電池への需要が高まっている。この中で、リチウムイオン二次電池は一般に、鉛電池やニッケル水素電池などに比べて放電電位が高いため、小型・高エネルギー密度化が可能であるため有望視されている。本格適用に向けてリチウムイオン二次電池に求められる点には例えば、更なる高エネルギー密度化、高出力密度化、長寿命化等があげられる。電池を高出力化するためには高電位化とともに、例えば、大電流を電池から入・出力させる事が有効である。しかし大電流を電池から入・出力させる場合、電池の内部抵抗に由来する発熱が電池内部で生じる。発生した熱を十分に電池から取り除く事ができなかった場合、電池温度が上昇する。リチウムイオン電池の電池容量や内部抵抗等の電池特性は、電池温度によって劣化傾向が異なり、特に電池温度が高ければ高いほど電池特性が低下する事が多い。そこで、電池の放熱性能を向上させる技術開発が必要となっている。 In recent years, the demand for in-vehicle secondary batteries has increased against the backdrop of environmental regulations. Among them, lithium-ion secondary batteries are generally regarded as promising because they have a higher discharge potential than lead-acid batteries and nickel-metal hydride batteries, and can be made smaller and have higher energy densities. For full-scale application, lithium-ion secondary batteries are required to have higher energy density, higher power density, longer life, and the like. In order to increase the output of the battery, it is effective not only to increase the potential but also to input/output a large current from the battery. However, when a large current is input/output from the battery, heat is generated inside the battery due to the internal resistance of the battery. If the generated heat cannot be sufficiently removed from the battery, the battery temperature will rise. Battery characteristics such as battery capacity and internal resistance of lithium ion batteries tend to deteriorate depending on the battery temperature. Therefore, it is necessary to develop a technique for improving the heat dissipation performance of the battery.

複数のリチウムイオン単電池(以下、単電池と呼ぶ)が組み合わされ、電池群として用いられる場合(例えば、電池モジュール、電池パックとして使用する場合)、電池群中の単電池間の温度差を小さくする事が望まれる。これは、単電池間での温度差が大きい場合、単電池間で劣化の差が生じやすいためである。電池群の特性は、電池群に含まれる単電
池の中で最も劣化した電池の特性に律速される傾向があるため、特定の電池が劣化する構造をさけた電池群の設計が必要である。
When a plurality of lithium ion cells (hereinafter referred to as cells) are combined and used as a battery group (for example, when used as a battery module or battery pack), the temperature difference between the cells in the battery group should be reduced. It is desired to This is because when the temperature difference between the cells is large, the difference in deterioration tends to occur between the cells. Since the characteristics of a battery group tend to be rate-determined by the characteristics of the most deteriorated cell among the single cells included in the battery group, it is necessary to design a battery group that avoids a structure in which a specific battery deteriorates.

そこで、複数の単電池が組み合わされて形成された電池群において、単電池間の温度差を小さくする技術が開発されている。具体的には特許文献1には単電池を収容した電槽が幅の狭い短側面と幅の広い長側面とからなる直方体に形成されてなり、この電槽の前記短側面間で隣接させて複数の単電池を連結して所要電力容量の集合電池に形成した蓄電池が記載されている。 Therefore, in a battery group formed by combining a plurality of cells, a technique for reducing the temperature difference between the cells has been developed. Specifically, in Patent Document 1, a battery case containing cells is formed in a rectangular parallelepiped shape having a narrow short side surface and a wide long side surface. A storage battery is described in which a plurality of single cells are connected to form an assembled battery with a required power capacity.

一方で大電流を電池から入・出力させる場合、電池に接続するケーブルの断面積も大きくする必要がある。ケーブルに用いられる部材としては銅に代表される金属が用いられているが、金属は一般に熱伝導率が高いために放熱性能が高い。 On the other hand, when a large current is input/output from the battery, it is necessary to increase the cross-sectional area of the cable connected to the battery. Metals such as copper are used as members for cables, and since metals generally have high thermal conductivity, they have high heat radiation performance.

特開2000-164186号公報JP-A-2000-164186

特許文献1に記載の技術においては、それぞれの単電池の電槽の長側面に複数のリブが形成されている。そして、このリブ間に空気等を強制流通させることにより、単電池の冷却が行われている。このような構成では、冷却効率が低下した場合(例えば強制流通させる空気の流量が小さい場合や、入出力電流が大きく単電池の発熱量が大きい場合)、構成される電池群内の電池温度に分布が生じ、特に電池群の長側面の中心付近に配置された単電池の電池温度が高く、劣化が進む恐れがある。本発明は、前記課題に鑑みてなされたものであり、電池群間の温度差が小さい電池パックを提供する事を課題とする。 In the technique described in Patent Document 1, a plurality of ribs are formed on the long side surface of the container of each unit cell. The cells are cooled by forcibly circulating air or the like between the ribs. In such a configuration, when the cooling efficiency decreases (for example, when the flow rate of forced air is small, or when the input/output current is large and the amount of heat generated by the cells is large), the battery temperature in the configured battery group A distribution occurs, and the battery temperature of the cells arranged near the center of the long side of the battery group is particularly high, and there is a possibility that the deterioration progresses. An object of the present invention is to provide a battery pack in which the temperature difference between battery groups is small.

本発明に記載の電池パックは、電池缶側面と電池缶側面とつながる電池缶底面を有する蓄電池を複数個電池缶側面を対向させて積層させた第一の電池群と、電池缶側面と電池缶側面とつながる電池缶底面を有する蓄電池を複数個電池缶側面を対向させて積層させた第二の電池群と、第一の電池群及び第二の電池群を収納する筐体を備え、第一の電池群と第二の電池群とは互いに対向面を同士が直接または間接的に熱的に接続されることを特徴とする。 The battery pack according to the present invention includes a first battery group in which a plurality of storage batteries having a battery can side surface and a battery can bottom surface connected to the battery can side surface are stacked with the battery can side surfaces facing each other, and the battery can side surface and the battery can. A second battery group in which a plurality of storage batteries having a battery can bottom surface connected to a side surface are stacked with the battery can sides facing each other, and a housing for housing the first battery group and the second battery group The first battery group and the second battery group are characterized in that their facing surfaces are directly or indirectly thermally connected to each other.

本発明によれば、電池群間の温度差を小さくした電池パックを提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the battery pack which reduced the temperature difference between battery groups can be provided.

実施例1における電池群の具体的な構成の一例を説明するための図。FIG. 2 is a diagram for explaining an example of a specific configuration of a battery group in Example 1; 実施例2における電池群の具体的な構成の一例を説明するための図。FIG. 5 is a diagram for explaining an example of a specific configuration of a battery group in Example 2; 実施例5における電池群の具体的な構成の一例を説明するための図。FIG. 11 is a diagram for explaining an example of a specific configuration of a battery group in Example 5; 実施例6における電池群の具体的な構成の一例を説明するための図。FIG. 11 is a diagram for explaining an example of a specific configuration of a battery group in Example 6; 実施例7における電池群の具体的な構成の一例を説明するための図。FIG. 11 is a diagram for explaining an example of a specific configuration of a battery group in Example 7; 比較例1における電池群の具体的な構成の一例を説明するための図。4 is a diagram for explaining an example of a specific configuration of a battery group in Comparative Example 1; FIG. 比較例2における電池群の具体的な構成の一例を説明するための図。FIG. 10 is a diagram for explaining an example of a specific configuration of a battery group in Comparative Example 2; 実施例1,2の構成と従来構成との各単電池温度の環境温度からの温度上昇を、電池群の中での最低温度からの比率で示した温度上昇比率図。FIG. 4 is a temperature rise ratio chart showing the temperature rise from the ambient temperature of each unit cell in the configurations of Examples 1 and 2 and the conventional configuration as a ratio from the lowest temperature in the battery group. 実施例3,4の構成と従来構成との各単電池温度の環境温度からの温度上昇を、電池群の中での最低温度からの比率で示した温度上昇比率図。FIG. 10 is a temperature rise ratio chart showing the temperature rise from the environmental temperature of each unit cell in the configurations of Examples 3 and 4 and the conventional configuration as a ratio from the lowest temperature in the battery group. 実施例5,6の構成と従来構成との各単電池温度の環境温度からの温度上昇を、電池群の中での最低温度からの比率で示した温度上昇比率図。FIG. 10 is a temperature rise ratio chart showing the temperature rise from the ambient temperature of each unit cell in the configurations of Examples 5 and 6 and the conventional configuration as a ratio from the lowest temperature in the battery group. 実施例7の構成と従来構成との各単電池温度の環境温度からの温度上昇を、電池群の中での最低温度からの比率で示した温度上昇比率図。FIG. 10 is a temperature rise ratio chart showing the temperature rise from the ambient temperature of each single cell in the structure of Example 7 and the conventional structure as a ratio from the lowest temperature in the battery group. 図2の電池パックを上面から見た図。The figure which looked at the battery pack of FIG. 2 from the upper surface. 図12の一つ目の変形例。The first modification of FIG. 12 . 図12の二つ目の変形例。A second modification of FIG. 12 . 本発明の二次電池の斜視図。1 is a perspective view of a secondary battery of the present invention; FIG.

本発明を実施するための形態について説明する。ただし、本実施形態は以下の内容に何ら制限されるものではなく、本発明の要旨を逸脱しない範囲内で任意に変更して実施可能である。 A mode for carrying out the present invention will be described. However, the present embodiment is not limited to the following contents in any way, and can be arbitrarily modified within the scope of the present invention.

本実施形態について詳細に説明する。本実施形態における二次電池には、リチウムイオン二次電池を用いたが、本構成を他の種類の蓄電池に対しても適用できる。またリチウムイオン二次電池の構成部材はどのようなものであっても効果が得られる。つまり本発明では正極としてAl集電箔と層状構造を持つ正極材などからなる電極と、負極としてCu集電箔と炭素材料からなる電極を用いているが、その他の構成でも良い。例えば実施例3,4にも記載のとおり、負極にAl箔を用いた場合においても放熱性を向上可能である。冷却環境は例示でありその他の冷媒を用いた場合にも適用できる。またリチウムイオン電池の形状として本実施例では角形電池を用いたが、その他の形状として知られる例えばラミネート型、円筒型等電池であっても効果が得られる。 This embodiment will be described in detail. Although a lithium ion secondary battery is used as the secondary battery in this embodiment, this configuration can also be applied to other types of storage batteries. Moreover, the effect can be obtained regardless of the constituent members of the lithium ion secondary battery. That is, in the present invention, an electrode made of an Al collector foil and a positive electrode material having a layered structure is used as a positive electrode, and an electrode made of a Cu collector foil and a carbon material is used as a negative electrode, but other configurations are also possible. For example, as described in Examples 3 and 4, heat dissipation can be improved even when Al foil is used for the negative electrode. The cooling environment is an example, and it can be applied even when other refrigerants are used. In addition, although a prismatic battery is used as the shape of the lithium ion battery in this embodiment, the effect can be obtained by using other shapes such as a laminate type, a cylindrical type, and the like.

単電池を電池群とする際には単電池同士を直列あるいは並列接続する。この際、安全性を担保するため、単電池の周囲に対し、例えば実施例7に示すように、電池間に絶縁を確保できる部材を導入してもよい。前記部材の形状は自由であり、素材も自由に選択することができるが、好ましくは熱伝達部材が含まれると良い。単電池同士を直列あるいは並列接続する場合、用いる配線は特に限定されないが、例えばバスバーが挙げられる。直列あるいは並列接続の形式がどの様であっても、本発明にかかる電池配置および外部端子の構成を用いれば効果が現れる。例えば、2並列にした電池群を6直列にしたような電池群であっても本発明における効果が得られる。また電池群は、単電池同士を電気的に直列あるいは並列接続することに加え、固定用の治具を用いて単電池同士を物理的に拘束することが好ましい。ただし拘束の方法には本発明は限定されない。例えば、二つの電池群を固定用の治具一セットを用いて固縛した場合でも、固縛用の治具2セットを用いて固縛した場合でも効果が表れた。 When the unit cells are used as a battery group, the unit cells are connected in series or in parallel. At this time, in order to ensure safety, a member capable of ensuring insulation between the cells may be introduced around the cells, as shown in Example 7, for example. The shape of the member can be freely selected, and the material can be freely selected. Preferably, the member should include a heat transfer member. When the cells are connected in series or in parallel, the wiring to be used is not particularly limited, but an example is a bus bar. Regardless of the type of series or parallel connection, the battery arrangement and external terminal configuration according to the present invention are effective. For example, the effect of the present invention can be obtained even with a battery group in which two battery groups connected in parallel are connected in series to six battery groups. In addition to electrically connecting the unit cells in series or in parallel, it is preferable to physically restrain the unit cells using a fixing jig. However, the method of restraint is not limited to the present invention. For example, the effect was obtained both when two battery groups were lashed using one set of fixing jigs and when two sets of lashing jigs were used.

本発明では上述する手段で接続されてなる第一の電池群と第二の電池群を基本構成として電池パックを構成するが、電池パックにはこれらに加えてさらに、電池の制御装置(例えば、Battery Management System;BMSなどがあげられる)や、安全機構(例えばヒューズなど)を具備しても良く、これらを前記電池群中の配線に接続しても本発明における効果が得られる。 In the present invention, a battery pack is constructed based on a first battery group and a second battery group that are connected by the means described above. (Battery Management System; BMS, etc.) and a safety mechanism (for example, a fuse, etc.) may be provided, and the effect of the present invention can be obtained even if these are connected to the wiring in the battery group.

筐体底面と電池群同士の接触方法は特に限定されず、例えば接着剤などによる接着や、ボルトやナットを用いて固定器具を介しての接続でも本発明における効果はあらわれる。筐体の形状は本実施形態においては直方体を例示するが、その形状は特に限定されない。また本発明における効果は電池パックへの電流印加条件や冷却条件に限定されない。 The method of contact between the bottom surface of the housing and the battery group is not particularly limited. Although the shape of the housing is a rectangular parallelepiped in this embodiment, the shape is not particularly limited. Further, the effect of the present invention is not limited to the current application conditions and cooling conditions to the battery pack.

以下、実施例及び比較例に基づいて、本発明をさらに詳細に説明する。図1は本発明の電池パック100の分解斜視図である。なお、以降の説明で上下左右前後という場合には
、各図面の左下に記載の方向に従うものとする。
The present invention will be described in further detail below based on examples and comparative examples. FIG. 1 is an exploded perspective view of a battery pack 100 of the present invention. In the following description, when referring to up, down, left, right, front and back, the directions shown at the bottom left of each drawing are used.

電池パック100は、第一の電池群10Aと第二の電池群10Bと、第一の電池群10A及び第二の電池群10Bを収納する筐体5(5a、5b)からなる。この筐体5は、ケース5aとケース開口を塞ぐ蓋5bからなる。なお、本実施形態では底面5bを別部材としたが、ケース5aに底面を設けて上面に開口を備える構造として、上面側に蓋5bを配置する構造としてもよい。 The battery pack 100 includes a first battery group 10A, a second battery group 10B, and a housing 5 (5a, 5b) that houses the first battery group 10A and the second battery group 10B. The housing 5 consists of a case 5a and a lid 5b that closes the case opening. In this embodiment, the bottom surface 5b is a separate member, but the case 5a may have a bottom surface and an opening on the top surface, and the lid 5b may be arranged on the top surface side.

図15は本発明で使用される蓄電池1を示す図である。蓄電池1は一対の幅広面1a、一対の幅狭面1b、底面1c、蓋1dからなる。蓋1dには正極外部端子2a及び負極外部端子2bが設けられる。 FIG. 15 is a diagram showing a storage battery 1 used in the present invention. The storage battery 1 comprises a pair of wide surfaces 1a, a pair of narrow surfaces 1b, a bottom surface 1c, and a lid 1d. A positive electrode external terminal 2a and a negative electrode external terminal 2b are provided on the lid 1d.

再び図1に戻って、第一の電池群10A、第二の電池群10Bをそれぞれ説明する。第一の電池群10Aは蓄電池1の幅広面1aを互いに対向させて複数個(本実施形態では6個)積層させたものである。第二の電池群10Bについても第一の電池群10A同様、蓄電池の幅広面を対向させて積層した構造となっている。 Returning to FIG. 1 again, the first battery group 10A and the second battery group 10B will be described. The first battery group 10A is formed by stacking a plurality of storage batteries 1 (six in this embodiment) with their wide surfaces 1a facing each other. As with the first battery group 10A, the second battery group 10B also has a structure in which the storage batteries are stacked with their wide faces facing each other.

第一の電池群10Aを構成する蓄電池1は、バスバー2で互いに直列に接続されている。また、第二の電池群10Bも同様に、蓄電池1がバスバー2で互いに直列に接続されている。また、第一の電池群10Aの底面5b側の蓄電池1と、第二の電池群10Bno底面5b側の蓄電池1は互いにバスバー2で接続される構造となっている。そして二つの電池群10A、10Bはそれぞれ電池パック100の上面中央側に電池パック100に収納されるその他の電子部品(たとえばジャンクションボックス等)と接続される外部端子3が配置されるようになっている。本発明ではいくつかの置き方(図1から図7)で電池パック100の温度変化を測定した。 The storage batteries 1 that constitute the first battery group 10A are connected in series with each other via a bus bar 2 . Similarly, in the second battery group 10B, the storage batteries 1 are connected in series with each other via the busbars 2 . The storage battery 1 on the bottom surface 5b side of the first battery group 10A and the storage battery 1 on the bottom surface 5b side of the second battery group 10Bno are connected to each other by a bus bar 2 . Each of the two battery groups 10A and 10B has an external terminal 3 arranged at the center of the upper surface of the battery pack 100 to be connected to other electronic components (such as a junction box) housed in the battery pack 100. there is In the present invention, temperature changes of the battery pack 100 were measured in several ways (FIGS. 1 to 7).

(実施例1)
まず実施例1について説明する。第一の電池群と第二の電池群を図1のように平置きにした後に、熱的に直接接続させた後、正極外部端子及び負極外部端子の先に直径95mmの銅製のHVケーブルを取り付けて電流を印加した。この際の電池からの発熱量は平均して3Wであった。
(Example 1)
First, Example 1 will be described. After the first battery group and the second battery group were laid flat as shown in FIG. 1 and directly thermally connected, a copper HV cable with a diameter of 95 mm was connected to the ends of the positive electrode external terminal and the negative electrode external terminal. attached and current was applied. The amount of heat generated from the battery at this time was 3 W on average.

また、冷却条件としては電池群下部にある筐体を介した底板にのみ5m/secの風速の空気をあてた。図1では筐体上面を示す。図8に本条件を電池パックに与えた後、ほぼ定常状態となった際の結果を示す。 Also, as a cooling condition, air was applied only to the bottom plate through the housing at the bottom of the battery group at a wind speed of 5 m/sec. FIG. 1 shows the upper surface of the housing. FIG. 8 shows the results when a substantially steady state was reached after applying this condition to the battery pack.

(実施例2)
続いて実施例2について説明する。実施例2は実施例1と比較して、第一の電池群と第二の電池群を平置きにした後に、平板状の熱伝導部材4を介している点が異なる。
(Example 2)
Next, Example 2 will be described. Example 2 differs from Example 1 in that a flat plate-like heat conducting member 4 is interposed after the first battery group and the second battery group are laid flat.

図2に本実施例の構造を示す。本実施例では上述の通り、第一の電池群10Aと第二の電池群10Bとの間に熱伝導部材4を配置した。この熱伝導部材の厚みは厚さ3mmと15mmの2つを用意し、それぞれを用いた場合の電池パック100の温度上昇を測定した。その結果は図8に示す。なお、冷却条件や電流印加条件は実施例1と同様である。 FIG. 2 shows the structure of this embodiment. In this embodiment, as described above, the heat conducting member 4 is arranged between the first battery group 10A and the second battery group 10B. Two thicknesses of the heat conducting member, 3 mm and 15 mm, were prepared, and the temperature rise of the battery pack 100 when using each of them was measured. The results are shown in FIG. The cooling conditions and current application conditions are the same as in the first embodiment.

(実施例3)
続いて実施例3について説明する。実施例3は実施例1と比較して、負極集電箔の材料を銅箔からアルミ集電箔を用いた点が異なる。
(Example 3)
Next, Example 3 will be described. Example 3 differs from Example 1 in that the material of the negative electrode current collector foil is changed from copper foil to aluminum current collector foil.

具体的な電池パック100の構造は図1と同様の配置関係なので説明を省略する。電池
パック100の温度上昇の結果は図9に記載する。なお、冷却条件や電流印加条件は実施例1と同様である。
Since the specific structure of the battery pack 100 has the same positional relationship as in FIG. 1, the description thereof is omitted. The results of the temperature rise of battery pack 100 are shown in FIG. The cooling conditions and current application conditions are the same as in the first embodiment.

(実施例4)
続いて実施例4について説明する。実施例4は実施例2と比較して、負極集電箔の材料を銅箔からアルミ集電箔を用いた点が異なる。具体的な電池パック100の構造は図2と同様の配置関係なので説明を省略する。本実施形態では、熱伝導部材4には厚さ15mmの部材を用いている。電池パック100の温度上昇の結果は図9に記載する。なお、冷却条件や電流印加条件は実施例1と同様である。
(Example 4)
Next, Example 4 will be described. Example 4 is different from Example 2 in that aluminum current collector foil is used instead of copper foil as the material of the negative electrode current collector foil. Since the specific structure of the battery pack 100 has the same arrangement relationship as in FIG. 2, the description thereof is omitted. In this embodiment, a member having a thickness of 15 mm is used as the heat conducting member 4 . The results of the temperature rise of battery pack 100 are shown in FIG. The cooling conditions and current application conditions are the same as in the first embodiment.

(実施例5)
続いて実施例5について説明する。実施例5は実施例1と比較して、第一の電池群10Aと第二の電池群10Bを図3のように縦置きにして電池群を構成する蓄電池の幅狭側面を電池パック100の筐体5の底面に接触させた点が異なる。電池パック100の温度上昇の結果は図10に記載する。なお、冷却条件や電流印加条件は実施例1と同様である。
(Example 5)
Next, Example 5 will be described. In the fifth embodiment, compared with the first embodiment, the first battery group 10A and the second battery group 10B are arranged vertically as shown in FIG. It differs in that it is brought into contact with the bottom surface of the housing 5 . The results of the temperature rise of battery pack 100 are shown in FIG. The cooling conditions and current application conditions are the same as in the first embodiment.

(実施例6)
続いて実施例6について説明する。実施例6は実施例2と比較して、第一の電池群と第二の電池群を図4のように縦置きにし、電池群を構成する蓄電池の幅狭側面を電池パック100の筐体5の底面に接触させた点が異なる。また、本実施例では熱伝導部材4の厚みは実施例2と同様、厚さ3mmのものと厚さ15mmのものを2つ用意し、それぞれの測定結果を図10に示す。なお、冷却条件や電流印加条件は実施例1と同様である。
(Example 6)
Next, Example 6 will be described. In the sixth embodiment, as compared with the second embodiment, the first battery group and the second battery group are arranged vertically as shown in FIG. The difference is that the bottom surface of 5 is brought into contact. In addition, in this embodiment, two thicknesses of the thermally conductive member 4, one having a thickness of 3 mm and the other having a thickness of 15 mm, are prepared in the same manner as in the second embodiment, and the respective measurement results are shown in FIG. The cooling conditions and current application conditions are the same as in the first embodiment.

(実施例7)
続いて実施例7について説明する。本実施例は実施例1から6とは異なり、蓄電池1をそれぞれ6直列にした第一の電池群と第二の電池群を互いに直列に接続し、蓄電池1の底面が電池パック100の筐体の底面5bと接触するように設けられた構造となっている。なお、本実施形態でも第一の電池群10Aと第二の電池群10Bの間には熱伝導部材4を配置する。熱伝導部材4に板厚15mmのアルミニウム平板を用いている。電池パック100の温度上昇の結果は図11に記載する。なお、冷却条件や電流印加条件は実施例1と同様である。
(Example 7)
Next, Example 7 will be described. This embodiment differs from Embodiments 1 to 6 in that a first battery group and a second battery group in which six storage batteries 1 are connected in series are connected in series, and the bottom surface of the storage battery 1 is the housing of the battery pack 100. It has a structure provided so as to be in contact with the bottom surface 5b of the. Note that the heat conducting member 4 is arranged between the first battery group 10A and the second battery group 10B in this embodiment as well. An aluminum flat plate having a thickness of 15 mm is used as the heat conducting member 4 . The results of the temperature rise of battery pack 100 are shown in FIG. The cooling conditions and current application conditions are the same as in the first embodiment.

(比較例1)
続いて比較例1について説明する。比較例1は実施例1から7とは異なり、電池群を2つに分けず、単一の電池群として積層させている点が異なる。
(Comparative example 1)
Next, Comparative Example 1 will be described. Comparative Example 1 is different from Examples 1 to 7 in that the battery group is not divided into two but is stacked as a single battery group.

図6は比較例1の電池パック100の図である。12個の電池1を直列につなげることで単一の電池群とし、それを単電池1の幅広面1aが筐体5の底面5bに接触するように配置している。電池パック100の温度上昇の結果は図8及び図9に記載する。なお、冷却条件や電流印加条件は実施例1と同様である。 FIG. 6 is a diagram of a battery pack 100 of Comparative Example 1. FIG. A single battery group is formed by connecting 12 batteries 1 in series, and is arranged so that the wide surface 1 a of the single battery 1 is in contact with the bottom surface 5 b of the housing 5 . The results of the temperature rise of the battery pack 100 are shown in FIGS. 8 and 9. FIG. The cooling conditions and current application conditions are the same as in the first embodiment.

(比較例2)
続いて比較例2について説明する。比較例2は実施例1から7とは異なり、電池群を2つに分けず、単一の電池群として積層させており、さらに単電池1の幅狭面1bが筐体5の底面5bと接触している点が異なる。
(Comparative example 2)
Next, Comparative Example 2 will be described. Comparative Example 2 differs from Examples 1 to 7 in that the battery group is not divided into two but is stacked as a single battery group, and the narrow surface 1b of the unit cell 1 and the bottom surface 5b of the housing 5 are stacked. The difference is the point of contact.

図7は比較例2の電池パック100の図である。12個の電池を直列につなげることで
単一の電池群とし、それを単電池1の幅狭面1bが筐体5の底面5bに接触するように配置している。電池パック100の温度上昇の結果は図10及び図11に記載する。なお、冷却条件や電流印加条件は実施例1と同様である。以下、実施例と比較例の結果に基づき本特許の効果を説明する。
FIG. 7 is a diagram of a battery pack 100 of Comparative Example 2. FIG. A single battery group is formed by connecting 12 batteries in series, and is arranged so that the narrow surface 1b of the unit cell 1 is in contact with the bottom surface 5b of the housing 5. As shown in FIG. The results of the temperature rise of the battery pack 100 are shown in FIGS. 10 and 11. FIG. The cooling conditions and current application conditions are the same as in the first embodiment. The effects of this patent will be described below based on the results of Examples and Comparative Examples.

本実施例や比較例に示す条件を電池群に与えた結果、電池群の温度はほぼ定常状態に達した際に、環境温度に比べて電池温度が上昇した。図8~11は、電池群中の各単電池が、環境温度に対する上昇温度を、温度上昇が最も小さかった単電池の上昇温度との比率を電池毎に示した図である。図中のセルNoは、それぞれの実施例や比較例に対応する図に記載されているセルNoと対応している。この際、実施例における二つの電池群について、電池群同士で対向した場所に存在する単電池同士は、温度がほぼ同じであったために簡単のために記載を省略した。以下に各図の結果について詳細に説明する。 As a result of applying the conditions shown in this example and comparative example to the battery group, when the temperature of the battery group reached a steady state, the battery temperature increased compared to the environmental temperature. 8 to 11 are diagrams showing, for each cell in the battery group, the ratio of the temperature rise with respect to the environmental temperature to the temperature rise of the cell with the smallest temperature rise. The cell numbers in the figure correspond to the cell numbers described in the figures corresponding to the respective examples and comparative examples. At this time, for the two battery groups in the example, since the temperature of the unit cells present in the locations facing each other in the battery groups was substantially the same, the description is omitted for the sake of simplicity. The results of each figure will be explained in detail below.

図8には比較例1とおなじく平置きにした電池配置に対し本発明を適用した例である、実施例1~2の構成の温度上昇比率を示す。図から従来の構成である比較例では電池を積層させた中心部分であるセルNo.7の温度が最大となる事が分かる。これはセルNo.7付近の電池では、周囲の電池で発生した熱量が放熱されないため、自身の電池温度だけでなく周囲の電池温度も高くなっており、温度差がつかないために熱が流れにくくなり、結果として電池温度が高くなっているためである。一方で筐体底面に接しているセルNo1の単電池や外部端子が存在するセルNo12の電池は放熱経路が存在するために温度上昇が抑制されている。以上の結果から、セルNo1やセルNo12とセルNo7の上昇温度に差が表れたため、比較例1では同じ電池群の中でも温度上昇比率が大きく変化した。従って比較例1では単電池間の温度に差が表れやすい事が分かる。 FIG. 8 shows the temperature rise ratios of the configurations of Examples 1 and 2, which are examples in which the present invention is applied to the batteries laid flat as in Comparative Example 1. FIG. As can be seen from the figure, in the comparative example, which has a conventional configuration, cell No. 1, which is the central portion of the stacked batteries, is shown. It can be seen that the temperature of 7 is the maximum. This is cell no. In batteries near 7, the heat generated by the surrounding batteries is not radiated, so not only the temperature of the battery itself, but also the temperature of the surrounding batteries is high, and there is no temperature difference, so heat does not flow easily. This is because the battery temperature is high. On the other hand, the temperature rise of the cell No. 1, which is in contact with the bottom surface of the housing, and the battery of cell No. 12, which has an external terminal, are suppressed because of the existence of the heat radiation path. From the above results, a difference in temperature rise between cell No. 1 or cell No. 12 and cell No. 7 was observed. Therefore, it can be seen that in Comparative Example 1, temperature differences between the cells tend to appear.

一方で、図8には同時に、本発明の実施例を示す。本発明では電池間の温度上昇率を同じ配置に存在する全セルにおいて比較することから比較例に比べ全セルにおいて温度上昇率が低減できると分かる。また実施例2に示すように電池群の間に熱伝達部材を配置することでさらにその効果が現れ、電池間の温度差が緩和されることが分かる。これは、外部端子を最も温度が高くなるセルNo6に配置することで効果的に放熱経路が確保できていることを意味している。加えて、実施例2ではAl板を導入することでも放熱経路が確保できるため有効に電池間の上昇温度差を低減できたことが分かる。 On the one hand, FIG. 8 at the same time shows an embodiment of the invention. In the present invention, since the rate of temperature rise between batteries is compared in all cells existing in the same arrangement, it can be seen that the rate of temperature rise in all cells can be reduced compared to the comparative example. Further, it can be seen that disposing the heat transfer member between the battery groups as shown in Example 2 further enhances the effect and alleviates the temperature difference between the batteries. This means that the heat dissipation path can be effectively secured by arranging the external terminal in cell No. 6 where the temperature is the highest. In addition, in Example 2, the introduction of the Al plate also ensured a heat radiation path, so it can be seen that the temperature rise difference between the batteries could be effectively reduced.

図9には比較例1と同じく平置きにした電池構成に対して本発明を適用した例である、実施例3~4の構成の温度上昇率を示す。図から負極集電箔をAlとした場合にも図8で示したのと同様に、電池間の温度差が緩和される傾向があることが分かる。図9で起きた熱挙動は図8で起きたのと同じ現象に起因するものである。 FIG. 9 shows the temperature rise rates of the configurations of Examples 3 and 4, which are examples in which the present invention is applied to the battery configuration in which the battery is laid flat as in Comparative Example 1. In FIG. It can be seen from the figure that even when the negative electrode current collector foil is made of Al, the temperature difference between the batteries tends to be alleviated in the same manner as shown in FIG. The thermal behavior that occurs in FIG. 9 is due to the same phenomenon that occurred in FIG.

図10は比較例2と同じく縦置きにした電池構成に対して本発明を適用した例である、実施例5~6の構成を示す。図から、従来の構成である比較例では電池を積層させた中心部分であるセルNo.6の温度が最大となる事が分かる。ここで起きている温度上昇は図8に示した比較例1であらわれた挙動と同じ現象に起因するものである。 FIG. 10 shows the configurations of Examples 5 and 6, which are examples in which the present invention is applied to the vertically arranged battery configuration as in Comparative Example 2. FIG. From the figure, it can be seen that in the comparative example, which has a conventional configuration, the cell No. 1, which is the central portion where the batteries are stacked, is located. It can be seen that the temperature of 6 is the maximum. The temperature rise that occurs here is caused by the same phenomenon as the behavior that appeared in Comparative Example 1 shown in FIG.

更に図から、縦置きとした場合にも図8~9と同様に電池間の温度差が緩和されることが分かる。平置きではなく縦置きにした場合も、長側面の中心付近の温度が高くなる傾向がある。その部分に外部端子および外部端子を配置することで、図8,9と同様の効果が得られ、上昇温度差が低減できたと分かる。 Further, from the figure, it can be seen that the temperature difference between the batteries is alleviated even when the batteries are placed vertically, as in FIGS. The temperature near the center of the long side surface also tends to be high when it is placed vertically instead of horizontally. It can be seen that by arranging the external terminal and the external terminal in that portion, the same effect as in FIGS. 8 and 9 can be obtained, and the temperature rise difference can be reduced.

図11は比較例2と同じく縦置きにした電池構成に対して、実施例7に示した構成で本発明を適用した場合の温度差を比較する。図から、本発明でも温度差が緩和される傾向があることが分かる。実施例7でも、電池温度が最も高温となるセルNo6に外部端子を設置することで電池群外部に有効に放熱できたためであると分かる。 FIG. 11 compares the temperature difference in the case where the present invention is applied in the configuration shown in Example 7 with respect to the battery configuration in which the batteries are placed vertically as in Comparative Example 2. In FIG. From the figure, it can be seen that the temperature difference tends to be moderated in the present invention as well. It can be seen that in Example 7 as well, heat was effectively dissipated to the outside of the battery group by installing an external terminal in cell No. 6, which has the highest battery temperature.

本発明に記載の電池パックは、電池缶側面(1a、1b)と電池缶側面(1a、1b)とつながる電池缶底面(1c)を有する蓄電池(1)を複数個前記電池缶側面(1a、1b)を対向させて積層させた第一の電池群(10A)と、電池缶側面(1a、1b)と電池缶側面(1a、1b)とつながる電池缶底面(1c)を有する蓄電池(1)を複数個前記電池缶側面(1a、1b)を対向させて積層させた第二の電池群(10B)と、第一の電池群(10A)及び第二の電池群(10B)を収納する筐体(5)を備え、第一の電池群(10A)と第二の電池群(10B)とは互いに対向面を同士が直接または間接的に熱的に接続されることを特徴とする。このような構造にすることによって、電池群間の温度差を小さくした電池パックを提供することができる。 The battery pack according to the present invention comprises a plurality of storage batteries (1) each having a battery can side surface (1a, 1b) and a battery can bottom surface (1c) connected to the battery can side surface (1a, 1b). 1b) facing each other and stacked, and a storage battery (1) having a battery can side surface (1a, 1b) and a battery can bottom surface (1c) connected to the battery can side surface (1a, 1b). A second battery group (10B) in which a plurality of the battery can sides (1a, 1b) are opposed to each other, and a housing for housing the first battery group (10A) and the second battery group (10B) A body (5) is provided, and the first battery group (10A) and the second battery group (10B) are characterized in that the facing surfaces are directly or indirectly thermally connected to each other. By adopting such a structure, it is possible to provide a battery pack in which the temperature difference between battery groups is reduced.

また、本発明では二つの電池群の幅広面(1a)を筐体(5)の底面と対向させるような構造にした。このような構造にすることによって、冷却面積が大きくなり、幅狭面1bを筐体5と接触させるよりも冷却性能が向上する。 Further, in the present invention, the structure is such that the wide surfaces (1a) of the two battery groups face the bottom surface of the housing (5). With such a structure, the cooling area is increased, and the cooling performance is improved as compared with the case where the narrow surface 1b is brought into contact with the housing 5. FIG.

また、本発明に記載の電池パックでは、電池1の幅広面1aを下にした場合、外部端子3を電池パックの中央側とすることによって、より熱が逃げにくい電池パックの中央側の冷却を、外部端子を介して行うことができる。そのため、より放熱性が向上し、電池群間の温度差を小さくした電池パックを提供することが可能となる。 In addition, in the battery pack according to the present invention, when the wide surface 1a of the battery 1 is placed downward, the external terminals 3 are located at the center of the battery pack, thereby cooling the center of the battery pack from which heat is less likely to escape. , can be done via an external terminal. Therefore, it is possible to provide a battery pack with improved heat dissipation and reduced temperature difference between battery groups.

また、図12に示す通り、本発明に記載の電池パックでは、第一の電池群(10A)と前記第二の電池群(10B)との間には第一の熱伝達部材(6)が配置され、熱伝達部材(6)は、第一の電池群(10A)と第二の電池群(10B)とに互いに密着される。このような構造にすることによって、熱伝達部材により、より熱拡散を促し、電池群間の温度差を小さくした電池パックを提供することができる。なお、図12は図2を上面から見た図である。 Further, as shown in FIG. 12, in the battery pack according to the present invention, the first heat transfer member (6) is provided between the first battery group (10A) and the second battery group (10B). The heat transfer member (6) is placed in close contact with the first battery group (10A) and the second battery group (10B). With such a structure, it is possible to provide a battery pack in which the heat transfer member facilitates heat diffusion and reduces the temperature difference between the battery groups. 12 is a top view of FIG. 2. FIG.

また、本発明に記載の電池パックでは、図13に示す通り、第一の電池群10Aと第二の電池群10Bの両脇に第二の熱伝達部材61及び第三の熱伝達部材62を配置してもよい。この場合、第一の電池群10Aは熱伝達部材6と第二の熱伝達部材61で挟まれ、第二の電池群10Bは熱伝達部材6と第三の熱伝達部材10Bで挟まれることとなり、電池群10A及び10Bの両側でも放熱性が向上し、より電池群間の温度差を小さくした電池パックを提供することが可能となる。 Further, in the battery pack according to the present invention, as shown in FIG. 13, the second heat transfer member 61 and the third heat transfer member 62 are provided on both sides of the first battery group 10A and the second battery group 10B. may be placed. In this case, the first battery group 10A is sandwiched between the heat transfer member 6 and the second heat transfer member 61, and the second battery group 10B is sandwiched between the heat transfer member 6 and the third heat transfer member 10B. , the heat dissipation is improved on both sides of the battery groups 10A and 10B, and it is possible to provide a battery pack in which the temperature difference between the battery groups is further reduced.

また、本発明に記載の電池パックでは、第二の熱伝達部材61と第三の熱伝達部材62が共に第一の熱伝達部材6よりも幅が大きなものを用いる構造となっている。このような構造にすることによって、筐体5と熱伝達部材61及び62をねじ等で止められるだけ大きな構造となり、筐体5と熱伝達部材61、62をよりしっかりと密着させることができる。そのため、電池1の発熱をより筐体5に伝達しやすくなり、冷却性能が向上した電池パックを提供することが可能となる。 Moreover, the battery pack according to the present invention has a structure in which both the second heat transfer member 61 and the third heat transfer member 62 are wider than the first heat transfer member 6 . With such a structure, the housing 5 and the heat transfer members 61 and 62 can be fixed to each other with screws or the like. Therefore, the heat generated by the battery 1 can be more easily transferred to the housing 5, making it possible to provide a battery pack with improved cooling performance.

また、本発明に記載の電池パックでは、図14に示すように他の形態として、第一の熱伝達部材6が第二の熱伝達部材61及び第三の熱伝達部材62よりも厚みが厚くなっている。このような構造にすることによって、最も放熱性が悪くなる二つの電池群間において、より熱拡散が促進され、冷却性能が向上した電池パックを提供することが可能となる。なお、本発明においては、上述した電池1の幅広面1aを筐体5の底面と接触させるタイプの電池パックが、電池群間や単電池間に冷却風を流さないような自然冷却で使用した場合に非常に効果を発揮する。したがって、本発明は電池1を横置きにする構造に非常に適した発明となっている。また、本発明は、幅広面と幅狭面とからなる直方体に、夫々、形成されてなる複数の蓄電池を、前記幅広面を互いに対向させて積層させた電池群であって、第一の電池群と第二の電池群とを備え、前記第一の電池群と前記第二の電池群とを並べて、前記蓄電池の幅狭面が対向するように、筐体に収納させた電池パックであって、前記第一の電池群と前記第二の電池群との間には第一の熱伝達部材が配置され、前記第一の熱伝達部材は、前記第一の電池群と前記第二の電池群とに互いに密着され、前記第一の電池群と前記第二の電池群夫々の上面の蓄電池において、前記電池パックの中央側に、当該第一の電池群と当該第二の電池群夫々を前記筐体内の電子回路に接続する外部端子を設け、当該外部端子を介して放熱されるようにした電池パックであり、本発明は、さらにまた、この電池パックにおいて、第二の熱伝達部材と、第三の熱伝達部材を有し、前記第一の電池群は前記第一の熱伝達部材と前記第二の熱伝達部材に挟持され、前記第二の電池群は、前記第一の熱伝達部材と前記第三の熱伝達部材に挟持され、前記第二の熱伝達部材及び前記第三の熱伝達部材は、前記第一の熱伝達部材よりも厚さが厚いことを特徴とする電池パックであり、本発明は、また、さらに、前記第一の電池群は前記第一の熱伝達部材と前記第二の熱伝達部材に挟持され、前記第二の電池群は、前記第一の熱伝達部材と前記第三の熱伝達部材に挟持され、前記第一の熱伝達部材は、前記第二の熱伝達部材及び前記第三の熱伝達部材よりも厚さが薄いことを特徴とする電池パックである。 In the battery pack according to the present invention, as shown in FIG. 14, the first heat transfer member 6 is thicker than the second heat transfer member 61 and the third heat transfer member 62. It's becoming By adopting such a structure, it is possible to provide a battery pack with improved cooling performance by further promoting heat diffusion between the two battery groups with the worst heat dissipation. In the present invention, the battery pack of the type in which the wide surface 1a of the battery 1 is in contact with the bottom surface of the housing 5 is used for natural cooling such that cooling air does not flow between the battery groups or between the cells. Very effective in case. Therefore, the present invention is very suitable for a structure in which the battery 1 is laid horizontally. Further, the present invention relates to a battery group in which a plurality of storage batteries each formed in a rectangular parallelepiped having a wide surface and a narrow surface are stacked with the wide surfaces facing each other, the first battery comprising: A battery pack comprising a battery group and a second battery group, wherein the first battery group and the second battery group are arranged side by side and housed in a housing such that the narrow sides of the storage batteries face each other. A first heat transfer member is disposed between the first battery group and the second battery group, and the first heat transfer member is disposed between the first battery group and the second battery group. The first battery group and the second battery group are placed on the center side of the battery pack in the storage batteries on the upper surfaces of the first battery group and the second battery group, respectively. is provided with an external terminal for connecting to an electronic circuit in the housing, and heat is dissipated through the external terminal. and a third heat transfer member, the first battery group is sandwiched between the first heat transfer member and the second heat transfer member, and the second battery group is connected to the first heat transfer member It is sandwiched between a heat transfer member and the third heat transfer member, and the second heat transfer member and the third heat transfer member are thicker than the first heat transfer member. The battery pack according to the present invention is further characterized in that the first battery group is sandwiched between the first heat transfer member and the second heat transfer member, and the second battery group is sandwiched between the heat transfer member and the third heat transfer member, and the first heat transfer member is thinner than the second heat transfer member and the third heat transfer member It is a battery pack that

以上、本発明の実施形態について詳述したが、本発明は、前記の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の精神を逸脱しない範囲で、種々の設計変更を行うことができるものである。例えば、前記した実施の形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。さらに、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 Although the embodiments of the present invention have been described in detail above, the present invention is not limited to the above-described embodiments, and various designs can be made without departing from the spirit of the invention described in the claims. Changes can be made. For example, the above-described embodiments have been described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the described configurations. Also, part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Furthermore, it is possible to add, delete, or replace part of the configuration of each embodiment with another configuration.

1 単電池
2 配線
3 外部端子
4 筐体の底面
5 筐体上面
6、61、62 熱伝達部材
REFERENCE SIGNS LIST 1 cell 2 wiring 3 external terminal 4 bottom surface of housing 5 top surface of housing 6, 61, 62 heat transfer member

Claims (6)

一対の幅広面とそれ以外の幅狭面とからなる直方体に夫々形成されてなる複数の蓄電池を、前記幅広面が互いに対向するようにして筐体に対して積層させた、第一の電池群及び第二の電池群と、
金属の熱伝達部材と、を備え、
前記一対の幅広面以外の幅狭面は、
外部端子を有する第1の幅狭面と、
当該第1の幅狭面に対向する第2の幅狭面と、
当該第1の幅狭面と第2の幅狭面以外の側面としての第3の幅狭面とからなり、
前記第一の電池群と前記第二の電池群とを、前記熱伝達部材を介するように、前記第一の電池群に於ける前記第3の幅狭面と、前記第二の電池群に於ける前記第3の幅狭面とを相対するようにして前記筐体に収容させた、
ことを特徴とする電池パック。
A first battery group in which a plurality of storage batteries each formed as a rectangular parallelepiped having a pair of wide surfaces and other narrow surfaces are stacked on a housing such that the wide surfaces face each other. and a second battery group,
a metal heat transfer member;
Narrow surfaces other than the pair of wide surfaces,
a first narrow surface having external terminals;
a second narrow surface facing the first narrow surface;
Consisting of a third narrow surface as a side surface other than the first narrow surface and the second narrow surface,
The first battery group and the second battery group are connected to the third narrow surface of the first battery group and the second battery group through the heat transfer member. housed in the housing so as to face the third narrow surface in
A battery pack characterized by:
一対の幅広面とそれ以外の幅狭面とからなる直方体に夫々形成されてなる複数の蓄電池を、前記幅広面が互いに対向するようにして筐体に対して積層させた、第一の電池群及び第二の電池群と、
熱伝達部材と、を備える電池パックであって
前記一対の幅広面以外の幅狭面は、
外部端子を有する第1の幅狭面と、
当該第1の幅狭面に対向する第2の幅狭面と、
当該第1の幅狭面と第2の幅狭面以外の側面としての第3の幅狭面とからなり、
前記第一の電池群と前記第二の電池群とを、前記熱伝達部材を介するように、前記第一の電池群に於ける前記第3の幅狭面と、前記第二の電池群に於ける前記第3の幅狭面とを相対するようにして前記筐体に収容させ、
前記電池パックの中央側において、前記第一の電池群及び前記第二の電池群の夫々と電池外機器とを接続する端子を、前記蓄電池に前記外部端子とは別に設けた、
ことを特徴とする電池パック。
A first battery group in which a plurality of storage batteries each formed as a rectangular parallelepiped having a pair of wide surfaces and other narrow surfaces are stacked on a housing such that the wide surfaces face each other. and a second battery group,
A battery pack comprising a heat transfer member,
Narrow surfaces other than the pair of wide surfaces,
a first narrow surface having external terminals;
a second narrow surface facing the first narrow surface;
Consisting of a third narrow surface as a side surface other than the first narrow surface and the second narrow surface,
The first battery group and the second battery group are connected to the third narrow surface of the first battery group and the second battery group through the heat transfer member. Housed in the housing so as to face the third narrow surface in
Terminals for connecting the first battery group and the second battery group to a device outside the battery are provided on the storage battery separately from the external terminal on the central side of the battery pack,
A battery pack characterized by:
請求項1又は2記載の電池パックにおいて、
前記電池群の蓄電池は隣接する蓄電池と接続部材により接続されている、ことを特徴とする電池パック。
The battery pack according to claim 1 or 2,
A battery pack, wherein the storage batteries of the battery group are connected to adjacent storage batteries by connecting members.
請求項1乃至3の何れか一項記載の電池パックにおいて、
前記第一の電池群の蓄電池の第1の幅狭面と、前記第二の電池群の蓄電池の第1の幅狭面とは同じ側に面している、ことを特徴とする電池パック。
The battery pack according to any one of claims 1 to 3,
A battery pack, wherein the first narrow faces of the batteries of the first battery group and the first narrow faces of the batteries of the second battery group face the same side.
請求項1乃至4の何れか一項記載の電池パックにおいて、
前記幅広面が前記筐体と対向して配置される前記蓄電池を有する、ことを特徴とする電池パック。
The battery pack according to any one of claims 1 to 4,
A battery pack, comprising: the storage battery arranged so that the wide surface faces the housing.
一対の幅広面とそれ以外の幅狭面とからなる直方体に夫々形成されてなる複数の蓄電池を、前記幅広面が互いに対向するようにして筐体に対して積層させた、第一の電池群及び第二の電池群と、
熱伝達部材と、を備える電池パックであって
前記一対の幅広面以外の幅狭面は、
外部端子を有する第1の幅狭面と、
当該第1の幅狭面に対向する第2の幅狭面と、
当該第1の幅狭面と第2の幅狭面以外の側面としての第3の幅狭面とからなり、
前記第一の電池群と前記第二の電池群とを、前記熱伝達部材を介するように、前記第一の電池群に於ける前記第3の幅狭面と、前記第二の電池群に於ける前記第3の幅狭面とを相対するようにして前記筐体に収容させ、
前記電池パックの中央側において、前記第一の電池群及び前記第二の電池群夫々の端面に位置する前記蓄電池の外部端子と接続し、当該第一の電池群及び当該第二の電池群夫々と電池外機器とを接続する端子を設けた、
ことを特徴とする電池パック。
A first battery group in which a plurality of storage batteries each formed as a rectangular parallelepiped having a pair of wide surfaces and other narrow surfaces are stacked on a housing such that the wide surfaces face each other. and a second battery group,
A battery pack comprising a heat transfer member,
Narrow surfaces other than the pair of wide surfaces,
a first narrow surface having external terminals;
a second narrow surface facing the first narrow surface;
Consisting of a third narrow surface as a side surface other than the first narrow surface and the second narrow surface,
The first battery group and the second battery group are connected to the third narrow surface of the first battery group and the second battery group through the heat transfer member. Housed in the housing so as to face the third narrow surface in
Connected to the external terminals of the storage battery located on the end faces of the first battery group and the second battery group respectively on the central side of the battery pack, the first battery group and the second battery group Provided with a terminal to connect each and the device outside the battery,
A battery pack characterized by:
JP2021045251A 2021-03-18 2021-03-18 battery pack Active JP7111857B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021045251A JP7111857B2 (en) 2021-03-18 2021-03-18 battery pack
JP2021070680A JP2021108295A (en) 2021-03-18 2021-04-19 Battery pack
JP2022142590A JP2022168098A (en) 2021-03-18 2022-09-07 battery pack

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021045251A JP7111857B2 (en) 2021-03-18 2021-03-18 battery pack

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017064157A Division JP6856423B2 (en) 2017-03-29 2017-03-29 Battery pack

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2021070680A Division JP2021108295A (en) 2021-03-18 2021-04-19 Battery pack

Publications (2)

Publication Number Publication Date
JP2021093383A JP2021093383A (en) 2021-06-17
JP7111857B2 true JP7111857B2 (en) 2022-08-02

Family

ID=76313232

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2021045251A Active JP7111857B2 (en) 2021-03-18 2021-03-18 battery pack
JP2021070680A Pending JP2021108295A (en) 2021-03-18 2021-04-19 Battery pack
JP2022142590A Pending JP2022168098A (en) 2021-03-18 2022-09-07 battery pack

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2021070680A Pending JP2021108295A (en) 2021-03-18 2021-04-19 Battery pack
JP2022142590A Pending JP2022168098A (en) 2021-03-18 2022-09-07 battery pack

Country Status (1)

Country Link
JP (3) JP7111857B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003331812A (en) 2002-05-10 2003-11-21 Japan Storage Battery Co Ltd Battery pack for electric vehicle
JP2014203747A (en) 2013-04-08 2014-10-27 株式会社Gsユアサ Power storage element module
JP5630431B2 (en) 2011-12-13 2014-11-26 株式会社デンソー Assembled battery
JP5835098B2 (en) 2012-05-17 2015-12-24 株式会社デンソー Assembled battery
JP5933344B2 (en) 2012-05-31 2016-06-08 三洋電機株式会社 Power supply

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003249205A (en) * 2002-02-26 2003-09-05 Toyota Motor Corp Collective battery and battery system
JP5618411B2 (en) * 2010-12-13 2014-11-05 株式会社リチウムエナジージャパン Battery module
JP5811796B2 (en) * 2011-11-18 2015-11-11 株式会社デンソー Assembled battery
JP5993615B2 (en) * 2012-05-22 2016-09-14 日立オートモティブシステムズ株式会社 Power storage module
JP6128047B2 (en) * 2014-04-09 2017-05-17 トヨタ自動車株式会社 Battery pack
US10593913B2 (en) * 2015-06-30 2020-03-17 Gs Yuasa International Ltd. Energy storage apparatus for suppressing adverse effects exerted on circuit boards
JP2017027796A (en) * 2015-07-22 2017-02-02 株式会社豊田自動織機 Battery module and battery pack

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003331812A (en) 2002-05-10 2003-11-21 Japan Storage Battery Co Ltd Battery pack for electric vehicle
JP5630431B2 (en) 2011-12-13 2014-11-26 株式会社デンソー Assembled battery
JP5835098B2 (en) 2012-05-17 2015-12-24 株式会社デンソー Assembled battery
JP5933344B2 (en) 2012-05-31 2016-06-08 三洋電機株式会社 Power supply
JP2014203747A (en) 2013-04-08 2014-10-27 株式会社Gsユアサ Power storage element module

Also Published As

Publication number Publication date
JP2021108295A (en) 2021-07-29
JP2022168098A (en) 2022-11-04
JP2021093383A (en) 2021-06-17

Similar Documents

Publication Publication Date Title
CN107369863B (en) Subassembly and battery pack having the same
CA2591190C (en) Process for preparation of secondary battery module
JP2000164186A (en) Storage battery
KR102026386B1 (en) Battery module
US11843101B2 (en) Battery pack
JP2023535774A (en) Battery module and battery pack containing same
JP7258410B2 (en) Battery module and battery pack containing same
JP6860449B2 (en) Battery module
KR20150036897A (en) Battery Module Having Metal Printed Circuit Board
JP7111857B2 (en) battery pack
US20220238934A1 (en) Battery Module and Battery Pack Including the Same
JP6817129B2 (en) Battery pack
CN220121952U (en) Battery module and battery pack including the same
CN216362150U (en) Battery module and battery pack including the same
US20240178474A1 (en) Battery module and battery pack including the same
JP7099807B2 (en) Battery pack
JP2023530687A (en) Battery modules and battery packs containing the same
KR20240062815A (en) Battery pack and device including the same
JP2023521905A (en) Battery module with improved cooling performance and manufacturing method thereof
JP2024510820A (en) Battery module and battery pack containing it
KR20230036864A (en) Battery module and battery pack including the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210419

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210419

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20210517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210706

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210902

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220105

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220307

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220506

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220628

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220721

R150 Certificate of patent or registration of utility model

Ref document number: 7111857

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150