JP7507799B2 - 超伝導デバイスにおける温度分布のマッピング - Google Patents
超伝導デバイスにおける温度分布のマッピング Download PDFInfo
- Publication number
- JP7507799B2 JP7507799B2 JP2021577496A JP2021577496A JP7507799B2 JP 7507799 B2 JP7507799 B2 JP 7507799B2 JP 2021577496 A JP2021577496 A JP 2021577496A JP 2021577496 A JP2021577496 A JP 2021577496A JP 7507799 B2 JP7507799 B2 JP 7507799B2
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- computer
- computing device
- quantum computing
- component
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000009826 distribution Methods 0.000 title claims description 78
- 238000013507 mapping Methods 0.000 title description 5
- 238000000034 method Methods 0.000 claims description 71
- 230000015654 memory Effects 0.000 claims description 66
- 238000004590 computer program Methods 0.000 claims description 23
- 238000004088 simulation Methods 0.000 claims description 18
- 238000005259 measurement Methods 0.000 claims description 12
- 238000005457 optimization Methods 0.000 claims description 9
- 230000008859 change Effects 0.000 claims description 8
- 230000008707 rearrangement Effects 0.000 claims description 5
- 238000003860 storage Methods 0.000 description 54
- 238000010586 diagram Methods 0.000 description 48
- 230000005540 biological transmission Effects 0.000 description 39
- 238000012545 processing Methods 0.000 description 31
- 230000006870 function Effects 0.000 description 24
- 230000008569 process Effects 0.000 description 13
- 238000004891 communication Methods 0.000 description 12
- 238000005516 engineering process Methods 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 238000005305 interferometry Methods 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 5
- 239000000835 fiber Substances 0.000 description 5
- 238000007726 management method Methods 0.000 description 5
- 230000003287 optical effect Effects 0.000 description 5
- 230000008520 organization Effects 0.000 description 4
- 230000001902 propagating effect Effects 0.000 description 4
- 230000004044 response Effects 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- 230000001413 cellular effect Effects 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 238000000691 measurement method Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 230000003068 static effect Effects 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 230000001360 synchronised effect Effects 0.000 description 3
- 238000003491 array Methods 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- 230000017525 heat dissipation Effects 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000005055 memory storage Effects 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 230000006855 networking Effects 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 229920001690 polydopamine Polymers 0.000 description 2
- 239000002096 quantum dot Substances 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 238000012384 transportation and delivery Methods 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000003466 anti-cipated effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000009529 body temperature measurement Methods 0.000 description 1
- 230000009172 bursting Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000012517 data analytics Methods 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000003340 mental effect Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000010955 niobium Substances 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000013439 planning Methods 0.000 description 1
- 238000011176 pooling Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000002887 superconductor Substances 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K3/00—Thermometers giving results other than momentary value of temperature
- G01K3/08—Thermometers giving results other than momentary value of temperature giving differences of values; giving differentiated values
- G01K3/14—Thermometers giving results other than momentary value of temperature giving differences of values; giving differentiated values in respect of space
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K7/00—Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
- G01K7/42—Circuits effecting compensation of thermal inertia; Circuits for predicting the stationary value of a temperature
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/30—Circuit design
- G06F30/36—Circuit design at the analogue level
- G06F30/367—Design verification, e.g. using simulation, simulation program with integrated circuit emphasis [SPICE], direct methods or relaxation methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N10/00—Quantum computing, i.e. information processing based on quantum-mechanical phenomena
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2119/00—Details relating to the type or aim of the analysis or the optimisation
- G06F2119/08—Thermal analysis or thermal optimisation
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Computer Hardware Design (AREA)
- Evolutionary Computation (AREA)
- General Engineering & Computer Science (AREA)
- Geometry (AREA)
- Computational Mathematics (AREA)
- Artificial Intelligence (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Data Mining & Analysis (AREA)
- Mathematical Analysis (AREA)
- Mathematical Optimization (AREA)
- Pure & Applied Mathematics (AREA)
- Computing Systems (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Superconductor Devices And Manufacturing Methods Thereof (AREA)
Description
ここで、「L」は超伝導共振器のインダクタンスを表すことができ、または「C」は超伝導共振器のキャパシタンスを表すことができ、あるいはその両方とすることができる。
LT0=L+Lk(0) (3)
ここで、「Lk(0)」は、0Kの基準温度での超伝導共振器のカイネティック・インダクタンスを表すことができる。
LT=L+Lk(T) (5)
ここで、「T」は、超伝導共振器の動作温度(たとえば、1つまたは複数の量子コンピューティング・デバイス・レイアウトの動作中に超伝導共振器が到達した温度)を表すことができ、または「Lk(T)」は、動作温度で超伝導共振器が経験するカイネティック・インダクタンスを表すことができ、あるいはその両方とすることができる。
ここで、「kb」はボルツマン定数を表すことができ、
はプランク定数を表すことができ、「Terr」は(たとえば、動作周波数の測定を容易にするために)1つまたは複数の超伝導共振器に印加されるマイクロ波信号に起因する量子エネルギー変動に基づく温度測定誤差の上限を表すことができ、または「Tc」は超伝導材料の臨界温度(たとえば、材料が超伝導体になる温度)を表すことができ、あるいはそれらの組合せとすることができる。また、温度はケルビンの単位で表すことができる。
Claims (8)
- 超伝導量子プロセッサによって示された温度分布を識別するためのシステムであって、
前記システムが、
コンピュータ実行可能コンポーネントを格納するメモリと、
前記メモリに動作可能に結合され、前記メモリに格納された前記コンピュータ実行可能コンポーネントを実行するプロセッサとを備え、前記コンピュータ実行可能コンポーネントが、
量子コンピューティング・デバイスのレイアウト内に含まれている超伝導共振器の位置に基づいて、複数の温度領域を定義する領域コンポーネントと、
前記量子コンピューティング・デバイスのレイアウトの動作中に前記複数の温度領域内で達成された少なくとも1つの温度を決定することによって温度分布を特徴付けるマップを生成するマップ・コンポーネントと、
基準温度で前記超伝導共振器によって示された推定周波数を決定するシミュレーション・コンポーネントと、
前記量子コンピューティング・デバイスの前記動作中に前記超伝導共振器によって示された実際の周波数を測定する測定コンポーネントと、
カイネティック・インダクタンスにおける変化に起因する、前記超伝導共振器によって示された周波数シフトに基づいて、前記複数の温度領域内で達成された少なくとも1つの温度を決定する温度推定コンポーネントと、
を含む、システム。 - 前記領域コンポーネントが、前記超伝導共振器の位置に基づいて、前記量子コンピューティング・デバイスのレイアウトを前記複数の温度領域に分割する、請求項1に記載のシステム。
- 前記少なくとも1つの温度が、定義されたしきい値以下だけ異なる複数の温度を含んでいるかどうかを判定する最適化コンポーネントをさらに備える、請求項1または2に記載のシステム。
- 超伝導量子プロセッサによって示された温度分布を識別するためのコンピュータ実装方法であって、
プロセッサに動作可能に結合されたシステムによって、量子コンピューティング・デバイスのレイアウト内に含まれている超伝導共振器の位置に基づいて、複数の温度領域を定義することと、
前記システムによって、前記量子コンピューティング・デバイスのレイアウトの動作中に前記複数の温度領域内で達成された少なくとも1つの温度を決定することによって温度分布を特徴付けるマップを生成すること、
前記システムによって、基準温度で前記超伝導共振器によって示された推定周波数を決定することと、
前記システムによって、前記量子コンピューティング・デバイスの前記動作中に前記超伝導共振器によって示された実際の周波数を測定することと、
前記システムによって、カイネティック・インダクタンスにおける変化に起因する、前記超伝導共振器によって示された周波数シフトに基づいて、前記複数の温度領域内で達成された少なくとも1つの温度を決定することと、
を含む、コンピュータ実装方法。 - 前記複数の温度領域を定義することが、前記超伝導共振器の位置に基づいて、前記量子コンピューティング・デバイスのレイアウトを前記複数の温度領域に分割することを含む、請求項4に記載のコンピュータ実装方法。
- 前記システムによって、前記少なくとも1つの温度が、定義されたしきい値以下だけ異なる複数の温度を含んでいるかどうかを判定することをさらに含む、請求項4または5に記載のコンピュータ実装方法。
- 前記少なくとも1つの温度が、定義されたしきい値を超える値だけ異なる前記複数の温度を含み、前記コンピュータ実装方法が、
前記システムによって、前記温度分布を変更するために前記量子コンピューティング・デバイス・レイアウトの特徴の再配置を推奨することをさらに含む、請求項6に記載のコンピュータ実装方法。 - コンピュータ可読媒体に記憶され、デジタル・コンピュータの内部メモリにロード可能なコンピュータ・プログラムであって、前記プログラムをコンピュータ上で動作させた場合に、請求項4ないし7のいずれかに記載の方法を実施するためのソフトウェア・コード部分を含む、コンピュータ・プログラム。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/460,457 US11674854B2 (en) | 2019-07-02 | 2019-07-02 | Mapping temperature distribution in superconducting devices |
US16/460,457 | 2019-07-02 | ||
PCT/EP2020/068402 WO2021001370A1 (en) | 2019-07-02 | 2020-06-30 | Mapping temperature distribution in superconducting devices |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2022538311A JP2022538311A (ja) | 2022-09-01 |
JPWO2021001370A5 JPWO2021001370A5 (ja) | 2022-11-24 |
JP7507799B2 true JP7507799B2 (ja) | 2024-06-28 |
Family
ID=71409419
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021577496A Active JP7507799B2 (ja) | 2019-07-02 | 2020-06-30 | 超伝導デバイスにおける温度分布のマッピング |
Country Status (5)
Country | Link |
---|---|
US (1) | US11674854B2 (ja) |
EP (1) | EP3966726A1 (ja) |
JP (1) | JP7507799B2 (ja) |
CN (1) | CN114072804A (ja) |
WO (1) | WO2021001370A1 (ja) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11674854B2 (en) | 2019-07-02 | 2023-06-13 | International Business Machines Corporation | Mapping temperature distribution in superconducting devices |
US11879789B2 (en) * | 2019-07-02 | 2024-01-23 | International Business Machines Corporation | On-chip thermometer for superconducting quantum computing devices |
US12123786B2 (en) * | 2020-09-16 | 2024-10-22 | The Regents Of The University Of Colorado, A Body Corporate | Cryogenic thermometer based on a two-level systems (TLS) |
Family Cites Families (41)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4869598A (en) | 1988-03-11 | 1989-09-26 | Mcdonald Donald G | Temperature-sensitive multiple-layer thin film superconducting device |
US5309117A (en) | 1993-01-19 | 1994-05-03 | The United States Of America As Represented By The Secretary Of The Army | Superconducting ring resonator microwave oscillator for operating as a remote temperature sensor |
US5818097A (en) | 1995-01-05 | 1998-10-06 | Superconductor Technologies, Inc. | Temperature controlling cryogenic package system |
JP2003309406A (ja) | 2002-04-16 | 2003-10-31 | Murata Mfg Co Ltd | 共振器、フィルタ、複合フィルタ装置、送受信装置、および通信装置 |
JP2005020171A (ja) | 2003-06-24 | 2005-01-20 | Denso Corp | フィルタの周波数調整方法、超伝導バンドパスフィルタの中心周波数調整方法、フィルタおよび超伝導バンドパスフィルタ |
US20060103583A1 (en) | 2004-10-20 | 2006-05-18 | Kleismit Richard A | Evanescent microwave microscopy probe and methodology |
US8674302B2 (en) | 2009-06-01 | 2014-03-18 | The United States Of America As Represented By The Administrator Of The National Aeronautics Space Administration | Superconducting transition edge sensors and methods for design and manufacture thereof |
JP5393888B2 (ja) | 2010-06-28 | 2014-01-22 | 株式会社フジクラ | 超電導線材の常電導転移の検出方法 |
US8519803B2 (en) | 2010-10-29 | 2013-08-27 | Hewlett-Packard Development Company, L.P. | Resonator systems and methods for tuning resonator systems |
US10145743B2 (en) | 2013-03-05 | 2018-12-04 | Teknologian Tutkimuskeskus Vtt Oy | Superconducting thermal detector (bolometer) of terahertz (sub-millimeter wave) radiation |
US10147865B1 (en) | 2013-08-12 | 2018-12-04 | The United States Of America As Represented By The Director Of The National Security Agency | Epitaxial superconducting devices and method of forming same |
US9523777B2 (en) | 2014-04-10 | 2016-12-20 | Uchicago Argonne, Llc | Thermal kinetic inductance detector |
EP3175378B1 (en) | 2014-08-01 | 2021-06-09 | Northrop Grumman Systems Corporation | Superconducting circuit physical layout system and method |
US9383254B1 (en) | 2014-09-25 | 2016-07-05 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Symmetric absorber-coupled far-infrared microwave kinetic inductance detector |
CA2962732C (en) | 2014-10-29 | 2020-02-18 | Northrop Grumman Systems Corporation | Reciprocal quantum logic (rql) circuit synthesis |
US9773088B2 (en) | 2014-11-17 | 2017-09-26 | Teledyne Scientific & Imaging, Llc | Method of modeling the temperature profile of an IC transistor junction |
US10706187B1 (en) | 2015-10-01 | 2020-07-07 | Comsol Ab | Systems and methods for reducing application startup times for physics modeling applications |
WO2017078731A1 (en) | 2015-11-06 | 2017-05-11 | Rigetti & Co., Inc. | Analyzing quantum information processing circuits |
GB2570988B (en) | 2016-05-03 | 2020-04-29 | D Wave Systems Inc | Systems and methods for superconducting devices used in superconducting circuits and scalable computing |
US10984152B2 (en) | 2016-09-30 | 2021-04-20 | Rigetti & Co, Inc. | Simulating quantum systems with quantum computation |
US11531924B2 (en) | 2016-11-24 | 2022-12-20 | Ellen Tuanying Chen | Scale-up toroidal array quantum processing memory device with controllable and adjustable state-switch valves of making and applications thereto |
WO2018104861A1 (en) | 2016-12-05 | 2018-06-14 | 1Qb Information Technologies Inc. | Method for estimating the thermodynamic properties of a quantum ising model with transverse field |
US20170173262A1 (en) | 2017-03-01 | 2017-06-22 | François Paul VELTZ | Medical systems, devices and methods |
EP3642959B1 (en) | 2017-06-19 | 2023-11-08 | Rigetti & Co, LLC | Parametrically activated quantum logic gates |
FI3744001T3 (fi) | 2018-02-27 | 2024-10-31 | D Wave Systems Inc | Järjestelmät ja menetelmät suprajohtavan siirtojohdon kytkemiseksi resonaattoriryhmään |
US20190042966A1 (en) | 2018-05-05 | 2019-02-07 | Justin Hogaboam | Apparatus and method including a thermal noise adaptive scheduler for controlling a quantum computer |
US11308248B2 (en) | 2018-05-05 | 2022-04-19 | Intel Corporation | Apparatus and method for quantum computing performance simulation |
US11374594B2 (en) | 2018-05-05 | 2022-06-28 | Intel Corporation | Apparatus and method including neural network learning to detect and correct quantum errors |
US11105866B2 (en) | 2018-06-05 | 2021-08-31 | D-Wave Systems Inc. | Dynamical isolation of a cryogenic processor |
US11048846B2 (en) | 2018-06-12 | 2021-06-29 | International Business Machines Corporation | Surface participation analysis of superconducting qubits with the boundary element method |
WO2020112185A2 (en) | 2018-08-31 | 2020-06-04 | D-Wave Systems Inc. | Systems and methods for operation of a frequency multiplexed resonator input and/or output for a superconducting device |
US11317519B2 (en) | 2018-10-15 | 2022-04-26 | International Business Machines Corporation | Fabrication of superconducting devices that control direct currents and microwave signals |
US11687814B2 (en) | 2018-12-21 | 2023-06-27 | Internattonal Business Machines Corporation | Thresholding of qubit phase registers for quantum recommendation systems |
US20220131254A1 (en) | 2019-03-03 | 2022-04-28 | The University Of Chicago | Coplanar superconductive millimeter-wave resonator with high kinetic inductance and associated methods |
US10833652B1 (en) | 2019-04-22 | 2020-11-10 | International Business Machines Corporation | Superconducting resonator definition based on one or more attributes of a superconducting circuit |
US11674854B2 (en) | 2019-07-02 | 2023-06-13 | International Business Machines Corporation | Mapping temperature distribution in superconducting devices |
US11879789B2 (en) | 2019-07-02 | 2024-01-23 | International Business Machines Corporation | On-chip thermometer for superconducting quantum computing devices |
US11839164B2 (en) | 2019-08-19 | 2023-12-05 | D-Wave Systems Inc. | Systems and methods for addressing devices in a superconducting circuit |
CN111180848B (zh) | 2020-02-19 | 2024-04-30 | 南京大学 | 用NbN动态电感实现紧凑可调型微波谐振器的装置和方法 |
US11281524B1 (en) | 2020-11-11 | 2022-03-22 | International Business Machines Corporation | Stretch factor error mitigation enabled quantum computers |
US20220328747A1 (en) | 2021-03-31 | 2022-10-13 | Microsoft Technology Licensing, Llc | Temperature sensing of regions within a superconducting integrated circuit using in-situ resonators |
-
2019
- 2019-07-02 US US16/460,457 patent/US11674854B2/en active Active
-
2020
- 2020-06-30 JP JP2021577496A patent/JP7507799B2/ja active Active
- 2020-06-30 EP EP20735568.6A patent/EP3966726A1/en active Pending
- 2020-06-30 CN CN202080048990.XA patent/CN114072804A/zh active Pending
- 2020-06-30 WO PCT/EP2020/068402 patent/WO2021001370A1/en unknown
Non-Patent Citations (3)
Title |
---|
FRUNZIO, Luigi et al.,Fabrication and Characterization of Superconducting Circuit QED Devices for Quantum Computation,IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY,2005年06月,VOL. 15, NO. 2,,pp. 860-863,DOI:10.1109/TASC.2005.850084 |
SONG, Chao et al.,10-Qubit Entanglement and Parallel Logic Operations with a Superconducting Circuit,PHYSICAL REVIEW LETTERS,2017年11月03日,Vol. 119,pp. 180511-1-180511-6,DOI: 10.1103/PhysRevLett.119.180511 |
ZAJAC, Piotr et al.,Impact of floorplanning and thermal vias placement on temperature in 2D and 3D processors,Microelectronics Journal,2016年03月28日,Vol. 52,pp. 40-48,http://dx.doi.org/10.1016/j.mejo.2016.02.013 |
Also Published As
Publication number | Publication date |
---|---|
WO2021001370A1 (en) | 2021-01-07 |
US20210003456A1 (en) | 2021-01-07 |
CN114072804A (zh) | 2022-02-18 |
JP2022538311A (ja) | 2022-09-01 |
EP3966726A1 (en) | 2022-03-16 |
US11674854B2 (en) | 2023-06-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7511587B2 (ja) | 超伝導量子コンピューティング・デバイス用のオンチップ温度計 | |
JP7507799B2 (ja) | 超伝導デバイスにおける温度分布のマッピング | |
US11574254B2 (en) | Adaptive asynchronous federated learning | |
US11687814B2 (en) | Thresholding of qubit phase registers for quantum recommendation systems | |
US20160218922A1 (en) | Requesting storage performance models for a configuration pattern of storage resources to deploy at a client computing environment | |
AU2021379051B2 (en) | Stretch factor error mitigation enabled quantum computers | |
US20200265274A1 (en) | Prior knowledge-based topological feature classification | |
US11049027B2 (en) | Visual summary of answers from natural language question answering systems | |
US11928004B2 (en) | Quantum error mitigation based on scaled gates | |
JP7388800B2 (ja) | 境界要素法を使用した超伝導量子ビットの表面関与解析 | |
US20190166208A1 (en) | Cognitive method for detecting service availability in a cloud environment | |
US11544611B2 (en) | Quantum computation of molecular excited states in the presence of Hamiltonian symmetries | |
JP2024505172A (ja) | コンパイラ支援を有する量子プロセッサアーキテクチャ | |
US20170091348A1 (en) | Intelligent suggestions for rack layout setup | |
US20220012220A1 (en) | Data enlargement for big data analytics and system identification | |
US10572614B2 (en) | Method for efficient localized self-heating analysis using location based DeltaT analysis |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20220512 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20221014 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20221121 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20231219 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20240319 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20240528 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20240618 |