JP7501567B2 - Resin composition - Google Patents

Resin composition Download PDF

Info

Publication number
JP7501567B2
JP7501567B2 JP2022076093A JP2022076093A JP7501567B2 JP 7501567 B2 JP7501567 B2 JP 7501567B2 JP 2022076093 A JP2022076093 A JP 2022076093A JP 2022076093 A JP2022076093 A JP 2022076093A JP 7501567 B2 JP7501567 B2 JP 7501567B2
Authority
JP
Japan
Prior art keywords
resin composition
mass
less
resin
curing agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022076093A
Other languages
Japanese (ja)
Other versions
JP2023165263A (en
Inventor
洋介 中村
真俊 渡邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ajinomoto Co Inc
Original Assignee
Ajinomoto Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ajinomoto Co Inc filed Critical Ajinomoto Co Inc
Priority to JP2022076093A priority Critical patent/JP7501567B2/en
Priority to TW112114681A priority patent/TW202348720A/en
Priority to KR1020230055165A priority patent/KR20230154753A/en
Priority to CN202310489251.XA priority patent/CN116987364A/en
Publication of JP2023165263A publication Critical patent/JP2023165263A/en
Application granted granted Critical
Publication of JP7501567B2 publication Critical patent/JP7501567B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/38Layered products comprising a layer of synthetic resin comprising epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • H01L23/295Organic, e.g. plastic containing a filler
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49866Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers characterised by the materials
    • H01L23/49894Materials of the insulating layers or coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/5329Insulating materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/036Multilayers with layers of different types
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • C08J2363/02Polyglycidyl ethers of bis-phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2463/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2471/00Characterised by the use of polyethers obtained by reactions forming an ether link in the main chain; Derivatives of such polymers
    • C08J2471/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08J2471/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C08J2471/12Polyphenylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2479/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2461/00 - C08J2477/00
    • C08J2479/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2479/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)

Description

本発明は、樹脂組成物及びその製造方法に関する。また、本発明は、前記の樹脂組成物を用いた硬化物、シート状積層材料、樹脂シート、回路基板、半導体チップパッケージ及び半導体装置に関する。 The present invention relates to a resin composition and a method for producing the same. The present invention also relates to a cured product, a sheet-like laminate material, a resin sheet, a circuit board, a semiconductor chip package, and a semiconductor device using the resin composition.

回路基板及び半導体チップパッケージには、一般に、絶縁層が設けられる。例えば、回路基板の一種としてのプリント配線板には、絶縁層として層間絶縁層が設けられることがある。また、例えば、半導体チップパッケージには、絶縁層として再配線形成層が設けられることがある。これらの絶縁層は、樹脂組成物を硬化させて得られる硬化物によって形成されうる(特許文献1~2)。 Circuit boards and semiconductor chip packages are generally provided with an insulating layer. For example, a printed wiring board, which is a type of circuit board, may be provided with an interlayer insulating layer as an insulating layer. Also, for example, a semiconductor chip package may be provided with a rewiring formation layer as an insulating layer. These insulating layers may be formed from a cured product obtained by curing a resin composition (Patent Documents 1 and 2).

特開2020-136542号公報JP 2020-136542 A 特開2020-63392号公報JP 2020-63392 A

近年、回路基板及び半導体チップパッケージの配線の高密度化が進行している。そこで、微細な配線を樹脂組成物で隙間なく埋め込み、半導体装置の高性能化及び高信頼性化を達成する観点から、樹脂組成物の最低溶融粘度を低くできる技術の開発が求められている。 In recent years, the density of wiring on circuit boards and semiconductor chip packages has been increasing. Therefore, there is a demand for the development of technology that can lower the minimum melt viscosity of resin compositions in order to embed fine wiring tightly with a resin composition and achieve high performance and high reliability of semiconductor devices.

本発明は、前記の課題に鑑みて創案されたもので、低い最低溶融粘度を得ることができる樹脂組成物及びその製造方法;当該樹脂組成物の硬化物;当該樹脂組成物を含む、シート状積層材料及び樹脂シート;当該樹脂組成物の硬化物を含む回路基板、半導体チップパッケージ及び半導体装置;を提供することを目的とする。 The present invention has been devised in view of the above problems, and aims to provide a resin composition capable of obtaining a low minimum melt viscosity and a method for producing the same; a cured product of the resin composition; a sheet-like laminate material and a resin sheet containing the resin composition; and a circuit board, a semiconductor chip package, and a semiconductor device containing the cured product of the resin composition.

本発明者は、前記の課題を解決するべく鋭意検討した。その結果、本発明者は、エポキシ樹脂、硬化剤、及び、特定の表面処理を施された無機充填材を組み合わせて含む樹脂組成物が、前記の課題を解決できることを見い出し、本発明を完成させた。
すなわち、本発明は、下記のものを含む。
The present inventors have conducted extensive research to solve the above problems, and as a result, have found that a resin composition containing a combination of an epoxy resin, a curing agent, and an inorganic filler that has been subjected to a specific surface treatment can solve the above problems, thereby completing the present invention.
That is, the present invention includes the following.

[1] (A)エポキシ樹脂、(B)硬化剤、及び、(C)カルボジイミド化合物で表面処理された無機充填材、を含む、樹脂組成物。
[2] カルボジイミド化合物が、下記式(C-1)で表される構造単位を含有する、[1]に記載の樹脂組成物。

Figure 0007501567000001
(式(C-1)において、Yは、置換基を有していてもよい2価の炭化水素基を表す。)
[3] カルボジイミド化合物が、エチレン性不飽和結合を含有する、[1]又は[2]に記載の樹脂組成物。
[4] (C)成分の量が、樹脂組成物の不揮発成分100質量%に対して、50質量%以上である、[1]~[3]のいずれか一項に記載の樹脂組成物。
[5] (B)成分が、活性エステル系硬化剤、フェノール系硬化剤及びシアネートエステル系硬化剤からなる群より選ばれる1種類以上を含む、[1]~[4]のいずれか一項に記載の樹脂組成物。
[6] (D)硬化促進剤を含む、[1]~[5]のいずれか一項に記載の樹脂組成物。
[7] (E)熱可塑性樹脂を含む、[1]~[6]のいずれか一項に記載の樹脂組成物。
[8] 2000poise未満の最低溶融粘度を有する、[1]~[7]のいずれか一項に記載の樹脂組成物。
[9] 樹脂組成物を200℃にて90分間加熱して硬化物を得た場合に、当該硬化物が1%以上の破断点伸度を有する、[1]~[8]のいずれか一項に記載の樹脂組成物。
[10] 樹脂組成物を170℃にて30分間加熱して硬化物を得て、当該硬化物に疎化処理を施した場合に、当該硬化物が300nm未満の算術平均粗さRaを有する、[1]~[9]のいずれか一項に記載の樹脂組成物。
[11] 絶縁層形成用である、[1]~[10]のいずれか一項に記載の樹脂組成物。
[12] [1]~[11]の何れか1項に記載の樹脂組成物の硬化物。
[13] [1]~[11]の何れか1項に記載の樹脂組成物を含む、シート状積層材料。
[14] 支持体と、当該支持体上に形成された樹脂組成物層と、を備え、
樹脂組成物層が、[1]~[11]の何れか1項に記載の樹脂組成物を含む、樹脂シート。
[15] [1]~[11]の何れか1項に記載の樹脂組成物の硬化物を含む、回路基板。
[16] [1]~[11]の何れか1項に記載の樹脂組成物の硬化物を含む、半導体チップパッケージ。
[17] [15]に記載の回路基板を備える、半導体装置。
[18] [16]に記載の半導体チップパッケージを備える、半導体装置。
[19] カルボジイミド化合物及び無機充填材を混合して、(C)カルボジイミド化合物で表面処理された無機充填材を得る第一工程と、
(C)カルボジイミド化合物で表面処理された無機充填材、(A)エポキシ樹脂及び(B)硬化剤を混合する第二工程と、
を含む、樹脂組成物の製造方法。 [1] A resin composition comprising: (A) an epoxy resin; (B) a curing agent; and (C) an inorganic filler that has been surface-treated with a carbodiimide compound.
[2] The resin composition according to [1], wherein the carbodiimide compound contains a structural unit represented by the following formula (C-1):
Figure 0007501567000001
(In formula (C-1), Y represents a divalent hydrocarbon group which may have a substituent.)
[3] The resin composition according to [1] or [2], wherein the carbodiimide compound contains an ethylenically unsaturated bond.
[4] The resin composition according to any one of [1] to [3], wherein the amount of the component (C) is 50% by mass or more based on 100% by mass of the non-volatile components of the resin composition.
[5] The resin composition according to any one of [1] to [4], wherein the component (B) includes at least one selected from the group consisting of an active ester-based curing agent, a phenol-based curing agent, and a cyanate ester-based curing agent.
[6] The resin composition according to any one of [1] to [5], further comprising a curing accelerator (D).
[7] The resin composition according to any one of [1] to [6], further comprising a thermoplastic resin (E).
[8] The resin composition according to any one of [1] to [7], having a minimum melt viscosity of less than 2000 poise.
[9] The resin composition according to any one of [1] to [8], wherein when the resin composition is heated at 200° C. for 90 minutes to obtain a cured product, the cured product has an elongation at break of 1% or more.
[10] The resin composition according to any one of [1] to [9], wherein when the resin composition is heated at 170° C. for 30 minutes to obtain a cured product, and the cured product is subjected to a hydrophobicity treatment, the cured product has an arithmetic average roughness Ra of less than 300 nm.
[11] The resin composition according to any one of [1] to [10], which is for forming an insulating layer.
[12] A cured product of the resin composition according to any one of [1] to [11].
[13] A sheet-like laminate material comprising the resin composition according to any one of [1] to [11].
[14] A support and a resin composition layer formed on the support,
A resin sheet, wherein the resin composition layer comprises the resin composition according to any one of [1] to [11].
[15] A circuit board comprising a cured product of the resin composition according to any one of [1] to [11].
[16] A semiconductor chip package comprising a cured product of the resin composition according to any one of [1] to [11].
[17] A semiconductor device comprising the circuit board according to [15].
[18] A semiconductor device comprising the semiconductor chip package according to [16].
[19] A first step of mixing a carbodiimide compound and an inorganic filler to obtain an inorganic filler surface-treated with a carbodiimide compound (C);
(C) a second step of mixing an inorganic filler surface-treated with a carbodiimide compound, (A) an epoxy resin, and (B) a curing agent;
A method for producing a resin composition comprising the steps of:

本発明によれば、低い最低溶融粘度を得ることができる樹脂組成物及びその製造方法;当該樹脂組成物の硬化物;当該樹脂組成物を含む、シート状積層材料及び樹脂シート;当該樹脂組成物の硬化物を含む回路基板、半導体チップパッケージ及び半導体装置;を提供できる。 The present invention provides a resin composition capable of achieving a low minimum melt viscosity and a method for producing the same; a cured product of the resin composition; a sheet-like laminate material and a resin sheet containing the resin composition; and a circuit board, a semiconductor chip package, and a semiconductor device containing the cured product of the resin composition.

図1は、本発明の一実施形態に係る半導体チップパッケージの一例としてのFan-out型WLPを模式的に示す断面図である。FIG. 1 is a cross-sectional view showing a schematic diagram of a fan-out type WLP as an example of a semiconductor chip package according to an embodiment of the present invention.

以下、本発明について実施形態及び例示物を示して説明する。ただし、本発明は、下記に示す実施形態及び例示物に限定されるものではなく、特許請求の範囲及びその均等の範囲を逸脱しない範囲において任意に変更して実施されうる。 The present invention will be described below with reference to embodiments and examples. However, the present invention is not limited to the embodiments and examples shown below, and may be modified as desired without departing from the scope of the claims and their equivalents.

以下の説明において、化合物又は基についていう「置換基を有していてもよい」という用語は、該化合物又は基の水素原子が置換基で置換されていない場合、及び、該化合物又は基の水素原子の一部又は全部が置換基で置換されている場合の双方を意味する。 In the following description, the term "optionally substituted" in reference to a compound or group means that the hydrogen atoms of the compound or group are not substituted with substituents, and that some or all of the hydrogen atoms of the compound or group are substituted with substituents.

以下の説明において、用語「(メタ)アクリル酸」とは、アクリル酸、メタクリル酸及びその組み合わせを包含する。また、用語「(メタ)アクリレート」とは、アクリレート、メタクリレート及びその組み合わせを包含する。 In the following description, the term "(meth)acrylic acid" includes acrylic acid, methacrylic acid, and combinations thereof. The term "(meth)acrylate" includes acrylate, methacrylate, and combinations thereof.

以下の説明において、用語「誘電率」は、別に断らない限り比誘電率を表す。 In the following description, the term "dielectric constant" refers to the relative dielectric constant unless otherwise specified.

[樹脂組成物の概要]
本発明の一実施形態に係る樹脂組成物は、(A)エポキシ樹脂、(B)硬化剤、及び、(C)カルボジイミド化合物で表面処理された無機充填材、を組み合わせて含む。「(C)カルボジイミド化合物で表面処理された無機充填材」を、以下、「(C)処理充填材」ということがある。
[Overview of Resin Composition]
The resin composition according to one embodiment of the present invention includes, in combination, an epoxy resin (A), a curing agent (B), and an inorganic filler (C) that has been surface-treated with a carbodiimide compound. Hereinafter, the "inorganic filler (C) that has been surface-treated with a carbodiimide compound" may be referred to as the "treated filler (C)."

本発明の一実施形態に係る樹脂組成物は、低い最低溶融粘度を有することができる。また、本発明の一実施形態に係る樹脂組成物によれば、通常は、機械的強度に優れる硬化物を得ることができ、例えば、破断点伸度が大きい硬化物を得ることができる。さらに、本発明の一実施形態に係る樹脂組成物によれば、通常、粗化処理後の表面粗さを小さくすることが可能な硬化物を得ることができる。また、本発明の一実施形態に係る樹脂組成物の硬化物は、通常、比誘電率及び誘電正接等の誘電特性を小さくできる。 The resin composition according to one embodiment of the present invention can have a low minimum melt viscosity. In addition, the resin composition according to one embodiment of the present invention can usually provide a cured product with excellent mechanical strength, for example, a cured product with high elongation at break. Furthermore, the resin composition according to one embodiment of the present invention can usually provide a cured product that can reduce the surface roughness after roughening treatment. In addition, the cured product of the resin composition according to one embodiment of the present invention can usually reduce dielectric properties such as the relative dielectric constant and dielectric loss tangent.

本発明の一実施形態に係る樹脂組成物によって前記のように優れた効果が得られる仕組みを、本発明者は、下記のように推察する。ただし、本発明の範囲は、下記に説明する仕組みに制限されるものではない。 The inventors speculate that the mechanism by which the resin composition according to one embodiment of the present invention provides the above-mentioned excellent effects is as follows. However, the scope of the present invention is not limited to the mechanism described below.

カルボジイミド化合物で表面処理を施されたことにより、(C)処理充填材は、(A)エポキシ樹脂及び(B)硬化剤等の樹脂成分と高い混和性を有することができる。また、カルボジイミド化合物は、通常、(A)エポキシ樹脂と反応でき、さらに、(A)エポキシ樹脂と反応可能な(B)硬化剤等の成分とも反応できる。よって、カルボジイミド化合物で表面処理された(C)処理充填材は、(A)エポキシ樹脂及び(B)硬化剤を含む樹脂組成物において多くの成分と大きな相互作用を得ることができる。したがって、樹脂組成物が高い均一性を有することができるから、溶融状態において高い流動性を発揮でき、よって、最低溶融粘度を低くすることができる。さらに、樹脂組成物が高い均一性を有するので、局所的に組成が異なる部分が形成されることを抑制できる。よって、応力が加えられた場合に当該部分を起点とした破壊を抑制できるから、破断点伸度等の機械的強度を高めることができる。さらに、前記のように局所的に組成が異なる部分の形成を抑制できるので、粗化処理の際に粗化を高い水準で均一に進行させることができる。よって、粗化処理の際、通常は、大きな塊が除かれたり残留したりすることが抑制されるので、表面粗さを小さくすることが可能である。 By being surface-treated with a carbodiimide compound, the (C) treated filler can have high miscibility with resin components such as (A) epoxy resin and (B) hardener. In addition, the carbodiimide compound can usually react with (A) epoxy resin, and can also react with components such as (B) hardener that can react with (A) epoxy resin. Therefore, the (C) treated filler surface-treated with a carbodiimide compound can obtain a large interaction with many components in a resin composition containing (A) epoxy resin and (B) hardener. Therefore, since the resin composition can have high uniformity, it can exhibit high fluidity in a molten state, and therefore the minimum melt viscosity can be reduced. Furthermore, since the resin composition has high uniformity, it is possible to suppress the formation of parts with different compositions locally. Therefore, when stress is applied, it is possible to suppress destruction starting from the part, and therefore it is possible to increase the mechanical strength such as the elongation at break. Furthermore, since it is possible to suppress the formation of parts with different compositions locally as described above, it is possible to proceed with roughening at a high level and uniformly during roughening treatment. Therefore, during roughening treatment, removal or remaining of large lumps is usually suppressed, making it possible to reduce surface roughness.

[(A)エポキシ樹脂]
本発明の一実施形態に係る樹脂組成物は、(A)成分としての(A)エポキシ樹脂を含む。(A)エポキシ樹脂は、エポキシ基を有する硬化性樹脂でありうる。
[(A) Epoxy resin]
The resin composition according to one embodiment of the present invention includes an epoxy resin (A) as component (A). The epoxy resin (A) may be a curable resin having an epoxy group.

(A)エポキシ樹脂としては、例えば、ビキシレノール型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールAF型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、トリスフェノール型エポキシ樹脂、ナフトールノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、tert-ブチル-カテコール型エポキシ樹脂、ナフタレン型エポキシ樹脂、ナフトール型エポキシ樹脂、アントラセン型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ビフェニル型エポキシ樹脂、線状脂肪族エポキシ樹脂、ブタジエン構造を有するエポキシ樹脂、脂環式エポキシ樹脂、複素環式エポキシ樹脂、スピロ環含有エポキシ樹脂、シクロヘキサン型エポキシ樹脂、シクロヘキサンジメタノール型エポキシ樹脂、ナフチレンエーテル型エポキシ樹脂、トリメチロール型エポキシ樹脂、テトラフェニルエタン型エポキシ樹脂、イソシアヌラート型エポキシ樹脂、フェノールフタルイミジン型エポキシ樹脂等が挙げられる。(A)エポキシ樹脂は、1種類単独で用いてもよく、2種類以上を組み合わせて用いてもよい。 (A) Examples of epoxy resins include bixylenol type epoxy resins, bisphenol A type epoxy resins, bisphenol F type epoxy resins, bisphenol S type epoxy resins, bisphenol AF type epoxy resins, dicyclopentadiene type epoxy resins, trisphenol type epoxy resins, naphthol novolac type epoxy resins, phenol novolac type epoxy resins, tert-butyl-catechol type epoxy resins, naphthalene type epoxy resins, naphthol type epoxy resins, anthracene type epoxy resins, glycidylamine type epoxy resins, glycidyl ester type epoxy resins, cresol novolac type epoxy resins, phenol aralkyl type epoxy resins, biphenyl type epoxy resins, linear aliphatic epoxy resins, epoxy resins having a butadiene structure, alicyclic epoxy resins, heterocyclic epoxy resins, spiro ring-containing epoxy resins, cyclohexane type epoxy resins, cyclohexane dimethanol type epoxy resins, naphthylene ether type epoxy resins, trimethylol type epoxy resins, tetraphenylethane type epoxy resins, isocyanurate type epoxy resins, phenolphthalimidine type epoxy resins, etc. (A) The epoxy resin may be used alone or in combination of two or more types.

(A)エポキシ樹脂は、耐熱性に優れる硬化物を得る観点から、芳香族構造を含有するエポキシ樹脂を含むことが好ましい。芳香族構造とは、一般に芳香族と定義される化学構造であり、多環芳香族及び芳香族複素環をも含む。芳香族構造を含有するエポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールAF型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、トリスフェノール型エポキシ樹脂、ナフトールノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、tert-ブチル-カテコール型エポキシ樹脂、ナフタレン型エポキシ樹脂、ナフトール型エポキシ樹脂、アントラセン型エポキシ樹脂、ビシキレノール型エポキシ樹脂、芳香族構造を有するグリシジルアミン型エポキシ樹脂、芳香族構造を有するグリシジルエステル型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、芳香族構造を有する線状脂肪族エポキシ樹脂、芳香族構造を有するブタジエン構造を有するエポキシ樹脂、芳香族構造を有する脂環式エポキシ樹脂、複素環式エポキシ樹脂、芳香族構造を有するスピロ環含有エポキシ樹脂、芳香族構造を有するシクロヘキサンジメタノール型エポキシ樹脂、ナフチレンエーテル型エポキシ樹脂、芳香族構造を有するトリメチロール型エポキシ樹脂、芳香族構造を有するテトラフェニルエタン型エポキシ樹脂等が挙げられる。 From the viewpoint of obtaining a cured product having excellent heat resistance, it is preferable that the (A) epoxy resin contains an epoxy resin containing an aromatic structure. An aromatic structure is a chemical structure generally defined as aromatic, and also includes polycyclic aromatic rings and aromatic heterocycles. Examples of epoxy resins containing an aromatic structure include bisphenol A type epoxy resins, bisphenol F type epoxy resins, bisphenol S type epoxy resins, bisphenol AF type epoxy resins, dicyclopentadiene type epoxy resins, trisphenol type epoxy resins, naphthol novolac type epoxy resins, phenol novolac type epoxy resins, tert-butyl-catechol type epoxy resins, naphthalene type epoxy resins, naphthol type epoxy resins, anthracene type epoxy resins, bisxylenol type epoxy resins, glycidylamine type epoxy resins having an aromatic structure, glycidyl ester type epoxy resins having an aromatic structure, cresol novolac type epoxy resins, biphenyl type epoxy resins, linear aliphatic epoxy resins having an aromatic structure, epoxy resins having a butadiene structure having an aromatic structure, alicyclic epoxy resins having an aromatic structure, heterocyclic epoxy resins, spiro ring-containing epoxy resins having an aromatic structure, cyclohexane dimethanol type epoxy resins having an aromatic structure, naphthylene ether type epoxy resins, trimethylol type epoxy resins having an aromatic structure, and tetraphenylethane type epoxy resins having an aromatic structure.

樹脂組成物は、(A)エポキシ樹脂として、1分子中に2個以上のエポキシ基を有するエポキシ樹脂を含むことが好ましい。(A)エポキシ樹脂の不揮発成分100質量%に対して、1分子中に2個以上のエポキシ基を有するエポキシ樹脂の割合は、好ましくは50質量%以上、より好ましくは60質量%以上、特に好ましくは70質量%以上である。 The resin composition preferably contains, as the epoxy resin (A), an epoxy resin having two or more epoxy groups in one molecule. The proportion of the epoxy resin having two or more epoxy groups in one molecule relative to 100% by mass of the non-volatile components of the epoxy resin (A) is preferably 50% by mass or more, more preferably 60% by mass or more, and particularly preferably 70% by mass or more.

エポキシ樹脂には、温度20℃で液状のエポキシ樹脂(以下「液状エポキシ樹脂」ということがある。)と、温度20℃で固体状のエポキシ樹脂(以下「固体状エポキシ樹脂」ということがある。)とがある。樹脂組成物は、エポキシ樹脂として、液状エポキシ樹脂のみを含んでいてもよく、或いは固体状エポキシ樹脂のみを含んでいてもよく、或いは液状エポキシ樹脂と固体状エポキシ樹脂とを組み合わせて含んでいてもよい。 Epoxy resins include epoxy resins that are liquid at a temperature of 20°C (hereinafter sometimes referred to as "liquid epoxy resins") and epoxy resins that are solid at a temperature of 20°C (hereinafter sometimes referred to as "solid epoxy resins"). The resin composition may contain only liquid epoxy resins as the epoxy resin, or may contain only solid epoxy resins, or may contain a combination of liquid epoxy resins and solid epoxy resins.

液状エポキシ樹脂としては、1分子中に2個以上のエポキシ基を有する液状エポキシ樹脂が好ましい。 Preferably, the liquid epoxy resin has two or more epoxy groups in one molecule.

液状エポキシ樹脂としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールAF型エポキシ樹脂、ナフタレン型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、エステル骨格を有する脂環式エポキシ樹脂、シクロヘキサン型エポキシ樹脂、シクロヘキサンジメタノール型エポキシ樹脂、及びブタジエン構造を有するエポキシ樹脂が好ましい。 Preferred liquid epoxy resins are bisphenol A type epoxy resins, bisphenol F type epoxy resins, bisphenol AF type epoxy resins, naphthalene type epoxy resins, glycidyl ester type epoxy resins, glycidyl amine type epoxy resins, phenol novolac type epoxy resins, alicyclic epoxy resins having an ester skeleton, cyclohexane type epoxy resins, cyclohexane dimethanol type epoxy resins, and epoxy resins having a butadiene structure.

液状エポキシ樹脂の具体例としては、DIC社製の「HP4032」、「HP4032D」、「HP4032SS」(ナフタレン型エポキシ樹脂);三菱ケミカル社製の「828US」、「828EL」、「jER828EL」、「825」、「エピコート828EL」(ビスフェノールA型エポキシ樹脂);三菱ケミカル社製の「jER807」、「1750」(ビスフェノールF型エポキシ樹脂);三菱ケミカル社製の「jER152」(フェノールノボラック型エポキシ樹脂);三菱ケミカル社製の「630」、「630LSD」、「604」(グリシジルアミン型エポキシ樹脂);ADEKA社製の「ED-523T」(グリシロール型エポキシ樹脂);ADEKA社製の「EP-3950L」、「EP-3980S」(グリシジルアミン型エポキシ樹脂);ADEKA社製の「EP-4088S」(ジシクロペンタジエン型エポキシ樹脂);日鉄ケミカル&マテリアル社製の「ZX1059」(ビスフェノールA型エポキシ樹脂とビスフェノールF型エポキシ樹脂の混合品);ナガセケムテックス社製の「EX-721」(グリシジルエステル型エポキシ樹脂);ダイセル社製の「セロキサイド2021P」(エステル骨格を有する脂環式エポキシ樹脂);ダイセル社製の「PB-3600」、日本曹達社製の「JP-100」、「JP-200」(ブタジエン構造を有するエポキシ樹脂);日鉄ケミカル&マテリアル製の「ZX1658」、「ZX1658GS」(液状1,4-グリシジルシクロヘキサン型エポキシ樹脂)等が挙げられる。これらは、1種類単独で用いてもよく、2種類以上を組み合わせて用いてもよい。 Specific examples of liquid epoxy resins include DIC's "HP4032", "HP4032D", and "HP4032SS" (naphthalene type epoxy resins); Mitsubishi Chemical's "828US", "828EL", "jER828EL", "825", and "Epicoat 828EL" (bisphenol A type epoxy resins); Mitsubishi Chemical's "jER807" and "1750" (bisphenol F type epoxy resins); Mitsubishi Chemical's "jER152" (phenol novolac type epoxy resin); Mitsubishi Chemical's "630", "630LSD", and "604" (glycidylamine type epoxy resins); ADEKA's "ED-523T" (glycilol type epoxy resin); ADEKA's "EP-3950L" and "EP-3980S" (glycidylamine type epoxy resin); ADEKA's "EP-4088S" (dicyclopentadiene type epoxy resin); Nippon Steel Chemical & Material's "ZX1059" (mixture of bisphenol A type epoxy resin and bisphenol F type epoxy resin); Nagase Chemtex's "EX-721" (glycidyl ester type epoxy resin); Daicel's "Celloxide 2021P" (alicyclic epoxy resin with ester structure); Daicel's "PB-3600", Nippon Soda's "JP-100" and "JP-200" (epoxy resin with butadiene structure); Nippon Steel Chemical & Material's "ZX1658" and "ZX1658GS" (liquid 1,4-glycidylcyclohexane type epoxy resin). These may be used alone or in combination of two or more types.

固体状エポキシ樹脂としては、1分子中に3個以上のエポキシ基を有する固体状エポキシ樹脂が好ましく、1分子中に3個以上のエポキシ基を有する芳香族系の固体状エポキシ樹脂がより好ましい。 As the solid epoxy resin, a solid epoxy resin having three or more epoxy groups in one molecule is preferable, and an aromatic solid epoxy resin having three or more epoxy groups in one molecule is more preferable.

固体状エポキシ樹脂としては、ビキシレノール型エポキシ樹脂、ナフタレン型エポキシ樹脂、ナフタレン型4官能エポキシ樹脂、ナフトールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、トリスフェノール型エポキシ樹脂、ナフトール型エポキシ樹脂、ビフェニル型エポキシ樹脂、ナフチレンエーテル型エポキシ樹脂、アントラセン型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールAF型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、テトラフェニルエタン型エポキシ樹脂、フェノールフタルイミジン型エポキシ樹脂が好ましい。 Preferred solid epoxy resins are bixylenol type epoxy resins, naphthalene type epoxy resins, naphthalene type tetrafunctional epoxy resins, naphthol novolac type epoxy resins, cresol novolac type epoxy resins, dicyclopentadiene type epoxy resins, trisphenol type epoxy resins, naphthol type epoxy resins, biphenyl type epoxy resins, naphthylene ether type epoxy resins, anthracene type epoxy resins, bisphenol A type epoxy resins, bisphenol AF type epoxy resins, phenol aralkyl type epoxy resins, tetraphenylethane type epoxy resins, and phenolphthalimidine type epoxy resins.

固体状エポキシ樹脂の具体例としては、DIC社製の「HP4032H」(ナフタレン型エポキシ樹脂);DIC社製の「HP-4700」、「HP-4710」(ナフタレン型4官能エポキシ樹脂);DIC社製の「N-690」(クレゾールノボラック型エポキシ樹脂);DIC社製の「N-695」(クレゾールノボラック型エポキシ樹脂);DIC社製の「HP-7200」、「HP-7200HH」、「HP-7200H」、「HP-7200L」(ジシクロペンタジエン型エポキシ樹脂);DIC社製の「EXA-7311」、「EXA-7311-G3」、「EXA-7311-G4」、「EXA-7311-G4S」、「HP6000」(ナフチレンエーテル型エポキシ樹脂);日本化薬社製の「EPPN-502H」(トリスフェノール型エポキシ樹脂);日本化薬社製の「NC7000L」(ナフトールノボラック型エポキシ樹脂);日本化薬社製の「NC3000H」、「NC3000」、「NC3000L」、「NC3000FH」、「NC3100」(ビフェニル型エポキシ樹脂);日鉄ケミカル&マテリアル社製の「ESN475V」(ナフトール型エポキシ樹脂)、「ESN4100V」(ナフタレン型エポキシ樹脂);日鉄ケミカル&マテリアル社製の「ESN485」(ナフトール型エポキシ樹脂);日鉄ケミカル&マテリアル社製の「ESN375」(ジヒドロキシナフタレン型エポキシ樹脂);三菱ケミカル社製の「YX4000H」、「YX4000」、「YX4000HK」、「YL7890」(ビキシレノール型エポキシ樹脂);三菱ケミカル社製の「YL6121」(ビフェニル型エポキシ樹脂);三菱ケミカル社製の「YX8800」(アントラセン型エポキシ樹脂);三菱ケミカル社製の「YX7700」(フェノールアラルキル型エポキシ樹脂);大阪ガスケミカル社製の「PG-100」、「CG-500」;三菱ケミカル社製の「YL7760」(ビスフェノールAF型エポキシ樹脂);三菱ケミカル社製の「YL7800」(フルオレン型エポキシ樹脂);三菱ケミカル社製の「jER1010」(ビスフェノールA型エポキシ樹脂);三菱ケミカル社製の「jER1031S」(テトラフェニルエタン型エポキシ樹脂);日本化薬社製の「WHR991S」(フェノールフタルイミジン型エポキシ樹脂)等が挙げられる。これらは、1種類単独で用いてもよく、2種類以上を組み合わせて用いてもよい。 Specific examples of solid epoxy resins include DIC's "HP4032H" (naphthalene type epoxy resin); DIC's "HP-4700" and "HP-4710" (naphthalene type tetrafunctional epoxy resin); DIC's "N-690" (cresol novolac type epoxy resin); DIC's "N-695" (cresol novolac type epoxy resin); DIC's "HP-7200", "HP-7200HH", "HP-7200H", and "HP-7200L" (dicyclopentadiene type epoxy resin); DIC's "EXA-7311" and "EX A-7311-G3, EXA-7311-G4, EXA-7311-G4S, HP6000 (naphthylene ether type epoxy resin); EPPN-502H (trisphenol type epoxy resin) manufactured by Nippon Kayaku Co., Ltd.; NC7000L (naphthol novolac type epoxy resin) manufactured by Nippon Kayaku Co., Ltd.; NC3000H, NC3000, NC3000L, NC3000FH, NC3100 (biphenyl type epoxy resin) manufactured by Nippon Steel Chemical & Material Co., Ltd.; ESN475V (naphthol type epoxy resin) manufactured by Nippon Steel Chemical & Material Co., Ltd. ), "ESN4100V" (naphthalene type epoxy resin); "ESN485" (naphthol type epoxy resin) manufactured by Nippon Steel Chemical & Material Co., Ltd.; "ESN375" (dihydroxynaphthalene type epoxy resin) manufactured by Nippon Steel Chemical & Material Co., Ltd.; "YX4000H", "YX4000", "YX4000HK", "YL7890" (bixylenol type epoxy resin) manufactured by Mitsubishi Chemical Co., Ltd.; "YL6121" (biphenyl type epoxy resin) manufactured by Mitsubishi Chemical Co., Ltd.; "YX8800" (anthracene type epoxy resin) manufactured by Mitsubishi Chemical Co., Ltd. "YX7700" (phenol aralkyl type epoxy resin) manufactured by Osaka Gas Chemicals Co., Ltd.; "PG-100" and "CG-500" manufactured by Osaka Gas Chemicals Co., Ltd.; "YL7760" (bisphenol AF type epoxy resin) manufactured by Mitsubishi Chemical Corporation; "YL7800" (fluorene type epoxy resin) manufactured by Mitsubishi Chemical Corporation; "jER1010" (bisphenol A type epoxy resin) manufactured by Mitsubishi Chemical Corporation; "jER1031S" (tetraphenylethane type epoxy resin) manufactured by Mitsubishi Chemical Corporation; "WHR991S" (phenolphthalimidine type epoxy resin) manufactured by Nippon Kayaku Co., Ltd. These may be used alone or in combination of two or more types.

(A)エポキシ樹脂として、液状エポキシ樹脂と固体状エポキシ樹脂とを組み合わせて用いる場合、それらの質量比(液状エポキシ樹脂:固体状エポキシ樹脂)は、好ましくは20:1~1:20、より好ましくは10:1~1:10、特に好ましくは7:1~1:7である。 When a liquid epoxy resin and a solid epoxy resin are used in combination as the (A) epoxy resin, the mass ratio thereof (liquid epoxy resin:solid epoxy resin) is preferably 20:1 to 1:20, more preferably 10:1 to 1:10, and particularly preferably 7:1 to 1:7.

(A)エポキシ樹脂のエポキシ当量は、好ましくは50g/eq.~5,000g/eq.、より好ましくは60g/eq.~3,000g/eq.、さらに好ましくは80g/eq.~2,000g/eq.、特に好ましくは110g/eq.~1,000g/eq.である。エポキシ当量は、エポキシ基1当量あたりの樹脂の質量を表す。このエポキシ当量は、JIS K7236に従って測定することができる。 The epoxy equivalent of the (A) epoxy resin is preferably 50 g/eq. to 5,000 g/eq., more preferably 60 g/eq. to 3,000 g/eq., even more preferably 80 g/eq. to 2,000 g/eq., and particularly preferably 110 g/eq. to 1,000 g/eq. The epoxy equivalent represents the mass of the resin per equivalent of epoxy groups. This epoxy equivalent can be measured according to JIS K7236.

(A)エポキシ樹脂の重量平均分子量(Mw)は、好ましくは100~5,000、より好ましくは250~3,000、さらに好ましくは400~1,500である。樹脂の重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)法により、ポリスチレン換算の値として測定できる。 The weight average molecular weight (Mw) of the (A) epoxy resin is preferably 100 to 5,000, more preferably 250 to 3,000, and even more preferably 400 to 1,500. The weight average molecular weight of the resin can be measured as a polystyrene-equivalent value by gel permeation chromatography (GPC).

樹脂組成物中の(A)エポキシ樹脂の量は、樹脂組成物中の不揮発成分100質量%に対して、好ましくは1質量%以上、より好ましくは2質量%以上、更に好ましくは5質量%以上であり、好ましくは40質量%以下、より好ましくは30質量%以下、更に好ましくは20質量%以下、特に好ましくは15質量%以下である。(A)エポキシ樹脂の量が前記範囲にある場合、樹脂組成物の最低溶融粘度を効果的に低くでき、更に通常は、当該樹脂組成物の硬化物の破断点伸度等の機械的強度、粗化処理後の表面粗さ、並びに、比誘電率及び誘電正接等の誘電特性を特に良好にできる。 The amount of (A) epoxy resin in the resin composition is preferably 1% by mass or more, more preferably 2% by mass or more, even more preferably 5% by mass or more, and is preferably 40% by mass or less, more preferably 30% by mass or less, even more preferably 20% by mass or less, and particularly preferably 15% by mass or less, based on 100% by mass of the non-volatile components in the resin composition. When the amount of (A) epoxy resin is within the above range, the minimum melt viscosity of the resin composition can be effectively reduced, and furthermore, the mechanical strength such as the elongation at break of the cured product of the resin composition, the surface roughness after roughening treatment, and the dielectric properties such as the relative dielectric constant and dielectric loss tangent can be particularly improved.

樹脂組成物中の(A)エポキシ樹脂の量は、樹脂組成物中の樹脂成分100質量%に対して、好ましくは5質量%以上、より好ましくは10質量%以上、更に好ましくは20質量%以上であり、好ましくは80質量%以下、より好ましくは70質量%以下、更に好ましくは60質量%以下、特に好ましくは50質量%以下である。樹脂組成物の樹脂成分とは、樹脂組成物の不揮発成分のうち(C)処理充填材等の無機充填材を除いた成分を表す。(A)エポキシ樹脂の量が前記範囲にある場合、樹脂組成物の最低溶融粘度を効果的に低くでき、更に通常は、当該樹脂組成物の硬化物の破断点伸度等の機械的強度、粗化処理後の表面粗さ、並びに、比誘電率及び誘電正接等の誘電特性を特に良好にできる。 The amount of (A) epoxy resin in the resin composition is preferably 5% by mass or more, more preferably 10% by mass or more, even more preferably 20% by mass or more, and preferably 80% by mass or less, more preferably 70% by mass or less, even more preferably 60% by mass or less, and particularly preferably 50% by mass or less, based on 100% by mass of the resin components in the resin composition. The resin components of the resin composition refer to the non-volatile components of the resin composition excluding inorganic fillers such as (C) treated fillers. When the amount of (A) epoxy resin is within the above range, the minimum melt viscosity of the resin composition can be effectively reduced, and furthermore, the mechanical strength such as the elongation at break of the cured product of the resin composition, the surface roughness after roughening treatment, and the dielectric properties such as the relative dielectric constant and dielectric loss tangent can be particularly improved.

(A)エポキシ樹脂と(C)処理充填剤との質量比((A)エポキシ樹脂/(C)処理充填材)は、好ましくは0.01以上、より好ましくは0.05以上、更に好ましくは0.1以上であり、好ましくは1.0以下、より好ましくは0.8以下、更に好ましくは0.5以下、特に好ましくは0.2以下である。質量比((A)エポキシ樹脂/(C)処理充填材)が前記範囲にある場合、樹脂組成物の最低溶融粘度を効果的に低くでき、更に通常は、当該樹脂組成物の硬化物の破断点伸度等の機械的強度、粗化処理後の表面粗さ、並びに、比誘電率及び誘電正接等の誘電特性を特に良好にできる。 The mass ratio of the (A) epoxy resin to the (C) treated filler ((A) epoxy resin/(C) treated filler) is preferably 0.01 or more, more preferably 0.05 or more, even more preferably 0.1 or more, and is preferably 1.0 or less, more preferably 0.8 or less, even more preferably 0.5 or less, and particularly preferably 0.2 or less. When the mass ratio ((A) epoxy resin/(C) treated filler) is within the above range, the minimum melt viscosity of the resin composition can be effectively reduced, and furthermore, the mechanical strength such as the elongation at break of the cured product of the resin composition, the surface roughness after roughening treatment, and the dielectric properties such as the relative dielectric constant and dielectric loss tangent can be particularly improved.

[(B)硬化剤]
本発明の一実施形態に係る樹脂組成物は、(B)成分としての(B)硬化剤を含む。(B)硬化剤は、(A)エポキシ樹脂と反応して樹脂組成物を硬化させる機能を有しうる。(B)硬化剤には、別に断らない限り、上述した(A)成分に該当するものは含めない。(B)硬化剤は、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
[(B) Curing agent]
The resin composition according to one embodiment of the present invention includes a (B) curing agent as the (B) component. The (B) curing agent can have a function of reacting with the (A) epoxy resin to cure the resin composition. The (B) curing agent does not include those that correspond to the above-mentioned (A) component, unless otherwise specified. The (B) curing agent may be used alone or in combination of two or more types.

好ましい(B)硬化剤としては、例えば、活性エステル系硬化剤、シアネートエステル系硬化剤、フェノール系硬化剤、カルボジイミド系硬化剤、酸無水物系硬化剤、アミン系硬化剤、ベンゾオキサジン系硬化剤、チオール系硬化剤などが挙げられる。中でも、(B)硬化剤は、活性エステル系硬化剤、フェノール系硬化剤及びシアネートエステル系硬化剤からなる群より選ばれる1種類以上を含むことが特に好ましい。 Preferred (B) curing agents include, for example, active ester curing agents, cyanate ester curing agents, phenolic curing agents, carbodiimide curing agents, acid anhydride curing agents, amine curing agents, benzoxazine curing agents, and thiol curing agents. Among them, it is particularly preferable that the (B) curing agent contains one or more types selected from the group consisting of active ester curing agents, phenolic curing agents, and cyanate ester curing agents.

活性エステル系硬化剤としては、一般にフェノールエステル類、チオフェノールエステル類、N-ヒドロキシアミンエステル類、複素環ヒドロキシ化合物のエステル類等の、反応活性の高いエステル基を1分子中に2個以上有する化合物が好ましく用いられる。当該活性エステル系硬化剤は、カルボン酸化合物及び/又はチオカルボン酸化合物とヒドロキシ化合物及び/又はチオール化合物との縮合反応によって得られるものが好ましい。特に耐熱性向上の観点から、カルボン酸化合物とヒドロキシ化合物とから得られる活性エステル系硬化剤が好ましく、カルボン酸化合物とフェノール化合物及び/又はナフトール化合物とから得られる活性エステル系硬化剤がより好ましい。カルボン酸化合物としては、例えば安息香酸、酢酸、コハク酸、マレイン酸、イタコン酸、フタル酸、イソフタル酸、テレフタル酸、ピロメリット酸等が挙げられる。フェノール化合物又はナフトール化合物としては、例えば、ハイドロキノン、レゾルシン、ビスフェノールA、ビスフェノールF、ビスフェノールS、フェノールフタリン、メチル化ビスフェノールA、メチル化ビスフェノールF、メチル化ビスフェノールS、フェノール、o-クレゾール、m-クレゾール、p-クレゾール、カテコール、α-ナフトール、β-ナフトール、1,5-ジヒドロキシナフタレン、1,6-ジヒドロキシナフタレン、2,6-ジヒドロキシナフタレン、ジヒドロキシベンゾフェノン、トリヒドロキシベンゾフェノン、テトラヒドロキシベンゾフェノン、フロログルシン、ベンゼントリオール、ジシクロペンタジエン型ジフェノール化合物、フェノールノボラック等が挙げられる。ここで、「ジシクロペンタジエン型ジフェノール化合物」とは、ジシクロペンタジエン1分子にフェノール2分子が縮合して得られるジフェノール化合物をいう。 As the active ester-based curing agent, generally, a compound having two or more highly reactive ester groups in one molecule, such as phenol esters, thiophenol esters, N-hydroxyamine esters, and esters of heterocyclic hydroxy compounds, is preferably used. The active ester-based curing agent is preferably one obtained by a condensation reaction between a carboxylic acid compound and/or a thiocarboxylic acid compound and a hydroxy compound and/or a thiol compound. In particular, from the viewpoint of improving heat resistance, an active ester-based curing agent obtained from a carboxylic acid compound and a hydroxy compound is preferred, and an active ester-based curing agent obtained from a carboxylic acid compound and a phenol compound and/or a naphthol compound is more preferred. Examples of the carboxylic acid compound include benzoic acid, acetic acid, succinic acid, maleic acid, itaconic acid, phthalic acid, isophthalic acid, terephthalic acid, and pyromellitic acid. Examples of phenol compounds or naphthol compounds include hydroquinone, resorcin, bisphenol A, bisphenol F, bisphenol S, phenolphthaline, methylated bisphenol A, methylated bisphenol F, methylated bisphenol S, phenol, o-cresol, m-cresol, p-cresol, catechol, α-naphthol, β-naphthol, 1,5-dihydroxynaphthalene, 1,6-dihydroxynaphthalene, 2,6-dihydroxynaphthalene, dihydroxybenzophenone, trihydroxybenzophenone, tetrahydroxybenzophenone, phloroglucin, benzenetriol, dicyclopentadiene-type diphenol compounds, and phenol novolak. Here, "dicyclopentadiene-type diphenol compounds" refer to diphenol compounds obtained by condensing one molecule of dicyclopentadiene with two molecules of phenol.

具体的には、活性エステル系硬化剤としては、ジシクロペンタジエン型活性エステル系硬化剤、ナフタレン構造を含むナフタレン型活性エステル系硬化剤、フェノールノボラックのアセチル化物を含む活性エステル系硬化剤、フェノールノボラックのベンゾイル化物を含む活性エステル系硬化剤が好ましく、中でもジシクロペンタジエン型活性エステル系硬化剤、及びナフタレン型活性エステル系硬化剤から選ばれる少なくとも1種であることがより好ましい。ジシクロペンタジエン型活性エステル系硬化剤としては、ジシクロペンタジエン型ジフェノール構造を含む活性エステル系硬化剤が好ましい。 Specifically, the active ester curing agent is preferably a dicyclopentadiene type active ester curing agent, a naphthalene type active ester curing agent containing a naphthalene structure, an active ester curing agent containing an acetylated product of phenol novolac, or an active ester curing agent containing a benzoylated product of phenol novolac, and among these, at least one selected from a dicyclopentadiene type active ester curing agent and a naphthalene type active ester curing agent is more preferable. As the dicyclopentadiene type active ester curing agent, an active ester curing agent containing a dicyclopentadiene type diphenol structure is preferable.

活性エステル系硬化剤の市販品としては、例えば、ジシクロペンタジエン型ジフェノール構造を含む活性エステル系硬化剤として、「EXB9451」、「EXB9460」、「EXB9460S」、「EXB-8000L」、「EXB-8000L-65M」、「EXB-8000L-65TM」、「HPC-8000L-65TM」、「HPC-8000」、「HPC-8000-65T」、「HPC-8000H」、「HPC-8000H-65TM」(DIC社製);ナフタレン構造を含む活性エステル系硬化剤として「HP-B-8151-62T」、「EXB-8100L-65T」、「EXB-8150-60T」、「EXB-8150-62T」、「EXB-9416-70BK」、「HPC-8150-60T」、「HPC-8150-62T」、「EXB-8」(DIC社製);りん含有活性エステル系硬化剤として、「EXB9401」(DIC社製);フェノールノボラックのアセチル化物である活性エステル系硬化剤として「DC808」(三菱ケミカル社製);フェノールノボラックのベンゾイル化物である活性エステル系硬化剤として「YLH1026」、「YLH1030」、「YLH1048」(三菱ケミカル社製);スチリル基及びナフタレン構造を含む活性エステル系硬化剤として「PC1300-02-65MA」(エア・ウォーター社製)等が挙げられる。 Commercially available active ester curing agents include, for example, "EXB9451", "EXB9460", "EXB9460S", "EXB-8000L", "EXB-8000L-65M", "EXB-8000L-65TM", "HPC-8000L-65TM", "HPC-8000", "HPC-8000-65T", "HPC-8000H", and "HPC-8000H-65TM" (manufactured by DIC Corporation) as active ester curing agents containing a dicyclopentadiene-type diphenol structure; and "HP-B-8151-62T", "EXB-8100L-65T", "EXB-8150-60T", and "EXB-8150H-65TM" as active ester curing agents containing a naphthalene structure. -62T", "EXB-9416-70BK", "HPC-8150-60T", "HPC-8150-62T", "EXB-8" (manufactured by DIC Corporation); as a phosphorus-containing active ester curing agent, "EXB9401" (manufactured by DIC Corporation); as an active ester curing agent which is an acetylated product of phenol novolac, "DC808" (manufactured by Mitsubishi Chemical Corporation); as active ester curing agents which are benzoylated products of phenol novolac, "YLH1026", "YLH1030", "YLH1048" (manufactured by Mitsubishi Chemical Corporation); as an active ester curing agent containing a styryl group and a naphthalene structure, "PC1300-02-65MA" (manufactured by Air Water Inc.), etc.

(A)エポキシ樹脂のエポキシ基数を1とした場合、活性エステル系硬化剤の活性エステル基数は、好ましくは0.01以上、より好ましくは0.1以上、更に好ましくは0.2以上、特に好ましくは0.5以上であり、好ましくは10以下、より好ましくは5以下、更に好ましくは2以下である。「(A)エポキシ樹脂のエポキシ基数」とは、樹脂組成物中に存在する(A)エポキシ樹脂の不揮発成分の質量をエポキシ当量で割り算した値を全て合計した値を表す。また、「活性エステル系硬化剤の活性エステル基数」とは、樹脂組成物中に存在する活性エステル系硬化剤の不揮発成分の質量を活性エステル基当量で割り算した値を全て合計した値を表す。活性エステル系硬化剤の活性エステル基数が前記範囲にある場合、樹脂組成物の最低溶融粘度を効果的に低くでき、更に通常は、当該樹脂組成物の硬化物の破断点伸度等の機械的強度、粗化処理後の表面粗さ、並びに、比誘電率及び誘電正接等の誘電特性を特に良好にできる。 When the number of epoxy groups in the (A) epoxy resin is 1, the number of active ester groups in the active ester curing agent is preferably 0.01 or more, more preferably 0.1 or more, even more preferably 0.2 or more, and particularly preferably 0.5 or more, and is preferably 10 or less, more preferably 5 or less, and even more preferably 2 or less. The "number of epoxy groups in the (A) epoxy resin" refers to the total value obtained by dividing the mass of the non-volatile components of the (A) epoxy resin present in the resin composition by the epoxy equivalent. The "number of active ester groups in the active ester curing agent" refers to the total value obtained by dividing the mass of the non-volatile components of the active ester curing agent present in the resin composition by the active ester group equivalent. When the number of active ester groups in the active ester curing agent is within the above range, the minimum melt viscosity of the resin composition can be effectively reduced, and furthermore, the mechanical strength such as the elongation at break of the cured product of the resin composition, the surface roughness after roughening treatment, and the dielectric properties such as the relative dielectric constant and dielectric loss tangent can be particularly improved.

樹脂組成物中の活性エステル系硬化剤の量は、樹脂組成物の不揮発成分100質量%に対して、好ましくは0.1質量%以上、より好ましくは1質量%以上、更に好ましくは5質量%以上、特に好ましくは10質量%以上であり、好ましくは40質量%以下、より好ましくは30質量%以下、更に好ましくは20質量%以下である。活性エステル系硬化剤の量が前記範囲にある場合、樹脂組成物の最低溶融粘度を効果的に低くでき、更に通常は、当該樹脂組成物の硬化物の破断点伸度等の機械的強度、粗化処理後の表面粗さ、並びに、比誘電率及び誘電正接等の誘電特性を特に良好にできる。 The amount of active ester-based curing agent in the resin composition is preferably 0.1% by mass or more, more preferably 1% by mass or more, even more preferably 5% by mass or more, and particularly preferably 10% by mass or more, based on 100% by mass of the non-volatile components of the resin composition, and is preferably 40% by mass or less, more preferably 30% by mass or less, and even more preferably 20% by mass or less. When the amount of active ester-based curing agent is within the above range, the minimum melt viscosity of the resin composition can be effectively reduced, and furthermore, the mechanical strength such as the elongation at break of the cured product of the resin composition, the surface roughness after roughening treatment, and the dielectric properties such as the relative dielectric constant and dielectric loss tangent can be particularly improved.

樹脂組成物中の活性エステル系硬化剤の量は、樹脂組成物の樹脂成分100質量%に対して、好ましくは1質量%以上、より好ましくは5質量%以上、更に好ましくは10質量%以上、特に好ましくは20質量%以上であり、好ましくは80質量%以下、より好ましくは70質量%以下、更に好ましくは60質量%以下である。活性エステル系硬化剤の量が前記範囲にある場合、樹脂組成物の最低溶融粘度を効果的に低くでき、更に通常は、当該樹脂組成物の硬化物の破断点伸度等の機械的強度、粗化処理後の表面粗さ、並びに、比誘電率及び誘電正接等の誘電特性を特に良好にできる。 The amount of the active ester-based curing agent in the resin composition is preferably 1% by mass or more, more preferably 5% by mass or more, even more preferably 10% by mass or more, and particularly preferably 20% by mass or more, and is preferably 80% by mass or less, more preferably 70% by mass or less, and even more preferably 60% by mass or less, based on 100% by mass of the resin components of the resin composition. When the amount of the active ester-based curing agent is within the above range, the minimum melt viscosity of the resin composition can be effectively reduced, and furthermore, the mechanical strength such as the elongation at break of the cured product of the resin composition, the surface roughness after roughening treatment, and the dielectric properties such as the relative dielectric constant and dielectric loss tangent can be particularly improved.

活性エステル系硬化剤と(C)処理充填材との質量比(活性エステル系硬化剤/(C)処理充填材)は、好ましくは0.01以上、より好ましくは0.02以上、特に好ましくは0.05以上、特に好ましくは0.1以上であり、好ましくは0.5以下、より好ましくは0.4以下、更に好ましくは0.3以下である。質量比(活性エステル系硬化剤/(C)処理充填材)が前記範囲にある場合、樹脂組成物の最低溶融粘度を効果的に低くでき、更に通常は、当該樹脂組成物の硬化物の破断点伸度等の機械的強度、粗化処理後の表面粗さ、並びに、比誘電率及び誘電正接等の誘電特性を特に良好にできる。 The mass ratio of the active ester curing agent to the (C) treated filler (active ester curing agent/(C) treated filler) is preferably 0.01 or more, more preferably 0.02 or more, particularly preferably 0.05 or more, particularly preferably 0.1 or more, and is preferably 0.5 or less, more preferably 0.4 or less, and even more preferably 0.3 or less. When the mass ratio (active ester curing agent/(C) treated filler) is within the above range, the minimum melt viscosity of the resin composition can be effectively reduced, and furthermore, the mechanical strength such as the elongation at break of the cured product of the resin composition, the surface roughness after roughening treatment, and the dielectric properties such as the relative dielectric constant and dielectric loss tangent can be particularly improved.

シアネートエステル系硬化剤としては、1分子内中に1個以上、好ましくは2個以上のシアネート基を有する化合物を用いうる。シアネートエステル系硬化剤としては、例えば、ビスフェノールAジシアネート、ポリフェノールシアネート(オリゴ(3-メチレン-1,5-フェニレンシアネート))、4,4’-メチレンビス(2,6-ジメチルフェニルシアネート)、4,4’-エチリデンジフェニルジシアネート、ヘキサフルオロビスフェノールAジシアネート、2,2-ビス(4-シアネート)フェニルプロパン、1,1-ビス(4-シアネートフェニルメタン)、ビス(4-シアネート-3,5-ジメチルフェニル)メタン、1,3-ビス(4-シアネートフェニル-1-(メチルエチリデン))ベンゼン、ビス(4-シアネートフェニル)チオエーテル、及びビス(4-シアネートフェニル)エーテル等の2官能シアネートエステル系硬化剤、フェノールノボラック及びクレゾールノボラック等から誘導される多官能シアネートエステル系硬化剤、これらシアネートエステル系硬化剤が一部トリアジン化したプレポリマーなどが挙げられる。シアネートエステル系硬化剤の具体例としては、ロンザジャパン社製の「PT30」及び「PT60」(いずれもフェノールノボラック型多官能シアネートエステル系硬化剤)、「BA230」、「BA230S75」(ビスフェノールAジシアネートの一部又は全部がトリアジン化され三量体となったプレポリマー)等が挙げられる。 As a cyanate ester-based curing agent, a compound having one or more, preferably two or more, cyanate groups in one molecule can be used. Examples of the cyanate ester-based curing agent include bifunctional cyanate ester-based curing agents such as bisphenol A dicyanate, polyphenol cyanate (oligo(3-methylene-1,5-phenylene cyanate)), 4,4'-methylenebis(2,6-dimethylphenyl cyanate), 4,4'-ethylidene diphenyl dicyanate, hexafluorobisphenol A dicyanate, 2,2-bis(4-cyanate)phenylpropane, 1,1-bis(4-cyanate phenylmethane), bis(4-cyanate-3,5-dimethylphenyl)methane, 1,3-bis(4-cyanate phenyl-1-(methylethylidene))benzene, bis(4-cyanate phenyl)thioether, and bis(4-cyanate phenyl)ether; polyfunctional cyanate ester-based curing agents derived from phenol novolac and cresol novolac; and prepolymers in which these cyanate ester-based curing agents are partially converted to triazine. Specific examples of cyanate ester-based hardeners include "PT30" and "PT60" (both phenol novolac-type multifunctional cyanate ester-based hardeners) manufactured by Lonza Japan, "BA230" and "BA230S75" (prepolymers in which part or all of bisphenol A dicyanate has been converted to triazine and formed into a trimer).

(A)エポキシ樹脂のエポキシ基数を1とした場合、シアネートエステル系硬化剤のシアネート基数は、好ましくは0.01以上、より好ましくは0.1以上、更に好ましくは0.2以上であり、好ましくは5以下、より好ましくは3以下、更に好ましくは1以下である。「シアネートエステル系硬化剤のシアネート基数」とは、樹脂組成物中に存在するシアネートエステル系硬化剤の不揮発成分の質量をシアネート基当量で割り算した値を全て合計した値を表す。シアネートエステル系硬化剤のシアネート基数が前記範囲にある場合、樹脂組成物の最低溶融粘度を効果的に低くでき、更に通常は、当該樹脂組成物の硬化物の破断点伸度等の機械的強度、粗化処理後の表面粗さ、並びに、比誘電率及び誘電正接等の誘電特性を特に良好にできる。 (A) When the number of epoxy groups in the epoxy resin is 1, the number of cyanate groups in the cyanate ester curing agent is preferably 0.01 or more, more preferably 0.1 or more, even more preferably 0.2 or more, and preferably 5 or less, more preferably 3 or less, even more preferably 1 or less. The "number of cyanate groups in the cyanate ester curing agent" refers to the total value obtained by dividing the mass of the non-volatile components of the cyanate ester curing agent present in the resin composition by the cyanate group equivalent. When the number of cyanate groups in the cyanate ester curing agent is within the above range, the minimum melt viscosity of the resin composition can be effectively reduced, and furthermore, the mechanical strength such as the elongation at break of the cured product of the resin composition, the surface roughness after roughening treatment, and the dielectric properties such as the relative dielectric constant and dielectric loss tangent can be particularly improved.

樹脂組成物中のシアネートエステル系硬化剤の量は、樹脂組成物の不揮発成分100質量%に対して、好ましくは0.1質量%以上、より好ましくは1質量%以上、更に好ましくは5質量%以上であり、好ましくは30質量%以下、より好ましくは20質量%以下、更に好ましくは10質量%以下である。シアネートエステル系硬化剤の量が前記範囲にある場合、樹脂組成物の最低溶融粘度を効果的に低くでき、更に通常は、当該樹脂組成物の硬化物の破断点伸度等の機械的強度、粗化処理後の表面粗さ、並びに、比誘電率及び誘電正接等の誘電特性を特に良好にできる。 The amount of the cyanate ester curing agent in the resin composition is preferably 0.1% by mass or more, more preferably 1% by mass or more, and even more preferably 5% by mass or more, based on 100% by mass of the non-volatile components of the resin composition, and is preferably 30% by mass or less, more preferably 20% by mass or less, and even more preferably 10% by mass or less. When the amount of the cyanate ester curing agent is within the above range, the minimum melt viscosity of the resin composition can be effectively reduced, and furthermore, the mechanical strength of the cured product of the resin composition, such as the elongation at break, the surface roughness after roughening treatment, and the dielectric properties, such as the relative dielectric constant and the dielectric loss tangent, can be particularly improved.

樹脂組成物中のシアネートエステル系硬化剤の量は、樹脂組成物の樹脂成分100質量%に対して、好ましくは1質量%以上、より好ましくは5質量%以上、更に好ましくは10質量%以上であり、好ましくは50質量%以下、より好ましくは40質量%以下、更に好ましくは30質量%以下である。シアネートエステル系硬化剤の量が前記範囲にある場合、樹脂組成物の最低溶融粘度を効果的に低くでき、更に通常は、当該樹脂組成物の硬化物の破断点伸度等の機械的強度、粗化処理後の表面粗さ、並びに、比誘電率及び誘電正接等の誘電特性を特に良好にできる。 The amount of the cyanate ester curing agent in the resin composition is preferably 1% by mass or more, more preferably 5% by mass or more, and even more preferably 10% by mass or more, based on 100% by mass of the resin components of the resin composition, and is preferably 50% by mass or less, more preferably 40% by mass or less, and even more preferably 30% by mass or less. When the amount of the cyanate ester curing agent is within the above range, the minimum melt viscosity of the resin composition can be effectively reduced, and furthermore, the mechanical strength of the cured product of the resin composition, such as the elongation at break, the surface roughness after roughening treatment, and the dielectric properties, such as the relative dielectric constant and the dielectric loss tangent, can be particularly improved.

シアネートエステル系硬化剤と(C)処理充填材との質量比(シアネートエステル系硬化剤/(C)処理充填材)は、好ましくは0.01以上、より好ましくは0.02以上、更に好ましくは0.05以上であり、好ましくは0.5以下、より好ましくは0.4以下、更に好ましくは0.3以下である。質量比(シアネートエステル系硬化剤/(C)処理充填材)が前記範囲にある場合、樹脂組成物の最低溶融粘度を効果的に低くでき、更に通常は、当該樹脂組成物の硬化物の破断点伸度等の機械的強度、粗化処理後の表面粗さ、並びに、比誘電率及び誘電正接等の誘電特性を特に良好にできる。 The mass ratio of the cyanate ester curing agent to the (C) treated filler (cyanate ester curing agent/(C) treated filler) is preferably 0.01 or more, more preferably 0.02 or more, even more preferably 0.05 or more, and is preferably 0.5 or less, more preferably 0.4 or less, even more preferably 0.3 or less. When the mass ratio (cyanate ester curing agent/(C) treated filler) is within the above range, the minimum melt viscosity of the resin composition can be effectively reduced, and furthermore, the mechanical strength of the cured product of the resin composition, such as the elongation at break, the surface roughness after roughening treatment, and the dielectric properties, such as the relative dielectric constant and dielectric loss tangent, can be particularly improved.

(A)エポキシ樹脂のエポキシ基数を1とした場合、活性エステル系硬化剤の活性エステル基数及びシアネートエステル系硬化剤のシアネート基数の合計は、好ましくは0.01以上、より好ましくは0.1以上、更に好ましくは0.5以上、特に好ましくは1以上であり、好ましくは10以下、より好ましくは5以下、更に好ましくは2以下である。活性エステル系硬化剤の活性エステル基数とシアネートエステル系硬化剤のシアネート基数との合計が前記範囲にある場合、樹脂組成物の最低溶融粘度を効果的に低くでき、更に通常は、当該樹脂組成物の硬化物の破断点伸度等の機械的強度、粗化処理後の表面粗さ、並びに、比誘電率及び誘電正接等の誘電特性を特に良好にできる。 (A) When the number of epoxy groups in the epoxy resin is 1, the total number of active ester groups in the active ester curing agent and the number of cyanate groups in the cyanate ester curing agent is preferably 0.01 or more, more preferably 0.1 or more, even more preferably 0.5 or more, and particularly preferably 1 or more, and is preferably 10 or less, more preferably 5 or less, and even more preferably 2 or less. When the total number of active ester groups in the active ester curing agent and the number of cyanate groups in the cyanate ester curing agent is within the above range, the minimum melt viscosity of the resin composition can be effectively reduced, and furthermore, the mechanical strength such as the elongation at break of the cured product of the resin composition, the surface roughness after roughening treatment, and the dielectric properties such as the relative dielectric constant and dielectric loss tangent can be particularly improved.

樹脂組成物中の活性エステル系硬化剤及びシアネートエステル系硬化剤の合計量は、樹脂組成物の不揮発成分100質量%に対して、好ましくは1質量%以上、より好ましくは5質量%以上、更に好ましくは10質量%以上、特に好ましくは15質量%以上であり、好ましくは40質量%以下、より好ましくは30質量%以下、更に好ましくは20質量%以下である。活性エステル系硬化剤とシアネートエステル系硬化剤の合計量が前記範囲にある場合、樹脂組成物の最低溶融粘度を効果的に低くでき、更に通常は、当該樹脂組成物の硬化物の破断点伸度等の機械的強度、粗化処理後の表面粗さ、並びに、比誘電率及び誘電正接等の誘電特性を特に良好にできる。 The total amount of the active ester curing agent and the cyanate ester curing agent in the resin composition is preferably 1% by mass or more, more preferably 5% by mass or more, even more preferably 10% by mass or more, and particularly preferably 15% by mass or more, and is preferably 40% by mass or less, more preferably 30% by mass or less, and even more preferably 20% by mass or less, based on 100% by mass of the non-volatile components of the resin composition. When the total amount of the active ester curing agent and the cyanate ester curing agent is within the above range, the minimum melt viscosity of the resin composition can be effectively reduced, and furthermore, the mechanical strength such as the elongation at break of the cured product of the resin composition, the surface roughness after roughening treatment, and the dielectric properties such as the relative dielectric constant and the dielectric loss tangent can be particularly improved.

樹脂組成物中の活性エステル系硬化剤及びシアネートエステル系硬化剤の合計量は、樹脂組成物の樹脂成分100質量%に対して、好ましくは10質量%以上、より好ましくは20質量%以上、更に好ましくは30質量%以上、特に好ましくは40質量%以上であり、好ましくは80質量%以下、より好ましくは70質量%以下、更に好ましくは60質量%以下である。活性エステル系硬化剤とシアネートエステル系硬化剤の合計量が前記範囲にある場合、樹脂組成物の最低溶融粘度を効果的に低くでき、更に通常は、当該樹脂組成物の硬化物の破断点伸度等の機械的強度、粗化処理後の表面粗さ、並びに、比誘電率及び誘電正接等の誘電特性を特に良好にできる。 The total amount of the active ester curing agent and the cyanate ester curing agent in the resin composition is preferably 10% by mass or more, more preferably 20% by mass or more, even more preferably 30% by mass or more, and particularly preferably 40% by mass or more, and is preferably 80% by mass or less, more preferably 70% by mass or less, and even more preferably 60% by mass or less, based on 100% by mass of the resin components of the resin composition. When the total amount of the active ester curing agent and the cyanate ester curing agent is within the above range, the minimum melt viscosity of the resin composition can be effectively reduced, and furthermore, the mechanical strength such as the elongation at break of the cured product of the resin composition, the surface roughness after roughening treatment, and the dielectric properties such as the relative dielectric constant and the dielectric loss tangent can be particularly improved.

活性エステル系硬化剤及びシアネートエステル系硬化剤の合計と(C)処理充填材との質量比(「活性エステル系硬化剤及びシアネートエステル系硬化剤の合計」/(C)処理充填材)は、好ましくは0.01上、より好ましくは0.05以上、更に好ましくは0.1以上、特に好ましくは0.21以上であり、好ましくは0.5以下、より好ましくは0.4以下、更に好ましくは0.3以下である。質量比(「活性エステル系硬化剤及びシアネートエステル系硬化剤の合計」/(C)処理充填材)が前記範囲にある場合、樹脂組成物の最低溶融粘度を効果的に低くでき、更に通常は、当該樹脂組成物の硬化物の破断点伸度等の機械的強度、粗化処理後の表面粗さ、並びに、比誘電率及び誘電正接等の誘電特性を特に良好にできる。 The mass ratio of the total of the active ester curing agent and the cyanate ester curing agent to the (C) treated filler ("total of the active ester curing agent and the cyanate ester curing agent"/(C) treated filler) is preferably 0.01 or more, more preferably 0.05 or more, even more preferably 0.1 or more, particularly preferably 0.21 or more, and preferably 0.5 or less, more preferably 0.4 or less, and even more preferably 0.3 or less. When the mass ratio ("total of the active ester curing agent and the cyanate ester curing agent"/(C) treated filler) is within the above range, the minimum melt viscosity of the resin composition can be effectively reduced, and furthermore, the mechanical strength such as the elongation at break of the cured product of the resin composition, the surface roughness after roughening treatment, and the dielectric properties such as the relative dielectric constant and the dielectric loss tangent can be particularly improved.

フェノール系硬化剤としては、ベンゼン環、ナフタレン環等の芳香環に結合した水酸基を1分子中に1個以上、好ましくは2個以上有する化合物を用いうる。耐熱性及び耐水性の観点からは、ノボラック構造を有するフェノール系硬化剤が好ましい。また、密着性の観点からは、含窒素フェノール系硬化剤が好ましく、トリアジン骨格含有フェノール系硬化剤がより好ましい。中でも、耐熱性、耐水性、及び密着性を高度に満足させる観点から、トリアジン骨格含有フェノールノボラック系硬化剤が好ましい。フェノール系硬化剤の具体例としては、例えば、明和化成社製の「MEH-7700」、「MEH-7810」、「MEH-7851」、日本化薬社製の「NHN」、「CBN」、「GPH」、日鉄ケミカル&マテリアル社製の「SN-170」、「SN-180」、「SN-190」、「SN-475」、「SN-485」、「SN-495」、「SN-375」、「SN-395」、DIC社製の「LA-7052」、「LA-7054」、「LA-3018」、「LA-3018-50P」、「LA-1356」、「TD2090」、「TD-2090-60M」等が挙げられる。 As the phenol-based hardener, a compound having one or more, preferably two or more, hydroxyl groups bonded to an aromatic ring such as a benzene ring or a naphthalene ring in one molecule can be used. From the viewpoint of heat resistance and water resistance, a phenol-based hardener having a novolac structure is preferred. From the viewpoint of adhesion, a nitrogen-containing phenol-based hardener is preferred, and a triazine skeleton-containing phenol-based hardener is more preferred. Among them, from the viewpoint of highly satisfying heat resistance, water resistance, and adhesion, a triazine skeleton-containing phenol novolac-based hardener is preferred. Specific examples of phenol-based curing agents include "MEH-7700", "MEH-7810", and "MEH-7851" manufactured by Meiwa Kasei Co., Ltd., "NHN", "CBN", and "GPH" manufactured by Nippon Kayaku Co., Ltd., "SN-170", "SN-180", "SN-190", "SN-475", "SN-485", "SN-495", "SN-375", and "SN-395" manufactured by Nippon Steel Chemical & Material Co., Ltd., and "LA-7052", "LA-7054", "LA-3018", "LA-3018-50P", "LA-1356", "TD2090", and "TD-2090-60M" manufactured by DIC Corporation.

(A)エポキシ樹脂のエポキシ基数を1とした場合、フェノール系硬化剤のフェノール性水酸基数は、好ましくは0.01以上、より好ましくは0.05以上、更に好ましくは0.1以上であり、好ましくは2以下、より好ましくは1以下、更に好ましくは0.5以下である。「フェノール性水酸基」とは、芳香環に結合した水酸基を表す。また、「フェノール系硬化剤のフェノール性水酸基数」とは、樹脂組成物中に存在するフェノール系硬化剤の不揮発成分の質量をフェノール性水酸基当量で割り算した値を全て合計した値を表す。フェノール系硬化剤のフェノール性水酸基数が前記範囲にある場合、樹脂組成物の最低溶融粘度を効果的に低くでき、更に通常は、当該樹脂組成物の硬化物の破断点伸度等の機械的強度、粗化処理後の表面粗さ、並びに、比誘電率及び誘電正接等の誘電特性を特に良好にできる。 (A) When the number of epoxy groups in the epoxy resin is 1, the number of phenolic hydroxyl groups in the phenolic curing agent is preferably 0.01 or more, more preferably 0.05 or more, and even more preferably 0.1 or more, and is preferably 2 or less, more preferably 1 or less, and even more preferably 0.5 or less. The term "phenolic hydroxyl group" refers to a hydroxyl group bonded to an aromatic ring. The term "number of phenolic hydroxyl groups in the phenolic curing agent" refers to the total value obtained by dividing the mass of the non-volatile components of the phenolic curing agent present in the resin composition by the phenolic hydroxyl group equivalent. When the number of phenolic hydroxyl groups in the phenolic curing agent is within the above range, the minimum melt viscosity of the resin composition can be effectively reduced, and furthermore, the mechanical strength such as the elongation at break of the cured product of the resin composition, the surface roughness after roughening treatment, and the dielectric properties such as the relative dielectric constant and dielectric loss tangent can be particularly improved.

樹脂組成物中のフェノール系硬化剤の量は、樹脂組成物の不揮発成分100質量%に対して、好ましくは0.1質量%以上、より好ましくは0.2質量%以上、更に好ましくは0.5質量%以上であり、好ましくは10質量%以下、より好ましくは5質量%以下、更に好ましくは2質量%以下である。フェノール系硬化剤の量が前記範囲にある場合、樹脂組成物の最低溶融粘度を効果的に低くでき、更に通常は、当該樹脂組成物の硬化物の破断点伸度等の機械的強度、粗化処理後の表面粗さ、並びに、比誘電率及び誘電正接等の誘電特性を特に良好にできる。 The amount of the phenol-based curing agent in the resin composition is preferably 0.1% by mass or more, more preferably 0.2% by mass or more, and even more preferably 0.5% by mass or more, based on 100% by mass of the non-volatile components of the resin composition, and is preferably 10% by mass or less, more preferably 5% by mass or less, and even more preferably 2% by mass or less. When the amount of the phenol-based curing agent is within the above range, the minimum melt viscosity of the resin composition can be effectively reduced, and furthermore, the mechanical strength such as the elongation at break of the cured product of the resin composition, the surface roughness after roughening treatment, and the dielectric properties such as the relative dielectric constant and the dielectric loss tangent can be particularly improved.

樹脂組成物中のフェノール系硬化剤の量は、樹脂組成物の樹脂成分100質量%に対して、好ましくは0.1質量%以上、より好ましくは0.5質量%以上、更に好ましくは1質量%以上であり、好ましくは20質量%以下、より好ましくは10質量%以下、更に好ましくは5質量%以下である。フェノール系硬化剤の量が前記範囲にある場合、樹脂組成物の最低溶融粘度を効果的に低くでき、更に通常は、当該樹脂組成物の硬化物の破断点伸度等の機械的強度、粗化処理後の表面粗さ、並びに、比誘電率及び誘電正接等の誘電特性を特に良好にできる。 The amount of the phenol-based curing agent in the resin composition is preferably 0.1% by mass or more, more preferably 0.5% by mass or more, and even more preferably 1% by mass or more, based on 100% by mass of the resin components of the resin composition, and is preferably 20% by mass or less, more preferably 10% by mass or less, and even more preferably 5% by mass or less. When the amount of the phenol-based curing agent is within the above range, the minimum melt viscosity of the resin composition can be effectively reduced, and furthermore, the mechanical strength such as the elongation at break of the cured product of the resin composition, the surface roughness after roughening treatment, and the dielectric properties such as the relative dielectric constant and the dielectric loss tangent can be particularly improved.

フェノール系硬化剤と(C)処理充填材との質量比(フェノール系硬化剤/(C)処理充填材)は、好ましくは0.001以上、より好ましくは0.005以上、更に好ましくは0.01以上であり、好ましくは0.5以下、より好ましくは0.4以下、更に好ましくは0.3以下である。質量比(フェノール系硬化剤/(C)処理充填材)が前記範囲にある場合、樹脂組成物の最低溶融粘度を効果的に低くでき、更に通常は、当該樹脂組成物の硬化物の破断点伸度等の機械的強度、粗化処理後の表面粗さ、並びに、比誘電率及び誘電正接等の誘電特性を特に良好にできる。 The mass ratio of the phenolic hardener to the (C) treated filler (phenolic hardener/(C) treated filler) is preferably 0.001 or more, more preferably 0.005 or more, even more preferably 0.01 or more, and is preferably 0.5 or less, more preferably 0.4 or less, even more preferably 0.3 or less. When the mass ratio (phenolic hardener/(C) treated filler) is within the above range, the minimum melt viscosity of the resin composition can be effectively reduced, and furthermore, the mechanical strength such as the elongation at break of the cured product of the resin composition, the surface roughness after roughening treatment, and the dielectric properties such as the relative dielectric constant and dielectric loss tangent can be particularly improved.

(A)エポキシ樹脂のエポキシ基数を1とした場合、活性エステル系硬化剤の活性エステル基数及びフェノール系硬化剤のフェノール性水酸基数の合計は、好ましくは0.01以上、より好ましくは0.1以上、更に好ましくは0.2以上、特に好ましくは1以上であり、好ましくは10以下、より好ましくは5以下、更に好ましくは2以下である。活性エステル系硬化剤の活性エステル基数とフェノール系硬化剤のフェノール性水酸基数との合計が前記範囲にある場合、樹脂組成物の最低溶融粘度を効果的に低くでき、更に通常は、当該樹脂組成物の硬化物の破断点伸度等の機械的強度、粗化処理後の表面粗さ、並びに、比誘電率及び誘電正接等の誘電特性を特に良好にできる。 (A) When the number of epoxy groups in the epoxy resin is 1, the total number of active ester groups in the active ester curing agent and the number of phenolic hydroxyl groups in the phenolic curing agent is preferably 0.01 or more, more preferably 0.1 or more, even more preferably 0.2 or more, and particularly preferably 1 or more, and is preferably 10 or less, more preferably 5 or less, and even more preferably 2 or less. When the total number of active ester groups in the active ester curing agent and the number of phenolic hydroxyl groups in the phenolic curing agent is within the above range, the minimum melt viscosity of the resin composition can be effectively reduced, and furthermore, the mechanical strength such as the elongation at break of the cured product of the resin composition, the surface roughness after roughening treatment, and the dielectric properties such as the relative dielectric constant and dielectric loss tangent can be particularly improved.

樹脂組成物中の活性エステル系硬化剤及びフェノール系硬化剤の合計量は、樹脂組成物の不揮発成分100質量%に対して、好ましくは1質量%以上、より好ましくは2質量%以上、更に好ましくは5質量%以上、特に好ましくは10質量%以上であり、好ましくは40質量%以下、より好ましくは30質量%以下、更に好ましくは20質量%以下である。活性エステル系硬化剤とフェノール系硬化剤の合計量が前記範囲にある場合、樹脂組成物の最低溶融粘度を効果的に低くでき、更に通常は、当該樹脂組成物の硬化物の破断点伸度等の機械的強度、粗化処理後の表面粗さ、並びに、比誘電率及び誘電正接等の誘電特性を特に良好にできる。 The total amount of the active ester-based curing agent and the phenol-based curing agent in the resin composition is preferably 1% by mass or more, more preferably 2% by mass or more, even more preferably 5% by mass or more, and particularly preferably 10% by mass or more, based on 100% by mass of the non-volatile components of the resin composition, and is preferably 40% by mass or less, more preferably 30% by mass or less, and even more preferably 20% by mass or less. When the total amount of the active ester-based curing agent and the phenol-based curing agent is within the above range, the minimum melt viscosity of the resin composition can be effectively reduced, and furthermore, the mechanical strength such as the elongation at break of the cured product of the resin composition, the surface roughness after roughening treatment, and the dielectric properties such as the relative dielectric constant and the dielectric loss tangent can be particularly improved.

樹脂組成物中の活性エステル系硬化剤及びフェノール系硬化剤の合計量は、樹脂組成物の樹脂成分100質量%に対して、好ましくは5質量%以上、より好ましくは10質量%以上、更に好ましくは15質量%以上、特に好ましくは20質量%以上であり、好ましくは80質量%以下、より好ましくは70質量%以下、更に好ましくは65質量%以下である。活性エステル系硬化剤とフェノール系硬化剤の合計量が前記範囲にある場合、樹脂組成物の最低溶融粘度を効果的に低くでき、更に通常は、当該樹脂組成物の硬化物の破断点伸度等の機械的強度、粗化処理後の表面粗さ、並びに、比誘電率及び誘電正接等の誘電特性を特に良好にできる。 The total amount of the active ester-based curing agent and the phenol-based curing agent in the resin composition is preferably 5% by mass or more, more preferably 10% by mass or more, even more preferably 15% by mass or more, and particularly preferably 20% by mass or more, and is preferably 80% by mass or less, more preferably 70% by mass or less, and even more preferably 65% by mass or less, based on 100% by mass of the resin components of the resin composition. When the total amount of the active ester-based curing agent and the phenol-based curing agent is within the above range, the minimum melt viscosity of the resin composition can be effectively reduced, and furthermore, the mechanical strength such as the elongation at break of the cured product of the resin composition, the surface roughness after roughening treatment, and the dielectric properties such as the relative dielectric constant and the dielectric loss tangent can be particularly improved.

活性エステル系硬化剤及びフェノール系硬化剤の合計と(C)処理充填材との質量比(「活性エステル系硬化剤及びフェノール系硬化剤の合計」/(C)処理充填材)は、好ましくは0.01上、より好ましくは0.05以上、更に好ましくは0.1以上、特に好ましくは0.2以上であり、好ましくは0.5以下、より好ましくは0.4以下、更に好ましくは0.3以下である。質量比(「活性エステル系硬化剤及びフェノール系硬化剤の合計」/(C)処理充填材)が前記範囲にある場合、樹脂組成物の最低溶融粘度を効果的に低くでき、更に通常は、当該樹脂組成物の硬化物の破断点伸度等の機械的強度、粗化処理後の表面粗さ、並びに、比誘電率及び誘電正接等の誘電特性を特に良好にできる。 The mass ratio of the total of the active ester-based hardener and the phenol-based hardener to the (C) treated filler ("total of the active ester-based hardener and the phenol-based hardener"/(C) treated filler) is preferably 0.01 or more, more preferably 0.05 or more, even more preferably 0.1 or more, particularly preferably 0.2 or more, and preferably 0.5 or less, more preferably 0.4 or less, and even more preferably 0.3 or less. When the mass ratio ("total of the active ester-based hardener and the phenol-based hardener"/(C) treated filler) is within the above range, the minimum melt viscosity of the resin composition can be effectively reduced, and furthermore, the mechanical strength such as the elongation at break of the cured product of the resin composition, the surface roughness after roughening treatment, and the dielectric properties such as the relative dielectric constant and the dielectric loss tangent can be particularly improved.

カルボジイミド系硬化剤としては、1分子内中に1個以上、好ましくは2個以上のカルボジイミド基を有する化合物を用いうる。カルボジイミド系硬化剤の具体例としては、テトラメチレン-ビス(t-ブチルカルボジイミド)、シクロヘキサンビス(メチレン-t-ブチルカルボジイミド)等の脂肪族ビスカルボジイミド;フェニレン-ビス(キシリルカルボジイミド)等の芳香族ビスカルボジイミド等のビスカルボジイミド;ポリヘキサメチレンカルボジイミド、ポリトリメチルヘキサメチレンカルボジイミド、ポリシクロヘキシレンカルボジイミド、ポリ(メチレンビスシクロヘキシレンカルボジイミド)、ポリ(イソホロンカルボジイミド)等の脂肪族ポリカルボジイミド;ポリ(フェニレンカルボジイミド)、ポリ(ナフチレンカルボジイミド)、ポリ(トリレンカルボジイミド)、ポリ(メチルジイソプロピルフェニレンカルボジイミド)、ポリ(トリエチルフェニレンカルボジイミド)、ポリ(ジエチルフェニレンカルボジイミド)、ポリ(トリイソプロピルフェニレンカルボジイミド)、ポリ(ジイソプロピルフェニレンカルボジイミド)、ポリ(キシリレンカルボジイミド)、ポリ(テトラメチルキシリレンカルボジイミド)、ポリ(メチレンジフェニレンカルボジイミド)、ポリ[メチレンビス(メチルフェニレン)カルボジイミド]等の芳香族ポリカルボジイミド等のポリカルボジイミドが挙げられる。カルボジイミド系硬化剤の市販品としては、例えば、日清紡ケミカル社製の「カルボジライトV-02B」、「カルボジライトV-03」、「カルボジライトV-04K」、「カルボジライトV-07」及び「カルボジライトV-09」;ラインケミー社製の「スタバクゾールP」、「スタバクゾールP400」、「ハイカジル510」等が挙げられる。 As the carbodiimide-based curing agent, a compound having one or more, preferably two or more, carbodiimide groups in one molecule can be used. Specific examples of carbodiimide-based curing agents include aliphatic biscarbodiimides such as tetramethylene-bis(t-butylcarbodiimide) and cyclohexane bis(methylene-t-butylcarbodiimide); aromatic biscarbodiimides such as phenylene-bis(xylylcarbodiimide); aliphatic polycarbodiimides such as polyhexamethylenecarbodiimide, polytrimethylhexamethylenecarbodiimide, polycyclohexylenecarbodiimide, poly(methylenebiscyclohexylenecarbodiimide), and poly(isophoronecarbodiimide); poly(phenylenecarbodiimide), poly( Examples of polycarbodiimides include aromatic polycarbodiimides such as poly(naphthylenecarbodiimide), poly(tolylenecarbodiimide), poly(methyldiisopropylphenylenecarbodiimide), poly(triethylphenylenecarbodiimide), poly(diethylphenylenecarbodiimide), poly(triisopropylphenylenecarbodiimide), poly(diisopropylphenylenecarbodiimide), poly(xylylenecarbodiimide), poly(tetramethylxylylenecarbodiimide), poly(methylenediphenylenecarbodiimide), and poly[methylenebis(methylphenylene)carbodiimide]. Commercially available carbodiimide curing agents include, for example, "Carbodilite V-02B," "Carbodilite V-03," "Carbodilite V-04K," "Carbodilite V-07," and "Carbodilite V-09" manufactured by Nisshinbo Chemical Co., Ltd.; and "Stavaxol P," "Stavaxol P400," and "Hi-Kasil 510" manufactured by Rhein Chemie.

酸無水物系硬化剤としては、1分子内中に1個以上、好ましくは2個以上の酸無水物基を有する化合物を用いうる。酸無水物系硬化剤の具体例としては、無水フタル酸、テトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、メチルナジック酸無水物、水素化メチルナジック酸無水物、トリアルキルテトラヒドロ無水フタル酸、ドデセニル無水コハク酸、5-(2,5-ジオキソテトラヒドロ-3-フラニル)-3-メチル-3-シクロヘキセン-1,2-ジカルボン酸無水物、無水トリメリット酸、無水ピロメリット酸、ベンソフェノンテトラカルボン酸二無水物、ビフェニルテトラカルボン酸二無水物、ナフタレンテトラカルボン酸二無水物、オキシジフタル酸二無水物、3,3’-4,4’-ジフェニルスルホンテトラカルボン酸二無水物、1,3,3a,4,5,9b-ヘキサヒドロ-5-(テトラヒドロ-2,5-ジオキソ-3-フラニル)-ナフト[1,2-C]フラン-1,3-ジオン、エチレングリコールビス(アンヒドロトリメリテート)、スチレンとマレイン酸とが共重合したスチレン・マレイン酸樹脂などのポリマー型の酸無水物などが挙げられる。酸無水物系硬化剤の市販品としては、例えば、新日本理化社製の「HNA-100」、「MH-700」、「MTA-15」、「DDSA」、「OSA」;三菱ケミカル社製の「YH-306」、「YH-307」;日立化成社製の「HN-2200」、「HN-5500」;クレイバレイ社製「EF-30」、「EF-40」「EF-60」、「EF-80」等が挙げられる。 As the acid anhydride curing agent, a compound having one or more, preferably two or more, acid anhydride groups in one molecule can be used. Specific examples of acid anhydride curing agents include phthalic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methylhexahydrophthalic anhydride, methylnadic anhydride, hydrogenated methylnadic anhydride, trialkyltetrahydrophthalic anhydride, dodecenyl succinic anhydride, 5-(2,5-dioxotetrahydro-3-furanyl)-3-methyl-3-cyclohexene-1,2-dicarboxylic anhydride, trimellitic anhydride, pyromellitic anhydride, and benzophenonetetracarboxylic dianhydride. anhydride, biphenyltetracarboxylic dianhydride, naphthalenetetracarboxylic dianhydride, oxydiphthalic dianhydride, 3,3'-4,4'-diphenylsulfonetetracarboxylic dianhydride, 1,3,3a,4,5,9b-hexahydro-5-(tetrahydro-2,5-dioxo-3-furanyl)-naphtho[1,2-C]furan-1,3-dione, ethylene glycol bis(anhydrotrimellitate), and polymeric acid anhydrides such as styrene-maleic acid resin in which styrene and maleic acid are copolymerized. Examples of commercially available acid anhydride curing agents include "HNA-100", "MH-700", "MTA-15", "DDSA", and "OSA" manufactured by New Japan Chemical Co., Ltd.; "YH-306" and "YH-307" manufactured by Mitsubishi Chemical Corporation; "HN-2200" and "HN-5500" manufactured by Hitachi Chemical Co., Ltd.; and "EF-30", "EF-40", "EF-60", and "EF-80" manufactured by Clay Valley.

アミン系硬化剤としては、1分子内中に1個以上、好ましくは2個以上のアミノ基を有する化合物を用いうる。アミン系硬化剤としては、例えば、脂肪族アミン類、ポリエーテルアミン類、脂環式アミン類、芳香族アミン類等が挙げられ、中でも、芳香族アミン類が好ましい。アミン系硬化剤は、第1級アミン又は第2級アミンが好ましく、第1級アミンがより好ましい。アミン系硬化剤の具体例としては、4,4’-メチレンビス(2,6-ジメチルアニリン)、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルスルホン、3,3’-ジアミノジフェニルスルホン、m-フェニレンジアミン、m-キシリレンジアミン、ジエチルトルエンジアミン、4,4’-ジアミノジフェニルエーテル、3,3’-ジメチル-4,4’-ジアミノビフェニル、2,2’-ジメチル-4,4’-ジアミノビフェニル、3,3’-ジヒドロキシベンジジン、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)プロパン、3,3-ジメチル-5,5-ジエチル-4,4-ジフェニルメタンジアミン、2,2-ビス(4-アミノフェニル)プロパン、2,2-ビス(4-(4-アミノフェノキシ)フェニル)プロパン、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、4,4’-ビス(4-アミノフェノキシ)ビフェニル、ビス(4-(4-アミノフェノキシ)フェニル)スルホン、ビス(4-(3-アミノフェノキシ)フェニル)スルホン、等が挙げられる。アミン系硬化剤の市販品としては、例えば、セイカ社製「SEIKACURE-S」;日本化薬社製の「KAYABOND C-200S」、「KAYABOND C-100」、「カヤハードA-A」、「カヤハードA-B」、「カヤハードA-S」;三菱ケミカル社製の「エピキュアW」;住友精化社製「DTDA」等が挙げられる。 As the amine-based curing agent, a compound having one or more, preferably two or more, amino groups in one molecule can be used. Examples of the amine-based curing agent include aliphatic amines, polyether amines, alicyclic amines, aromatic amines, etc., and among these, aromatic amines are preferred. The amine-based curing agent is preferably a primary amine or secondary amine, and more preferably a primary amine. Specific examples of the amine-based curing agent include 4,4'-methylenebis(2,6-dimethylaniline), 4,4'-diaminodiphenylmethane, 4,4'-diaminodiphenylsulfone, 3,3'-diaminodiphenylsulfone, m-phenylenediamine, m-xylylenediamine, diethyltoluenediamine, 4,4'-diaminodiphenylether, 3,3'-dimethyl-4,4'-diaminobiphenyl, 2,2'-dimethyl-4,4'-diaminobiphenyl, 3,3'-dihydroxybenzidine, 2,2-bis(3-amino-4-hydroxyphenyl)propane. propane, 3,3-dimethyl-5,5-diethyl-4,4-diphenylmethanediamine, 2,2-bis(4-aminophenyl)propane, 2,2-bis(4-(4-aminophenoxy)phenyl)propane, 1,3-bis(3-aminophenoxy)benzene, 1,3-bis(4-aminophenoxy)benzene, 1,4-bis(4-aminophenoxy)benzene, 4,4'-bis(4-aminophenoxy)biphenyl, bis(4-(4-aminophenoxy)phenyl)sulfone, bis(4-(3-aminophenoxy)phenyl)sulfone, and the like. Commercially available amine-based curing agents include, for example, "SEIKACURE-S" manufactured by Seika Corporation; "KAYABOND C-200S", "KAYABOND C-100", "KAYAHARD A-A", "KAYAHARD A-B", and "KAYAHARD A-S" manufactured by Nippon Kayaku Co., Ltd.; "Epicure W" manufactured by Mitsubishi Chemical Corporation; and "DTDA" manufactured by Sumitomo Seika Chemicals Co., Ltd.

ベンゾオキサジン系硬化剤の具体例としては、JFEケミカル社製の「JBZ-OP100D」、「ODA-BOZ」;昭和高分子社製の「HFB2006M」;四国化成工業社製の「P-d」、「F-a」などが挙げられる。 Specific examples of benzoxazine-based curing agents include "JBZ-OP100D" and "ODA-BOZ" manufactured by JFE Chemical Corporation; "HFB2006M" manufactured by Showa Polymer Co., Ltd.; and "P-d" and "F-a" manufactured by Shikoku Chemical Industry Co., Ltd.

チオール系硬化剤としては、例えば、トリメチロールプロパントリス(3-メルカプトプロピオネート)、ペンタエリスリトールテトラキス(3-メルカプトブチレート)、トリス(3-メルカプトプロピル)イソシアヌレート等が挙げられる。 Examples of thiol-based curing agents include trimethylolpropane tris(3-mercaptopropionate), pentaerythritol tetrakis(3-mercaptobutyrate), and tris(3-mercaptopropyl)isocyanurate.

(B)硬化剤の活性基当量は、好ましくは50g/eq.~3000g/eq.、より好ましくは100g/eq.~1000g/eq.、さらに好ましくは100g/eq.~500g/eq.、特に好ましくは100g/eq.~300g/eq.である。活性基当量は、活性基1当量あたりの樹脂の質量を表す。 The active group equivalent of the (B) curing agent is preferably 50 g/eq. to 3000 g/eq., more preferably 100 g/eq. to 1000 g/eq., even more preferably 100 g/eq. to 500 g/eq., and particularly preferably 100 g/eq. to 300 g/eq. The active group equivalent represents the mass of the resin per equivalent of the active group.

(A)エポキシ樹脂のエポキシ基数を1とした場合、(B)硬化剤の活性基数は、好ましくは0.01以上、より好ましくは0.1以上、更に好ましくは0.5以上、特に好ましくは1以上であり、好ましくは10以下、より好ましくは5以下、更に好ましくは3以下である。「(B)硬化剤の活性基数」とは、樹脂組成物中に存在する(B)硬化剤の不揮発成分の質量を活性基当量で割り算した値を全て合計した値を表す。(B)硬化剤の活性基数が前記範囲にある場合、樹脂組成物の最低溶融粘度を効果的に低くでき、更に通常は、当該樹脂組成物の硬化物の破断点伸度等の機械的強度、粗化処理後の表面粗さ、並びに、比誘電率及び誘電正接等の誘電特性を特に良好にできる。 When the number of epoxy groups in the (A) epoxy resin is 1, the number of active groups in the (B) curing agent is preferably 0.01 or more, more preferably 0.1 or more, even more preferably 0.5 or more, and particularly preferably 1 or more, and is preferably 10 or less, more preferably 5 or less, and even more preferably 3 or less. The "number of active groups in the (B) curing agent" refers to the total value obtained by dividing the mass of the non-volatile components of the (B) curing agent present in the resin composition by the active group equivalent. When the number of active groups in the (B) curing agent is within the above range, the minimum melt viscosity of the resin composition can be effectively reduced, and furthermore, the mechanical strength such as the elongation at break of the cured product of the resin composition, the surface roughness after roughening treatment, and the dielectric properties such as the relative dielectric constant and dielectric loss tangent can be particularly improved.

樹脂組成物中の(B)硬化剤の量は、樹脂組成物の不揮発成分100質量%に対して、好ましくは1質量%以上、より好ましくは5質量%以上、更に好ましくは10質量%以上、特に好ましくは15質量%以上であり、好ましくは45質量%以下、より好ましくは40質量%以下、更に好ましくは30質量%以下である。(B)硬化剤の量が前記範囲にある場合、樹脂組成物の最低溶融粘度を効果的に低くでき、更に通常は、当該樹脂組成物の硬化物の破断点伸度等の機械的強度、粗化処理後の表面粗さ、並びに、比誘電率及び誘電正接等の誘電特性を特に良好にできる。 The amount of (B) curing agent in the resin composition is preferably 1% by mass or more, more preferably 5% by mass or more, even more preferably 10% by mass or more, and particularly preferably 15% by mass or more, relative to 100% by mass of the non-volatile components of the resin composition, and is preferably 45% by mass or less, more preferably 40% by mass or less, and even more preferably 30% by mass or less. When the amount of (B) curing agent is within the above range, the minimum melt viscosity of the resin composition can be effectively reduced, and furthermore, the mechanical strength such as the elongation at break of the cured product of the resin composition, the surface roughness after roughening treatment, and the dielectric properties such as the relative dielectric constant and the dielectric loss tangent can be particularly improved.

樹脂組成物中の(B)硬化剤の量は、樹脂組成物の樹脂成分100質量%に対して、好ましくは10質量%以上、より好ましくは20質量%以上、更に好ましくは30質量%以上、特に好ましくは50質量%以上であり、好ましくは90質量%以下、より好ましくは80質量%以下、更に好ましくは70質量%以下である。(B)硬化剤の量が前記範囲にある場合、樹脂組成物の最低溶融粘度を効果的に低くでき、更に通常は、当該樹脂組成物の硬化物の破断点伸度等の機械的強度、粗化処理後の表面粗さ、並びに、比誘電率及び誘電正接等の誘電特性を特に良好にできる。 The amount of (B) curing agent in the resin composition is preferably 10% by mass or more, more preferably 20% by mass or more, even more preferably 30% by mass or more, and particularly preferably 50% by mass or more, and is preferably 90% by mass or less, more preferably 80% by mass or less, and even more preferably 70% by mass or less, based on 100% by mass of the resin components of the resin composition. When the amount of (B) curing agent is within the above range, the minimum melt viscosity of the resin composition can be effectively reduced, and furthermore, the mechanical strength such as the elongation at break of the cured product of the resin composition, the surface roughness after roughening treatment, and the dielectric properties such as the relative dielectric constant and dielectric loss tangent can be particularly improved.

(B)硬化剤と(C)処理充填材との質量比((B)硬化剤/(C)処理充填材)は、好ましくは0.01以上、より好ましくは0.1以上、更に好ましくは0.18以上、特に好ましくは0.22であり、好ましくは0.5以下、より好ましくは0.4以下、更に好ましくは0.3以下である。質量比((B)硬化剤/(C)処理充填材)が前記範囲にある場合、樹脂組成物の最低溶融粘度を効果的に低くでき、更に通常は、当該樹脂組成物の硬化物の破断点伸度等の機械的強度、粗化処理後の表面粗さ、並びに、比誘電率及び誘電正接等の誘電特性を特に良好にできる。 The mass ratio of the (B) curing agent to the (C) treated filler ((B) curing agent/(C) treated filler) is preferably 0.01 or more, more preferably 0.1 or more, even more preferably 0.18 or more, and particularly preferably 0.22, and is preferably 0.5 or less, more preferably 0.4 or less, and even more preferably 0.3 or less. When the mass ratio ((B) curing agent/(C) treated filler) is within the above range, the minimum melt viscosity of the resin composition can be effectively reduced, and furthermore, the mechanical strength such as the elongation at break of the cured product of the resin composition, the surface roughness after roughening treatment, and the dielectric properties such as the relative dielectric constant and dielectric loss tangent can be particularly improved.

[(C)カルボジイミド化合物で表面処理された無機充填材(処理充填材)]
本発明の一実施形態に係る樹脂組成物は、(C)成分としての(C)処理充填材を含む。(C)処理充填材は、カルボジイミド化合物で表面処理された無機充填材である。(C)処理充填材は、通常、粒子の状態で樹脂組成物に含まれる。
[(C) Inorganic filler surface-treated with a carbodiimide compound (treated filler)]
The resin composition according to one embodiment of the present invention includes a treated filler (C) as a component (C). The treated filler (C) is an inorganic filler that has been surface-treated with a carbodiimide compound. The treated filler (C) is usually included in the resin composition in the form of particles.

(C)処理充填材は、通常、無機化合物の粒子としての無機充填材を含し、この無機充填材の表面にカルボジイミド化合物を有しうる。カルボジイミド化合物は、共通結合又はイオン結合等の化学結合によって無機充填材に結合していてもよく、物理吸着によって無機充填材に付着していてもよい。また、カルボジイミド化合物は、無機充填材の表面に直接に結合又は付着していてもよく、任意の表面処理剤等の他の成分を介して間接的に結合又は付着していてもよい。ここで、無機充填材の表面にカルボジイミド化合物が「直接に」結合又は付着する、とは、無機充填材の表面とカルボジイミド化合物との間に他の成分が無いことを表す。また、無機充填材の表面にカルボジイミド化合物が「間接的に」結合又は付着する、とは、無機充填材の表面とカルボジイミド化合物との間に他の成分があることを表す。 (C) The treated filler usually contains an inorganic filler as particles of an inorganic compound, and may have a carbodiimide compound on the surface of the inorganic filler. The carbodiimide compound may be bonded to the inorganic filler by a chemical bond such as a common bond or an ionic bond, or may be attached to the inorganic filler by physical adsorption. The carbodiimide compound may be directly bonded or attached to the surface of the inorganic filler, or may be indirectly bonded or attached via other components such as an optional surface treatment agent. Here, the term "directly" bonded or attached to the surface of the inorganic filler means that there is no other component between the surface of the inorganic filler and the carbodiimide compound. The term "indirectly" bonded or attached to the surface of the inorganic filler means that there is another component between the surface of the inorganic filler and the carbodiimide compound.

(C)処理充填材が含む無機充填材の材料としては、無機化合物を用いる。無機充填材の材料としては、例えば、シリカ、アルミナ、ガラス、コーディエライト、シリコン酸化物、硫酸バリウム、炭酸バリウム、タルク、クレー、雲母粉、酸化亜鉛、ハイドロタルサイト、ベーマイト、水酸化アルミニウム、水酸化マグネシウム、炭酸カルシウム、炭酸マグネシウム、酸化マグネシウム、窒化ホウ素、窒化アルミニウム、窒化マンガン、ホウ酸アルミニウム、炭酸ストロンチウム、チタン酸ストロンチウム、チタン酸カルシウム、チタン酸マグネシウム、チタン酸ビスマス、酸化チタン、酸化ジルコニウム、チタン酸バリウム、チタン酸ジルコン酸バリウム、ジルコン酸バリウム、ジルコン酸カルシウム、リン酸ジルコニウム、及びリン酸タングステン酸ジルコニウム等が挙げられる。これらの中でもシリカ、アルミナが好適であり、シリカが特に好適である。シリカとしては、例えば、無定形シリカ、溶融シリカ、結晶シリカ、合成シリカ、中空シリカ等が挙げられる。また、シリカとしては球形シリカが好ましい。無機充填材の材料は、1種類を単独で用いてもよく、2種類以上を組み合わせて用いても負い。 (C) An inorganic compound is used as the material of the inorganic filler contained in the treated filler. Examples of the material of the inorganic filler include silica, alumina, glass, cordierite, silicon oxide, barium sulfate, barium carbonate, talc, clay, mica powder, zinc oxide, hydrotalcite, boehmite, aluminum hydroxide, magnesium hydroxide, calcium carbonate, magnesium carbonate, magnesium oxide, boron nitride, aluminum nitride, manganese nitride, aluminum borate, strontium carbonate, strontium titanate, calcium titanate, magnesium titanate, bismuth titanate, titanium oxide, zirconium oxide, barium titanate, barium zirconate titanate, barium zirconate, calcium zirconate, zirconium phosphate, and zirconium tungstate phosphate. Among these, silica and alumina are preferred, and silica is particularly preferred. Examples of silica include amorphous silica, fused silica, crystalline silica, synthetic silica, and hollow silica. In addition, spherical silica is preferred as the silica. The inorganic filler material may be used alone or in combination of two or more types.

無機充填材は、内部に空孔を有する中空無機充填材と、内部に空孔を有さない中実無機充填材とに分類できる。無機充填材としては、中空無機充填材のみを用いてもよく、中実無機充填材のみを用いてもよく、中空無機充填材と中実無機充填材とを組み合わせて用いてもよい。中空無機充填材を用いる場合、通常は、樹脂組成物の硬化物の比誘電率を特に低くできる。 Inorganic fillers can be classified into hollow inorganic fillers that have internal voids and solid inorganic fillers that do not have internal voids. As the inorganic filler, only hollow inorganic fillers may be used, only solid inorganic fillers may be used, or hollow inorganic fillers and solid inorganic fillers may be used in combination. When hollow inorganic fillers are used, the relative dielectric constant of the cured product of the resin composition can usually be particularly low.

中空無機充填材は、空孔を有するので、通常、0体積%より大きい空孔率を有する。樹脂組成物の硬化物の比誘電率を低くする観点から、中空無機充填材の空孔率は、好ましくは5体積%以上、より好ましくは10体積%以上、特に好ましくは15体積%以上である。また、樹脂組成物の硬化物の機械的強度の観点から、中空無機充填材の空孔率は、好ましくは95体積%以下、より好ましくは90体積%以下、特に好ましくは85体積%以下である。 Since hollow inorganic fillers have pores, they usually have a porosity of greater than 0 volume percent. From the viewpoint of reducing the relative dielectric constant of the cured resin composition, the porosity of the hollow inorganic filler is preferably 5 volume percent or more, more preferably 10 volume percent or more, and particularly preferably 15 volume percent or more. From the viewpoint of the mechanical strength of the cured resin composition, the porosity of the hollow inorganic filler is preferably 95 volume percent or less, more preferably 90 volume percent or less, and particularly preferably 85 volume percent or less.

粒子の空孔率P(体積%)は、粒子の外面を基準とした粒子全体の体積に対する粒子内部に1個又は2個以上存在する空孔の合計体積の体積基準割合(空孔の合計体積/粒子の体積)として定義される。この空孔率Pは、粒子の実際の密度の測定値D(g/cm)、及び、粒子を形成する材料の物質密度の理論値D(g/cm)を用いて、下記式(M1)により算出できる。 The porosity P (volume %) of a particle is defined as the volume ratio of the total volume of one or more pores present inside the particle to the total volume of the particle based on the outer surface of the particle (total volume of pores/volume of particle). This porosity P can be calculated by the following formula (M1) using the measured value D M (g/cm 3 ) of the actual density of the particle and the theoretical value D T (g/cm 3 ) of the material density of the material forming the particle.

Figure 0007501567000002
Figure 0007501567000002

中空無機充填材は、例えば、特許第5940188号公報及び特許第5864299号公報に記載の方法又はこれに準ずる方法により製造してもよい。 The hollow inorganic filler may be produced, for example, by the methods described in Japanese Patent No. 5940188 and Japanese Patent No. 5864299 or methods equivalent thereto.

(D)無機充填材の市販品としては、例えば、日鉄ケミカル&マテリアル社製の「SP60-05」、「SP507-05」;アドマテックス社製の「YC100C」、「YA050C」、「YA050C-MJE」、「YA010C」、「SC2500SQ」、「SO-C4」、「SO-C2」、「SO-C1」;デンカ社製の「UFP-30」、「DAW-03」、「FB-105FD」;トクヤマ社製の「シルフィルNSS-3N」、「シルフィルNSS-4N」、「シルフィルNSS-5N」;日揮触媒化成社製「エスフェリークBA-1」、「BA-S」;太平洋セメント社製「MG-005」、「セルフィアーズ」などが挙げられる。 (D) Commercially available inorganic fillers include, for example, "SP60-05" and "SP507-05" manufactured by Nippon Steel Chemical & Material Co., Ltd.; "YC100C", "YA050C", "YA050C-MJE", "YA010C", "SC2500SQ", "SO-C4", "SO-C2", and "SO-C1" manufactured by Admatechs Co., Ltd.; "UFP-30", "DAW-03", and "FB-105FD" manufactured by Denka Co., Ltd.; "Silfil NSS-3N", "Silfil NSS-4N", and "Silfil NSS-5N" manufactured by Tokuyama Corporation; "Sferique BA-1" and "BA-S" manufactured by JGC Catalysts & Chemicals Co., Ltd.; and "MG-005" and "Cellpheares" manufactured by Taiheiyo Cement Corporation.

無機充填材の平均粒径は、本発明の所望の効果を顕著に得る観点から、好ましくは0.01μm以上、より好ましくは0.05μm以上、さらに好ましくは0.1μm以上、特に好ましくは0.2μm以上であり、好ましくは10μm以下、より好ましくは5μm以下、さらに好ましくは3μm以下である。 From the viewpoint of significantly obtaining the desired effects of the present invention, the average particle size of the inorganic filler is preferably 0.01 μm or more, more preferably 0.05 μm or more, even more preferably 0.1 μm or more, and particularly preferably 0.2 μm or more, and is preferably 10 μm or less, more preferably 5 μm or less, and even more preferably 3 μm or less.

無機充填材の平均粒径は、ミー(Mie)散乱理論に基づくレーザー回折・散乱法により測定することができる。具体的には、レーザー回折散乱式粒径分布測定装置により、無機充填材の粒径分布を体積基準で作成し、そのメディアン径を平均粒径とすることで測定することができる。測定サンプルは、無機充填材100mg、メチルエチルケトン10gをバイアル瓶に秤取り、超音波にて10分間分散させたものを使用することができる。測定サンプルを、レーザー回折式粒径分布測定装置を使用して、使用光源波長を青色及び赤色とし、フローセル方式で無機充填材の体積基準の粒径分布を測定し、得られた粒径分布からメディアン径として平均粒径を算出しうる。レーザー回折式粒径分布測定装置としては、例えば堀場製作所社製「LA-960」等が挙げられる。 The average particle size of the inorganic filler can be measured by a laser diffraction/scattering method based on the Mie scattering theory. Specifically, a particle size distribution of the inorganic filler is created on a volume basis using a laser diffraction/scattering particle size distribution measuring device, and the median diameter is used as the average particle size. The measurement sample can be prepared by weighing 100 mg of inorganic filler and 10 g of methyl ethyl ketone into a vial and dispersing the mixture ultrasonically for 10 minutes. The measurement sample is measured using a laser diffraction particle size distribution measuring device with blue and red light source wavelengths, and the volume-based particle size distribution of the inorganic filler is measured using a flow cell method, and the average particle size can be calculated as the median diameter from the particle size distribution obtained. An example of a laser diffraction particle size distribution measuring device is the "LA-960" manufactured by Horiba, Ltd.

無機充填材の比表面積は、本発明の所望の効果を顕著に得る観点から、好ましくは0.1m/g以上、より好ましくは0.5m/g以上、さらに好ましくは1m/g以上、特に好ましくは3m/g以上であり、好ましくは100m/g以下、より好ましくは70m/g以下、さらに好ましくは50m/g以下、特に好ましくは40m/g以下である。無機充填材の比表面積は、BET法に従って、比表面積測定装置(マウンテック社製Macsorb HM-1210)を使用して試料表面に窒素ガスを吸着させ、BET多点法を用いて比表面積を算出することで測定できる。 From the viewpoint of significantly obtaining the desired effects of the present invention, the specific surface area of the inorganic filler is preferably 0.1 m 2 /g or more, more preferably 0.5 m 2 /g or more, even more preferably 1 m 2 /g or more, particularly preferably 3 m 2 /g or more, and preferably 100 m 2 /g or less, more preferably 70 m 2 /g or less, even more preferably 50 m 2 /g or less, particularly preferably 40 m 2 /g or less. The specific surface area of the inorganic filler can be measured according to the BET method by adsorbing nitrogen gas onto the sample surface using a specific surface area measuring device (Macsorb HM-1210 manufactured by Mountech Co., Ltd.) and calculating the specific surface area using the BET multipoint method.

無機充填材は、1種類単独で用いてもよく、2種以上を組み合わせて用いてもよい。 The inorganic filler may be used alone or in combination of two or more types.

カルボジイミド化合物は、1分子中にカルボジイミド基(-N=C=N-)を1個以上有する化合物を表す。カルボジイミド化合物が1分子中に有するカルボジイミド基の数は、2個以上が好ましい。カルボジイミド化合物は、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。 A carbodiimide compound refers to a compound having one or more carbodiimide groups (-N=C=N-) in one molecule. The number of carbodiimide groups in one molecule of a carbodiimide compound is preferably two or more. One type of carbodiimide compound may be used alone, or two or more types may be used in combination.

カルボジイミド化合物は、下記式(C-1)で表される構造単位を含有することが好ましい。 The carbodiimide compound preferably contains a structural unit represented by the following formula (C-1):

Figure 0007501567000003
Figure 0007501567000003

式(C-1)において、Yは、置換基を有していてもよい2価の炭化水素基を表す。Yにおける2価の炭化水素基の炭素原子数は、通常1以上、好ましくは2以上であり、通常30以下である。2価の炭化水素基は、2価の飽和炭化水素基であってもよく、2価の不飽和炭化水素基であってもよい。2価の不飽和炭化水素基とは、別に断らない限り、少なくとも1つの炭素-炭素二重結合、炭素-炭素三重結合又は芳香族炭化水素環を有する炭化水素基を表し、直鎖状、分枝鎖状及び環状のいずれも包含する。 In formula (C-1), Y represents a divalent hydrocarbon group which may have a substituent. The number of carbon atoms in the divalent hydrocarbon group represented by Y is usually 1 or more, preferably 2 or more, and usually 30 or less. The divalent hydrocarbon group may be a divalent saturated hydrocarbon group or a divalent unsaturated hydrocarbon group. Unless otherwise specified, a divalent unsaturated hydrocarbon group represents a hydrocarbon group having at least one carbon-carbon double bond, carbon-carbon triple bond, or aromatic hydrocarbon ring, and includes linear, branched, and cyclic groups.

Yにおける好ましい2価の炭化水素基としては、例えば、アルキレン基、シクロアルキレン基、アリーレン基、及びこれらを組み合わせた基が挙げられる。 Preferred divalent hydrocarbon groups for Y include, for example, alkylene groups, cycloalkylene groups, arylene groups, and combinations thereof.

Yにおけるアルキレン基の炭素原子数は、好ましくは1~20、より好ましくは1~10、更に好ましくは1~6、更に好ましくは1~4、更に好ましくは1~3である。該炭素原子数に置換基の炭素原子数は含まれない。アルキレン基の好適な例としては、メチレン基、エチレン基、プロピレン基、ブチレン基が挙げられる。 The number of carbon atoms in the alkylene group in Y is preferably 1 to 20, more preferably 1 to 10, even more preferably 1 to 6, even more preferably 1 to 4, and even more preferably 1 to 3. The number of carbon atoms does not include the number of carbon atoms of the substituent. Suitable examples of the alkylene group include a methylene group, an ethylene group, a propylene group, and a butylene group.

Yにおけるシクロアルキレン基の炭素原子数は、好ましくは3~20、より好ましくは3~12、更に好ましくは3~6である。該炭素原子数に置換基の炭素原子数は含まれない。シクロアルキレン基の好適な例としては、シクロプロピレン基、シクロブチレン基、シクロペンチレン基、シクロヘキシレン基が挙げられる。 The number of carbon atoms in the cycloalkylene group in Y is preferably 3 to 20, more preferably 3 to 12, and even more preferably 3 to 6. The number of carbon atoms does not include the number of carbon atoms of the substituent. Suitable examples of the cycloalkylene group include a cyclopropylene group, a cyclobutylene group, a cyclopentylene group, and a cyclohexylene group.

Yにおけるアリーレン基は、芳香族炭化水素から芳香環上の水素原子を2個除いた基を表す。アリーレン基の炭素原子数は、好ましくは6~24、より好ましくは6~18、更に好ましくは6~14、更に好ましくは6~10である。該炭素原子数に置換基の炭素原子数は含まれない。アリーレン基の好適な例としては、フェニレン基、ナフチレン基、アントラセニレン基が挙げられる。 The arylene group in Y represents a group in which two hydrogen atoms on an aromatic ring have been removed from an aromatic hydrocarbon. The number of carbon atoms in the arylene group is preferably 6 to 24, more preferably 6 to 18, even more preferably 6 to 14, and even more preferably 6 to 10. The number of carbon atoms does not include the number of carbon atoms of the substituent. Suitable examples of the arylene group include a phenylene group, a naphthylene group, and an anthracenylene group.

Yにおける置換基としては、特に限定されるものではないが、例えば、ハロゲン原子、アルキル-オキシ基、アルケニル-オキシ基、アリール-オキシ基、アルキル-オキシ-カルボニル基、アルケニル-オキシ-カルボニル基、アリール-オキシ-カルボニル基、アルキル-カルボニル-オキシ基、アルケニル-カルボニル-オキシ基、アリール-カルボニル-オキシ基等が挙げられる。中でも、Yにおける2価の炭化水素基は、置換基を有さないことが好ましい。 The substituent in Y is not particularly limited, but examples thereof include a halogen atom, an alkyl-oxy group, an alkenyl-oxy group, an aryl-oxy group, an alkyl-oxy-carbonyl group, an alkenyl-oxy-carbonyl group, an aryl-oxy-carbonyl group, an alkyl-carbonyl-oxy group, an alkenyl-carbonyl-oxy group, an aryl-carbonyl-oxy group, and the like. In particular, it is preferable that the divalent hydrocarbon group in Y does not have a substituent.

より好ましくは、Yは、置換基を有していてもよい炭素原子数2~30の2価の飽和炭化水素基、又は置換基を有していてもよい炭素原子数2~30の2価の不飽和炭化水素基を示す。更に好ましくは、Yは、置換基を有していてもよく且つ環構造(例えばシクロアルカン環、ベンゼン環、及びナフタレン環から選ばれる環構造)を有する炭素原子数2~30の2価の飽和炭化水素基、又は置換基を有していてもよく且つ環構造(例えばシクロアルカン環、ベンゼン環、及びナフタレン環から選ばれる環構造)を有する炭素原子数2~30の2価の不飽和炭化水素基を表す。 More preferably, Y represents a divalent saturated hydrocarbon group having 2 to 30 carbon atoms which may have a substituent, or a divalent unsaturated hydrocarbon group having 2 to 30 carbon atoms which may have a substituent. Even more preferably, Y represents a divalent saturated hydrocarbon group having 2 to 30 carbon atoms which may have a substituent and has a ring structure (for example, a ring structure selected from a cycloalkane ring, a benzene ring, and a naphthalene ring), or a divalent unsaturated hydrocarbon group having 2 to 30 carbon atoms which may have a substituent and has a ring structure (for example, a ring structure selected from a cycloalkane ring, a benzene ring, and a naphthalene ring).

特に好ましくは、Yは、下記式(C-2)で表される2価の基を表す。 Particularly preferably, Y represents a divalent group represented by the following formula (C-2):

Figure 0007501567000004
Figure 0007501567000004

(式(C-2)において、
、Y及びYは、それぞれ独立して、単結合、又はC(Rを表し;
は、それぞれ独立して、水素原子、又はメチル基を表し;
環Y及び環Yは、それぞれ独立して、置換基を有していてもよい炭素原子数4~10のシクロアルカン環、置換基を有していてもよいベンゼン環、又は、置換基を有していてもよいナフタレン環を表し;
は、0又は1を表し;
*は、結合部位を表す。)
(In formula (C-2),
Y a , Y b and Y c each independently represent a single bond or C(R y ) 2 ;
R y each independently represents a hydrogen atom or a methyl group;
Ring Y1 and ring Y2 each independently represent a cycloalkane ring having 4 to 10 carbon atoms which may have a substituent, a benzene ring which may have a substituent, or a naphthalene ring which may have a substituent;
n y represents 0 or 1;
* indicates a binding site.)

式(C-2)において、Y、Y及びYは、それぞれ独立して、単結合、又はC(Rを表す。好ましくは、Y及びYが単結合であり且つYがC(Rを表す。Rは、それぞれ独立して、水素原子、又はメチル基を示し、好ましくは水素原子である。 In formula (C-2), Y a , Y b and Y c each independently represent a single bond or C(R y ) 2. Preferably, Y a and Y c each independently represent a single bond and Y b represents C(R y ) 2. Each R y independently represents a hydrogen atom or a methyl group, and is preferably a hydrogen atom.

式(C-2)において、環Y及び環Yは、それぞれ独立して、置換基を有していてもよい炭素原子数4~10のシクロアルカン環、置換基を有していてもよいベンゼン環、又は、置換基を有していてもよいナフタレン環を表す。好ましくは、環Y及び環Yは、それぞれ独立して、置換基を有していてもよい炭素原子数4~10のシクロアルカン環を表す。炭素原子数4~10のシクロアルカン環としては、例えば、シクロブタン環、シクロペンタン環、シクロヘキサン環、シクロヘプタン環、シクロオクタン環、シクロノナン環、シクロデカン環等の単環系の飽和炭化水素環;ビシクロ[2.2.1]ヘプタン環(ノルボルナン環)、ビシクロ[4.4.0]デカン環(デカリン環)、ビシクロ[5.3.0]デカン環、ビシクロ[4.3.0]ノナン環(ヒドリンダン環)、ビシクロ[3.3.0]オクタン環、ビシクロ[3.3.1]ノナン環等の二環系の飽和炭化水素環;トリシクロ[5.2.1.02,6]デカン環(テトラヒドロジシクロペンタジエン環)、トリシクロ[3.3.1.13,7]デカン環(アダマンタン環)等の三環系の飽和炭化水素環等が挙げられる。より好ましくは、環Y及び環Yは、それぞれ独立して、置換基を有していてもよいシクロヘキサン環を表す。シクロアルカン環、ベンゼン環及びナフタレン環における置換基としては、特に限定されるものではないが、例えば、ハロゲン原子、アルキル基、アルケニル基、アリール基、アリール-アルキル基(アリール基で置換されたアルキル基)、アルキル-アリール基(アルキル基で置換されたアリール基)、アルキル-オキシ基、アルケニル-オキシ基、アリール-オキシ基、アルキル-オキシ-カルボニル基、アルケニル-オキシ-カルボニル基、アリール-オキシ-カルボニル基、アルキル-カルボニル-オキシ基、アルケニル-カルボニル-オキシ基、アリール-カルボニル-オキシ基等が挙げられる。中でも、環Y及び環Yは、無置換のシクロヘキサン環が特に好ましい。 In formula (C-2), ring Y1 and ring Y2 each independently represent a cycloalkane ring having 4 to 10 carbon atoms which may have a substituent, a benzene ring which may have a substituent, or a naphthalene ring which may have a substituent. Preferably, ring Y1 and ring Y2 each independently represent a cycloalkane ring having 4 to 10 carbon atoms which may have a substituent. Examples of the cycloalkane ring having 4 to 10 carbon atoms include monocyclic saturated hydrocarbon rings such as a cyclobutane ring, a cyclopentane ring, a cyclohexane ring, a cycloheptane ring, a cyclooctane ring, a cyclononane ring, and a cyclodecane ring; bicyclic saturated hydrocarbon rings such as a bicyclo[2.2.1]heptane ring (norbornane ring), a bicyclo[4.4.0]decane ring (decalin ring), a bicyclo[5.3.0]decane ring, a bicyclo[4.3.0]nonane ring (hydrindane ring), a bicyclo[3.3.0]octane ring, and a bicyclo[3.3.1]nonane ring; and tricyclic saturated hydrocarbon rings such as a tricyclo[5.2.1.0 2,6 ]decane ring (tetrahydrodicyclopentadiene ring) and a tricyclo[3.3.1.1 3,7 ]decane ring (adamantane ring). More preferably, ring Y 1 and ring Y 2 each independently represent a cyclohexane ring which may have a substituent. Substituents in the cycloalkane ring, benzene ring and naphthalene ring are not particularly limited, but examples thereof include halogen atoms, alkyl groups, alkenyl groups, aryl groups, aryl-alkyl groups (alkyl groups substituted with aryl groups), alkyl-aryl groups (aryl groups substituted with alkyl groups), alkyl-oxy groups, alkenyl-oxy groups, aryl-oxy groups, alkyl-oxy-carbonyl groups, alkenyl-oxy-carbonyl groups, aryl-oxy-carbonyl groups, alkyl-carbonyl-oxy groups, alkenyl-carbonyl-oxy groups, and aryl-carbonyl-oxy groups. Among these, ring Y 1 and ring Y 2 are particularly preferably unsubstituted cyclohexane rings.

Yの具体例としては、式(Y1)~(Y14)で表される2価の基が挙げられ、式(Y1)で表される2価の基が特に好ましい。 Specific examples of Y include divalent groups represented by formulas (Y1) to (Y14), with the divalent group represented by formula (Y1) being particularly preferred.

Figure 0007501567000005
Figure 0007501567000005

(式(Y1)~(Y14)中、*は、結合部位を示す。) (In formulas (Y1) to (Y14), * indicates a binding site.)

好ましい一例において、カルボジイミド化合物が含有する式(C-1)で表される構造単位の割合は、カルボジイミド化合物の分子全体の質量100質量%に対して、好ましくは50質量%以上、より好ましくは60質量%以上、さらに好ましくは70質量%以上、更に好ましくは80質量%以上であり、90質量%以上でもよい。カルボジイミド化合物は、末端構造を除いて、式(C-1)で表される構造単位から実質的になってもよい。カルボジイミド化合物の末端構造としては、特に限定されないが、例えば、アルキル基、シクロアルキル基及びアリール基が挙げられ、これらは置換基を有していてもよい。 In a preferred example, the proportion of the structural unit represented by formula (C-1) contained in the carbodiimide compound is preferably 50% by mass or more, more preferably 60% by mass or more, even more preferably 70% by mass or more, even more preferably 80% by mass or more, and may be 90% by mass or more, based on 100% by mass of the entire molecular mass of the carbodiimide compound. The carbodiimide compound may be substantially composed of the structural unit represented by formula (C-1), excluding the terminal structure. The terminal structure of the carbodiimide compound is not particularly limited, and examples thereof include an alkyl group, a cycloalkyl group, and an aryl group, which may have a substituent.

カルボジイミド化合物が、エチレン性不飽和結合を含有していてもよく、エチレン性不飽和結合を含有していなくてもよい。エチレン性不飽和結合を含有するカルボジイミド化合物を用いた場合、樹脂組成物の硬化物の破断点伸度等の機械的強度を効果的に高くできる。また、エチレン性不飽和結合を含有しないカルボジイミド化合物を用いた場合、樹脂組成物の最低溶融粘度を効果的に低くできる。 The carbodiimide compound may or may not contain an ethylenically unsaturated bond. When a carbodiimide compound containing an ethylenically unsaturated bond is used, the mechanical strength, such as the elongation at break, of the cured product of the resin composition can be effectively increased. In addition, when a carbodiimide compound not containing an ethylenically unsaturated bond is used, the minimum melt viscosity of the resin composition can be effectively reduced.

エチレン性不飽和結合を含有するカルボジイミド化合物は、エチレン性不飽和結合を含むラジカル重合性基を有しうる。ラジカル重合性基としては、例えば、ビニル基、アリル基、1-プロペニル基、3-シクロヘキセニル基、3-シクロペンテニル基、2-ビニルフェニル基、3-ビニルフェニル基、4-ビニルフェニル基等の不飽和炭化水素基;アクリロイル基、メタクリロイル基、マレイミド基(2,5-ジヒドロ-2,5-ジオキソ-1H-ピロール-1-イル基)等のα,β-不飽和カルボニル基等が挙げられる。カルボジイミド化合物は、ラジカル重合性基を1個有していてもよく、2個以上有していてもよい。 The carbodiimide compound containing an ethylenically unsaturated bond may have a radically polymerizable group containing an ethylenically unsaturated bond. Examples of the radically polymerizable group include unsaturated hydrocarbon groups such as vinyl groups, allyl groups, 1-propenyl groups, 3-cyclohexenyl groups, 3-cyclopentenyl groups, 2-vinylphenyl groups, 3-vinylphenyl groups, and 4-vinylphenyl groups; and α,β-unsaturated carbonyl groups such as acryloyl groups, methacryloyl groups, and maleimide groups (2,5-dihydro-2,5-dioxo-1H-pyrrol-1-yl groups). The carbodiimide compound may have one radically polymerizable group, or two or more radically polymerizable groups.

カルボジイミド化合物は、ウレタン結合(-O-CO-NH-)を含有していてもよい。カルボジイミド化合物が1分子中に含有するウレタン結合の数は、1個でもよく、2個以上でもよい。 The carbodiimide compound may contain a urethane bond (-O-CO-NH-). The number of urethane bonds contained in one molecule of the carbodiimide compound may be one or two or more.

エチレン性不飽和結合を含有カルボジイミド化合物の好ましい例としては、下記式(C-3)で表される化合物が挙げられる。 A preferred example of a carbodiimide compound containing an ethylenically unsaturated bond is a compound represented by the following formula (C-3):

Figure 0007501567000006
Figure 0007501567000006

(式(C-3)において、
Rは、それぞれ独立して、水素原子、又はメチル基を表し;
は、それぞれ独立して、カルボニル基、メチレン基、フェニレン基、又はフェニレン-メチレン基を表し;
は、それぞれ独立して、炭素原子数2~4の2価の飽和炭化水素基を表し;
Zは、それぞれ独立して、置換基を有していてもよい炭素原子数2~300の2価の飽和炭化水素基、又は置換基を有していてもよい炭素原子数2~300の2価の不飽和炭化水素基を表し;
aは、それぞれ独立して、0、又は1以上の整数を表し;
bは、それぞれ独立して、1以上の整数を表し;
cは、それぞれ独立して、1以上の整数を表し;
dは、0、又は1以上の整数を表し;、
Yは、それぞれ独立して、上述した基を表す。a単位、b単位、c単位及びd単位は、それぞれ、単位毎に同一であってもよいし、異なっていてもよい。)
(In formula (C-3),
R each independently represents a hydrogen atom or a methyl group;
Each X1 independently represents a carbonyl group, a methylene group, a phenylene group, or a phenylene-methylene group;
Each X2 independently represents a divalent saturated hydrocarbon group having 2 to 4 carbon atoms;
Z's each independently represent a divalent saturated hydrocarbon group having 2 to 300 carbon atoms which may have a substituent, or a divalent unsaturated hydrocarbon group having 2 to 300 carbon atoms which may have a substituent;
Each a independently represents 0 or an integer of 1 or more;
Each b independently represents an integer of 1 or more;
Each c independently represents an integer of 1 or more;
d represents 0 or an integer of 1 or more;
Each Y independently represents the above-mentioned group. The a unit, the b unit, the c unit and the d unit may be the same or different for each unit.

式(C-3)において、Rは、それぞれ独立して、水素原子、又はメチル基を示す。 In formula (C-3), each R independently represents a hydrogen atom or a methyl group.

式(C-3)において、Xは、それぞれ独立して、カルボニル基、メチレン基、フェニレン基、又はフェニレン-メチレン基(結合方向は特に限定されないが、フェニレン側が「R-C」におけるCと結合していることが好ましい)を表す。好ましくは、Xは、それぞれ独立して、メチレン基、又はカルボニル基である。フェニレン-メチレン基は、1,2-フェニレン-メチレン基、1,3-フェニレン-メチレン基、及び1,4-フェニレン-メチレン基を含む。 In formula (C-3), each X 1 independently represents a carbonyl group, a methylene group, a phenylene group, or a phenylene-methylene group (the bonding direction is not particularly limited, but it is preferable that the phenylene side is bonded to C in "R-C"). Preferably, each X 1 independently represents a methylene group or a carbonyl group. The phenylene-methylene group includes a 1,2-phenylene-methylene group, a 1,3-phenylene-methylene group, and a 1,4-phenylene-methylene group.

式(C-3)において、Xは、それぞれ独立して、炭素原子数2~4の2価の飽和炭化水素基を表す。2価の飽和炭化水素基は、直鎖状でもよく、分枝鎖状でもよく、環状でもよい。炭素原子数2~4の2価の飽和炭化水素基の具体例としては、例えば、エチレン基、トリメチレン基、テトラメチレン基等の炭素原子数2~4の直鎖アルキレン基;エチリデン基、プロピリデン基、イソプロピリデン基、エチルメチルメチレン基等の炭素原子数2~4の分枝鎖アルキレン基等が挙げられる。Xは、一実施形態において、それぞれ独立して、好ましくは、炭素原子数2又は3の2価の飽和炭化水素基であり、より好ましくは、エチレン基(-CH-CH-)を示す。 In formula (C-3), X2 each independently represents a divalent saturated hydrocarbon group having 2 to 4 carbon atoms. The divalent saturated hydrocarbon group may be linear, branched, or cyclic. Specific examples of the divalent saturated hydrocarbon group having 2 to 4 carbon atoms include linear alkylene groups having 2 to 4 carbon atoms, such as an ethylene group, a trimethylene group, or a tetramethylene group; and branched alkylene groups having 2 to 4 carbon atoms, such as an ethylidene group, a propylidene group, an isopropylidene group, or an ethylmethylmethylene group. In one embodiment, X2 each independently represents a divalent saturated hydrocarbon group having 2 or 3 carbon atoms, and more preferably represents an ethylene group ( -CH2 - CH2- ).

式(C-3)において、Zは、それぞれ独立して、置換基を有していてもよい炭素原子数2~300の2価の飽和炭化水素基、又は置換基を有していてもよい炭素原子数2~300の2価の不飽和炭化水素基を表す。好ましくは、Zは、それぞれ独立して、炭素原子数2~300の2価の飽和炭化水素基、又は炭素原子数2~300の2価の不飽和炭化水素基を表す。より好ましくは、Zは、それぞれ独立して、下記式(Z1)~(Z8)からなる群より選ばれる構造単位を有する炭素原子数300以下の2価の炭化水素基を表す。更に好ましくは、Zは、それぞれ独立して、式(Z1)~(Z8)からなる群より選ばれる構造単位からなる炭素原子数300以下の2価の炭化水素基を表す。 In formula (C-3), Z's each independently represent a divalent saturated hydrocarbon group having 2 to 300 carbon atoms, which may have a substituent, or a divalent unsaturated hydrocarbon group having 2 to 300 carbon atoms, which may have a substituent. Preferably, Z's each independently represent a divalent saturated hydrocarbon group having 2 to 300 carbon atoms, or a divalent unsaturated hydrocarbon group having 2 to 300 carbon atoms. More preferably, Z's each independently represent a divalent hydrocarbon group having 300 or less carbon atoms and having a structural unit selected from the group consisting of the following formulae (Z1) to (Z8). Even more preferably, Z's each independently represent a divalent hydrocarbon group having 300 or less carbon atoms and consisting of a structural unit selected from the group consisting of the following formulae (Z1) to (Z8).

Figure 0007501567000007
Figure 0007501567000007

Zは、それぞれ独立して、式(Z1)で表される構造単位を有する炭素原子数300以下の2価の炭化水素基を表すことが更に好ましく;式(Z1)~(Z8)から選ばれる構造単位からなり、且つ、少なくとも式(Z1)で表される構造単位を有する炭素原子数300以下の2価の炭化水素基を表すことが更に好ましい。中でも、Zは、下記式(Z1’)で表される炭素原子数300以下の2価の炭化水素基を表すことが特に好ましい。 It is more preferable that each Z independently represents a divalent hydrocarbon group having 300 or less carbon atoms and a structural unit represented by formula (Z1); it is more preferable that each Z independently represents a divalent hydrocarbon group having 300 or less carbon atoms and a structural unit represented by formula (Z1), which is composed of a structural unit selected from formulas (Z1) to (Z8) and has at least a structural unit represented by formula (Z1). In particular, it is particularly preferable that each Z independently represents a divalent hydrocarbon group having 300 or less carbon atoms and represented by formula (Z1') below.

Figure 0007501567000008
Figure 0007501567000008

(式(Z1’)において、nは、1以上の整数を示し;*は、結合部位を示す。) (In formula (Z1'), nz represents an integer of 1 or more; * represents a bonding site.)

式(C-3)において、aは、それぞれ独立して、0、又は1以上の整数を表し、好ましくは、0、又は1~10の整数であり、より好ましくは、0、又は1である。 In formula (C-3), each a independently represents 0 or an integer of 1 or more, preferably 0 or an integer of 1 to 10, and more preferably 0 or 1.

式(C-3)において、bは、それぞれ独立して、1以上の整数を示し、好ましくは、1~100の整数であり、より好ましくは、1~10の整数である。 In formula (C-3), each b is independently an integer of 1 or more, preferably an integer of 1 to 100, and more preferably an integer of 1 to 10.

式(C-3)において、cは、それぞれ独立して、1以上の整数を示し、好ましくは、1~100の整数であり、より好ましくは、1~10の整数であり、さらに好ましくは、1である。 In formula (C-3), each c is independently an integer of 1 or more, preferably an integer of 1 to 100, more preferably an integer of 1 to 10, and even more preferably 1.

式(C-3)において、dは、それぞれ独立して、0、又は1以上の整数を示し、好ましくは、0、又は1~100の整数であり、より好ましくは、0、又は1~10の整数である。 In formula (C-3), each d is independently 0 or an integer of 1 or more, preferably 0 or an integer of 1 to 100, and more preferably 0 or an integer of 1 to 10.

カルボジイミド化合物は、その製法に由来して、分子中にイソシアネート基(-N=C=O)を含有する場合がある。カルボジイミド化合物中のイソシアネート基の含有量(「NCO含有量」ともいう。)は、好ましくは5質量%以下、より好ましくは4質量%以下、さらに好ましくは3質量%以下、さらにより好ましくは2質量%以下、特に好ましくは1質量%以下又は0.5質量%以下である。 Due to the manufacturing method, the carbodiimide compound may contain an isocyanate group (-N=C=O) in the molecule. The content of isocyanate groups in the carbodiimide compound (also called "NCO content") is preferably 5% by mass or less, more preferably 4% by mass or less, even more preferably 3% by mass or less, even more preferably 2% by mass or less, and particularly preferably 1% by mass or less or 0.5% by mass or less.

カルボジイミド化合物の重量平均分子量は、好ましくは500以上、より好ましくは600以上、更に好ましくは700以上、更に好ましくは800以上、更に好ましくは900以上、更に好ましくは1000以上であり、好ましくは10,000以下、より好ましくは8,000以下、更に好ましくは7,000以下、更に好ましくは6,000以下である。カルボジイミド化合物の重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)法(ポリスチレン換算)で測定できる。 The weight average molecular weight of the carbodiimide compound is preferably 500 or more, more preferably 600 or more, even more preferably 700 or more, even more preferably 800 or more, even more preferably 900 or more, even more preferably 1000 or more, and is preferably 10,000 or less, more preferably 8,000 or less, even more preferably 7,000 or less, even more preferably 6,000 or less. The weight average molecular weight of the carbodiimide compound can be measured by gel permeation chromatography (GPC) method (polystyrene equivalent).

カルボジイミド化合物は、市販品を使用してもよい。市販のカルボジイミド化合物としては、例えば、日清紡ケミカル製のカルボジライト(登録商標)V-02B、V-03、V-04K、V-07及びV-09;ラインケミー社製のスタバクゾール(登録商標)P、P400、及びハイカジル510が挙げられる。また、カルボジイミド化合物は、ケイ素を含有しないことが好ましい。 Commercially available carbodiimide compounds may be used. Examples of commercially available carbodiimide compounds include Carbodilite (registered trademark) V-02B, V-03, V-04K, V-07, and V-09 manufactured by Nisshinbo Chemical Co., Ltd.; and Stavaxol (registered trademark) P, P400, and Hi-Kasil 510 manufactured by Rhein Chemie. It is also preferable that the carbodiimide compound does not contain silicon.

カルボジイミド化合物による(C)処理充填材の表面処理の程度は、本発明の効果を顕著に得る観点から、特定の範囲に収まることが好ましい。具体的には、無機充填材を表面処理するカルボジイミド化合物の量は、表面処理前の無機充填材100質量%に対して、好ましくは0.01質量%以上、より好ましくは0.02質量%以上、更に好ましくは0.05質量%以上であり、好ましくは5質量%以下、より好ましくは3質量%以下、更に好ましくは1質量%以下である。 From the viewpoint of obtaining a remarkable effect of the present invention, it is preferable that the degree of surface treatment of the (C) treated filler with the carbodiimide compound falls within a specific range. Specifically, the amount of the carbodiimide compound used to surface treat the inorganic filler is preferably 0.01% by mass or more, more preferably 0.02% by mass or more, and even more preferably 0.05% by mass or more, relative to 100% by mass of the inorganic filler before the surface treatment, and is preferably 5% by mass or less, more preferably 3% by mass or less, and even more preferably 1% by mass or less.

(C)処理充填材は、カルボジイミド化合物に組み合わせて、任意の表面処理剤で表面処理されていてもよい。例えば、(C)処理充填材は、無機充填材をカルボジイミド化合物で表面処理した後に、任意の表面処理剤で表面処理されたものであってもよい。また、(C)処理充填材は、無機充填材を任意の表面処理剤で表面処理した後に、カルボジイミド化合物で表面処理されたものであってもよい。さらに、(C)処理充填材は、無機充填材がカルボジイミド化合物及び任意の表面処理剤で同時に表面処理されたものであってもよい。本発明の効果を顕著に得る観点から、(C)処理充填材は、無機充填材を任意の表面処理剤で表面処理した後に、カルボジイミド化合物で表面処理されたものが好ましい。 The (C) treated filler may be surface-treated with any surface treatment agent in combination with the carbodiimide compound. For example, the (C) treated filler may be an inorganic filler that has been surface-treated with a carbodiimide compound and then surface-treated with any surface treatment agent. The (C) treated filler may also be an inorganic filler that has been surface-treated with any surface treatment agent and then surface-treated with a carbodiimide compound. Furthermore, the (C) treated filler may be an inorganic filler that has been surface-treated simultaneously with a carbodiimide compound and any surface treatment agent. From the viewpoint of obtaining the effects of the present invention significantly, the (C) treated filler is preferably an inorganic filler that has been surface-treated with any surface treatment agent and then surface-treated with a carbodiimide compound.

任意の表面処理剤としては、カルボジイミド化合物以外の表面処理剤を用いることができ、例えば、フッ素含有シランカップリング剤、アミノシラン系カップリング剤、エポキシシラン系カップリング剤、メルカプトシラン系カップリング剤、シラン系カップリング剤等のシラン系カップリング剤;アルコキシシラン;オルガノシラザン化合物;チタネート系カップリング剤;等が挙げられる。 As the optional surface treatment agent, a surface treatment agent other than a carbodiimide compound can be used, and examples thereof include silane coupling agents such as fluorine-containing silane coupling agents, aminosilane coupling agents, epoxysilane coupling agents, mercaptosilane coupling agents, and silane coupling agents; alkoxysilanes; organosilazane compounds; titanate coupling agents; etc.

表面処理剤の市販品としては、例えば、信越化学工業社製「KBM403」(3-グリシドキシプロピルトリメトキシシラン)、信越化学工業社製「KBM803」(3-メルカプトプロピルトリメトキシシラン)、信越化学工業社製「KBE903」(3-アミノプロピルトリエトキシシラン)、信越化学工業社製「KBM573」(N-フェニル-3-アミノプロピルトリメトキシシラン)、信越化学工業社製「SZ-31」(ヘキサメチルジシラザン)、信越化学工業社製「KBM103」(フェニルトリメトキシシラン)、信越化学工業社製「KBM-4803」(長鎖エポキシ型シランカップリング剤)、信越化学工業社製「KBM-7103」(3,3,3-トリフルオロプロピルトリメトキシシラン)等が挙げられる。任意の表面処理剤は、1種類単独で用いてもよく、2種類以上を任意に組み合わせて用いてもよい。任意の表面処理剤の中でも、ケイ素を含有する表面処理剤が好ましく、シラン系カップリング剤がより好ましい。 Examples of commercially available surface treatment agents include Shin-Etsu Chemical's "KBM403" (3-glycidoxypropyltrimethoxysilane), Shin-Etsu Chemical's "KBM803" (3-mercaptopropyltrimethoxysilane), Shin-Etsu Chemical's "KBE903" (3-aminopropyltriethoxysilane), Shin-Etsu Chemical's "KBM573" (N-phenyl-3-aminopropyltrimethoxysilane), Shin-Etsu Chemical's "SZ-31" (hexamethyldisilazane), Shin-Etsu Chemical's "KBM103" (phenyltrimethoxysilane), Shin-Etsu Chemical's "KBM-4803" (long-chain epoxy-type silane coupling agent), and Shin-Etsu Chemical's "KBM-7103" (3,3,3-trifluoropropyltrimethoxysilane). Any surface treatment agent may be used alone or in any combination of two or more types. Among the optional surface treatment agents, silicon-containing surface treatment agents are preferred, and silane coupling agents are more preferred.

任意の表面処理剤による(C)処理充填材の表面処理の程度は、本発明の効果を顕著に得る観点から、特定の範囲に収まることが好ましい。具体的には、無機充填材を表面処理する任意の表面処理剤の量は、表面処理前の無機充填材100質量%に対して、好ましくは0.01質量%以上、より好ましくは0.02質量%以上、更に好ましくは0.05質量%以上であり、好ましくは5質量%以下、より好ましくは1質量%以下、更に好ましくは0.5質量%以下である。 From the viewpoint of obtaining a remarkable effect of the present invention, it is preferable that the degree of surface treatment of the (C) treated filler with the optional surface treatment agent falls within a specific range. Specifically, the amount of the optional surface treatment agent used to surface treat the inorganic filler is preferably 0.01% by mass or more, more preferably 0.02% by mass or more, and even more preferably 0.05% by mass or more, relative to 100% by mass of the inorganic filler before surface treatment, and is preferably 5% by mass or less, more preferably 1% by mass or less, and even more preferably 0.5% by mass or less.

カルボジイミド化合物と任意の表面処理剤とを組み合わせて表面処理に用いる場合、本発明の効果を顕著に得る観点から、カルボジイミド化合物と任意の表面処理剤との質量比(任意の表面処理剤/カルボジイミド化合物)は、好ましくは0.1以上、より好ましくは0.2以上、更に好ましくは0.3以上、特に好ましくは1以上であり、好ましくは20以下、より好ましくは10以下、更に好ましくは5以下である。 When a carbodiimide compound and an optional surface treatment agent are used in combination for surface treatment, from the viewpoint of obtaining a significant effect of the present invention, the mass ratio of the carbodiimide compound to the optional surface treatment agent (optional surface treatment agent/carbodiimide compound) is preferably 0.1 or more, more preferably 0.2 or more, even more preferably 0.3 or more, particularly preferably 1 or more, and is preferably 20 or less, more preferably 10 or less, and even more preferably 5 or less.

カルボジイミド化合物及び任意の表面処理剤といった表面処理剤による表面処理の程度は、(C)処理充填材の単位表面積当たりのカーボン量によって評価することができる。(C)処理充填材の単位表面積当たりのカーボン量は、本発明の効果を顕著に得る観点から、0.02mg/m以上が好ましく、0.05mg/m以上がより好ましく、0.1mg/m以上がさらに好ましく、1.0mg/m以下が好ましく、0.8mg/m以下がより好ましく、0.5mg/m以下がさらに好ましい。 The degree of surface treatment with a surface treatment agent such as a carbodiimide compound or an arbitrary surface treatment agent can be evaluated by the amount of carbon per unit surface area of the treated filler (C). From the viewpoint of obtaining the effects of the present invention significantly, the amount of carbon per unit surface area of the treated filler (C) is preferably 0.02 mg/ m2 or more, more preferably 0.05 mg/ m2 or more, even more preferably 0.1 mg/ m2 or more, preferably 1.0 mg/ m2 or less, more preferably 0.8 mg/ m2 or less, and even more preferably 0.5 mg/ m2 or less.

(C)処理充填材の単位表面積当たりのカーボン量は、(C)処理充填材を溶剤(例えば、メチルエチルケトン(MEK))により洗浄処理した後に測定することができる。詳細には、溶剤として十分な量のMEKを(C)処理充填材に加えて、25℃で5分間超音波洗浄する。上澄液を除去し、固形分を乾燥させた後、カーボン分析計を用いて無機充填材の単位表面積当たりのカーボン量を測定することができる。カーボン分析計としては、例えば、堀場製作所社製「EMIA-320V」を使用できる。具体的な操作は、例えば、後述する実施例の<単位面積当たりのカーボン量の測定>で説明する方法を採用しうる。 The carbon amount per unit surface area of the (C) treated filler can be measured after the (C) treated filler is washed with a solvent (e.g., methyl ethyl ketone (MEK)). In particular, a sufficient amount of MEK as a solvent is added to the (C) treated filler, and ultrasonic cleaning is performed at 25°C for 5 minutes. After removing the supernatant and drying the solids, the carbon amount per unit surface area of the inorganic filler can be measured using a carbon analyzer. For example, an "EMIA-320V" manufactured by Horiba, Ltd. can be used as the carbon analyzer. The specific procedure can be, for example, the method described in "Measurement of carbon amount per unit area" in the Examples below.

樹脂組成物中の(C)処理充填材の量(質量%)は、樹脂組成物の不揮発成分100質量%に対して、好ましくは50質量%以上、より好ましくは55質量%以上、更に好ましくは60質量%以上であり、好ましくは90質量%以下、より好ましくは85質量%以下、更に好ましくは80質量%以下である。(C)処理充填材の量が前記範囲にある場合、樹脂組成物の最低溶融粘度を効果的に低くでき、更に通常は、当該樹脂組成物の硬化物の破断点伸度等の機械的強度、粗化処理後の表面粗さ、並びに、比誘電率及び誘電正接等の誘電特性を特に良好にできる。 The amount (mass %) of the (C) treated filler in the resin composition is preferably 50 mass % or more, more preferably 55 mass % or more, even more preferably 60 mass % or more, and preferably 90 mass % or less, more preferably 85 mass % or less, even more preferably 80 mass % or less, based on 100 mass % of the non-volatile components of the resin composition. When the amount of the (C) treated filler is within the above range, the minimum melt viscosity of the resin composition can be effectively reduced, and furthermore, the mechanical strength such as the elongation at break of the cured product of the resin composition, the surface roughness after roughening treatment, and the dielectric properties such as the relative dielectric constant and dielectric loss tangent can be particularly improved.

樹脂組成物中の(C)処理充填材の量(体積%)は、樹脂組成物の不揮発成分100体積%に対して、好ましくは30体積%以上、より好ましくは40体積%以上、更に好ましくは50体積%以上であり、好ましくは80体積%以下、より好ましくは70体積%以下、更に好ましくは60体積%以下である。(C)処理充填材の量が前記範囲にある場合、樹脂組成物の最低溶融粘度を効果的に低くでき、更に通常は、当該樹脂組成物の硬化物の破断点伸度等の機械的強度、粗化処理後の表面粗さ、並びに、比誘電率及び誘電正接等の誘電特性を特に良好にできる。 The amount (volume %) of the (C) treated filler in the resin composition is preferably 30% by volume or more, more preferably 40% by volume or more, and even more preferably 50% by volume or more, relative to 100% by volume of the non-volatile components of the resin composition, and is preferably 80% by volume or less, more preferably 70% by volume or less, and even more preferably 60% by volume or less. When the amount of the (C) treated filler is within the above range, the minimum melt viscosity of the resin composition can be effectively lowered, and furthermore, the mechanical strength such as the elongation at break of the cured product of the resin composition, the surface roughness after roughening treatment, and the dielectric properties such as the relative dielectric constant and dielectric loss tangent can be particularly improved.

[(D)硬化促進剤]
本発明の一実施形態に係る樹脂組成物は、任意の成分として、(D)硬化促進剤を更に含んでいてもよい。(D)成分としての(D)硬化促進剤には、上述した(A)~(C)成分に該当するものは含めない。(D)硬化促進剤は、(B)エポキシ樹脂の硬化を促進させる硬化触媒としての機能を有する。
[(D) Curing Accelerator]
The resin composition according to one embodiment of the present invention may further contain a curing accelerator (D) as an optional component. The curing accelerator (D) as the component (D) does not include those corresponding to the above-mentioned components (A) to (C). The curing accelerator (D) functions as a curing catalyst that accelerates the curing of the epoxy resin (B).

(D)硬化促進剤としては、例えば、リン系硬化促進剤、ウレア系硬化促進剤、グアニジン系硬化促進剤、イミダゾール系硬化促進剤、金属系硬化促進剤、アミン系硬化促進剤等が挙げられる。中でも、イミダゾール系硬化促進剤が好ましい。(D)硬化促進剤は、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。 (D) Examples of the curing accelerator include phosphorus-based curing accelerators, urea-based curing accelerators, guanidine-based curing accelerators, imidazole-based curing accelerators, metal-based curing accelerators, and amine-based curing accelerators. Among these, imidazole-based curing accelerators are preferred. (D) Curing accelerators may be used alone or in combination of two or more types.

リン系硬化促進剤としては、例えば、テトラブチルホスホニウムブロマイド、テトラブチルホスホニウムクロライド、テトラブチルホスホニウムアセテート、テトラブチルホスホニウムデカノエート、テトラブチルホスホニウムラウレート、ビス(テトラブチルホスホニウム)ピロメリテート、テトラブチルホスホニウムハイドロジェンヘキサヒドロフタレート、テトラブチルホスホニウム2,6-ビス[(2-ヒドロキシ-5-メチルフェニル)メチル]-4-メチルフェノラート、ジ-tert-ブチルジメチルホスホニウムテトラフェニルボレート等の脂肪族ホスホニウム塩;メチルトリフェニルホスホニウムブロマイド、エチルトリフェニルホスホニウムブロマイド、プロピルトリフェニルホスホニウムブロマイド、ブチルトリフェニルホスホニウムブロマイド、ベンジルトリフェニルホスホニウムクロライド、テトラフェニルホスホニウムブロマイド、p-トリルトリフェニルホスホニウムテトラ-p-トリルボレート、テトラフェニルホスホニウムテトラフェニルボレート、テトラフェニルホスホニウムテトラp-トリルボレート、トリフェニルエチルホスホニウムテトラフェニルボレート、トリス(3-メチルフェニル)エチルホスホニウムテトラフェニルボレート、トリス(2-メトキシフェニル)エチルホスホニウムテトラフェニルボレート、(4-メチルフェニル)トリフェニルホスホニウムチオシアネート、テトラフェニルホスホニウムチオシアネート、ブチルトリフェニルホスホニウムチオシアネート等の芳香族ホスホニウム塩;トリフェニルホスフィン・トリフェニルボラン等の芳香族ホスフィン・ボラン複合体;トリフェニルホスフィン・p-ベンゾキノン付加反応物等の芳香族ホスフィン・キノン付加反応物;トリブチルホスフィン、トリ-tert-ブチルホスフィン、トリオクチルホスフィン、ジ-tert-ブチル(2-ブテニル)ホスフィン、ジ-tert-ブチル(3-メチル-2-ブテニル)ホスフィン、トリシクロヘキシルホスフィン等の脂肪族ホスフィン;ジブチルフェニルホスフィン、ジ-tert-ブチルフェニルホスフィン、メチルジフェニルホスフィン、エチルジフェニルホスフィン、ブチルジフェニルホスフィン、ジフェニルシクロヘキシルホスフィン、トリフェニルホスフィン、トリ-o-トリルホスフィン、トリ-m-トリルホスフィン、トリ-p-トリルホスフィン、トリス(4-エチルフェニル)ホスフィン、トリス(4-プロピルフェニル)ホスフィン、トリス(4-イソプロピルフェニル)ホスフィン、トリス(4-ブチルフェニル)ホスフィン、トリス(4-tert-ブチルフェニル)ホスフィン、トリス(2,4-ジメチルフェニル)ホスフィン、トリス(2,5-ジメチルフェニル)ホスフィン、トリス(2,6-ジメチルフェニル)ホスフィン、トリス(3,5-ジメチルフェニル)ホスフィン、トリス(2,4,6-トリメチルフェニル)ホスフィン、トリス(2,6-ジメチル-4-エトキシフェニル)ホスフィン、トリス(2-メトキシフェニル)ホスフィン、トリス(4-メトキシフェニル)ホスフィン、トリス(4-エトキシフェニル)ホスフィン、トリス(4-tert-ブトキシフェニル)ホスフィン、ジフェニル-2-ピリジルホスフィン、1,2-ビス(ジフェニルホスフィノ)エタン、1,3-ビス(ジフェニルホスフィノ)プロパン、1,4-ビス(ジフェニルホスフィノ)ブタン、1,2-ビス(ジフェニルホスフィノ)アセチレン、2,2’-ビス(ジフェニルホスフィノ)ジフェニルエーテル等の芳香族ホスフィン等が挙げられる。 Examples of phosphorus-based curing accelerators include aliphatic phosphonium salts such as tetrabutylphosphonium bromide, tetrabutylphosphonium chloride, tetrabutylphosphonium acetate, tetrabutylphosphonium decanoate, tetrabutylphosphonium laurate, bis(tetrabutylphosphonium)pyromellitate, tetrabutylphosphonium hydrogenhexahydrophthalate, tetrabutylphosphonium 2,6-bis[(2-hydroxy-5-methylphenyl)methyl]-4-methylphenolate, and di-tert-butyldimethylphosphonium tetraphenylborate; methyltriphenylphosphonium bromide, ethyltriphenylphosphonium bromide, propyltriphenylphosphonium bromide, butyltriphenylphosphonium bromide, benzyltriphenylphosphonium chloride, tetraphenylphosphine aromatic phosphonium salts such as sulfonium bromide, p-tolyltriphenylphosphonium tetra-p-tolylborate, tetraphenylphosphonium tetraphenylborate, tetraphenylphosphonium tetra-p-tolylborate, triphenylethylphosphonium tetraphenylborate, tris(3-methylphenyl)ethylphosphonium tetraphenylborate, tris(2-methoxyphenyl)ethylphosphonium tetraphenylborate, (4-methylphenyl)triphenylphosphonium thiocyanate, tetraphenylphosphonium thiocyanate, and butyltriphenylphosphonium thiocyanate; aromatic phosphine-borane complexes such as triphenylphosphine-triphenylborane; aromatic phosphine-quinone addition products such as triphenylphosphine-p-benzoquinone addition products; tributylphosphine, tri-t Aliphatic phosphines such as tert-butylphosphine, trioctylphosphine, di-tert-butyl(2-butenyl)phosphine, di-tert-butyl(3-methyl-2-butenyl)phosphine, and tricyclohexylphosphine; dibutylphenylphosphine, di-tert-butylphenylphosphine, methyldiphenylphosphine, ethyldiphenylphosphine, butyldiphenylphosphine, diphenylcyclohexylphosphine, triphenylphosphine, tri-o-tolylphosphine, tri-m-tolylphosphine, tri-p-tolylphosphine, tris(4-ethylphenyl)phosphine, tris(4-propylphenyl)phosphine, tris(4-isopropylphenyl)phosphine, tris(4-butylphenyl)phosphine, tris(4-tert-butylphenyl)phosphine, tris(2,4-dimethylphenyl)phosphine, ) phosphine, tris(2,5-dimethylphenyl)phosphine, tris(2,6-dimethylphenyl)phosphine, tris(3,5-dimethylphenyl)phosphine, tris(2,4,6-trimethylphenyl)phosphine, tris(2,6-dimethyl-4-ethoxyphenyl)phosphine, tris(2-methoxyphenyl)phosphine, tris(4-methoxyphenyl)phosphine, tris(4-ethoxyphenyl)phosphine, tris(4-tert-butoxyphenyl)phosphine, diphenyl-2-pyridylphosphine, 1,2-bis(diphenylphosphino)ethane, 1,3-bis(diphenylphosphino)propane, 1,4-bis(diphenylphosphino)butane, 1,2-bis(diphenylphosphino)acetylene, 2,2'-bis(diphenylphosphino)diphenyl ether and other aromatic phosphines.

ウレア系硬化促進剤としては、例えば、1,1-ジメチル尿素;1,1,3-トリメチル尿素、3-エチル-1,1-ジメチル尿素、3-シクロヘキシル-1,1-ジメチル尿素、3-シクロオクチル-1,1-ジメチル尿素等の脂肪族ジメチルウレア;3-フェニル-1,1-ジメチル尿素、3-(4-クロロフェニル)-1,1-ジメチル尿素、3-(3,4-ジクロロフェニル)-1,1-ジメチル尿素、3-(3-クロロ-4-メチルフェニル)-1,1-ジメチル尿素、3-(2-メチルフェニル)-1,1-ジメチル尿素、3-(4-メチルフェニル)-1,1-ジメチル尿素、3-(3,4-ジメチルフェニル)-1,1-ジメチル尿素、3-(4-イソプロピルフェニル)-1,1-ジメチル尿素、3-(4-メトキシフェニル)-1,1-ジメチル尿素、3-(4-ニトロフェニル)-1,1-ジメチル尿素、3-[4-(4-メトキシフェノキシ)フェニル]-1,1-ジメチル尿素、3-[4-(4-クロロフェノキシ)フェニル]-1,1-ジメチル尿素、3-[3-(トリフルオロメチル)フェニル]-1,1-ジメチル尿素、N,N-(1,4-フェニレン)ビス(N’,N’-ジメチル尿素)、N,N-(4-メチル-1,3-フェニレン)ビス(N’,N’-ジメチル尿素)〔トルエンビスジメチルウレア〕等の芳香族ジメチルウレア等が挙げられる。 Examples of urea-based hardening accelerators include 1,1-dimethylurea; aliphatic dimethylureas such as 1,1,3-trimethylurea, 3-ethyl-1,1-dimethylurea, 3-cyclohexyl-1,1-dimethylurea, and 3-cyclooctyl-1,1-dimethylurea; 3-phenyl-1,1-dimethylurea, 3-(4-chlorophenyl)-1,1-dimethylurea, 3-(3,4-dichlorophenyl)-1,1-dimethylurea, 3-(3-chloro-4-methylphenyl)-1,1-dimethylurea, 3-(2-methylphenyl)-1,1-dimethylurea, 3-(4-methylphenyl)-1,1-dimethylurea, and 3-(3,4-dimethylphenyl)-1,1-dimethylurea. aromatic dimethylureas such as 3-(4-isopropylphenyl)-1,1-dimethylurea, 3-(4-methoxyphenyl)-1,1-dimethylurea, 3-(4-nitrophenyl)-1,1-dimethylurea, 3-[4-(4-methoxyphenoxy)phenyl]-1,1-dimethylurea, 3-[4-(4-chlorophenoxy)phenyl]-1,1-dimethylurea, 3-[3-(trifluoromethyl)phenyl]-1,1-dimethylurea, N,N-(1,4-phenylene)bis(N',N'-dimethylurea), N,N-(4-methyl-1,3-phenylene)bis(N',N'-dimethylurea) [toluene bisdimethylurea], etc.

グアニジン系硬化促進剤としては、例えば、ジシアンジアミド、1-メチルグアニジン、1-エチルグアニジン、1-シクロヘキシルグアニジン、1-フェニルグアニジン、1-(o-トリル)グアニジン、ジメチルグアニジン、ジフェニルグアニジン、トリメチルグアニジン、テトラメチルグアニジン、ペンタメチルグアニジン、1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン、7-メチル-1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン、1-メチルビグアニド、1-エチルビグアニド、1-n-ブチルビグアニド、1-n-オクタデシルビグアニド、1,1-ジメチルビグアニド、1,1-ジエチルビグアニド、1-シクロヘキシルビグアニド、1-アリルビグアニド、1-フェニルビグアニド、1-(o-トリル)ビグアニド等が挙げられる。 Examples of guanidine-based curing accelerators include dicyandiamide, 1-methylguanidine, 1-ethylguanidine, 1-cyclohexylguanidine, 1-phenylguanidine, 1-(o-tolyl)guanidine, dimethylguanidine, diphenylguanidine, trimethylguanidine, tetramethylguanidine, pentamethylguanidine, 1,5,7-triazabicyclo[4.4.0]dec-5-ene, 7-methyl-1,5,7-triazabicyclo[4.4.0]dec-5-ene, 1-methylbiguanide, 1-ethylbiguanide, 1-n-butylbiguanide, 1-n-octadecylbiguanide, 1,1-dimethylbiguanide, 1,1-diethylbiguanide, 1-cyclohexylbiguanide, 1-allylbiguanide, 1-phenylbiguanide, and 1-(o-tolyl)biguanide.

イミダゾール系硬化促進剤としては、例えば、2-メチルイミダゾール、2-ウンデシルイミダゾール、2-ヘプタデシルイミダゾール、1,2-ジメチルイミダゾール、2-エチル-4-メチルイミダゾール、1,2-ジメチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、1-シアノエチル-2-メチルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾリウムトリメリテイト、1-シアノエチル-2-フェニルイミダゾリウムトリメリテイト、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-ウンデシルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-エチル-4’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジンイソシアヌル酸付加物、2-フェニルイミダゾールイソシアヌル酸付加物、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール、2,3-ジヒドロ-1H-ピロロ[1,2-a]ベンズイミダゾール、1-ドデシル-2-メチル-3-ベンジルイミダゾリウムクロライド、2-メチルイミダゾリン、2-フェニルイミダゾリン等のイミダゾール化合物及びイミダゾール化合物とエポキシ樹脂とのアダクト体が挙げられる。イミダゾール系硬化促進剤の市販品としては、例えば、四国化成工業社製の「1B2PZ」、「2E4MZ」、「2MZA-PW」、「2MZ-OK」、「2MA-OK」、「2MA-OK-PW」、「2PHZ」、「2PHZ-PW」、「Cl1Z」、「Cl1Z-CN」、「Cl1Z-CNS」、「C11Z-A」;三菱ケミカル社製の「P200-H50」等が挙げられる。 Examples of imidazole-based curing accelerators include 2-methylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 1,2-dimethylimidazole, 2-ethyl-4-methylimidazole, 1,2-dimethylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 1-benzyl-2-methylimidazole, 1-benzyl-2- Phenylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-undecylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-undecylimidazolium trimellitate, 1-cyanoethyl-2-phenylimidazolium trimellitate, 2,4-diamino-6-[2'-methylimidazolyl -(1')]-ethyl-s-triazine, 2,4-diamino-6-[2'-undecylimidazolyl-(1')]-ethyl-s-triazine, 2,4-diamino-6-[2'-ethyl-4'-methylimidazolyl-(1')]-ethyl-s-triazine, 2,4-diamino-6-[2'-methylimidazolyl-(1')]-ethyl-s-triazine isocyanuric acid adduct, 2-phenylimidazole isocyanuric acid adduct , 2-phenyl-4,5-dihydroxymethylimidazole, 2-phenyl-4-methyl-5-hydroxymethylimidazole, 2,3-dihydro-1H-pyrrolo[1,2-a]benzimidazole, 1-dodecyl-2-methyl-3-benzylimidazolium chloride, 2-methylimidazoline, 2-phenylimidazoline, and other imidazole compounds and adducts of imidazole compounds and epoxy resins. Commercially available imidazole curing accelerators include, for example, "1B2PZ", "2E4MZ", "2MZA-PW", "2MZ-OK", "2MA-OK", "2MA-OK-PW", "2PHZ", "2PHZ-PW", "Cl1Z", "Cl1Z-CN", "Cl1Z-CNS", and "C11Z-A" manufactured by Shikoku Chemical Industry Co., Ltd.; and "P200-H50" manufactured by Mitsubishi Chemical Corporation.

金属系硬化促進剤としては、例えば、コバルト、銅、亜鉛、鉄、ニッケル、マンガン、スズ等の金属の、有機金属錯体又は有機金属塩が挙げられる。有機金属錯体の具体例としては、コバルト(II)アセチルアセトナート、コバルト(III)アセチルアセトナート等の有機コバルト錯体、銅(II)アセチルアセトナート等の有機銅錯体、亜鉛(II)アセチルアセトナート等の有機亜鉛錯体、鉄(III)アセチルアセトナート等の有機鉄錯体、ニッケル(II)アセチルアセトナート等の有機ニッケル錯体、マンガン(II)アセチルアセトナート等の有機マンガン錯体等が挙げられる。有機金属塩としては、例えば、オクチル酸亜鉛、オクチル酸錫、ナフテン酸亜鉛、ナフテン酸コバルト、ステアリン酸スズ、ステアリン酸亜鉛等が挙げられる。 Metal-based curing accelerators include, for example, organometallic complexes or organometallic salts of metals such as cobalt, copper, zinc, iron, nickel, manganese, and tin. Specific examples of organometallic complexes include organocobalt complexes such as cobalt (II) acetylacetonate and cobalt (III) acetylacetonate, organocopper complexes such as copper (II) acetylacetonate, organozinc complexes such as zinc (II) acetylacetonate, organoiron complexes such as iron (III) acetylacetonate, organonickel complexes such as nickel (II) acetylacetonate, and organomanganese complexes such as manganese (II) acetylacetonate. Organometallic salts include, for example, zinc octylate, tin octylate, zinc naphthenate, cobalt naphthenate, tin stearate, and zinc stearate.

アミン系硬化促進剤としては、例えば、トリエチルアミン、トリブチルアミン等のトリアルキルアミン、4-ジメチルアミノピリジン、ベンジルジメチルアミン、2,4,6,-トリス(ジメチルアミノメチル)フェノール、1,8-ジアザビシクロ(5,4,0)-ウンデセン等が挙げられる。アミン系硬化促進剤としては、市販品を用いてもよく、例えば、味の素ファインテクノ社製の「MY-25」等が挙げられる。 Examples of amine-based curing accelerators include trialkylamines such as triethylamine and tributylamine, 4-dimethylaminopyridine, benzyldimethylamine, 2,4,6-tris(dimethylaminomethyl)phenol, and 1,8-diazabicyclo(5,4,0)-undecene. Commercially available amine-based curing accelerators may be used, such as "MY-25" manufactured by Ajinomoto Fine-Techno Co., Ltd.

樹脂組成物中の(D)硬化促進剤の量は、樹脂組成物の不揮発成分100質量%に対して、0質量%であってもよく、0質量%より大きくてもよく、好ましくは0.01質量%以上、より好ましくは0.02質量%以上、更に好ましくは0.03質量%以上であり、好ましくは2質量%以下、より好ましくは1質量%以下、更に好ましくは0.5質量%以下である。 The amount of (D) curing accelerator in the resin composition may be 0% by mass or may be greater than 0% by mass, and is preferably 0.01% by mass or more, more preferably 0.02% by mass or more, and even more preferably 0.03% by mass or more, and is preferably 2% by mass or less, more preferably 1% by mass or less, and even more preferably 0.5% by mass or less, based on 100% by mass of the non-volatile components of the resin composition.

樹脂組成物中の(D)硬化促進剤の量は、樹脂組成物の樹脂成分100質量%に対して、0質量%であってもよく、0質量%より大きくてもよく、好ましくは0.01質量%以上、より好ましくは0.05質量%以上、更に好ましくは0.1質量%以上であり、好ましくは5質量%以下、より好ましくは2質量%以下、更に好ましくは1質量%以下である。 The amount of (D) curing accelerator in the resin composition may be 0% by mass or may be greater than 0% by mass, and is preferably 0.01% by mass or more, more preferably 0.05% by mass or more, even more preferably 0.1% by mass or more, and is preferably 5% by mass or less, more preferably 2% by mass or less, even more preferably 1% by mass or less, based on 100% by mass of the resin components of the resin composition.

[(E)熱可塑性樹脂]
本発明の一実施形態に係る樹脂組成物は、任意の成分として、(E)熱可塑性樹脂を更に含んでいてもよい。(E)成分としての(E)熱可塑性樹脂には、上述した(A)~(D)成分に該当するものは含めない。
[(E) Thermoplastic resin]
The resin composition according to one embodiment of the present invention may further contain a thermoplastic resin (E) as an optional component. The thermoplastic resin (E) as the component (E) does not include those corresponding to the above-mentioned components (A) to (D).

(E)熱可塑性樹脂としては、例えば、フェノキシ樹脂、ポリイミド樹脂、ポリビニルアセタール樹脂、ポリオレフィン樹脂、ポリブタジエン樹脂、ポリアミドイミド樹脂、ポリエーテルイミド樹脂、ポリスルホン樹脂、ポリエーテルスルホン樹脂、ポリフェニレンエーテル樹脂、ポリカーボネート樹脂、ポリエーテルエーテルケトン樹脂、ポリエステル樹脂等が挙げられる。(E)熱可塑性樹脂は、1種類単独で用いてもよく、又は2種類以上を組み合わせて用いてもよい。 (E) Examples of thermoplastic resins include phenoxy resins, polyimide resins, polyvinyl acetal resins, polyolefin resins, polybutadiene resins, polyamideimide resins, polyetherimide resins, polysulfone resins, polyethersulfone resins, polyphenylene ether resins, polycarbonate resins, polyetheretherketone resins, and polyester resins. (E) Thermoplastic resins may be used alone or in combination of two or more.

フェノキシ樹脂としては、例えば、ビスフェノールA骨格、ビスフェノールF骨格、ビスフェノールS骨格、ビスフェノールアセトフェノン骨格、ノボラック骨格、ビフェニル骨格、フルオレン骨格、ジシクロペンタジエン骨格、ノルボルネン骨格、ナフタレン骨格、アントラセン骨格、アダマンタン骨格、テルペン骨格、及びトリメチルシクロヘキサン骨格からなる群から選択される1種類以上の骨格を有するフェノキシ樹脂が挙げられる。フェノキシ樹脂の末端は、フェノール性水酸基、エポキシ基等のいずれの官能基でもよい。フェノキシ樹脂の具体例としては、三菱ケミカル社製の「1256」及び「4250」(いずれもビスフェノールA骨格含有フェノキシ樹脂);三菱ケミカル社製の「YX8100」(ビスフェノールS骨格含有フェノキシ樹脂);三菱ケミカル社製の「YX6954」(ビスフェノールアセトフェノン骨格含有フェノキシ樹脂);日鉄ケミカル&マテリアル社製の「FX280」及び「FX293」;三菱ケミカル社製の「YL7500BH30」、「YX6954BH30」、「YX7553」、「YX7553BH30」、「YL7769BH30」、「YL6794」、「YL7213」、「YL7290」、「YL7482」及び「YL7891BH30」;等が挙げられる。 Examples of the phenoxy resin include phenoxy resins having one or more skeletons selected from the group consisting of bisphenol A skeleton, bisphenol F skeleton, bisphenol S skeleton, bisphenolacetophenone skeleton, novolac skeleton, biphenyl skeleton, fluorene skeleton, dicyclopentadiene skeleton, norbornene skeleton, naphthalene skeleton, anthracene skeleton, adamantane skeleton, terpene skeleton, and trimethylcyclohexane skeleton. The terminal of the phenoxy resin may be any functional group such as a phenolic hydroxyl group or an epoxy group. Specific examples of phenoxy resins include "1256" and "4250" manufactured by Mitsubishi Chemical Corporation (both phenoxy resins containing a bisphenol A skeleton); "YX8100" manufactured by Mitsubishi Chemical Corporation (phenoxy resin containing a bisphenol S skeleton); "YX6954" manufactured by Mitsubishi Chemical Corporation (phenoxy resin containing a bisphenol acetophenone skeleton); "FX280" and "FX293" manufactured by Nippon Steel Chemical & Material Co., Ltd.; "YL7500BH30", "YX6954BH30", "YX7553", "YX7553BH30", "YL7769BH30", "YL6794", "YL7213", "YL7290", "YL7482" and "YL7891BH30" manufactured by Mitsubishi Chemical Corporation; and the like.

ポリイミド樹脂の具体例としては、信越化学工業社製「SLK-6100」、新日本理化社製の「リカコートSN20」及び「リカコートPN20」等が挙げられる。 Specific examples of polyimide resins include "SLK-6100" manufactured by Shin-Etsu Chemical Co., Ltd., and "Rikacoat SN20" and "Rikacoat PN20" manufactured by New Japan Chemical Co., Ltd.

ポリビニルアセタール樹脂としては、例えば、ポリビニルホルマール樹脂、ポリビニルブチラール樹脂が挙げられ、ポリビニルブチラール樹脂が好ましい。ポリビニルアセタール樹脂の具体例としては、電気化学工業社製の「電化ブチラール4000-2」、「電化ブチラール5000-A」、「電化ブチラール6000-C」、「電化ブチラール6000-EP」;積水化学工業社製のエスレックBHシリーズ、BXシリーズ(例えばBX-5Z)、KSシリーズ(例えばKS-1)、BLシリーズ、BMシリーズ;等が挙げられる。 Examples of polyvinyl acetal resins include polyvinyl formal resins and polyvinyl butyral resins, with polyvinyl butyral resins being preferred. Specific examples of polyvinyl acetal resins include Denka Butyral 4000-2, Denka Butyral 5000-A, Denka Butyral 6000-C, and Denka Butyral 6000-EP manufactured by Denki Kagaku Kogyo Co., Ltd.; and S-LEC BH series, BX series (e.g. BX-5Z), KS series (e.g. KS-1), BL series, and BM series manufactured by Sekisui Chemical Co., Ltd.

ポリオレフィン樹脂としては、例えば低密度ポリエチレン、超低密度ポリエチレン、高密度ポリエチレン、エチレン-酢酸ビニル共重合体、エチレン-アクリル酸エチル共重合体、エチレン-アクリル酸メチル共重合体等のエチレン系共重合樹脂;ポリプロピレン、エチレン-プロピレンブロック共重合体等のポリオレフィン系重合体等が挙げられる。 Examples of polyolefin resins include ethylene-based copolymer resins such as low-density polyethylene, very low-density polyethylene, high-density polyethylene, ethylene-vinyl acetate copolymer, ethylene-ethyl acrylate copolymer, and ethylene-methyl acrylate copolymer; polyolefin-based polymers such as polypropylene and ethylene-propylene block copolymer.

ポリブタジエン樹脂としては、例えば、水素化ポリブタジエン骨格含有樹脂、ヒドロキシ基含有ポリブタジエン樹脂、フェノール性水酸基含有ポリブタジエン樹脂、カルボキシ基含有ポリブタジエン樹脂、酸無水物基含有ポリブタジエン樹脂、エポキシ基含有ポリブタジエン樹脂、イソシアネート基含有ポリブタジエン樹脂、ウレタン基含有ポリブタジエン樹脂、ポリフェニレンエーテル-ポリブタジエン樹脂等が挙げられる。 Examples of polybutadiene resins include hydrogenated polybutadiene skeleton-containing resins, hydroxyl group-containing polybutadiene resins, phenolic hydroxyl group-containing polybutadiene resins, carboxyl group-containing polybutadiene resins, acid anhydride group-containing polybutadiene resins, epoxy group-containing polybutadiene resins, isocyanate group-containing polybutadiene resins, urethane group-containing polybutadiene resins, polyphenylene ether-polybutadiene resins, etc.

ポリアミドイミド樹脂の具体例としては、東洋紡社製の「バイロマックスHR11NN」及び「バイロマックスHR16NN」が挙げられる。ポリアミドイミド樹脂の具体例としてはまた、日立化成社製の「KS9100」、「KS9300」(ポリシロキサン骨格含有ポリアミドイミド)等の変性ポリアミドイミドが挙げられる。 Specific examples of polyamide-imide resins include "Viromax HR11NN" and "Viromax HR16NN" manufactured by Toyobo Co., Ltd. Specific examples of polyamide-imide resins include modified polyamide-imides such as "KS9100" and "KS9300" (polyamide-imide containing a polysiloxane skeleton) manufactured by Hitachi Chemical Co., Ltd.

ポリエーテルスルホン樹脂の具体例としては、住友化学社製の「PES5003P」等が挙げられる。 An example of a polyethersulfone resin is "PES5003P" manufactured by Sumitomo Chemical Co., Ltd.

ポリスルホン樹脂の具体例としては、ソルベイアドバンストポリマーズ社製のポリスルホン「P1700」、「P3500」等が挙げられる。 Specific examples of polysulfone resins include polysulfones "P1700" and "P3500" manufactured by Solvay Advanced Polymers.

ポリフェニレンエーテル樹脂の具体例としては、SABIC製「NORYL SA90」等が挙げられる。ポリエーテルイミド樹脂の具体例としては、GE社製の「ウルテム」等が挙げられる。 A specific example of a polyphenylene ether resin is NORYL SA90 manufactured by SABIC. A specific example of a polyetherimide resin is ULTEM manufactured by GE.

ポリカーボネート樹脂としては、例えば、ヒドロキシ基含有カーボネート樹脂、フェノール性水酸基含有カーボネート樹脂、カルボキシ基含有カーボネート樹脂、酸無水物基含有カーボネート樹脂、イソシアネート基含有カーボネート樹脂、ウレタン基含有カーボネート樹脂等が挙げられる。ポリカーボネート樹脂の具体例としては、三菱瓦斯化学社製の「FPC0220」、旭化成ケミカルズ社製の「T6002」、「T6001」(ポリカーボネートジオール)、クラレ社製の「C-1090」、「C-2090」、「C-3090」(ポリカーボネートジオール)等が挙げられる。ポリエーテルエーテルケトン樹脂の具体例としては、住友化学社製の「スミプロイK」等が挙げられる。 Examples of polycarbonate resins include hydroxyl group-containing carbonate resins, phenolic hydroxyl group-containing carbonate resins, carboxyl group-containing carbonate resins, acid anhydride group-containing carbonate resins, isocyanate group-containing carbonate resins, and urethane group-containing carbonate resins. Specific examples of polycarbonate resins include "FPC0220" manufactured by Mitsubishi Gas Chemical Co., Ltd., "T6002" and "T6001" (polycarbonate diols) manufactured by Asahi Kasei Chemicals Corporation, and "C-1090", "C-2090", and "C-3090" (polycarbonate diols) manufactured by Kuraray Co., Ltd. Specific examples of polyether ether ketone resins include "Sumiploy K" manufactured by Sumitomo Chemical Co., Ltd.

ポリエステル樹脂としては、例えば、ポリエチレンテレフタレート樹脂、ポリエチレンナフタレート樹脂、ポリブチレンテレフタレート樹脂、ポリブチレンナフタレート樹脂、ポリトリメチレンテレフタレート樹脂、ポリトリメチレンナフタレート樹脂、ポリシクロヘキサンジメチルテレフタレート樹脂等が挙げられる。 Examples of polyester resins include polyethylene terephthalate resin, polyethylene naphthalate resin, polybutylene terephthalate resin, polybutylene naphthalate resin, polytrimethylene terephthalate resin, polytrimethylene naphthalate resin, and polycyclohexane dimethyl terephthalate resin.

(E)熱可塑性樹脂の重量平均分子量(Mw)は、好ましくは5,000より大きく、より好ましくは8,000以上、さらに好ましくは10,000以上、特に好ましくは20,000以上であり、好ましくは100,000以下、より好ましくは70,000以下、さらに好ましくは60,000以下、特に好ましくは50,000以下である。重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)法により、ポリスチレン換算の値として測定できる。 (E) The weight average molecular weight (Mw) of the thermoplastic resin is preferably greater than 5,000, more preferably 8,000 or more, even more preferably 10,000 or more, particularly preferably 20,000 or more, and preferably 100,000 or less, more preferably 70,000 or less, even more preferably 60,000 or less, particularly preferably 50,000 or less. The weight average molecular weight can be measured as a polystyrene-equivalent value by gel permeation chromatography (GPC).

樹脂組成物中の(E)熱可塑性樹脂の量は、樹脂組成物の不揮発成分100質量%に対して、0質量%であってもよく、0質量%より大きくてもよく、好ましくは0.01質量%以上、より好ましくは0.05質量%以上、更に好ましくは0.1質量%以上であり、好ましくは10質量%以下、より好ましくは5質量%以下、更に好ましくは3質量%以下である。 The amount of (E) thermoplastic resin in the resin composition may be 0% by mass or may be greater than 0% by mass, and is preferably 0.01% by mass or more, more preferably 0.05% by mass or more, and even more preferably 0.1% by mass or more, and is preferably 10% by mass or less, more preferably 5% by mass or less, and even more preferably 3% by mass or less, based on 100% by mass of the non-volatile components of the resin composition.

樹脂組成物中の(E)熱可塑性樹脂の量は、樹脂組成物の樹脂成分100質量%に対して、0質量%であってもよく、0質量%より大きくてもよく、好ましくは0.01質量%以上、より好ましくは0.1質量%以上、更に好ましくは1質量%以上であり、好ましくは20質量%以下、より好ましくは10質量%以下、更に好ましくは5質量%以下である。 The amount of (E) thermoplastic resin in the resin composition may be 0% by mass or may be greater than 0% by mass, and is preferably 0.01% by mass or more, more preferably 0.1% by mass or more, and even more preferably 1% by mass or more, and is preferably 20% by mass or less, more preferably 10% by mass or less, and even more preferably 5% by mass or less, based on 100% by mass of the resin components of the resin composition.

[(F)ラジカル重合性化合物]
本発明の一実施形態に係る樹脂組成物は、任意の成分として、(F)任意のラジカル重合性化合物を更に含んでいてもよい。(F)成分としての(F)ラジカル重合性化合物には、上述した(A)~(E)成分に該当するものは含めない。(F)ラジカル重合性化合物は、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
[(F) Radical polymerizable compound]
The resin composition according to one embodiment of the present invention may further contain an arbitrary radical polymerizable compound (F) as an arbitrary component. The radical polymerizable compound (F) as the component (F) does not include those corresponding to the above-mentioned components (A) to (E). The radical polymerizable compound (F) may be used alone or in combination of two or more kinds.

(F)ラジカル重合性化合物は、エチレン性不飽和結合を含有しうる。よって、(F)ラジカル重合性化合物は、エチレン性不飽和結合を含むラジカル重合性基を有しうる。ラジカル重合性基としては、例えば、ビニル基、アリル基、1-プロペニル基、3-シクロヘキセニル基、3-シクロペンテニル基、2-ビニルフェニル基、3-ビニルフェニル基、4-ビニルフェニル基等の不飽和炭化水素基;アクリロイル基、メタクリロイル基、マレイミド基(2,5-ジヒドロ-2,5-ジオキソ-1H-ピロール-1-イル基)等のα,β-不飽和カルボニル基等が挙げられる。(F)ラジカル重合性化合物は、ラジカル重合性基を2個以上有することが好ましい。 The radical polymerizable compound (F) may contain an ethylenically unsaturated bond. Thus, the radical polymerizable compound (F) may have a radical polymerizable group containing an ethylenically unsaturated bond. Examples of the radical polymerizable group include unsaturated hydrocarbon groups such as vinyl groups, allyl groups, 1-propenyl groups, 3-cyclohexenyl groups, 3-cyclopentenyl groups, 2-vinylphenyl groups, 3-vinylphenyl groups, and 4-vinylphenyl groups; and α,β-unsaturated carbonyl groups such as acryloyl groups, methacryloyl groups, and maleimide groups (2,5-dihydro-2,5-dioxo-1H-pyrrol-1-yl groups). It is preferable that the radical polymerizable compound (F) has two or more radical polymerizable groups.

(F)ラジカル重合性化合物としては、例えば、(メタ)アクリル系ラジカル重合性化合物、スチレン系ラジカル重合性化合物、アリル系ラジカル重合性化合物、マレイミド系ラジカル重合性化合物などが挙げられる。 (F) Examples of radically polymerizable compounds include (meth)acrylic radically polymerizable compounds, styrene radically polymerizable compounds, allyl radically polymerizable compounds, and maleimide radically polymerizable compounds.

(メタ)アクリル系ラジカル重合性化合物は、例えば、1個以上、好ましくは2個以上のアクリロイル基及び/又はメタクリロイル基を有する化合物である。(メタ)アクリル系ラジカル重合性化合物としては、例えば、シクロヘキサン-1,4-ジメタノールジ(メタ)アクリレート、シクロヘキサン-1,3-ジメタノールジ(メタ)アクリレート、トリシクロデカンジメタノールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,8-オクタンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、1,10-デカンジオールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールエタントリ(メタ)アクリレート、グリセリントリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレートなどの低分子量(分子量1000未満)の脂肪族(メタ)アクリル酸エステル化合物;ジオキサングリコールジ(メタ)アクリレート、3,6-ジオキサ-1,8-オクタンジオールジ(メタ)アクリレート、3,6,9-トリオキサウンデカン-1,11-ジオールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、9,9-ビス[4-(2-アクリロイルオキシエトキシ)フェニル]フルオレン、エトキシ化ビスフェノールAジ(メタ)アクリレート、プロポキシ化ビスフェノールAジ(メタ)アクリレートなどの低分子量(分子量1000未満)のエーテル含有(メタ)アクリル酸エステル化合物;トリス(3-ヒドロキシプロピル)イソシアヌレートトリ(メタ)アクリレート、トリス(2-ヒドロキシエチル)イソシアヌレートトリ(メタ)アクリレート、エトキシ化イソシアヌル酸トリ(メタ)アクリレートなどの低分子量(分子量1000未満)のイソシアヌレート含有(メタ)アクリル酸エステル化合物;(メタ)アクリル変性ポリフェニレンエーテル樹脂などの高分子量(分子量1000以上)のアクリル酸エステル化合物などが挙げられる。(メタ)アクリル系ラジカル重合性化合物の市販品としては、例えば、新中村化学工業社製の「A-DOG」(ジオキサングリコールジアクリレート)、共栄社化学社製の「DCP-A」(トリシクロデカンジメタノールジアクリレート)、「DCP」(トリシクロデカンジメタノールジメタクリレート)、日本化薬株式会社の「KAYARAD R-684」(トリシクロデカンジメタノールジアクリレート)、「KAYARAD R-604」(ジオキサングリコールジアクリレート)、SABICイノベーティブプラスチックス社製の「SA9000」、「SA9000-111」(メタクリル変性ポリフェニレンエーテル)などが挙げられる。 The (meth)acrylic radical polymerizable compound is, for example, a compound having one or more, preferably two or more, acryloyl groups and/or methacryloyl groups. Examples of the (meth)acrylic radical polymerizable compound include cyclohexane-1,4-dimethanol di(meth)acrylate, cyclohexane-1,3-dimethanol di(meth)acrylate, tricyclodecane dimethanol di(meth)acrylate, neopentyl glycol di(meth)acrylate, 1,4-butanediol di(meth)acrylate, 1,6-hexanediol di(meth)acrylate, 1,8-octanediol di(meth)acrylate, 1,9-nonyl acrylate, 1,2-dimethylphenyl di(meth)acrylate, 1,3-dimethylphenyl di(meth)acrylate, 1,4-dimethylphenyl di(meth)acrylate, 1,5-dimethylphenyl di(meth)acrylate, 1,6-dimethylphenyl di(meth)acrylate, 1,8-dimethylphenyl di(meth)acrylate, 1,9-dimethylphenyl di(meth) ...3-dimethylphenyl di(meth)acrylate, 1,4-dimethylphenyl di(meth)acrylate, 1,5-dimethylphenyl di(meth)acrylate, 1,3-dimethylphenyl di(meth)acrylate, 1,4-dimethylphenyl di(meth)acrylate, 1,5-dimethylphenyl di(meth)acrylate, 1,3-dimethylphenyl di(meth)acrylate, 1,4-dimethylphenyl di(meth)acrylate, 1,5-dimethyl aliphatic (meth)acrylic acid ester compounds having a low molecular weight (molecular weight less than 1000) such as dioxane glycol di(meth)acrylate, 3,6-dioxa-1,8-octanediol di(meth)acrylate, 1,10-decanediol di(meth)acrylate, trimethylolpropane tri(meth)acrylate, trimethylolethane tri(meth)acrylate, glycerin tri(meth)acrylate, and pentaerythritol tetra(meth)acrylate; low molecular weight (molecular weight less than 1000) ether-containing (meth)acrylic acid ester compounds such as 9,9-bis[4-(2-acryloyloxyethoxy)phenyl]fluorene, ethoxylated bisphenol A di(meth)acrylate, and propoxylated bisphenol A di(meth)acrylate; low molecular weight (molecular weight less than 1000) isocyanurate-containing (meth)acrylic acid ester compounds such as tris(3-hydroxypropyl)isocyanurate tri(meth)acrylate, tris(2-hydroxyethyl)isocyanurate tri(meth)acrylate, and ethoxylated isocyanuric acid tri(meth)acrylate; and high molecular weight (molecular weight 1000 or more) acrylic acid ester compounds such as (meth)acrylic-modified polyphenylene ether resins. Commercially available (meth)acrylic radical polymerizable compounds include, for example, "A-DOG" (dioxane glycol diacrylate) manufactured by Shin-Nakamura Chemical Co., Ltd., "DCP-A" (tricyclodecane dimethanol diacrylate) and "DCP" (tricyclodecane dimethanol dimethacrylate) manufactured by Kyoeisha Chemical Co., Ltd., "KAYARAD R-684" (tricyclodecane dimethanol diacrylate) and "KAYARAD R-604" (dioxane glycol diacrylate) manufactured by Nippon Kayaku Co., Ltd., and "SA9000" and "SA9000-111" (methacrylic modified polyphenylene ether) manufactured by SABIC Innovative Plastics.

スチレン系ラジカル重合性化合物は、例えば、芳香族炭素原子に直接結合した1個以上、好ましくは2個以上のビニル基を有する化合物である。スチレン系ラジカル重合性化合物としては、例えば、ジビニルベンゼン、2,4-ジビニルトルエン、2,6-ジビニルナフタレン、1,4-ジビニルナフタレン、4,4’-ジビニルビフェニル、1,2-ビス(4-ビニルフェニル)エタン、2,2-ビス(4-ビニルフェニル)プロパン、ビス(4-ビニルフェニル)エーテルなどの低分子量(分子量1000未満)のスチレン系化合物;ビニルベンジル変性ポリフェニレンエーテル樹脂、スチレン-ジビニルベンゼン共重合体などの高分子量(分子量1000以上)のスチレン系化合物などが挙げられる。スチレン系ラジカル重合性化合物の市販品としては、例えば、日鉄ケミカル&マテリアル社製の「ODV-XET(X03)」、「ODV-XET(X04)」、「ODV-XET(X05)」(スチレン-ジビニルベンゼン共重合体)、三菱ガス化学社製の「OPE-2St 1200」、「OPE-2St 2200」(ビニルベンジル変性ポリフェニレンエーテル樹脂)が挙げられる。 A styrene-based radical polymerizable compound is, for example, a compound having one or more, preferably two or more, vinyl groups directly bonded to an aromatic carbon atom. Examples of styrene-based radical polymerizable compounds include low molecular weight (molecular weight less than 1000) styrene-based compounds such as divinylbenzene, 2,4-divinyltoluene, 2,6-divinylnaphthalene, 1,4-divinylnaphthalene, 4,4'-divinylbiphenyl, 1,2-bis(4-vinylphenyl)ethane, 2,2-bis(4-vinylphenyl)propane, and bis(4-vinylphenyl)ether; high molecular weight (molecular weight 1000 or more) styrene-based compounds such as vinylbenzyl-modified polyphenylene ether resin and styrene-divinylbenzene copolymer. Commercially available styrene-based radical polymerizable compounds include, for example, "ODV-XET (X03)", "ODV-XET (X04)", and "ODV-XET (X05)" (styrene-divinylbenzene copolymers) manufactured by Nippon Steel Chemical & Material Co., Ltd., and "OPE-2St 1200" and "OPE-2St 2200" (vinylbenzyl-modified polyphenylene ether resins) manufactured by Mitsubishi Gas Chemical Co., Inc.

アリル系ラジカル重合性化合物は、例えば、1個以上、好ましくは2個以上のアリル基を有する化合物である。アリル系ラジカル重合性化合物としては、例えば、ジフェン酸ジアリル、トリメリット酸トリアリル、フタル酸ジアリル、イソフタル酸ジアリル、テレフタル酸ジアリル、2,6-ナフタレンジカルボン酸ジアリル、2,3-ナフタレンカルボン酸ジアリルなどの芳香族カルボン酸アリルエステル化合物;1,3,5-トリアリルイソシアヌレート、1,3-ジアリル-5-グリシジルイソシアヌレートなどのイソシアヌル酸アリルエステル化合物;2,2-ビス[3-アリル-4-(グリシジルオキシ)フェニル]プロパンなどのエポキシ含有芳香族アリル化合物;ビス[3-アリル-4-(3,4-ジヒドロ-2H-1,3-ベンゾオキサジン-3-イル)フェニル]メタンなどのベンゾオキサジン含有芳香族アリル化合物;1,3,5-トリアリルエーテルベンゼンなどのエーテル含有芳香族アリル化合物;ジアリルジフェニルシランなどのアリルシラン化合物などが挙げられる。アリル系ラジカル重合性化合物の市販品としては、例えば、日本化成社製の「TAIC」(1,3,5-トリアリルイソシアヌレート)、日触テクノファインケミカル社製の「DAD」(ジフェン酸ジアリル)、和光純薬工業社製の「TRIAM-705」(トリメリット酸トリアリル)、日本蒸留工業社製の商品名「DAND」(2,3-ナフタレンカルボン酸ジアリル)、四国化成工業社製「ALP-d」(ビス[3-アリル-4-(3,4-ジヒドロ-2H-1,3-ベンゾオキサジン-3-イル)フェニル]メタン)、日本化薬社製の「RE-810NM」(2,2-ビス[3-アリル-4-(グリシジルオキシ)フェニル]プロパン)、四国化成社製の「DA-MGIC」(1,3-ジアリル-5-グリシジルイソシアヌレート)などが挙げられる。 Allyl radical polymerizable compounds are, for example, compounds having one or more, preferably two or more, allyl groups. Examples of allyl radical polymerizable compounds include aromatic carboxylic acid allyl ester compounds such as diallyl diphenate, triallyl trimellitate, diallyl phthalate, diallyl isophthalate, diallyl terephthalate, diallyl 2,6-naphthalenedicarboxylate, and diallyl 2,3-naphthalenecarboxylate; isocyanuric acid allyl ester compounds such as 1,3,5-triallyl isocyanurate and 1,3-diallyl-5-glycidyl isocyanurate; epoxy-containing aromatic allyl compounds such as 2,2-bis[3-allyl-4-(glycidyloxy)phenyl]propane; benzoxazine-containing aromatic allyl compounds such as bis[3-allyl-4-(3,4-dihydro-2H-1,3-benzoxazin-3-yl)phenyl]methane; ether-containing aromatic allyl compounds such as 1,3,5-triallyl ether benzene; and allyl silane compounds such as diallyl diphenyl silane. Commercially available allyl radical polymerizable compounds include, for example, "TAIC" (1,3,5-triallyl isocyanurate) manufactured by Nippon Kasei Chemical Industry Co., Ltd., "DAD" (diallyl diphenate) manufactured by Nisshoku Techno Fine Chemical Co., Ltd., "TRIAM-705" (triallyl trimellitate) manufactured by Wako Pure Chemical Industries, Ltd., "DAND" (2,3-diallyl naphthalene carboxylate) manufactured by Nippon Distillation Industry Co., Ltd., "ALP-d" (bis[3-allyl-4-(3,4-dihydro-2H-1,3-benzoxazin-3-yl)phenyl]methane manufactured by Shikoku Kasei Corporation, "RE-810NM" (2,2-bis[3-allyl-4-(glycidyloxy)phenyl]propane) manufactured by Nippon Kayaku Co., Ltd., and "DA-MGIC" (1,3-diallyl-5-glycidyl isocyanurate) manufactured by Shikoku Kasei Corporation.

マレイミド系ラジカル重合性化合物は、例えば、1個以上、好ましくは2個以上のマレイミド基を有する化合物である。マレイミド系ラジカル重合性化合物は、脂肪族アミン骨格を含む脂肪族マレイミド化合物であっても、芳香族アミン骨格を含む芳香族マレイミド化合物であってもよい。マレイミド系ラジカル重合性化合物の市販品としては、例えば、信越化学工業社製の「SLK-2600」、デジクナーモレキュールズ社製の「BMI-1500」、「BMI-1700」、「BMI-3000J」、「BMI-689」、「BMI-2500」(ダイマージアミン構造含有マレイミド化合物)、デジクナーモレキュールズ社製の「BMI-6100」(芳香族マレイミド化合物)、日本化薬社製の「MIR-5000-60T」、「MIR-3000-70MT」(ビフェニルアラルキル型マレイミド化合物)、ケイ・アイ化成社製の「BMI-70」、「BMI-80」、大和化成工業社製「BMI-2300」、「BMI-TMH」などが挙げられる。また、マレイミド系ラジカル重合性化合物として、発明協会公開技報公技番号2020-500211号に開示されているマレイミド樹脂(インダン環骨格含有マレイミド化合物)を用いてもよい。 The maleimide radical polymerizable compound is, for example, a compound having one or more, preferably two or more, maleimide groups. The maleimide radical polymerizable compound may be an aliphatic maleimide compound containing an aliphatic amine skeleton, or an aromatic maleimide compound containing an aromatic amine skeleton. Commercially available maleimide radical polymerizable compounds include, for example, Shin-Etsu Chemical Co., Ltd.'s "SLK-2600", DigiCner Molecules' "BMI-1500", "BMI-1700", "BMI-3000J", "BMI-689", and "BMI-2500" (dimer diamine structure-containing maleimide compounds), DigiCner Molecules' "BMI-6100" (aromatic maleimide compound), Nippon Kayaku's "MIR-5000-60T" and "MIR-3000-70MT" (biphenylaralkyl-type maleimide compounds), Kei-I Chemical Co., Ltd.'s "BMI-70" and "BMI-80", and Daiwa Kasei Kogyo's "BMI-2300" and "BMI-TMH". In addition, as a maleimide-based radical polymerizable compound, a maleimide resin (maleimide compound containing an indane ring skeleton) disclosed in the Japan Institute of Invention and Innovation's Technical Journal Publication No. 2020-500211 may be used.

(F)ラジカル重合性化合物のエチレン性不飽和結合当量は、好ましくは20g/eq.~3,000g/eq.、より好ましくは50g/eq.~2,500g/eq.、さらに好ましくは70g/eq.~2,000g/eq.、特に好ましくは90g/eq.~1,500g/eq.である。エチレン性不飽和結合当量は、エチレン性不飽和結合1当量あたりのラジカル重合性化合物の質量を表す。 The ethylenically unsaturated bond equivalent of the radical polymerizable compound (F) is preferably 20 g/eq. to 3,000 g/eq., more preferably 50 g/eq. to 2,500 g/eq., even more preferably 70 g/eq. to 2,000 g/eq., and particularly preferably 90 g/eq. to 1,500 g/eq. The ethylenically unsaturated bond equivalent represents the mass of the radical polymerizable compound per equivalent of the ethylenically unsaturated bond.

(F)ラジカル重合性化合物の重量平均分子量(Mw)は、好ましくは40,000以下、より好ましくは10,000以下、さらに好ましくは5,000以下、特に好ましくは3,000以下である。下限は、特に限定されるものではないが、例えば、150以上などとしうる。重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)法により、ポリスチレン換算の値として測定できる。 The weight average molecular weight (Mw) of the radical polymerizable compound (F) is preferably 40,000 or less, more preferably 10,000 or less, even more preferably 5,000 or less, and particularly preferably 3,000 or less. The lower limit is not particularly limited, but may be, for example, 150 or more. The weight average molecular weight can be measured as a polystyrene-equivalent value by gel permeation chromatography (GPC).

樹脂組成物中の(F)ラジカル重合性化合物の量は、樹脂組成物中の不揮発成分100質量%に対して、0質量%であってもよく、0質量%より大きくてもよく、好ましくは0.01質量%以上、より好ましくは0.1質量%以上、更に好ましくは0.5質量%以上であり、好ましくは10質量%以下、より好ましくは5質量%以下、更に好ましくは3質量%以下である。 The amount of the radically polymerizable compound (F) in the resin composition may be 0% by mass or may be greater than 0% by mass, and is preferably 0.01% by mass or more, more preferably 0.1% by mass or more, and even more preferably 0.5% by mass or more, and is preferably 10% by mass or less, more preferably 5% by mass or less, and even more preferably 3% by mass or less, based on 100% by mass of the non-volatile components in the resin composition.

樹脂組成物中の(F)ラジカル重合性化合物の量は、樹脂組成物中の樹脂成分100質量%に対して、0質量%であってもよく、0質量%より大きくてもよく、好ましくは0.01質量%以上、より好ましくは0.1質量%以上、更に好ましくは1質量%以上であり、好ましくは20質量%以下、より好ましくは15質量%以下、更に好ましくは10質量%以下である。 The amount of the radically polymerizable compound (F) in the resin composition may be 0% by mass or may be greater than 0% by mass, and is preferably 0.01% by mass or more, more preferably 0.1% by mass or more, and even more preferably 1% by mass or more, and is preferably 20% by mass or less, more preferably 15% by mass or less, and even more preferably 10% by mass or less, relative to 100% by mass of the resin components in the resin composition.

[(G)任意の添加剤]
本発明の一実施形態に係る樹脂組成物は、任意の成分として(G)任意の添加剤を更に含んでいてもよい。(G)任意の添加剤としては、例えば、ゴム粒子等の有機充填材;有機銅化合物、有機亜鉛化合物、有機コバルト化合物等の有機金属化合物;フタロシアニンブルー、フタロシアニングリーン、アイオディングリーン、ジアゾイエロー、クリスタルバイオレット、酸化チタン、カーボンブラック等の着色剤;ハイドロキノン、カテコール、ピロガロール、フェノチアジン等の重合禁止剤;シリコーン系レベリング剤、アクリルポリマー系レベリング剤等のレベリング剤;ベントン、モンモリロナイト等の増粘剤;シリコーン系消泡剤、アクリル系消泡剤、フッ素系消泡剤、ビニル樹脂系消泡剤等の消泡剤;ベンゾトリアゾール系紫外線吸収剤等の紫外線吸収剤;尿素シラン等の接着性向上剤;トリアゾール系密着性付与剤、テトラゾール系密着性付与剤、トリアジン系密着性付与剤等の密着性付与剤;ヒンダードフェノール系酸化防止剤等の酸化防止剤;スチルベン誘導体等の蛍光増白剤;フッ素系界面活性剤、シリコーン系界面活性剤等の界面活性剤;リン系難燃剤(例えばリン酸エステル化合物、ホスファゼン化合物、ホスフィン酸化合物、赤リン)、窒素系難燃剤(例えば硫酸メラミン)、ハロゲン系難燃剤、無機系難燃剤(例えば三酸化アンチモン)等の難燃剤;リン酸エステル系分散剤、ポリオキシアルキレン系分散剤、アセチレン系分散剤、シリコーン系分散剤、アニオン性分散剤、カチオン性分散剤等の分散剤;ボレート系安定剤、チタネート系安定剤、アルミネート系安定剤、ジルコネート系安定剤、イソシアネート系安定剤、カルボン酸系安定剤、カルボン酸無水物系安定剤等の安定剤、が挙げられる。(G)任意の添加剤は、1種類を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
(G) Optional Additives
The resin composition according to one embodiment of the present invention may further contain an optional additive (G) as an optional component. The optional additive (G) may be, for example, an organic filler such as rubber particles; an organic metal compound such as an organic copper compound, an organic zinc compound, or an organic cobalt compound; a colorant such as phthalocyanine blue, phthalocyanine green, iodine green, diazo yellow, crystal violet, titanium oxide, or carbon black; a polymerization inhibitor such as hydroquinone, catechol, pyrogallol, or phenothiazine; a leveling agent such as a silicone leveling agent or an acrylic polymer leveling agent; a thickener such as bentone or montmorillonite; an antifoaming agent such as a silicone antifoaming agent, an acrylic antifoaming agent, a fluorine antifoaming agent, or a vinyl resin antifoaming agent; an ultraviolet absorber such as a benzotriazole ultraviolet absorber; an adhesion improver such as urea silane; a triazole adhesion imparting agent, a tetrazole adhesion imparting agent, ... Examples of the additives include adhesion imparting agents such as silane-based adhesion imparting agents; antioxidants such as hindered phenol-based antioxidants; fluorescent brighteners such as stilbene derivatives; surfactants such as fluorine-based surfactants and silicone-based surfactants; flame retardants such as phosphorus-based flame retardants (e.g., phosphate ester compounds, phosphazene compounds, phosphinic acid compounds, red phosphorus), nitrogen-based flame retardants (e.g., melamine sulfate), halogen-based flame retardants, and inorganic flame retardants (e.g., antimony trioxide); dispersants such as phosphate ester-based dispersants, polyoxyalkylene-based dispersants, acetylene-based dispersants, silicone-based dispersants, anionic dispersants, and cationic dispersants; stabilizers such as borate-based stabilizers, titanate-based stabilizers, aluminate-based stabilizers, zirconate-based stabilizers, isocyanate-based stabilizers, carboxylic acid-based stabilizers, and carboxylic anhydride-based stabilizers. (G) Optional additives may be used alone or in combination of two or more.

[(H)溶剤]
本発明の一実施形態に係る樹脂組成物は、上述した(A)~(G)成分といった不揮発成分に組み合わせて、任意の揮発性成分として(H)溶剤を更に含んでいてもよい。(H)溶剤としては、通常、有機溶剤を用いる。有機溶剤としては、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶剤;酢酸メチル、酢酸エチル、酢酸ブチル、酢酸イソブチル、酢酸イソアミル、プロピオン酸メチル、プロピオン酸エチル、γ-ブチロラクトン等のエステル系溶剤;テトラヒドロピラン、テトラヒドロフラン、1,4-ジオキサン、ジエチルエーテル、ジイソプロピルエーテル、ジブチルエーテル、ジフェニルエーテル、アニソール等のエーテル系溶剤;メタノール、エタノール、プロパノール、ブタノール、エチレングリコール等のアルコール系溶剤;酢酸2-エトキシエチル、プロピレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、エチルジグリコールアセテート、γ-ブチロラクトン、メトキシプロピオン酸メチル等のエーテルエステル系溶剤;乳酸メチル、乳酸エチル、2-ヒドロキシイソ酪酸メチル等のエステルアルコール系溶剤;2-メトキシプロパノール、2-メトキシエタノール、2-エトキシエタノール、プロピレングリコールモノメチルエーテル、ジエチレングリコールモノブチルエーテル(ブチルカルビトール)等のエーテルアルコール系溶剤;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン等のアミド系溶剤;ジメチルスルホキシド等のスルホキシド系溶剤;アセトニトリル、プロピオニトリル等のニトリル系溶剤;ヘキサン、シクロペンタン、シクロヘキサン、メチルシクロヘキサン等の脂肪族炭化水素系溶剤;ベンゼン、トルエン、キシレン、エチルベンゼン、トリメチルベンゼン等の芳香族炭化水素系溶剤等を挙げることができる。(H)溶剤は、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
[(H) Solvent]
The resin composition according to one embodiment of the present invention may further contain a solvent (H) as an optional volatile component in combination with the non-volatile components such as the components (A) to (G) described above. As the solvent (H), an organic solvent is usually used. Examples of the organic solvent include ketone-based solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone; ester-based solvents such as methyl acetate, ethyl acetate, butyl acetate, isobutyl acetate, isoamyl acetate, methyl propionate, ethyl propionate, and γ-butyrolactone; ether-based solvents such as tetrahydropyran, tetrahydrofuran, 1,4-dioxane, diethyl ether, diisopropyl ether, dibutyl ether, diphenyl ether, and anisole; alcohol-based solvents such as methanol, ethanol, propanol, butanol, and ethylene glycol; 2-ethoxyethyl acetate, propylene glycol monomethyl ether acetate, diethylene glycol monoethyl ether acetate, ethyl diglycol acetate, γ-butyrolactone, and methyl methoxypropionate. Examples of the solvent include ether ester solvents such as ethyl acetate, ester alcohol solvents such as methyl lactate, ethyl lactate, and methyl 2-hydroxyisobutyrate, ether alcohol solvents such as 2-methoxypropanol, 2-methoxyethanol, 2-ethoxyethanol, propylene glycol monomethyl ether, and diethylene glycol monobutyl ether (butyl carbitol), amide solvents such as N,N-dimethylformamide, N,N-dimethylacetamide, and N-methyl-2-pyrrolidone, sulfoxide solvents such as dimethyl sulfoxide, nitrile solvents such as acetonitrile and propionitrile, aliphatic hydrocarbon solvents such as hexane, cyclopentane, cyclohexane, and methylcyclohexane, and aromatic hydrocarbon solvents such as benzene, toluene, xylene, ethylbenzene, and trimethylbenzene. The solvent (H) may be used alone or in combination of two or more.

(H)溶剤の量は、特に限定されるものではないが、樹脂組成物の全成分100質量%に対して、例えば、60質量%以下、40質量%以下、30質量%以下、20質量%以下、15質量%以下、10質量%以下等でありえ、0質量%であってもよい。 The amount of (H) solvent is not particularly limited, but may be, for example, 60% by mass or less, 40% by mass or less, 30% by mass or less, 20% by mass or less, 15% by mass or less, 10% by mass or less, or may be 0% by mass, based on 100% by mass of all components of the resin composition.

[樹脂組成物の製造方法]
本発明の一実施形態に係る樹脂組成物は、
カルボジイミド化合物及び無機充填材を混合して(C)処理充填材を得る第一工程と、
(C)処理充填材、(A)エポキシ樹脂及び(B)硬化剤を混合する第二工程と、
を含む製造方法によって、製造できる。
[Method of producing resin composition]
The resin composition according to one embodiment of the present invention is
A first step of mixing a carbodiimide compound and an inorganic filler to obtain a treated filler (C);
a second step of mixing (C) the treated filler, (A) the epoxy resin, and (B) the hardener;
It can be produced by a production method including the steps of:

第一工程は、カルボジイミド化合物及び無機充填材を混合することを含む。カルボジイミド化合物及び無機充填材を混合することにより、無機充填材がカルボジイミド化合物によって表面処理されるので、(C)処理充填材を得ることができる。 The first step involves mixing a carbodiimide compound and an inorganic filler. By mixing the carbodiimide compound and the inorganic filler, the inorganic filler is surface-treated with the carbodiimide compound, and thus a treated filler (C) can be obtained.

カルボジイミド化合物と混合される前の無機充填材は、任意の表面処理剤によって表面処理されていなくてもよく、任意の表面処理剤によって表面処理されていてもよい。よって、第一工程は、カルボジイミド化合物及び無機充填材を混合する前に、無機充填材と任意の表面処理剤とを混合することを含んでいてもよい。また、第一工程は、カルボジイミド化合物及び無機充填材を混合した後に、無機充填材と任意の表面処理剤とを混合することを含んでいてもよい。さらに、第一工程は、カルボジイミド化合物、無機充填材及び任意の表面処理剤を同時に混合することを含んでいてもよい。 The inorganic filler before being mixed with the carbodiimide compound may not be surface-treated with any surface treatment agent, or may be surface-treated with any surface treatment agent. Thus, the first step may include mixing the inorganic filler with any surface treatment agent before mixing the carbodiimide compound and the inorganic filler. The first step may also include mixing the inorganic filler with any surface treatment agent after mixing the carbodiimide compound and the inorganic filler. Furthermore, the first step may include simultaneously mixing the carbodiimide compound, the inorganic filler, and the any surface treatment agent.

カルボジイミド化合物及び無機充填材の混合は、乾式法によって行ってもよく、湿式法によって行ってもよい。乾式法は、溶剤を含まない系においてカルボジイミド化合物及び無機充填材を混合する方法を表す。また、湿式法は、溶剤を含む系においてカルボジイミド化合物及び無機充填材を混合する方法を表す。溶剤としては、例えば、(H)溶剤として例示したものからカルボジイミド化合物を溶解しうるものを選択して用いうる。湿式法を採用する場合、カルボジイミド化合物と溶剤とを混合した後で、更に無機充填材を混合してもよい。また、無機充填材と溶剤とを混合した後で、更にカルボジイミド化合物を混合してもよい。 The carbodiimide compound and the inorganic filler may be mixed by a dry method or a wet method. The dry method refers to a method in which the carbodiimide compound and the inorganic filler are mixed in a system that does not contain a solvent. The wet method refers to a method in which the carbodiimide compound and the inorganic filler are mixed in a system that contains a solvent. As the solvent, for example, one that can dissolve the carbodiimide compound can be selected from those exemplified as the (H) solvent. When the wet method is adopted, the inorganic filler may be further mixed after the carbodiimide compound and the solvent are mixed. The carbodiimide compound may be further mixed after the inorganic filler and the solvent are mixed.

例えば、無機充填材にカルボジイミド化合物を噴霧しながら当該無機充填材を攪拌することにより、カルボジイミド化合物及び無機充填材を混合して、(C)処理充填材を得てもよい。前記の混合は、例えば、0℃~50℃の温度条件において行いうる。 For example, the carbodiimide compound and the inorganic filler may be mixed by spraying the inorganic filler with the carbodiimide compound while stirring the inorganic filler to obtain the (C) treated filler. The mixing may be performed, for example, at a temperature of 0°C to 50°C.

(C)処理充填材を得た後で、その(C)処理充填材と(A)エポキシ樹脂と(B)硬化剤とを混合する第二工程を行って、樹脂組成物を得ることができる。また、(D)~(H)成分等の任意の成分を含む樹脂組成物を製造する場合には、(A)エポキシ樹脂、(B)硬化剤及び(C)処理充填材に組み合わせて任意の成分を混合してもよい。混合は、一部又は全部を同時に混合してもよく、順に混合してもよい。各成分を混合する過程で、温度を適切に設定するために、一時的に又は終始にわたって、加熱及び/又は冷却を行ってもよい。さらに、各成分を混合する過程において、撹拌又は振盪を行ってもよい。 After obtaining the (C) treated filler, a second step is carried out in which the (C) treated filler is mixed with the (A) epoxy resin and the (B) curing agent to obtain a resin composition. When producing a resin composition containing optional components such as the (D) to (H) components, the optional components may be mixed in combination with the (A) epoxy resin, the (B) curing agent and the (C) treated filler. The components may be mixed partially or entirely at the same time, or in sequence. In the process of mixing the components, heating and/or cooling may be carried out temporarily or throughout the process in order to set the temperature appropriately. Furthermore, stirring or shaking may be carried out in the process of mixing the components.

[樹脂組成物の物性]
本発明の一実施形態に係る樹脂組成物は、低い最低溶融粘度を有することができる。例えば、60℃から200℃までの温度範囲において、昇温速度5℃/min、測定温度間隔2.5℃、振動周波数1Hzの測定条件で測定した場合、最低溶融粘度が、好ましくは2,000poise未満、より好ましくは1,900poise以下、更に好ましくは1,800poise以下、特に好ましくは1,700poise以下である。下限は、厚い絶縁層の形成を円滑に行う観点から、例えば、100poise以上、200poise以上などでありうる。樹脂組成物の最低溶融粘度は、具体的には、後述する実施例の<試験例1:最低溶融粘度の測定>で説明する方法しうる。
[Physical Properties of Resin Composition]
The resin composition according to one embodiment of the present invention can have a low minimum melt viscosity. For example, when measured under the measurement conditions of a temperature rise rate of 5°C/min, a measurement temperature interval of 2.5°C, and a vibration frequency of 1 Hz in a temperature range from 60°C to 200°C, the minimum melt viscosity is preferably less than 2,000 poise, more preferably 1,900 poise or less, even more preferably 1,800 poise or less, and particularly preferably 1,700 poise or less. From the viewpoint of smoothly forming a thick insulating layer, the lower limit may be, for example, 100 poise or more, 200 poise or more, etc. The minimum melt viscosity of the resin composition can be specifically measured by the method described in <Test Example 1: Measurement of minimum melt viscosity> in the examples described later.

本発明の一実施形態に係る樹脂組成物を硬化することにより、硬化物が得られる。前記の硬化の際、通常は、樹脂組成物には熱が加えられる。よって、通常、樹脂組成物に含まれる成分のうち、(H)溶剤等の揮発成分は硬化時の熱によって揮発しうるが、(A)~(G)成分といった不揮発成分は、硬化時の熱によっては揮発しない。よって、樹脂組成物の硬化物は、樹脂組成物の不揮発成分又はその反応生成物を含みうる。 A cured product is obtained by curing the resin composition according to one embodiment of the present invention. During the curing, heat is usually applied to the resin composition. Therefore, among the components contained in the resin composition, volatile components such as (H) solvent can usually be volatilized by the heat during curing, but non-volatile components such as components (A) to (G) do not volatilize by the heat during curing. Therefore, the cured product of the resin composition can contain the non-volatile components of the resin composition or their reaction products.

本発明の一実施形態に係る樹脂組成物によれば、通常は、機械的強度に優れる硬化物を得ることができ、例えば、破断点伸度が大きい硬化物を得ることができる。具体例を挙げると、25℃大気圧中において日本工業規格JIS K7127に準拠して硬化物の引張試験を行った場合、当該引張試験で測定される硬化物の破断点伸度は、好ましくは1.0%以上、より好ましくは1.1%以上である。上限は、多いほど好ましいが、通常5%以下である。一例において、破断点伸度は、樹脂組成物を200℃にて90分間加熱して得られる硬化物を用いて、後述する実施例の<試験例4:破断点伸度の評価>に記載の方法で測定できる。 According to the resin composition according to one embodiment of the present invention, it is usually possible to obtain a cured product having excellent mechanical strength, for example, a cured product having a large elongation at break. As a specific example, when a tensile test of the cured product is performed at 25°C and atmospheric pressure in accordance with Japanese Industrial Standard JIS K7127, the elongation at break of the cured product measured in the tensile test is preferably 1.0% or more, more preferably 1.1% or more. The upper limit is preferably as high as possible, but is usually 5% or less. In one example, the elongation at break can be measured by the method described in <Test Example 4: Evaluation of elongation at break> in the Examples described later, using a cured product obtained by heating the resin composition at 200°C for 90 minutes.

本発明の一実施形態に係る樹脂組成物によれば、通常、粗化処理後の表面粗さを小さくすることが可能な硬化物を得ることができる。具体例を挙げると、硬化物に、ジエチレングリコールモノブチルエーテル及び水酸化ナトリウムを含有する水溶液に10分間浸漬すること、KMnOを60g/L及びNaOHを40g/L含む水溶液に80℃で20分間浸漬すること、及び、硫酸水溶液に40℃で5分間浸漬すること、をこの順で含む疎化処理を施した場合に、当該硬化物が、特定範囲の算術平均粗さRaを有することができる。前記の算術平均粗さRaの範囲は、好ましくは300nm未満、より好ましくは290nm未満、更に好ましくは280nm未満、特に好ましくは250nm未満である。下限は、特段の制限はなく、例えば、10nm以上、30nm以上、50nm以上などでありうる。一例において、前記の硬化物の算術平均粗さRaは、樹脂組成物を170℃にて30分間加熱して得られる硬化物を用いて、後述する実施例の<試験例2:算術平均粗さ(Ra)の測定>に記載の方法で測定できる。 According to the resin composition according to one embodiment of the present invention, it is usually possible to obtain a cured product that can reduce the surface roughness after roughening treatment. As a specific example, when the cured product is subjected to a roughening treatment that includes immersing the cured product in an aqueous solution containing diethylene glycol monobutyl ether and sodium hydroxide for 10 minutes, immersing the cured product in an aqueous solution containing 60 g/L of KMnO4 and 40 g/L of NaOH at 80°C for 20 minutes, and immersing the cured product in an aqueous sulfuric acid solution at 40°C for 5 minutes in this order, the cured product can have an arithmetic mean roughness Ra within a specific range. The range of the arithmetic mean roughness Ra is preferably less than 300 nm, more preferably less than 290 nm, even more preferably less than 280 nm, and particularly preferably less than 250 nm. There is no particular limit to the lower limit, and it can be, for example, 10 nm or more, 30 nm or more, 50 nm or more, etc. In one example, the arithmetic mean roughness Ra of the cured product can be measured using a cured product obtained by heating the resin composition at 170°C for 30 minutes, by the method described in <Test Example 2: Measurement of arithmetic mean roughness (Ra)> in the Examples described later.

本発明の一実施形態に係る樹脂組成物の硬化物は、通常、優れた誘電特性を有することができる。例えば、硬化物の比誘電率は、好ましくは4.0以下、より好ましくは3.6以下、特に好ましくは3.4以下である。比誘電率の下限は、特段の制限は無く、例えば、1.5以上、2.0以上などでありうる。また、例えば、硬化物の誘電正接は、好ましくは0.0100以下、より好ましくは0.0090以下、更に好ましくは0.0080以下、特に好ましくは0.0070以下である。誘電正接の下限は、特に制限は無く、例えば、0.0010以上でありうる。一例において、前記の硬化物の比誘電率及び誘電正接は、樹脂組成物を200℃にて90分間加熱して得られる硬化物を用いて、後述する実施例の<試験例3:比誘電率(Dk)及び誘電正接(Df)の測定>で説明する方法で測定できる。 The cured product of the resin composition according to one embodiment of the present invention can usually have excellent dielectric properties. For example, the relative dielectric constant of the cured product is preferably 4.0 or less, more preferably 3.6 or less, and particularly preferably 3.4 or less. The lower limit of the relative dielectric constant is not particularly limited, and can be, for example, 1.5 or more, 2.0 or more, etc. Also, for example, the dielectric tangent of the cured product is preferably 0.0100 or less, more preferably 0.0090 or less, even more preferably 0.0080 or less, and particularly preferably 0.0070 or less. The lower limit of the dielectric tangent is not particularly limited, and can be, for example, 0.0010 or more. In one example, the relative dielectric constant and dielectric tangent of the cured product can be measured by the method described in <Test Example 3: Measurement of relative dielectric constant (Dk) and dielectric tangent (Df)> in the examples described later, using a cured product obtained by heating the resin composition at 200 ° C. for 90 minutes.

[樹脂組成物の用途]
本発明の一実施形態に係る樹脂組成物は、絶縁用途の樹脂組成物として使用でき、特に、絶縁層を形成するための樹脂組成物(絶縁層形成用の樹脂組成物)として好適に使用することができる。例えば、本実施形態に係る樹脂組成物は、半導体チップパッケージの絶縁層を形成するための樹脂組成物(半導体チップパッケージの絶縁層用の樹脂組成物)、及び、回路基板(プリント配線板を含む。)の絶縁層を形成するための樹脂組成物(回路基板の絶縁層用の樹脂組成物)として、好適に使用することができる。特に、樹脂組成物は、導体層と導体層との間に設けられる層間絶縁層を形成するために好適である。
[Uses of resin composition]
The resin composition according to one embodiment of the present invention can be used as a resin composition for insulating purposes, and can be particularly preferably used as a resin composition for forming an insulating layer (resin composition for forming an insulating layer). For example, the resin composition according to this embodiment can be preferably used as a resin composition for forming an insulating layer of a semiconductor chip package (resin composition for insulating layer of a semiconductor chip package) and a resin composition for forming an insulating layer of a circuit board (including a printed wiring board) (resin composition for insulating layer of a circuit board). In particular, the resin composition is suitable for forming an interlayer insulating layer provided between conductor layers.

半導体チップパッケージとしては、例えば、FC-CSP、MIS-BGAパッケージ、ETS-BGAパッケージ、Fan-out型WLP(Wafer Level Package)、Fan-in型WLP、Fan-out型PLP(Panel Level Package)、Fan-in型PLPが挙げられる。 Examples of semiconductor chip packages include FC-CSP, MIS-BGA package, ETS-BGA package, Fan-out type WLP (Wafer Level Package), Fan-in type WLP, Fan-out type PLP (Panel Level Package), and Fan-in type PLP.

また、前記の樹脂組成物は、アンダーフィル材として用いてもよく、例えば、半導体チップを基板に接続した後に用いるMUF(Molding Under Filling)の材料として用いてもよい。 The resin composition may also be used as an underfill material, for example, as a molding underfilling (MUF) material used after connecting a semiconductor chip to a substrate.

さらに、前記の樹脂組成物は、樹脂シート、プリプレグ等のシート状積層材料、ソルダーレジスト、ダイボンディング材、半導体封止材、穴埋め樹脂、部品埋め込み樹脂等、樹脂組成物が用いられる広範な用途に使用できる。 Furthermore, the resin composition can be used in a wide range of applications where resin compositions are used, such as resin sheets, sheet-like laminate materials such as prepregs, solder resists, die bonding materials, semiconductor encapsulation materials, hole-filling resins, and component embedding resins.

[シート状積層材料]
樹脂組成物は、ワニス状態で塗布して使用してもよいが、工業的には、該樹脂組成物を含むシート状積層材料の形態で用いることが好適である。
[Sheet-like laminate material]
The resin composition may be used by coating in the form of a varnish, but from an industrial perspective, it is preferable to use the resin composition in the form of a sheet-like laminate material containing the resin composition.

シート状積層材料としては、以下に示す樹脂シート、プリプレグが好ましい。 The following resin sheets and prepregs are preferred as sheet-like laminate materials.

一実施形態において、樹脂シートは、支持体と、該支持体上に形成された樹脂組成物層と、を備える。樹脂組成物層は、上述した樹脂組成物で形成されている。よって、樹脂組成物層は、通常は樹脂組成物を含み、好ましくは樹脂組成物のみを含む。 In one embodiment, the resin sheet includes a support and a resin composition layer formed on the support. The resin composition layer is formed from the resin composition described above. Thus, the resin composition layer typically contains a resin composition, and preferably contains only a resin composition.

樹脂組成物層の厚さは、薄型化の観点、及び、樹脂組成物によって薄くても絶縁性に優れた硬化物を提供できるという観点から、好ましくは50μm以下、より好ましくは40μm以下である。樹脂組成物層の厚さの下限は、特に限定されないが、5μm以上、10μm以上等でありうる。 The thickness of the resin composition layer is preferably 50 μm or less, more preferably 40 μm or less, from the viewpoint of thinning and of being able to provide a cured product with excellent insulation even when thin, using the resin composition. The lower limit of the thickness of the resin composition layer is not particularly limited, but may be 5 μm or more, 10 μm or more, etc.

支持体としては、例えば、プラスチック材料からなるフィルム、金属箔、離型紙が挙げられ、プラスチック材料からなるフィルム、金属箔が好ましい。 Examples of the support include films made of plastic materials, metal foils, and release paper, with films made of plastic materials and metal foils being preferred.

支持体としてプラスチック材料からなるフィルムを使用する場合、プラスチック材料としては、例えば、ポリエチレンテレフタレート(以下「PET」と略称することがある。)、ポリエチレンナフタレート(以下「PEN」と略称することがある。)等のポリエステル、ポリカーボネート(以下「PC」と略称することがある。)、ポリメチルメタクリレート(PMMA)等のアクリル、環状ポリオレフィン、トリアセチルセルロース(TAC)、ポリエーテルサルファイド(PES)、ポリエーテルケトン、ポリイミド等が挙げられる。中でも、ポリエチレンテレフタレート、ポリエチレンナフタレートが好ましく、安価なポリエチレンテレフタレートが特に好ましい。 When a film made of a plastic material is used as the support, examples of the plastic material include polyesters such as polyethylene terephthalate (hereinafter sometimes abbreviated as "PET") and polyethylene naphthalate (hereinafter sometimes abbreviated as "PEN"), polycarbonate (hereinafter sometimes abbreviated as "PC"), acrylics such as polymethyl methacrylate (PMMA), cyclic polyolefins, triacetyl cellulose (TAC), polyether sulfide (PES), polyether ketone, polyimide, etc. Among these, polyethylene terephthalate and polyethylene naphthalate are preferred, and inexpensive polyethylene terephthalate is particularly preferred.

支持体として金属箔を使用する場合、金属箔としては、例えば、銅箔、アルミニウム箔等が挙げられ、銅箔が好ましい。銅箔としては、銅の単金属からなる箔を用いてもよく、銅と他の金属(例えば、スズ、クロム、銀、マグネシウム、ニッケル、ジルコニウム、ケイ素、チタン等)との合金からなる箔を用いてもよい。 When a metal foil is used as the support, examples of the metal foil include copper foil and aluminum foil, with copper foil being preferred. As the copper foil, a foil made of a single metal, copper, or an alloy of copper and another metal (e.g., tin, chromium, silver, magnesium, nickel, zirconium, silicon, titanium, etc.) may be used.

支持体は、樹脂組成物層と接合する面にマット処理、コロナ処理、帯電防止処理を施してあってもよい。 The support may be subjected to a matte treatment, corona treatment, or antistatic treatment on the surface that is to be bonded to the resin composition layer.

支持体として、樹脂組成物層と接合する面に離型層を有する離型層付き支持体を使用してもよい。離型層付き支持体の離型層に使用する離型剤としては、例えば、アルキド樹脂、ポリオレフィン樹脂、ウレタン樹脂、及びシリコーン樹脂からなる群から選択される1種以上の離型剤が挙げられる。離型層付き支持体は、市販品を用いてもよく、例えば、アルキド樹脂系離型剤を主成分とする離型層を有するPETフィルムである、リンテック社製の「SK-1」、「AL-5」、「AL-7」、東レ社製の「ルミラーT60」、帝人社製の「ピューレックス」、ユニチカ社製の「ユニピール」等が挙げられる。 As the support, a support with a release layer having a release layer on the surface to be bonded to the resin composition layer may be used. Examples of the release agent used in the release layer of the support with a release layer include one or more release agents selected from the group consisting of alkyd resins, polyolefin resins, urethane resins, and silicone resins. The support with a release layer may be a commercially available product, such as "SK-1", "AL-5", and "AL-7" manufactured by Lintec Corporation, "Lumirror T60" manufactured by Toray Industries, "Purex" manufactured by Teijin Limited, and "Unipeel" manufactured by Unitika Limited, which are PET films having a release layer mainly composed of an alkyd resin-based release agent.

支持体の厚さは、特に限定されないが、5μm~75μmの範囲が好ましく、10μm~60μmの範囲がより好ましい。なお、離型層付き支持体を使用する場合、離型層付き支持体全体の厚さが上記範囲であることが好ましい。 The thickness of the support is not particularly limited, but is preferably in the range of 5 μm to 75 μm, and more preferably in the range of 10 μm to 60 μm. When using a support with a release layer, it is preferable that the thickness of the entire support with the release layer is in the above range.

一実施形態において、樹脂シートは、さらに必要に応じて、任意の層を含んでいてもよい。斯かる任意の層としては、例えば、樹脂組成物層の支持体と接合していない面(即ち、支持体とは反対側の面)に設けられた、支持体に準じた保護フィルム等が挙げられる。保護フィルムの厚さは、特に限定されるものではないが、例えば、1μm~40μmである。保護フィルムを積層することにより、樹脂組成物層の表面へのゴミの付着及びキズを抑制することができる。 In one embodiment, the resin sheet may further include an optional layer as necessary. Examples of such optional layers include a protective film similar to the support provided on the surface of the resin composition layer that is not bonded to the support (i.e., the surface opposite the support). The thickness of the protective film is not particularly limited, but is, for example, 1 μm to 40 μm. By laminating the protective film, it is possible to suppress adhesion of dirt and scratches on the surface of the resin composition layer.

樹脂シートは、例えば、液状(ワニス状)の樹脂組成物をそのまま、或いは溶剤に樹脂組成物を溶解して液状(ワニス状)の樹脂組成物を調製し、これを、ダイコーター等の塗布装置を用いて支持体上に塗布し、更に乾燥させて樹脂組成物層を形成させることにより製造することができる。 The resin sheet can be produced, for example, by preparing a liquid (varnish-like) resin composition as is or by dissolving the resin composition in a solvent to prepare a liquid (varnish-like) resin composition, applying this onto a support using a coating device such as a die coater, and then drying to form a resin composition layer.

溶剤としては、樹脂組成物の成分として説明した(H)溶剤と同様のものが挙げられる。溶剤は1種類を単独で使用してもよく、2種類以上を組み合わせて使用してもよい。 Examples of the solvent include the same as the (H) solvent described as a component of the resin composition. One type of solvent may be used alone, or two or more types may be used in combination.

乾燥は、加熱、熱風吹きつけ等の乾燥方法により実施してよい。乾燥条件は、特に限定されないが、樹脂組成物層中の溶剤の含有量が通常10質量%以下、好ましくは5質量%以下となるように乾燥させる。樹脂組成物中の溶剤の沸点によっても異なるが、例えば30質量%~60質量%の溶剤を含む樹脂組成物を用いる場合、50℃~150℃で3分間~10分間乾燥させることにより、樹脂組成物層を形成することができる。 Drying may be performed by a drying method such as heating or blowing hot air. There are no particular limitations on the drying conditions, but drying is usually performed so that the solvent content in the resin composition layer is 10% by mass or less, preferably 5% by mass or less. Although it varies depending on the boiling point of the solvent in the resin composition, for example, when using a resin composition containing 30% by mass to 60% by mass of solvent, the resin composition layer can be formed by drying at 50°C to 150°C for 3 to 10 minutes.

樹脂シートは、ロール状に巻きとって保存することが可能である。樹脂シートが保護フィルムを有する場合、通常は、保護フィルムを剥がすことによって使用可能となる。 The resin sheet can be stored in a roll. If the resin sheet has a protective film, it can usually be used by peeling off the protective film.

一実施形態において、プリプレグは、シート状繊維基材に上述した樹脂組成物を含浸させて形成される。 In one embodiment, the prepreg is formed by impregnating a sheet-like fiber substrate with the above-mentioned resin composition.

プリプレグに用いるシート状繊維基材は、例えば、ガラスクロス、アラミド不織布、液晶ポリマー不織布等のプリプレグ用基材として常用されているものを用いることができる。薄型化の観点から、シート状繊維基材の厚さは、好ましくは50μm以下、より好ましくは40μm以下、さらに好ましくは30μm以下、特に好ましくは20μm以下である。シート状繊維基材の厚さの下限は特に限定されず、通常10μm以上である。 The sheet-like fiber substrate used for the prepreg may be, for example, a commonly used substrate for prepregs, such as glass cloth, aramid nonwoven fabric, or liquid crystal polymer nonwoven fabric. From the viewpoint of thinning, the thickness of the sheet-like fiber substrate is preferably 50 μm or less, more preferably 40 μm or less, even more preferably 30 μm or less, and particularly preferably 20 μm or less. There is no particular lower limit for the thickness of the sheet-like fiber substrate, and it is usually 10 μm or more.

プリプレグは、ホットメルト法、ソルベント法等の方法により製造することができる。 Prepregs can be manufactured using methods such as the hot melt method and the solvent method.

プリプレグの厚さは、上述した樹脂シートにおける樹脂組成物層と同様の範囲でありうる。 The thickness of the prepreg can be in the same range as the resin composition layer in the resin sheet described above.

シート状積層材料は、例えば、半導体チップパッケージの製造において絶縁層を形成するため(半導体チップパッケージの絶縁用樹脂シート)に好適に使用できる。適用可能な半導体チップパッケージとしては、例えば、Fan-out型WLP、Fan-in型WLP、Fan-out型PLP、Fan-in型PLP等が挙げられる。また、シート状積層材料は、例えば、回路基板の絶縁層を形成するため(回路基板の絶縁層用樹脂シート)に使用できる。さらに、シート状積層材料は、半導体チップを基板に接続した後に用いるMUFの材料に用いてもよい。特に、シート状積層材料は、層間絶縁層を形成するために好適である。 The sheet-like laminate material can be suitably used, for example, to form an insulating layer in the manufacture of a semiconductor chip package (insulating resin sheet for a semiconductor chip package). Examples of applicable semiconductor chip packages include fan-out type WLP, fan-in type WLP, fan-out type PLP, and fan-in type PLP. The sheet-like laminate material can also be used, for example, to form an insulating layer for a circuit board (resin sheet for insulating layer for a circuit board). Furthermore, the sheet-like laminate material may be used as a material for a MUF used after connecting a semiconductor chip to a board. In particular, the sheet-like laminate material is suitable for forming an interlayer insulating layer.

[回路基板]
本発明の一実施形態に係る回路基板は、樹脂組成物の硬化物を含む。通常、回路基板は、樹脂組成物の硬化物で形成された絶縁層を備える。絶縁層は、上述した樹脂組成物の硬化物を含み、好ましくは上述した樹脂組成物の硬化物のみを含む。この回路基板は、例えば、下記の工程(I)及び工程(II)を含む製造方法によって、製造できる。
(I)内層基板上に、樹脂組成物層を形成する工程。
(II)樹脂組成物層を硬化して、絶縁層を形成する工程。
[Circuit board]
A circuit board according to an embodiment of the present invention includes a cured product of a resin composition. Typically, the circuit board includes an insulating layer formed of the cured product of the resin composition. The insulating layer includes the cured product of the above-mentioned resin composition, and preferably includes only the cured product of the above-mentioned resin composition. This circuit board can be manufactured, for example, by a manufacturing method including the following steps (I) and (II).
(I) A step of forming a resin composition layer on an inner layer substrate.
(II) A step of curing the resin composition layer to form an insulating layer.

工程(I)で用いる「内層基板」とは、回路基板の基材となる部材であって、例えば、ガラスエポキシ基板、金属基板、ポリエステル基板、ポリイミド基板、BTレジン基板、熱硬化型ポリフェニレンエーテル基板等が挙げられる。また、該基板は、その片面又は両面に導体層を有していてもよく、この導体層はパターン加工されていてもよい。基板の片面または両面に導体層(回路)が形成された内層基板は「内層回路基板」ということがある。また回路基板を製造する際に、さらに絶縁層及び/又は導体層が形成されるべき中間製造物も、前記の「内層基板」に含まれる。回路基板が部品内蔵回路板である場合、部品を内蔵した内層基板を使用してもよい。 The "inner layer substrate" used in step (I) is a member that serves as the base material of a circuit board, and examples thereof include glass epoxy substrates, metal substrates, polyester substrates, polyimide substrates, BT resin substrates, and thermosetting polyphenylene ether substrates. The substrate may have a conductor layer on one or both sides, and the conductor layer may be patterned. An inner layer substrate having a conductor layer (circuit) formed on one or both sides of the substrate may be called an "inner layer circuit substrate." In addition, intermediate products on which an insulating layer and/or a conductor layer is to be formed during the manufacture of a circuit substrate are also included in the above-mentioned "inner layer substrate." When the circuit substrate is a component-embedded circuit board, an inner layer substrate with a component embedded may be used.

最低溶融粘度が小さく、よって配線埋め込み性に優れるという上述した樹脂組成物であるため、内層基板が備える導体層がパターン加工されている場合、その導体層の最小ライン/スペース比が小さくても良好な埋め込み性を示す。「ライン」とは、導体層の回路幅を表し、「スペース」とは回路間の間隔を表す。最小ライン/スペース比の範囲は、好ましくは20/20μm以下(即ちピッチが40μm以下)、より好ましくは15/15μm以下、さらに好ましくは10/10μm以下である。下限は、例えば、0.5/0.5μm以上でありうる。ピッチは、導体層の全体にわたって均一でもよく、不均一でもよい。導体層の最小ピッチは、例えば、40μm以下、36μm以下、又は30μm以下であってもよい。 The resin composition has a small minimum melt viscosity and therefore excellent wiring embeddability, so when the conductor layer of the inner layer substrate is patterned, the conductor layer exhibits good embeddability even if the minimum line/space ratio is small. "Line" refers to the circuit width of the conductor layer, and "space" refers to the distance between the circuits. The range of the minimum line/space ratio is preferably 20/20 μm or less (i.e., the pitch is 40 μm or less), more preferably 15/15 μm or less, and even more preferably 10/10 μm or less. The lower limit may be, for example, 0.5/0.5 μm or more. The pitch may be uniform or non-uniform throughout the conductor layer. The minimum pitch of the conductor layer may be, for example, 40 μm or less, 36 μm or less, or 30 μm or less.

内層基板上への樹脂組成物層の形成は、例えば、内層基板と樹脂シートとを積層することによって行いうる。内層基板と樹脂シートの積層は、例えば、支持体側から樹脂シートを内層基板に加熱圧着することにより行うことができる。樹脂シートを内層基板に加熱圧着する部材(以下、「加熱圧着部材」ともいう。)としては、例えば、加熱された金属板(SUS鏡板等)又は金属ロール(SUSロール等)が挙げられる。なお、加熱圧着部材を樹脂シートに直接プレスするのではなく、内層基板の表面凹凸に樹脂シートが十分に追随するよう、耐熱ゴム等の弾性材を介してプレスするのが好ましい。 The resin composition layer can be formed on the inner layer substrate by, for example, laminating the inner layer substrate and the resin sheet. The inner layer substrate and the resin sheet can be laminated, for example, by heat-pressing the resin sheet to the inner layer substrate from the support side. Examples of the member for heat-pressing the resin sheet to the inner layer substrate (hereinafter also referred to as the "heat-pressing member") include a heated metal plate (e.g., a SUS panel) or a metal roll (e.g., a SUS roll). It is preferable to press the heat-pressing member through an elastic material such as heat-resistant rubber so that the resin sheet can sufficiently follow the surface irregularities of the inner layer substrate, rather than directly pressing the resin sheet with the heat-pressing member.

内層基板と樹脂シートの積層は、真空ラミネート法により実施してよい。真空ラミネート法において、加熱圧着温度は、好ましくは60℃~160℃、より好ましくは80℃~140℃の範囲であり、加熱圧着圧力は、好ましくは0.098MPa~1.77MPa、より好ましくは0.29MPa~1.47MPaの範囲であり、加熱圧着時間は、好ましくは20秒間~400秒間、より好ましくは30秒間~300秒間の範囲である。積層は、好ましくは圧力26.7hPa以下の減圧条件下で実施される。 The lamination of the inner layer substrate and the resin sheet may be performed by a vacuum lamination method. In the vacuum lamination method, the heat-pressure bonding temperature is preferably in the range of 60°C to 160°C, more preferably in the range of 80°C to 140°C, the heat-pressure bonding pressure is preferably in the range of 0.098MPa to 1.77MPa, more preferably in the range of 0.29MPa to 1.47MPa, and the heat-pressure bonding time is preferably in the range of 20 seconds to 400 seconds, more preferably in the range of 30 seconds to 300 seconds. The lamination is preferably performed under reduced pressure conditions of 26.7hPa or less.

積層は、市販の真空ラミネーターによって行うことができる。市販の真空ラミネーターとしては、例えば、名機製作所社製の真空加圧式ラミネーター、ニッコー・マテリアルズ社製のバキュームアップリケーター、バッチ式真空加圧ラミネーター等が挙げられる。 Lamination can be performed using a commercially available vacuum laminator. Examples of commercially available vacuum laminators include a vacuum pressure laminator manufactured by Meiki Seisakusho Co., Ltd., a vacuum applicator manufactured by Nikko Materials Co., Ltd., and a batch-type vacuum pressure laminator.

積層の後に、常圧下(大気圧下)、例えば、加熱圧着部材を支持体側からプレスすることにより、積層された樹脂シートの平滑化処理を行ってもよい。平滑化処理のプレス条件は、上記積層の加熱圧着条件と同様の条件とすることができる。平滑化処理は、市販のラミネーターによって行うことができる。なお、積層と平滑化処理は、上記の市販の真空ラミネーターを用いて連続的に行ってもよい。 After lamination, the laminated resin sheets may be smoothed under normal pressure (atmospheric pressure), for example by pressing a heat-pressure bonding member from the support side. The pressing conditions for the smoothing treatment may be the same as the heat-pressure bonding conditions for the lamination. The smoothing treatment may be performed using a commercially available laminator. Note that lamination and smoothing treatment may be performed consecutively using the commercially available vacuum laminator.

支持体は、工程(I)と工程(II)の間に除去してもよく、工程(II)の後に除去してもよい。 The support may be removed between steps (I) and (II), or after step (II).

工程(II)において、樹脂組成物層を硬化して、樹脂組成物の硬化物からなる絶縁層を形成する。樹脂組成物層の硬化は、通常、熱硬化によって行う。樹脂組成物層の具体的な硬化条件は、樹脂組成物の種類によっても異なりうる。一例において、硬化温度は、好ましくは120℃~240℃、より好ましくは150℃~220℃、さらに好ましくは170℃~210℃である。硬化時間は、好ましくは5分間~120分間、より好ましくは10分間~100分間、さらに好ましくは15分間~100分間でありうる。 In step (II), the resin composition layer is cured to form an insulating layer made of a cured product of the resin composition. The resin composition layer is usually cured by thermal curing. The specific curing conditions for the resin composition layer may vary depending on the type of resin composition. In one example, the curing temperature is preferably 120°C to 240°C, more preferably 150°C to 220°C, and even more preferably 170°C to 210°C. The curing time may be preferably 5 minutes to 120 minutes, more preferably 10 minutes to 100 minutes, and even more preferably 15 minutes to 100 minutes.

回路基板の製造方法は、樹脂組成物層の熱硬化の前に、樹脂組成物層を硬化温度よりも低い温度にて予備加熱することを含むことが好ましい。例えば、樹脂組成物層を熱硬化させるのに先立ち、通常50℃~150℃、好ましくは60℃~140℃、より好ましくは70℃~130℃の温度にて、樹脂組成物層を通常5分間以上、好ましくは5分間~150分間、より好ましくは15分間~120分間、さらに好ましくは15分間~100分間予備加熱してもよい。 The method for manufacturing a circuit board preferably includes preheating the resin composition layer at a temperature lower than the curing temperature before thermally curing the resin composition layer. For example, prior to thermally curing the resin composition layer, the resin composition layer may be preheated for typically 5 minutes or more, preferably 5 minutes to 150 minutes, more preferably 15 minutes to 120 minutes, and even more preferably 15 minutes to 100 minutes, at a temperature typically of 50°C to 150°C, preferably 60°C to 140°C, and more preferably 70°C to 130°C.

回路基板を製造するに際しては、(III)絶縁層に穴あけする工程、(IV)絶縁層をデスミア処理する工程、(V)導体層を形成する工程をさらに実施してもよい。これらの工程(III)乃至工程(V)は、回路基板の製造に用いられる、当業者に公知の各種方法に従って実施してよい。なお、支持体を工程(II)の後に除去する場合、該支持体の除去は、工程(II)と工程(III)との間、工程(III)と工程(IV)の間、又は工程(IV)と工程(V)との間に実施してよい。また、必要に応じて、工程(I)~工程(V)の絶縁層及び導体層の形成を繰り返して実施し、多層プリント配線板等の多層構造を有する回路基板を製造してもよい。 When manufacturing a circuit board, the steps of (III) drilling holes in the insulating layer, (IV) desmearing the insulating layer, and (V) forming a conductor layer may be further carried out. These steps (III) to (V) may be carried out according to various methods known to those skilled in the art that are used in manufacturing circuit boards. When the support is removed after step (II), the support may be removed between steps (II) and (III), between steps (III) and (IV), or between steps (IV) and (V). If necessary, the formation of the insulating layer and the conductor layer in steps (I) to (V) may be repeated to manufacture a circuit board having a multilayer structure such as a multilayer printed wiring board.

他の実施形態において、回路基板は、上述のプリプレグを用いて製造することができる。製造方法は基本的に樹脂シートを用いる場合と同様でありうる。 In another embodiment, the circuit board can be manufactured using the prepreg described above. The manufacturing method can be basically the same as when a resin sheet is used.

工程(III)は、絶縁層に穴あけする工程であり、これにより絶縁層にビアホール、スルーホール等のホールを形成することができる。工程(III)は、絶縁層の形成に使用した樹脂組成物の組成等に応じて、例えば、ドリル、レーザー、プラズマ等を使用して実施してよい。ホールの寸法及び形状は、回路基板のデザインに応じて適宜決定してよい。 Step (III) is a step of drilling holes in the insulating layer, which allows holes such as via holes and through holes to be formed in the insulating layer. Step (III) may be performed using, for example, a drill, a laser, plasma, etc., depending on the composition of the resin composition used to form the insulating layer. The dimensions and shape of the holes may be appropriately determined depending on the design of the circuit board.

工程(IV)は、絶縁層を粗化処理する工程である。通常、この工程(IV)において、スミアの除去も行われる。よって、前記の粗化処理は「デスミア処理」と呼ばれることがある。粗化処理の手順、条件は特に限定されず、回路基板の絶縁層を形成するに際して通常使用される公知の手順、条件を採用することができる。例えば、膨潤液による膨潤処理、酸化剤による粗化処理、中和液による中和処理をこの順に実施して絶縁層を粗化処理することができる。 Step (IV) is a step of roughening the insulating layer. Usually, smears are also removed in this step (IV). Therefore, the roughening treatment is sometimes called "desmear treatment". The procedure and conditions of the roughening treatment are not particularly limited, and known procedures and conditions that are usually used when forming an insulating layer of a circuit board can be adopted. For example, the insulating layer can be roughened by performing a swelling treatment using a swelling liquid, a roughening treatment using an oxidizing agent, and a neutralization treatment using a neutralizing liquid in this order.

粗化処理に用いる膨潤液としては、例えば、アルカリ溶液、界面活性剤溶液等が挙げられ、好ましくはアルカリ溶液である。該アルカリ溶液としては、水酸化ナトリウム溶液、水酸化カリウム溶液がより好ましい。市販されている膨潤液としては、例えば、アトテックジャパン社製の「スウェリング・ディップ・セキュリガンスP」、「スウェリング・ディップ・セキュリガンスSBU」等が挙げられる。膨潤液による膨潤処理は、例えば、30℃~90℃の膨潤液に絶縁層を1分間~20分間浸漬することにより行うことができる。絶縁層の樹脂の膨潤を適度なレベルに抑える観点から、40℃~80℃の膨潤液に絶縁層を5分間~15分間浸漬させることが好ましい。 Examples of the swelling liquid used in the roughening treatment include an alkaline solution, a surfactant solution, etc., and an alkaline solution is preferred. As the alkaline solution, a sodium hydroxide solution and a potassium hydroxide solution are more preferred. Examples of commercially available swelling liquids include "Swelling Dip Securigans P" and "Swelling Dip Securigans SBU" manufactured by Atotech Japan. The swelling treatment using a swelling liquid can be performed, for example, by immersing the insulating layer in a swelling liquid at 30°C to 90°C for 1 to 20 minutes. From the viewpoint of suppressing the swelling of the resin of the insulating layer to an appropriate level, it is preferable to immerse the insulating layer in a swelling liquid at 40°C to 80°C for 5 to 15 minutes.

粗化処理に用いる酸化剤としては、例えば、水酸化ナトリウムの水溶液に過マンガン酸カリウム又は過マンガン酸ナトリウムを溶解したアルカリ性過マンガン酸溶液が挙げられる。アルカリ性過マンガン酸溶液等の酸化剤による粗化処理は、60℃~100℃に加熱した酸化剤溶液に絶縁層を10分間~30分間浸漬させて行うことが好ましい。また、アルカリ性過マンガン酸溶液における過マンガン酸塩の濃度は、5質量%~10質量%が好ましい。市販されている酸化剤としては、例えば、アトテックジャパン社製の「コンセントレート・コンパクトCP」、「ドージングソリューション・セキュリガンスP」等のアルカリ性過マンガン酸溶液が挙げられる。 The oxidizing agent used in the roughening treatment may be, for example, an alkaline permanganate solution in which potassium permanganate or sodium permanganate is dissolved in an aqueous solution of sodium hydroxide. The roughening treatment using an oxidizing agent such as an alkaline permanganate solution is preferably carried out by immersing the insulating layer in an oxidizing agent solution heated to 60°C to 100°C for 10 to 30 minutes. The concentration of permanganate in the alkaline permanganate solution is preferably 5% by mass to 10% by mass. Commercially available oxidizing agents include, for example, alkaline permanganate solutions such as "Concentrate Compact CP" and "Dosing Solution Securigans P" manufactured by Atotech Japan.

粗化処理に用いる中和液としては、酸性の水溶液が好ましく、市販品としては、例えば、アトテックジャパン社製の「リダクションソリューション・セキュリガントP」が挙げられる。中和液による処理は、酸化剤による粗化処理がなされた処理面を30℃~80℃の中和液に5分間~30分間浸漬させることにより行うことができる。作業性等の点から、酸化剤による粗化処理がなされた対象物を、40℃~70℃の中和液に5分間~20分間浸漬する方法が好ましい。 The neutralizing solution used in the roughening treatment is preferably an acidic aqueous solution, and a commercially available product is, for example, "Reduction Solution Securigant P" manufactured by Atotech Japan. Treatment with a neutralizing solution can be carried out by immersing the surface that has been roughened with an oxidizing agent in a neutralizing solution at 30°C to 80°C for 5 to 30 minutes. From the standpoint of workability, etc., it is preferable to immerse the object that has been roughened with an oxidizing agent in a neutralizing solution at 40°C to 70°C for 5 to 20 minutes.

工程(V)は、導体層を形成する工程であり、絶縁層上に導体層を形成する。導体層に使用する導体材料は特に限定されない。好適な実施形態では、導体層は、金、白金、パラジウム、銀、銅、アルミニウム、コバルト、クロム、亜鉛、ニッケル、チタン、タングステン、鉄、スズ及びインジウムからなる群から選択される1種以上の金属を含む。導体層は、単金属層であっても合金層であってもよく、合金層としては、例えば、上記の群から選択される2種以上の金属の合金(例えば、ニッケル・クロム合金、銅・ニッケル合金及び銅・チタン合金)から形成された層が挙げられる。中でも、導体層形成の汎用性、コスト、パターニングの容易性等の観点から、クロム、ニッケル、チタン、アルミニウム、亜鉛、金、パラジウム、銀若しくは銅の単金属層、又はニッケル・クロム合金、銅・ニッケル合金、銅・チタン合金の合金層が好ましく、クロム、ニッケル、チタン、アルミニウム、亜鉛、金、パラジウム、銀若しくは銅の単金属層、又はニッケル・クロム合金の合金層がより好ましく、銅の単金属層が更に好ましい。 Step (V) is a step of forming a conductor layer, and the conductor layer is formed on the insulating layer. The conductor material used for the conductor layer is not particularly limited. In a preferred embodiment, the conductor layer contains one or more metals selected from the group consisting of gold, platinum, palladium, silver, copper, aluminum, cobalt, chromium, zinc, nickel, titanium, tungsten, iron, tin and indium. The conductor layer may be a single metal layer or an alloy layer, and examples of the alloy layer include layers formed from alloys of two or more metals selected from the above group (e.g., nickel-chromium alloy, copper-nickel alloy and copper-titanium alloy). Among them, from the viewpoints of versatility, cost, ease of patterning, etc. of the conductor layer formation, a single metal layer of chromium, nickel, titanium, aluminum, zinc, gold, palladium, silver or copper, or an alloy layer of a nickel-chromium alloy, a copper-nickel alloy, or a copper-titanium alloy is preferred, a single metal layer of chromium, nickel, titanium, aluminum, zinc, gold, palladium, silver or copper, or an alloy layer of a nickel-chromium alloy is more preferred, and a single metal layer of copper is even more preferred.

導体層は、単層構造であってもよく、異なる種類の金属若しくは合金からなる単金属層又は合金層が2層以上積層した複層構造であってもよい。導体層が複層構造である場合、絶縁層と接する層は、クロム、亜鉛若しくはチタンの単金属層、又はニッケル・クロム合金の合金層であることが好ましい。 The conductor layer may be a single-layer structure, or a multi-layer structure in which two or more single metal layers or alloy layers made of different types of metals or alloys are laminated. When the conductor layer has a multi-layer structure, the layer in contact with the insulating layer is preferably a single metal layer of chromium, zinc, or titanium, or an alloy layer of a nickel-chromium alloy.

導体層の厚さは、所望の回路基板のデザインによるが、一般に3μm~35μm、好ましくは5μm~30μmである。 The thickness of the conductor layer depends on the desired circuit board design, but is generally between 3 μm and 35 μm, preferably between 5 μm and 30 μm.

一実施形態において、導体層は、メッキにより形成してよい。例えば、セミアディティブ法、フルアディティブ法等の従来公知の技術により絶縁層の表面にメッキして、所望の配線パターンを有する導体層を形成することができる。製造の簡便性の観点から、セミアディティブ法が好ましい。以下、導体層をセミアディティブ法により形成する例を示す。 In one embodiment, the conductor layer may be formed by plating. For example, a conductor layer having a desired wiring pattern can be formed by plating the surface of the insulating layer using a conventionally known technique such as a semi-additive method or a full-additive method. From the viewpoint of ease of production, the semi-additive method is preferred. Below, an example of forming a conductor layer by a semi-additive method is shown.

まず、絶縁層の表面に、無電解メッキによりメッキシード層を形成する。次いで、形成されたメッキシード層上に、所望の配線パターンに対応してメッキシード層の一部を露出させるマスクパターンを形成する。露出したメッキシード層上に、電解メッキにより金属層を形成した後、マスクパターンを除去する。その後、不要なメッキシード層をエッチング等により除去して、所望の配線パターンを有する導体層を形成することができる。 First, a plating seed layer is formed on the surface of the insulating layer by electroless plating. Next, a mask pattern is formed on the formed plating seed layer to expose a portion of the plating seed layer corresponding to the desired wiring pattern. A metal layer is formed on the exposed plating seed layer by electrolytic plating, and the mask pattern is then removed. Thereafter, unnecessary plating seed layer is removed by etching or the like, and a conductor layer having the desired wiring pattern can be formed.

他の実施形態において、導体層は、金属箔を使用して形成してよい。金属箔を使用して導体層を形成する場合、工程(V)は、工程(I)と工程(II)の間に実施することが好適である。例えば、工程(I)の後、支持体を除去し、露出した樹脂組成物層の表面に金属箔を積層する。樹脂組成物層と金属箔との積層は、真空ラミネート法により実施してよい。積層の条件は、工程(I)について説明した条件と同様としてよい。次いで、工程(II)を実施して絶縁層を形成する。その後、絶縁層上の金属箔を利用して、サブトラクティブ法、モディファイドセミアディティブ法等の従来の公知の技術により、所望の配線パターンを有する導体層を形成することができる。 In another embodiment, the conductor layer may be formed using a metal foil. When the conductor layer is formed using a metal foil, it is preferable to perform step (V) between steps (I) and (II). For example, after step (I), the support is removed, and a metal foil is laminated on the exposed surface of the resin composition layer. The lamination of the resin composition layer and the metal foil may be performed by a vacuum lamination method. The lamination conditions may be the same as those described for step (I). Next, step (II) is performed to form an insulating layer. Thereafter, a conductor layer having a desired wiring pattern can be formed by a conventionally known technique such as a subtractive method or a modified semi-additive method using the metal foil on the insulating layer.

金属箔は、例えば、電解法、圧延法等の公知の方法により製造することができる。金属箔の市販品としては、例えば、JX日鉱日石金属社製のHLP箔、JXUT-III箔、三井金属鉱山社製の3EC-III箔、TP-III箔等が挙げられる。 Metal foils can be manufactured by known methods such as electrolysis and rolling. Commercially available metal foils include HLP foil and JXUT-III foil manufactured by JX Nippon Mining & Metals Corporation, and 3EC-III foil and TP-III foil manufactured by Mitsui Mining & Smelting Co., Ltd.

[半導体チップパッケージ]
本発明の一実施形態に係る半導体チップパッケージは、樹脂組成物の硬化物を含む。通常、半導体チップパッケージは、樹脂組成物の硬化物で形成された絶縁層を含む。絶縁層は、上述した樹脂組成物の硬化物を含み、好ましくは上述した樹脂組成物の硬化物のみを含む。この半導体チップパッケージとしては、例えば、下記のものが挙げられる。
[Semiconductor chip package]
A semiconductor chip package according to an embodiment of the present invention includes a cured resin composition. Typically, the semiconductor chip package includes an insulating layer formed of the cured resin composition. The insulating layer includes the cured resin composition described above, and preferably includes only the cured resin composition described above. Examples of this semiconductor chip package include the following.

第一の例に係る半導体チップパッケージは、上述した回路基板と、この回路基板に搭載された半導体チップとを含む。この半導体チップパッケージは、回路基板に半導体チップを接合することにより、製造することができる。 The semiconductor chip package according to the first example includes the circuit board described above and a semiconductor chip mounted on the circuit board. This semiconductor chip package can be manufactured by joining the semiconductor chip to the circuit board.

回路基板と半導体チップとの接合条件は、半導体チップの端子電極と回路基板の回路配線とが導体接続できる任意の条件を採用できる。例えば、半導体チップのフリップチップ実装において使用される条件を採用できる。また、例えば、半導体チップと回路基板との間に、絶縁性の接着剤を介して接合してもよい。 The bonding conditions between the circuit board and the semiconductor chip can be any conditions that allow a conductive connection between the terminal electrodes of the semiconductor chip and the circuit wiring of the circuit board. For example, the conditions used in flip-chip mounting of the semiconductor chip can be used. Also, for example, the semiconductor chip and the circuit board can be bonded via an insulating adhesive.

接合方法の例としては、半導体チップを回路基板に圧着する方法が挙げられる。圧着条件としては、圧着温度は通常120℃~240℃の範囲(好ましくは130℃~200℃の範囲、より好ましくは140℃~180℃の範囲)、圧着時間は通常1秒間~60秒間の範囲(好ましくは5秒間~30秒間の範囲)である。 An example of a bonding method is a method in which a semiconductor chip is pressure-bonded to a circuit board. Pressure-bonding conditions include a pressure temperature that is usually in the range of 120°C to 240°C (preferably in the range of 130°C to 200°C, more preferably in the range of 140°C to 180°C), and a pressure-bonding time that is usually in the range of 1 second to 60 seconds (preferably in the range of 5 seconds to 30 seconds).

また、接合方法の他の例としては、半導体チップを回路基板にリフローして接合する方法が挙げられる。リフロー条件は、120℃~300℃の範囲としてもよい。 Another example of a bonding method is to bond a semiconductor chip to a circuit board by reflow. Reflow conditions may be in the range of 120°C to 300°C.

半導体チップを回路基板に接合した後、半導体チップをモールドアンダーフィル材で充填してもよい。このモールドアンダーフィル材として、上述した樹脂組成物を用いてもよい。 After the semiconductor chip is bonded to the circuit board, the semiconductor chip may be filled with a molded underfill material. The above-mentioned resin composition may be used as the molded underfill material.

第二の例に係る半導体チップパッケージは、半導体チップと、樹脂組成物の硬化物で形成された絶縁層とを含む。第二の例に係る半導体チップパッケージとしては、例えば、Fan-out型WLP、Fan-out型PLP等が挙げられる。 The semiconductor chip package according to the second example includes a semiconductor chip and an insulating layer formed of a cured resin composition. Examples of the semiconductor chip package according to the second example include a fan-out type WLP and a fan-out type PLP.

図1は、本発明の一実施形態に係る半導体チップパッケージの一例としてのFan-out型WLPを模式的に示す断面図である。Fan-out型WLPとしての半導体チップパッケージ100は、例えば、図1に示すように、半導体チップ110;半導体チップ110の周囲を覆うように形成された封止層120;半導体チップ110の封止層120とは反対側の面に設けられた、絶縁層としての再配線形成層130;導体層としての再配線層140;ソルダーレジスト層150;及び、バンプ160を備える。 Figure 1 is a cross-sectional view showing a schematic diagram of a fan-out type WLP as an example of a semiconductor chip package according to an embodiment of the present invention. For example, as shown in Figure 1, a semiconductor chip package 100 as a fan-out type WLP includes a semiconductor chip 110; a sealing layer 120 formed to cover the periphery of the semiconductor chip 110; a rewiring formation layer 130 as an insulating layer provided on the surface of the semiconductor chip 110 opposite the sealing layer 120; a rewiring layer 140 as a conductor layer; a solder resist layer 150; and bumps 160.

このような半導体チップパッケージの製造方法は、
(i)基材に仮固定フィルムを積層する工程、
(ii)半導体チップを、仮固定フィルム上に仮固定する工程、
(iii)半導体チップ上に封止層を形成する工程、
(iv)基材及び仮固定フィルムを半導体チップから剥離する工程、
(v)半導体チップの基材及び仮固定フィルムを剥離した面に再配線形成層を形成する工程、
(vi)再配線形成層上に、導体層としての再配線層を形成する工程、並びに、
(vii)再配線層上にソルダーレジスト層を形成する工程、
を含む。また、前記の半導体チップパッケージの製造方法は、
(viii)複数の半導体チップパッケージを、個々の半導体チップパッケージにダイシングし、個片化する工程
を含んでいてもよい。
The method for manufacturing such a semiconductor chip package includes:
(i) laminating a temporary fixing film on a substrate;
(ii) a step of temporarily fixing a semiconductor chip on a temporary fixing film;
(iii) forming an encapsulation layer on the semiconductor chip;
(iv) peeling the substrate and the temporary fixing film from the semiconductor chip;
(v) forming a rewiring formation layer on the surface of the semiconductor chip from which the base material and the temporary fixing film have been peeled off;
(vi) forming a redistribution layer as a conductor layer on the redistribution layer; and
(vii) forming a solder resist layer on the rewiring layer;
The method for manufacturing the semiconductor chip package further comprises:
(viii) dicing the plurality of semiconductor chip packages into individual semiconductor chip packages.

(工程(i))
工程(i)は、基材に仮固定フィルムを積層する工程である。基材と仮固定フィルムとの積層条件は、回路基板の製造方法における内層基板と樹脂シートとの積層条件と同様でありうる。
(Step (i))
Step (i) is a step of laminating a temporary fixing film on a substrate. The lamination conditions for the substrate and the temporary fixing film can be the same as the lamination conditions for the inner layer substrate and the resin sheet in the method for producing a circuit board.

基材としては、例えば、シリコンウエハ;ガラスウエハ;ガラス基板;銅、チタン、ステンレス、冷間圧延鋼板(SPCC)等の金属基板;FR-4基板等の、ガラス繊維にエポキシ樹脂等をしみこませ熱硬化処理した基板;BT樹脂等のビスマレイミドトリアジン樹脂からなる基板;などが挙げられる。 Examples of substrates include silicon wafers; glass wafers; glass substrates; metal substrates such as copper, titanium, stainless steel, and cold-rolled steel plate (SPCC); substrates such as FR-4 substrates in which glass fibers are impregnated with epoxy resin or the like and then heat-cured; and substrates made of bismaleimide triazine resins such as BT resin.

仮固定フィルムは、半導体チップから剥離でき、且つ、半導体チップを仮固定することができる任意の材料を用いうる。市販品としては、日東電工社製「リヴァアルファ」等が挙げられる。 The temporary fixing film can be made of any material that can be peeled off from the semiconductor chip and can temporarily fix the semiconductor chip. Commercially available products include "Riva Alpha" manufactured by Nitto Denko Corporation.

(工程(ii))
工程(ii)は、半導体チップを、仮固定フィルム上に仮固定する工程である。半導体チップの仮固定は、例えば、フリップチップボンダー、ダイボンダー等の装置を用いて行うことができる。半導体チップの配置のレイアウト及び配置数は、仮固定フィルムの形状、大きさ、目的とする半導体チップパッケージの生産数等に応じて適切に設定できる。例えば、複数行で、かつ複数列のマトリックス状に半導体チップを整列させて、仮固定してもよい。
(Step (ii))
Step (ii) is a step of temporarily fixing the semiconductor chip on the temporary fixing film. The temporary fixing of the semiconductor chip can be performed using, for example, a device such as a flip chip bonder or a die bonder. The layout and number of the semiconductor chips can be appropriately set depending on the shape and size of the temporary fixing film, the number of semiconductor chip packages to be produced, etc. For example, the semiconductor chips may be temporarily fixed by arranging them in a matrix shape of multiple rows and multiple columns.

(工程(iii))
工程(iii)は、半導体チップ上に封止層を形成する工程である。封止層は、例えば、感光性樹脂組成物又は熱硬化性樹脂組成物によって形成しうる。この封止層を、上述した実施形態に係る樹脂組成物の硬化物によって形成してもよい。封止層は、通常、半導体チップ上に樹脂組成物層を形成する工程と、この樹脂組成物層を硬化させて封止層を形成する工程とを含む方法で形成できる。
(Step (iii))
Step (iii) is a step of forming an encapsulating layer on the semiconductor chip. The encapsulating layer can be formed, for example, by a photosensitive resin composition or a thermosetting resin composition. This encapsulating layer may be formed by a cured product of the resin composition according to the above-mentioned embodiment. The encapsulating layer can usually be formed by a method including a step of forming a resin composition layer on the semiconductor chip and a step of curing this resin composition layer to form the encapsulating layer.

(工程(iv))
工程(iv)は、基材及び仮固定フィルムを半導体チップから剥離する工程である。剥離方法は、仮固定フィルムの材質に応じた適切な方法を採用することが望ましい。剥離方法としては、例えば、仮固定フィルムを加熱、発泡又は膨張させて剥離する方法が挙げられる。また、剥離方法としては、例えば、基材を通して仮固定フィルムに紫外線を照射して、仮固定フィルムの粘着力を低下させて剥離する方法が挙げられる。
(Step (iv))
Step (iv) is a step of peeling off the substrate and the temporary fixing film from the semiconductor chip. It is desirable to adopt an appropriate peeling method according to the material of the temporary fixing film. For example, the peeling method may be a method of heating, foaming or expanding the temporary fixing film to peel it off. In addition, for example, the peeling method may be a method of irradiating the temporary fixing film with ultraviolet light through the substrate to reduce the adhesive strength of the temporary fixing film to peel it off.

前記のように基材及び仮固定フィルムを半導体チップから剥離すると、封止層の面が露出する。半導体チップパッケージの製造方法は、この露出した封止層の面を研磨することを含んでいてもよい。研磨により、封止層の表面の平滑性を向上させることができる。 When the substrate and the temporary fixing film are peeled off from the semiconductor chip as described above, the surface of the sealing layer is exposed. The manufacturing method of the semiconductor chip package may include polishing the exposed surface of the sealing layer. Polishing can improve the smoothness of the surface of the sealing layer.

(工程(v))
工程(v)は、半導体チップの基材及び仮固定フィルムを剥離した面に、絶縁層としての再配線形成層を形成する工程である。通常、この再配線形成層は、半導体チップ及び封止層上に形成される。再配線形成層は、上述した実施形態に係る樹脂組成物の硬化物によって形成しうる。再配線形成層は、通常、半導体チップ上に樹脂組成物層を形成する工程と、この樹脂組成物層を硬化させて再配線形成層を形成する工程とを含む方法で形成できる。半導体チップ上への樹脂組成物層の形成は、例えば、内層基板の代わりに半導体チップを用いること以外は、前記の回路基板の製造方法で説明した内層基板上への樹脂組成物層の形成方法と同じ方法で行いうる。
(Step (v))
Step (v) is a step of forming a rewiring formation layer as an insulating layer on the surface of the semiconductor chip from which the base material and the temporary fixing film are peeled off. Usually, this rewiring formation layer is formed on the semiconductor chip and the sealing layer. The rewiring formation layer can be formed by a cured product of the resin composition according to the above-mentioned embodiment. Usually, the rewiring formation layer can be formed by a method including a step of forming a resin composition layer on the semiconductor chip and a step of curing the resin composition layer to form the rewiring formation layer. The formation of the resin composition layer on the semiconductor chip can be performed by the same method as the method of forming the resin composition layer on the inner layer substrate described in the above-mentioned method for producing a circuit board, except that a semiconductor chip is used instead of the inner layer substrate.

半導体チップ上に樹脂組成物層を形成した後で、この樹脂組成物層を硬化させて、樹脂組成物の硬化物を含む絶縁層としての再配線形成層を得る。樹脂組成物層の硬化条件は、回路基板の製造方法における樹脂組成物層の硬化条件と同じ条件を採用してもよい。樹脂組成物層を熱硬化させる場合には、その熱硬化の前に、樹脂組成物層に対して、硬化温度よりも低い温度で加熱する予備加熱処理を施してもよい。この予備加熱処理の処理条件は、回路基板の製造方法における予備加熱処理と同じ条件を採用してもよい。通常、再配線形成層を形成した後、半導体チップと再配線層とを接続するために、再配線形成層にホールを形成する。 After forming a resin composition layer on the semiconductor chip, the resin composition layer is cured to obtain a rewiring formation layer as an insulating layer containing a cured product of the resin composition. The curing conditions for the resin composition layer may be the same as those for the resin composition layer in the manufacturing method of the circuit board. When the resin composition layer is thermally cured, the resin composition layer may be subjected to a preheating treatment in which the layer is heated at a temperature lower than the curing temperature before the thermal curing. The processing conditions for this preheating treatment may be the same as those for the preheating treatment in the manufacturing method of the circuit board. Usually, after forming the rewiring formation layer, holes are formed in the rewiring formation layer to connect the semiconductor chip and the rewiring layer.

(工程(vi))
工程(vi)は、再配線形成層上に、導体層としての再配線層を形成する工程である。再配線形成層上に再配線層を形成する方法は、回路基板の製造方法における絶縁層上への導体層の形成方法と同様でありうる。また、工程(v)及び工程(vi)を繰り返し行い、再配線層及び再配線形成層を交互に積み上げて(ビルドアップ)もよい。
(Step (vi))
Step (vi) is a step of forming a redistribution layer as a conductor layer on the redistribution formation layer. The method of forming the redistribution layer on the redistribution formation layer can be the same as the method of forming a conductor layer on an insulating layer in the manufacturing method of a circuit board. In addition, steps (v) and (vi) may be repeated to alternately stack the redistribution layer and the redistribution formation layer (build up).

(工程(vii))
工程(vii)は、再配線層上にソルダーレジスト層を形成する工程である。ソルダーレジスト層の材料は、絶縁性を有する任意の材料を用いることができる。中でも、半導体チップパッケージの製造のしやすさの観点から、感光性樹脂組成物及び熱硬化性樹脂組成物が好ましい。ソルダーレジスト層は、上述した実施形態に係る樹脂組成物の硬化物によって形成してもよい。
(Step (vii))
Step (vii) is a step of forming a solder resist layer on the rewiring layer. The material of the solder resist layer can be any material having insulating properties. Among them, from the viewpoint of ease of manufacturing the semiconductor chip package, a photosensitive resin composition and a thermosetting resin composition are preferred. The solder resist layer may be formed by a cured product of the resin composition according to the above-mentioned embodiment.

また、工程(vii)では、必要に応じて、バンプを形成するバンピング加工を行ってもよい。バンピング加工は、半田ボール、半田めっきなどの方法で行うことができる。また、バンピング加工におけるビアホールの形成は、工程(v)と同様に行ってもよい。 In step (vii), bumping processing may be performed to form bumps, if necessary. The bumping processing may be performed by a method such as solder balls or solder plating. In addition, the formation of via holes in the bumping processing may be performed in the same manner as in step (v).

(工程(viii))
半導体チップパッケージの製造方法は、工程(i)~(vii)以外に、工程(viii)を含んでいてもよい。工程(viii)は、複数の半導体チップパッケージを個々の半導体チップパッケージにダイシングし、個片化する工程である。半導体チップパッケージを個々の半導体チップパッケージにダイシングする方法は特に限定されない。
(Step (viii))
The method for manufacturing a semiconductor chip package may include a step (viii) in addition to the steps (i) to (vii). The step (viii) is a step of dicing a plurality of semiconductor chip packages into individual semiconductor chip packages to separate them. The method for dicing the semiconductor chip packages into individual semiconductor chip packages is not particularly limited.

[半導体装置]
半導体装置は、上述した回路基板又は半導体チップパッケージを備える。半導体装置としては、例えば、電気製品(例えば、コンピューター、携帯電話、スマートフォン、タブレット型デバイス、ウェラブルデバイス、デジタルカメラ、医療機器、及びテレビ等)及び乗物(例えば、自動二輪車、自動車、電車、船舶及び航空機等)等に供される各種半導体装置が挙げられる。
[Semiconductor device]
The semiconductor device includes the circuit board or semiconductor chip package described above. Examples of the semiconductor device include various semiconductor devices used in electrical products (e.g., computers, mobile phones, smartphones, tablet devices, wearable devices, digital cameras, medical devices, televisions, etc.) and vehicles (e.g., motorcycles, automobiles, trains, ships, aircraft, etc.).

以下、実施例を示して本発明について具体的に説明する。ただし、本発明は、以下の実施例に限定されるものではない。以下の説明において、量を表す「部」及び「%」は、別途明示のない限り、それぞれ「質量部」及び「質量%」を意味する。特に温度の指定が無い場合の温度条件及び圧力条件は、室温(25℃)及び大気圧(1atm)であった。 The present invention will be specifically described below with reference to examples. However, the present invention is not limited to the following examples. In the following description, "parts" and "%" representing amounts mean "parts by mass" and "% by mass", respectively, unless otherwise specified. Unless otherwise specified, the temperature and pressure conditions were room temperature (25°C) and atmospheric pressure (1 atm).

<合成例1:ポリカルボジイミド化合物1の合成>

Figure 0007501567000009
<Synthesis Example 1: Synthesis of polycarbodiimide compound 1>
Figure 0007501567000009

ジシクロヘキシルメタン-4,4’-ジイソシアネート(HMDI)100質量部、及びカルボジイミド化触媒として3-メチル-1-フェニル-2-ホスホレン-1-オキシド0.5質量部を、還流管及び撹拌機付き反応容器に入れた。窒素気流下、185℃で24時間撹拌してカルボジイミド化反応を行い、式(S1)に示すイソシアネート末端ポリカルボジイミドを得た。得られたイソシアネート末端ポリカルボジイミドについて、IRスペクトル測定を行った結果、波長2150cm-1前後におけるカルボジイミド基による吸収ピークが確認された。また、末端NCO量は8.19質量%であり、上記測定方法により求められたカルボジイミド基の平均重合度は3.5であった。 100 parts by mass of dicyclohexylmethane-4,4'-diisocyanate (HMDI) and 0.5 parts by mass of 3-methyl-1-phenyl-2-phospholene-1-oxide as a carbodiimidization catalyst were placed in a reaction vessel equipped with a reflux tube and a stirrer. The mixture was stirred for 24 hours at 185°C under a nitrogen stream to carry out a carbodiimidization reaction, thereby obtaining an isocyanate-terminated polycarbodiimide represented by formula (S1). The obtained isocyanate-terminated polycarbodiimide was subjected to IR spectrum measurement, and an absorption peak due to the carbodiimide group at a wavelength of around 2150 cm -1 was confirmed. The terminal NCO amount was 8.19% by mass, and the average degree of polymerization of the carbodiimide group determined by the above measurement method was 3.5.

Figure 0007501567000010
Figure 0007501567000010

上記の方法で得られたイソシアネート末端ポリカルボジイミドに、エチレングリコールモノアクリレート8.8質量部および両末端水酸基ポリブタジエン(日本曹達社製「G-1000」、数平均分子量1400、1,2-付加構造単位85%以上、trans-1,4-付加構造単位15%以下)4質量部を添加し、180℃まで加熱して2時間撹拌して反応させた。IRスペクトル測定にて、波長2200cm-1~2300cm-1のイソシアネート基の吸収ピークが消失したことを確認した。その後、反応容器から反応生成物を取り出し、室温まで冷却して、淡黄色透明な固形状のポリカルボジイミド化合物1(カルボジイミド構造を有するラジカル重合性基含有化合物)を得た。得られたポリカルボジイミド化合物1の主成分は上記式(S2)の化合物であった。式(S2)において、b’はカルボジイミド基の平均重合度を意味する。d’はポリブタジエンとポリカルボジイミドの組み合わせ単位の平均重合度を意味する。e’は上記数平均分子量に相当するブタジエン単位の平均重合度を意味する。e’単位として、1,2-付加構造単位のみを表記しているが、1,4-付加構造単位(cis、trans)も含まれていた。 To the isocyanate-terminated polycarbodiimide obtained by the above method, 8.8 parts by mass of ethylene glycol monoacrylate and 4 parts by mass of polybutadiene having hydroxyl groups at both ends ("G-1000" manufactured by Nippon Soda Co., Ltd., number average molecular weight 1400, 1,2-addition structural unit 85% or more, trans-1,4-addition structural unit 15% or less) were added, and the mixture was heated to 180° C. and stirred for 2 hours to react. It was confirmed by IR spectrum measurement that the absorption peak of the isocyanate group at wavelengths of 2200 cm −1 to 2300 cm −1 had disappeared. Thereafter, the reaction product was taken out of the reaction vessel and cooled to room temperature to obtain a pale yellow transparent solid polycarbodiimide compound 1 (a radically polymerizable group-containing compound having a carbodiimide structure). The main component of the obtained polycarbodiimide compound 1 was the compound of the above formula (S2). In formula (S2), b' means the average degree of polymerization of the carbodiimide group. d' means the average degree of polymerization of the combined units of polybutadiene and polycarbodiimide. e' means the average degree of polymerization of butadiene units corresponding to the above number average molecular weight. Although only 1,2-addition structural units are shown as e' units, 1,4-addition structural units (cis, trans) were also included.

<単位面積当たりのカーボン量の測定>
表面処理された無機充填材の3gを試料として用いた。試料と30gのMEK(メチルエチルケトン)とを遠心分離機の遠心管に入れ、撹拌して固形分を懸濁させて、500Wの超音波を5分間照射した。その後、遠心分離により固液分離し、上澄液を除去した。さらに、30gのMEKを足し、撹拌して固形分を懸濁させて、500Wの超音波を5分間照射した。その後、遠心分離により固液分離し、上澄液を除去した。固形分を150℃にて30分間乾燥させた。この乾燥試料0.3gを測定用坩堝に正確に量りとり、さらに測定用坩堝に助燃剤(タングステン3.0g,スズ0.3g)を入れた。測定用坩堝をカーボン分析計にセットし、カーボン量を測定した。カーボン分析計は、堀場製作所製EMIA-320Vを使用した。測定したカーボン量を無機充填材の比表面積で割った値を、単位面積当たりのカーボン量として得た。
<Measurement of carbon amount per unit area>
3 g of the surface-treated inorganic filler was used as a sample. The sample and 30 g of MEK (methyl ethyl ketone) were placed in a centrifuge tube, stirred to suspend the solids, and irradiated with 500 W ultrasonic waves for 5 minutes. Then, solid-liquid separation was performed by centrifugation, and the supernatant was removed. Furthermore, 30 g of MEK was added, stirred to suspend the solids, and irradiated with 500 W ultrasonic waves for 5 minutes. Then, solid-liquid separation was performed by centrifugation, and the supernatant was removed. The solids were dried at 150°C for 30 minutes. 0.3 g of this dried sample was accurately weighed into a measurement crucible, and a combustion improver (3.0 g of tungsten, 0.3 g of tin) was further placed in the measurement crucible. The measurement crucible was set in a carbon analyzer, and the carbon amount was measured. The carbon analyzer used was an EMIA-320V manufactured by Horiba, Ltd. The measured amount of carbon was divided by the specific surface area of the inorganic filler to obtain the amount of carbon per unit area.

<製造例1:表面処理された球形シリカ1の製造>
球形シリカ(アドマテックス社製「SO-C2」、平均粒径0.5μm、比表面積5.8m/g))100質量部をヘンシェル型混粉機に投入し、シランカップリング剤(信越化学工業社製「KBM-573」)0.3質量部を噴霧しながら球状シリカを10分間攪拌した。その後、カルボジイミド系硬化剤(日清紡ケミカル社製「V-03」、活性基当量約216g/eq.、不揮発成分率50%のトルエン溶液)0.3質量部を噴霧しながら球状シリカを10分間攪拌し、処理済シリカ1(単位面積あたりのカーボン量0.20mg/m)を作製した。
<Production Example 1: Production of Surface-Treated Spherical Silica 1>
100 parts by mass of spherical silica ("SO-C2" manufactured by Admatechs Co., Ltd., average particle size 0.5 μm, specific surface area 5.8 m 2 /g) was put into a Henschel type powder mixer, and the spherical silica was stirred for 10 minutes while spraying 0.3 parts by mass of a silane coupling agent ("KBM-573" manufactured by Shin-Etsu Chemical Co., Ltd.). Thereafter, the spherical silica was stirred for 10 minutes while spraying 0.3 parts by mass of a carbodiimide curing agent ("V-03" manufactured by Nisshinbo Chemical Inc., active group equivalent approx. 216 g/eq., toluene solution with non-volatile content of 50%) to produce treated silica 1 (carbon amount per unit area 0.20 mg/m 2 ).

<製造例2:表面処理された球形シリカ2の製造>
球形シリカ(アドマテックス社製「SO-C2」、平均粒径0.5μm、比表面積5.8m/g))100質量部をヘンシェル型混粉機に投入し、シランカップリング剤(信越化学工業社製「KBM-573」)0.3質量部を噴霧しながら球状シリカを10分間攪拌した。その後、合成例1で得られた「ポリカルボジイミド化合物1」0.3質量部を噴霧しながら球状シリカを10分間攪拌し、処理済シリカ2(単位面積あたりのカーボン量0.18mg/m)を作製した。
<Production Example 2: Production of Surface-Treated Spherical Silica 2>
100 parts by mass of spherical silica ("SO-C2" manufactured by Admatechs Co., Ltd., average particle size 0.5 μm, specific surface area 5.8 m2 /g) was charged into a Henschel type powder mixer, and the spherical silica was stirred for 10 minutes while spraying 0.3 parts by mass of a silane coupling agent ("KBM-573" manufactured by Shin-Etsu Chemical Co., Ltd.). Thereafter, the spherical silica was stirred for 10 minutes while spraying 0.3 parts by mass of "polycarbodiimide compound 1" obtained in Synthesis Example 1, to produce treated silica 2 (carbon amount per unit area 0.18 mg/ m2 ).

<製造例3:表面処理された中空アルミノシリケート3の製造>
中空アルミノシリケート粒子(太平洋セメント社製「MG-005」、中空無機充填材、平均粒径1.6μm、空孔率80体積%)100質量部をヘンシェル型混粉機に投入し、シランカップリング剤(信越化学工業社製「KBM-573」)0.5質量部を噴霧しながら中空アルミノシリケート粒子を10分間攪拌した。その後、カルボジイミド系硬化剤(日清紡ケミカル社製「V-03」、活性基当量約216g/eq.、不揮発成分率50%のトルエン溶液)0.5質量部を噴霧しながら中空アルミノシリケート粒子を10分間攪拌し、処理済アルミノシリケート3(単位面積あたりのカーボン量0.22mg/m)を作製した。
<Production Example 3: Production of Surface-Treated Hollow Aluminosilicate 3>
100 parts by mass of hollow aluminosilicate particles (manufactured by Taiheiyo Cement Corporation, "MG-005", hollow inorganic filler, average particle size 1.6 μm, porosity 80% by volume) were charged into a Henschel type powder mixer, and the hollow aluminosilicate particles were stirred for 10 minutes while spraying 0.5 parts by mass of a silane coupling agent (manufactured by Shin-Etsu Chemical Co., Ltd., "KBM-573"). Thereafter, the hollow aluminosilicate particles were stirred for 10 minutes while spraying 0.5 parts by mass of a carbodiimide-based curing agent (manufactured by Nisshinbo Chemical Inc., "V-03", active group equivalent approx. 216 g/eq., toluene solution with non-volatile component rate of 50%) to produce treated aluminosilicate 3 (amount of carbon per unit area 0.22 mg/m 2 ).

<製造例4:表面処理された中空アルミノシリケート4の製造>
中空アルミノシリケート粒子(太平洋セメント社製「MG-005」、中空無機充填材、平均粒径1.6μm、空孔率80体積%)100質量部をヘンシェル型混粉機に投入し、シランカップリング剤(信越化学工業社製「KBM-573」)0.5質量部を噴霧しながら中空アルミノシリケート粒子を10分間攪拌した。その後、合成例1で得られた「ポリカルボジイミド化合物1」0.5質量部を噴霧しながら中空アルミノシリケート粒子を10分間攪拌し、処理済アルミノシリケート4(単位面積あたりのカーボン量0.21mg/m)を作製した。
<Production Example 4: Production of Surface-Treated Hollow Aluminosilicate 4>
100 parts by mass of hollow aluminosilicate particles ("MG-005" manufactured by Taiheiyo Cement Corporation, hollow inorganic filler, average particle size 1.6 μm, porosity 80% by volume) were charged into a Henschel type powder mixer, and the hollow aluminosilicate particles were stirred for 10 minutes while spraying 0.5 parts by mass of a silane coupling agent ("KBM-573" manufactured by Shin-Etsu Chemical Co., Ltd.). Thereafter, the hollow aluminosilicate particles were stirred for 10 minutes while spraying 0.5 parts by mass of "polycarbodiimide compound 1" obtained in Synthesis Example 1, to produce treated aluminosilicate 4 (carbon amount per unit area 0.21 mg/m 2 ).

<製造例5:表面処理された球形シリカ5の製造>
製造例1において、球形シリカ100質量部に対するシランカップリング剤(信越化学工業社製「KBM-573」)の量を、0.3質量部から0.4質量部に変更した。また、球形シリカ100質量部に対するカルボジイミド系硬化剤(日清紡ケミカル社製「V-03」、活性基当量約216g/eq.、不揮発成分率50%のトルエン溶液)の量を、0.3質量から0.2質量部に変更した。以上の事項以外は、製造例1と同様にして、処理済シリカ5(単位面積あたりのカーボン量0.21mg/m)を作製した。
<Production Example 5: Production of Surface-Treated Spherical Silica 5>
In Production Example 1, the amount of silane coupling agent ("KBM-573" manufactured by Shin-Etsu Chemical Co., Ltd.) relative to 100 parts by mass of spherical silica was changed from 0.3 parts by mass to 0.4 parts by mass. Also, the amount of carbodiimide-based curing agent ("V-03" manufactured by Nisshinbo Chemical Inc., active group equivalent of about 216 g/eq., toluene solution with non-volatile content of 50%) relative to 100 parts by mass of spherical silica was changed from 0.3 parts by mass to 0.2 parts by mass. Except for the above, treated silica 5 (carbon amount per unit area: 0.21 mg/m 2 ) was prepared in the same manner as in Production Example 1.

<製造例6:表面処理された球形シリカ6の製造>
製造例1において、球形シリカ100質量部に対するシランカップリング剤(信越化学工業社製「KBM-573」)の量を、0.3質量部から0.1質量部に変更した。また、球形シリカ100質量部に対するカルボジイミド系硬化剤(日清紡ケミカル社製「V-03」、活性基当量約216g/eq.、不揮発成分率50%のトルエン溶液)の量を、0.3質量部から0.5質量部に変更した。以上の事項以外は、製造例1と同様にして、処理済シリカ6(単位面積あたりのカーボン量0.17mg/m)を作製した。
<Production Example 6: Production of Surface-Treated Spherical Silica 6>
In Production Example 1, the amount of silane coupling agent ("KBM-573" manufactured by Shin-Etsu Chemical Co., Ltd.) relative to 100 parts by mass of spherical silica was changed from 0.3 parts by mass to 0.1 parts by mass. Also, the amount of carbodiimide-based curing agent ("V-03" manufactured by Nisshinbo Chemical Inc., active group equivalent of about 216 g/eq., toluene solution with non-volatile content of 50%) relative to 100 parts by mass of spherical silica was changed from 0.3 parts by mass to 0.5 parts by mass. Except for the above, treated silica 6 (carbon amount per unit area: 0.17 mg/m 2 ) was prepared in the same manner as in Production Example 1.

<製造例7:表面処理された球形シリカ7の製造>
製造例1において、球形シリカに対するシランカップリング剤(信越化学工業社製「KBM-573」)処理とカルボジイミド系硬化剤(日清紡ケミカル社製「V-03」、活性基当量約216g/eq.、不揮発成分率50%のトルエン溶液)処理の順番を入れ替えた。すなわち、球形シリカにカルボジイミド系硬化剤を噴霧しながら攪拌した後で、更にシランカップリング剤を噴霧しながら攪拌した。以上の事項以外は、製造例1と同様にして、処理済シリカ7(単位面積あたりのカーボン量0.19mg/m)を作製した。
<Production Example 7: Production of Surface-Treated Spherical Silica 7>
In Production Example 1, the order of treatment of the spherical silica with a silane coupling agent ("KBM-573" manufactured by Shin-Etsu Chemical Co., Ltd.) and a carbodiimide curing agent ("V-03" manufactured by Nisshinbo Chemical Co., Ltd., active group equivalent of about 216 g/eq., toluene solution with non-volatile content of 50%) was reversed. That is, the spherical silica was stirred while being sprayed with a carbodiimide curing agent, and then stirred while being sprayed with a silane coupling agent. Treated silica 7 (carbon amount per unit area 0.19 mg/m 2 ) was prepared in the same manner as in Production Example 1 except for the above.

<実施例1>
ビフェニル型エポキシ樹脂(日本化薬社製「NC3000L」、エポキシ当量約269g/eq.)5部と、ナフタレン型エポキシ樹脂(DIC社製「HP-4032-SS」、1,6-ビス(グリシジルオキシ)ナフタレン、エポキシ当量約145g/eq.)5部を、ソルベントナフサ20部に撹拌しながら加熱溶解させて、溶液を得た。この溶液を室温にまで冷却し、エポキシ樹脂の溶解組成物を調製した。
Example 1
Five parts of a biphenyl type epoxy resin ("NC3000L" manufactured by Nippon Kayaku Co., Ltd., epoxy equivalent of about 269 g/eq.) and five parts of a naphthalene type epoxy resin ("HP-4032-SS" manufactured by DIC Corporation, 1,6-bis(glycidyloxy)naphthalene, epoxy equivalent of about 145 g/eq.) were dissolved in 20 parts of solvent naphtha with heating while stirring to obtain a solution. This solution was cooled to room temperature to prepare a dissolved composition of the epoxy resin.

このエポキシ樹脂の溶解組成物に、製造例1で得られた「処理済シリカ1」80部、活性エステル系硬化剤(DIC社製「HPC-8150-62T」、活性エステル基当量約220g/eq.、不揮発成分率62質量%のトルエン溶液)30部、トリアジン骨格含有フェノール系硬化剤(DIC社製「LA-3018-50P」、活性基当量約151g/eq.、不揮発成分率50%の2-メトキシプロパノール溶液)2部、カルボジイミド系硬化剤(日清紡ケミカル社製「V-03」、活性基当量約216g/eq.、不揮発成分率50%のトルエン溶液)5部、イミダゾール系硬化促進剤(四国化成工業社製「1B2PZ」、1-ベンジル-2-フェニルイミダゾール)0.1部、フェノキシ樹脂(三菱ケミカル社製「YX7553BH30」、不揮発分30質量%のMEKとシクロヘキサノンの1:1溶液)5部を混合し、高速回転ミキサーで均一に分散して、樹脂組成物を調製した。 This epoxy resin solution composition was mixed with 80 parts of "treated silica 1" obtained in Production Example 1, 30 parts of an active ester-based hardener (DIC Corporation's "HPC-8150-62T", active ester group equivalent of about 220 g/eq., toluene solution with non-volatile content of 62% by mass), 2 parts of a triazine skeleton-containing phenol-based hardener (DIC Corporation's "LA-3018-50P", active group equivalent of about 151 g/eq., 2-methoxypropanol solution with non-volatile content of 50%), and 10 parts of a carbodiimide-based hardener. A resin composition was prepared by mixing 5 parts of a curing agent (Nisshinbo Chemical's "V-03", active group equivalent of approximately 216 g/eq., toluene solution with a non-volatile content of 50%), 0.1 parts of an imidazole-based curing accelerator (Shikoku Chemical Industry's "1B2PZ", 1-benzyl-2-phenylimidazole), and 5 parts of a phenoxy resin (Mitsubishi Chemical's "YX7553BH30", a 1:1 solution of MEK and cyclohexanone with a non-volatile content of 30% by mass) and dispersing the mixture evenly using a high-speed rotating mixer.

<実施例2>
実施例1において、「処理済シリカ1」の量を80部を60部に変更した。また、樹脂組成物に、製造例3で得られた「処理済アルミノシリケート3」を5部追加した。さらに、フェノキシ樹脂(三菱ケミカル社製「YX7553BH30」、不揮発分30質量%のMEKとシクロヘキサノンの1:1溶液)の量を5部から2部に変更した。以上の事項以外は、実施例1と同様にして、樹脂組成物を調製した。
Example 2
In Example 1, the amount of "treated silica 1" was changed from 80 parts to 60 parts. In addition, 5 parts of "treated aluminosilicate 3" obtained in Production Example 3 was added to the resin composition. Furthermore, the amount of phenoxy resin ("YX7553BH30" manufactured by Mitsubishi Chemical Corporation, a 1:1 solution of MEK and cyclohexanone with a non-volatile content of 30% by mass) was changed from 5 parts to 2 parts. A resin composition was prepared in the same manner as in Example 1, except for the above items.

<実施例3>
実施例1において、ナフタレン型エポキシ樹脂(DIC社製「HP-4032-SS」、1,6-ビス(グリシジルオキシ)ナフタレン、エポキシ当量約145g/eq.)5部をビスフェノールA型エポキシ樹脂(三菱ケミカル社製「828EL」、エポキシ当量約180g/eq.)5部に変更した。また、「処理済シリカ1」80部を、製造例2で得られた「処理済シリカ2」60部及び製造例4で得られた「処理済アルミノシリケート4」5部に変更した。さらに、フェノキシ樹脂(三菱ケミカル社製「YX7553BH30」、不揮発分30質量%のMEKとシクロヘキサノンの1:1溶液)の量を5部から2部に変更した。また、樹脂組成物に、ビフェニルアラルキルノボラック型マレイミド(日本化薬社製「MIR-3000-70MT」、不揮発成分率70%のMEK/トルエン混合溶液)を3部追加した。以上の事項以外は、実施例1と同様にして、樹脂組成物を調製した。
Example 3
In Example 1, 5 parts of naphthalene type epoxy resin (DIC Corporation's "HP-4032-SS", 1,6-bis(glycidyloxy)naphthalene, epoxy equivalent of about 145 g/eq.) was changed to 5 parts of bisphenol A type epoxy resin (Mitsubishi Chemical Corporation's "828EL", epoxy equivalent of about 180 g/eq.). In addition, 80 parts of "treated silica 1" was changed to 60 parts of "treated silica 2" obtained in Production Example 2 and 5 parts of "treated aluminosilicate 4" obtained in Production Example 4. In addition, the amount of phenoxy resin (Mitsubishi Chemical Corporation's "YX7553BH30", a 1:1 solution of MEK and cyclohexanone with a non-volatile content of 30% by mass) was changed from 5 parts to 2 parts. In addition, 3 parts of biphenylaralkylnovolac maleimide ("MIR-3000-70MT" manufactured by Nippon Kayaku Co., Ltd., a mixed solution of MEK/toluene with a non-volatile content of 70%) was added to the resin composition. Except for the above, the resin composition was prepared in the same manner as in Example 1.

<実施例4>
実施例3において、「処理済シリカ2」の量を60部を80部に変更し、「処理済アルミノシリケート4」16部を用いなかった。また、ビフェニルアラルキルノボラック型マレイミド(日本化薬社製「MIR-3000-70MT」、不揮発成分率70%のMEK/トルエン混合溶液)3部をビニルベンジル変性ポリフェニレンエーテル(三菱瓦斯化学社製「OPE-2St 2200」、不揮発成分率65%のトルエン溶液)3部に変更した。さらに、カルボジイミド系硬化剤(日清紡ケミカル社製「V-03」、活性基当量約216g/eq.、不揮発成分率50%のトルエン溶液)5部を用いなかった。以上の事項以外は、実施例3と同様にして、樹脂組成物を調製した。
Example 4
In Example 3, the amount of "treated silica 2" was changed from 60 parts to 80 parts, and 16 parts of "treated aluminosilicate 4" was not used. In addition, 3 parts of biphenylaralkylnovolac-type maleimide ("MIR-3000-70MT" manufactured by Nippon Kayaku Co., Ltd., MEK/toluene mixed solution with non-volatile content of 70%) was changed to 3 parts of vinylbenzyl-modified polyphenylene ether ("OPE-2St 2200" manufactured by Mitsubishi Gas Chemical Co., Ltd., toluene solution with non-volatile content of 65%). Furthermore, 5 parts of carbodiimide-based curing agent ("V-03" manufactured by Nisshinbo Chemical Co., Ltd., active group equivalent of about 216 g/eq., toluene solution with non-volatile content of 50%) was not used. A resin composition was prepared in the same manner as in Example 3, except for the above items.

<実施例5>
ナフタレン型エポキシ樹脂(DIC社製「HP-4032-SS」、1,6-ビス(グリシジルオキシ)ナフタレン、エポキシ当量約145g/eq.)10部、ビスフェノールA型エポキシ樹脂(三菱ケミカル社製「828EL」、エポキシ当量約180g/eq.)10部、ナフチレンエーテル型エポキシ樹脂(DIC社製「HP-6000」、エポキシ当量250g/eq.)15部を、ソルベントナフサ50部に撹拌しながら加熱溶解させて、溶液を得た。この溶液を室温にまで冷却し、エポキシ樹脂の溶解組成物を調製した。
Example 5
10 parts of a naphthalene type epoxy resin (DIC Corporation "HP-4032-SS", 1,6-bis(glycidyloxy)naphthalene, epoxy equivalent of about 145 g/eq.), 10 parts of a bisphenol A type epoxy resin (Mitsubishi Chemical Corporation "828EL", epoxy equivalent of about 180 g/eq.), and 15 parts of a naphthylene ether type epoxy resin (DIC Corporation "HP-6000", epoxy equivalent of 250 g/eq.) were heated and dissolved with stirring in 50 parts of solvent naphtha to obtain a solution. This solution was cooled to room temperature to prepare a dissolved composition of the epoxy resin.

このエポキシ樹脂の溶解組成物に、製造例1で得られた「処理済シリカ1」120部、活性エステル系硬化剤(DIC社製「HPC-8150-62T」、活性エステル基当量約220g/eq.、不揮発成分率62質量%のトルエン溶液)15部、ビスフェノールAジシアネートのプレポリマー(ロンザジャパン社製「Primaset BA230S75」、シアネート基当量約232g/eq.、不揮発成分75質量%のMEK溶液)20部、硬化促進剤(4-ジメチルアミノピリジン(DMAP))0.2部、コバルト(III)アセチルアセトナート(東京化成社製、Co(III)AcAc)0.01部、フェノキシ樹脂(三菱ケミカル社製「YX7553BH30」、不揮発分30質量%のMEKとシクロヘキサノンの1:1溶液)8部を混合し、高速回転ミキサーで均一に分散して、樹脂組成物を調製した。 This epoxy resin solution composition was mixed with 120 parts of "treated silica 1" obtained in Production Example 1, 15 parts of an active ester curing agent (DIC Corporation's "HPC-8150-62T", active ester group equivalent of about 220 g/eq., toluene solution with non-volatile content of 62% by mass), and 15 parts of a bisphenol A dicyanate prepolymer (Lonza Japan's "Primaset 20 parts of "BA230S75", cyanate group equivalent of about 232 g/eq., MEK solution with 75% non-volatile content by mass), 0.2 parts of curing accelerator (4-dimethylaminopyridine (DMAP)), 0.01 parts of cobalt (III) acetylacetonate (Tokyo Chemical Industry Co., Ltd., Co(III)AcAc), and 8 parts of phenoxy resin (Mitsubishi Chemical Corporation's "YX7553BH30", 1:1 solution of MEK and cyclohexanone with 30% non-volatile content by mass) were mixed and uniformly dispersed in a high-speed rotating mixer to prepare a resin composition.

<実施例6>
実施例1において、「処理済シリカ1」80部を製造例5で得られた「処理済シリカ5」80部に変更したこと以外は実施例1と同様にして、樹脂組成物を調製した。
Example 6
A resin composition was prepared in the same manner as in Example 1, except that 80 parts of "treated silica 1" in Example 1 was changed to 80 parts of "treated silica 5" obtained in Production Example 5.

<実施例7>
実施例1において、「処理済シリカ1」80部を製造例6で得られた「処理済シリカ6」80部に変更したこと以外は実施例1と同様にして、樹脂組成物を調製した。
Example 7
A resin composition was prepared in the same manner as in Example 1, except that 80 parts of "treated silica 1" in Example 1 was changed to 80 parts of "treated silica 6" obtained in Production Example 6.

<実施例8>
実施例1において、「処理済シリカ1」80部を製造例7で得られた「処理済シリカ7」80部に変更したこと以外は実施例1と同様にして、樹脂組成物を調製した。
Example 8
A resin composition was prepared in the same manner as in Example 1, except that 80 parts of "treated silica 1" in Example 1 was changed to 80 parts of "treated silica 7" obtained in Production Example 7.

<比較例1>
実施例1において、「処理済シリカ1」80部を未処理の球形シリカ(アドマテックス社製「SO-C2」、平均粒径0.5μm、比表面積5.8m/g)80部に変更したこと以外は実施例1と同様にして、樹脂組成物を調製した。
Comparative Example 1
A resin composition was prepared in the same manner as in Example 1, except that 80 parts of "treated silica 1" was replaced with 80 parts of untreated spherical silica ("SO-C2" manufactured by Admatechs Co., Ltd., average particle size 0.5 μm, specific surface area 5.8 m 2 /g).

<樹脂シートの製造>
支持体として、離型層を備えたポリエチレンテレフタレートフィルム(リンテック社製「AL5」、厚さ38μm)を用意した。この支持体の離型層上に、上述した実施例及び比較例で得られた樹脂組成物を、乾燥後の樹脂組成物層の厚さが40μmとなるように均一に塗布した。その後、樹脂組成物を80℃~100℃(平均90℃)で4分間乾燥させて、支持体及び樹脂組成物層を含む樹脂シートを得た。
<Production of Resin Sheet>
A polyethylene terephthalate film with a release layer ("AL5" manufactured by Lintec Corporation, thickness 38 μm) was prepared as a support. The resin compositions obtained in the above-mentioned Examples and Comparative Examples were uniformly applied onto the release layer of this support so that the thickness of the resin composition layer after drying was 40 μm. Thereafter, the resin composition was dried at 80° C. to 100° C. (average 90° C.) for 4 minutes to obtain a resin sheet including a support and a resin composition layer.

<試験例1:最低溶融粘度の測定>
前記の樹脂シートの樹脂組成物層を25枚重ね合わせて、1mm厚の樹脂組成物層を得た。この樹脂組成物層を直径20mmに打ち抜き、測定試料を調製した。調製した測定試料について、動的粘弾性測定装置(UBM社製「Rheogel-G3000」)を使用して、開始温度60℃から200℃まで、昇温速度5℃/min、測定温度間隔2.5℃、振動周波数1Hzの測定条件にて動的粘弾性率を測定することで、最低溶融粘度(poise)を求めた。
<Test Example 1: Measurement of minimum melt viscosity>
25 resin composition layers of the resin sheet were stacked to obtain a resin composition layer having a thickness of 1 mm. This resin composition layer was punched out to a diameter of 20 mm to prepare a measurement sample. The minimum melt viscosity (poise) was obtained by measuring the dynamic viscoelastic modulus of the prepared measurement sample using a dynamic viscoelasticity measuring device (UBM's "Rheogel-G3000") under the measurement conditions of a starting temperature of 60°C to 200°C, a heating rate of 5°C/min, a measurement temperature interval of 2.5°C, and a vibration frequency of 1 Hz.

<試験例2:算術平均粗さ(Ra)の測定>
(1)内装基板の下地処理:
内層基板として、表面に銅箔を有するガラス布基材エポキシ樹脂両面銅張積層板(銅箔の厚さ18μm、基板の厚さ0.8mm、パナソニック社製「R1515A」)を用意した。この内層基板の表面の銅箔を、マイクロエッチング剤(メック社製「CZ8101」)を用いて、銅エッチング量1μmにてエッチングして、粗化処理を行った。その後、190℃にて30分乾燥を行った。
<Test Example 2: Measurement of arithmetic mean roughness (Ra)>
(1) Surface preparation for interior substrates:
A glass cloth-based epoxy resin double-sided copper-clad laminate (copper foil thickness 18 μm, substrate thickness 0.8 mm, Panasonic "R1515A") was prepared as an inner layer substrate. The copper foil on the surface of this inner layer substrate was etched with a microetching agent (Mech "CZ8101") to a copper etching amount of 1 μm, and roughening treatment was performed. Then, it was dried at 190° C. for 30 minutes.

(2)樹脂シートの積層・硬化:
前記の樹脂シートを、バッチ式真空加圧ラミネーター(ニッコー・マテリアルズ社製2ステージビルドアップラミネーター「CVP700」)を用いて、樹脂組成物層が前記の内層基板と接合するように、内層基板の両面にラミネートした。このラミネートは、30秒間減圧して気圧を13hPa以下とした後、温度100℃、圧力0.74MPaにて30秒間圧着することにより、実施した。
(2) Lamination and curing of resin sheets:
The resin sheet was laminated on both sides of the inner layer substrate using a batch type vacuum pressure laminator (two-stage build-up laminator "CVP700" manufactured by Nikko Materials Co., Ltd.) so that the resin composition layer was bonded to the inner layer substrate. This lamination was performed by reducing the pressure for 30 seconds to 13 hPa or less, and then pressing at a temperature of 100° C. and a pressure of 0.74 MPa for 30 seconds.

次いで、ラミネートされた樹脂シートを、大気圧下、100℃、圧力0.5MPaにて60秒間、熱プレスして平滑化した。さらにこれを、130℃のオーブンに投入して30分間加熱し、次いで170℃のオーブンに移し替えて30分間加熱した。前記の加熱によって樹脂組成物層が硬化して、絶縁層が形成された。 The laminated resin sheet was then heat pressed at atmospheric pressure at 100°C and a pressure of 0.5 MPa for 60 seconds to smooth it out. It was then placed in an oven at 130°C and heated for 30 minutes, and then transferred to an oven at 170°C and heated for 30 minutes. The resin composition layer was cured by the above heating, and an insulating layer was formed.

(3)ビアホールの形成:
ビアメカニクス社製のCOレーザー加工機(LK-2K212/2C)を使用して、周波数2000Hzでパルス幅3μ秒、出力0.95W、ショット数3の条件で絶縁層を加工して、ビアホールを形成した。絶縁層表面におけるビアホールの開口径(トップ径、直径)が50μm、絶縁層底面におけるビアホールの直径は40μmであった。その後、支持体としてのポリエチレンテレフタレートフィルムを剥離して、絶縁層/内層基板/絶縁層の層構成を有する試料基板を得た。
(3) Formation of via holes:
Using a CO2 laser processing machine (LK-2K212/2C) manufactured by Via Mechanics, the insulating layer was processed under the conditions of a frequency of 2000 Hz, a pulse width of 3 μs, an output of 0.95 W, and a shot number of 3 to form a via hole. The opening diameter (top diameter, diameter) of the via hole on the insulating layer surface was 50 μm, and the diameter of the via hole on the insulating layer bottom surface was 40 μm. Thereafter, the polyethylene terephthalate film as the support was peeled off to obtain a sample substrate having a layer structure of insulating layer/inner layer substrate/insulating layer.

(4)粗化処理
試料基板を、膨潤液であるアトテックジャパン社製のスエリングディップ・セキュリガントP(ジエチレングリコールモノブチルエーテル及び水酸化ナトリウムを含有する水溶液)に60℃で10分間浸漬した。次に、試料基板を、粗化液であるアトテックジャパン社製のコンセントレート・コンパクトP(KMnO:60g/L、NaOH:40g/Lの水溶液)に80℃で20分間浸漬した。最後に、試料基板を、中和液であるアトテックジャパン社製のリダクションソリューション・セキュリガントP(硫酸水溶液)に40℃で5分間浸漬して、粗化処理後の試料基板として評価基板Aを得た。
(4) Roughening Treatment The sample substrate was immersed in a swelling liquid, Swelling Dip Securigant P (aqueous solution containing diethylene glycol monobutyl ether and sodium hydroxide) manufactured by Atotech Japan, for 10 minutes at 60° C. Next, the sample substrate was immersed in a roughening liquid, Concentrate Compact P (aqueous solution of KMnO 4 : 60 g/L, NaOH: 40 g/L) manufactured by Atotech Japan, for 20 minutes at 80° C. Finally, the sample substrate was immersed in a neutralizing liquid, Reduction Solution Securigant P (aqueous sulfuric acid solution) manufactured by Atotech Japan, for 5 minutes at 40° C. to obtain an evaluation substrate A as a sample substrate after roughening treatment.

(5)算術平均粗さ(Ra)の測定:
得られた評価基板Aの絶縁層の表面の算術平均粗さRaを、非接触型表面粗さ計(ビーコインスツルメンツ社製WYKO NT3300)を用いて、VSIモード、50倍レンズにより測定範囲を121μm×92μmの測定条件で測定した。それぞれの評価基板Aについて、無作為に選んだ10点の算術平均粗さRaを測定し、その平均値を求めた。
(5) Measurement of arithmetic mean roughness (Ra):
The arithmetic mean roughness Ra of the surface of the insulating layer of the obtained evaluation substrate A was measured using a non-contact surface roughness meter (WYKO NT3300 manufactured by Veeco Instruments, Inc.) under the measurement conditions of VSI mode, a 50x lens, and a measurement range of 121 μm × 92 μm. For each evaluation substrate A, the arithmetic mean roughness Ra was measured at 10 randomly selected points, and the average value was calculated.

<試験例3:比誘電率(Dk)及び誘電正接(Df)の測定>
前記の樹脂シートを200℃にて90分間加熱して樹脂組成物層を熱硬化させた後、支持体を剥離することで、樹脂組成物の硬化物で形成された硬化物フィルムを得た。硬化物フィルムを、幅2mm、長さ80mmに切り出し、評価用硬化物Aを得た。
<Test Example 3: Measurement of relative dielectric constant (Dk) and dielectric loss tangent (Df)>
The resin sheet was heated at 200° C. for 90 minutes to thermally cure the resin composition layer, and then the support was peeled off to obtain a cured film formed of the cured product of the resin composition. The cured film was cut into a piece having a width of 2 mm and a length of 80 mm to obtain a cured product A for evaluation.

得られた評価用硬化物Aについて、アジレントテクノロジーズ社製「HP8362B」を用いて、空洞共振摂動法により測定周波数5.8GHz、測定温度23℃にて比誘電率(Dk値)と誘電正接(Df値)を測定した。3本の試験片について測定を行い、平均値を算出した。 The dielectric constant (Dk value) and dielectric loss tangent (Df value) of the obtained cured product A for evaluation were measured by the cavity resonance perturbation method using an Agilent Technologies "HP8362B" at a measurement frequency of 5.8 GHz and a measurement temperature of 23°C. Measurements were performed on three test pieces, and the average value was calculated.

<試験例4:破断点伸度の評価>
試験例3で得られた硬化物フィルムについて、日本工業規格JIS K7127に準拠して、テンシロン万能試験機(オリエンテック社製「RTC-1250A」)により引っ張り試験を行い、破断点伸度[%]を測定した。
<Test Example 4: Evaluation of elongation at break>
The cured film obtained in Test Example 3 was subjected to a tensile test in accordance with Japanese Industrial Standard JIS K7127 using a Tensilon universal testing machine ("RTC-1250A" manufactured by Orientec Co., Ltd.) to measure the elongation at break [%].

<結果>
以下、上述した実施例及び比較例の結果を、表に示す。下記の表において、略称の意味は、以下の通りである。
Ra:硬化物の表面の算術平均粗さ。
<Results>
The results of the above-mentioned Examples and Comparative Examples are shown in the following Table. In the following Table, the meanings of the abbreviations are as follows.
Ra: arithmetic mean roughness of the surface of the cured product.

Figure 0007501567000011
Figure 0007501567000011

Figure 0007501567000012
Figure 0007501567000012

処理済シリカ1:KBM-573(0.3%)及びV-03(0.3%)の順で処理された球形シリカ。
処理済シリカ2:KBM-573(0.3%)及びポリカルボジイミド化合物1(0.3%)の順で処理された球形シリカ。
処理済アルミノシリケート3:KBM-573(0.5%)及びV-03(0.5%)の順で処理された中空アルミノシリケート粒子。
処理済アルミノシリケート4:KBM-573(0.5%)及びポリカルボジイミド化合物1(0.5%)の順で処理された中空アルミノシリケート粒子。
処理済シリカ5:KBM-573(0.4%)及びV-03(0.2%)の順で処理された球形シリカ。
処理済シリカ6:KBM-573(0.1%)及びV-03(0.5%)の順で処理された球形シリカ。
処理済シリカ7:V-03(0.3%)及びKBM-573(0.3%)の順で処理された球形シリカ。
Treated Silica 1: Spherical silica treated with KBM-573 (0.3%) and V-03 (0.3%) in that order.
Treated silica 2: Spherical silica treated with KBM-573 (0.3%) and polycarbodiimide compound 1 (0.3%) in that order.
Treated Aluminosilicate 3: Hollow aluminosilicate particles treated with KBM-573 (0.5%) and V-03 (0.5%) in that order.
Treated aluminosilicate 4: Hollow aluminosilicate particles treated with KBM-573 (0.5%) and polycarbodiimide compound 1 (0.5%) in that order.
Treated Silica 5: Spherical silica treated with KBM-573 (0.4%) and V-03 (0.2%) in that order.
Treated Silica 6: Spherical silica treated with KBM-573 (0.1%) and V-03 (0.5%) in that order.
Treated Silica 7: Spherical silica treated with V-03 (0.3%) and KBM-573 (0.3%) in that order.

100 半導体チップパッケージ
110 半導体チップ
120 封止層
130 再配線形成層
140 再配線層
150 ソルダーレジスト層
160 バンプ
REFERENCE SIGNS LIST 100 Semiconductor chip package 110 Semiconductor chip 120 Sealing layer 130 Rewiring formation layer 140 Rewiring layer 150 Solder resist layer 160 Bump

Claims (17)

(A)エポキシ樹脂、(B)硬化剤、及び、(C)カルボジイミド化合物で表面処理された無機充填材、を含む、樹脂組成物であって、
(C)成分の量が、樹脂組成物の不揮発成分100質量%に対して、55質量%以上であり、
(B)成分が、活性エステル系硬化剤及びシアネートエステル系硬化剤からなる群より選ばれる1種類以上を含み、
質量比(「活性エステル系硬化剤及びシアネートエステル系硬化剤の合計」/(C)成分)が、0.05以上、0.5以下である、樹脂組成物
A resin composition comprising: (A) an epoxy resin; (B) a curing agent; and (C) an inorganic filler that has been surface-treated with a carbodiimide compound,
The amount of the (C) component is 55% by mass or more based on 100% by mass of the non-volatile components of the resin composition;
The component (B) contains one or more curing agents selected from the group consisting of active ester curing agents and cyanate ester curing agents,
A resin composition having a mass ratio ("total of active ester-based curing agent and cyanate ester-based curing agent"/component (C)) of 0.05 or more and 0.5 or less .
カルボジイミド化合物が、下記式(C-1)で表される構造単位を含有する、請求項1に記載の樹脂組成物。
Figure 0007501567000013
(式(C-1)において、Yは、置換基を有していてもよい2価の炭化水素基を表す。)
The resin composition according to claim 1, wherein the carbodiimide compound contains a structural unit represented by the following formula (C-1):
Figure 0007501567000013
(In formula (C-1), Y represents a divalent hydrocarbon group which may have a substituent.)
カルボジイミド化合物が、エチレン性不飽和結合を含有する、請求項1に記載の樹脂組成物。 The resin composition according to claim 1, wherein the carbodiimide compound contains an ethylenically unsaturated bond. (D)硬化促進剤を含む、請求項1に記載の樹脂組成物。 The resin composition according to claim 1, further comprising (D) a curing accelerator. (E)熱可塑性樹脂を含む、請求項1に記載の樹脂組成物。 The resin composition according to claim 1, comprising (E) a thermoplastic resin. 2000poise未満の最低溶融粘度を有する、請求項1に記載の樹脂組成物。 The resin composition according to claim 1, having a minimum melt viscosity of less than 2000 poise. 樹脂組成物を200℃にて90分間加熱して硬化物を得た場合に、当該硬化物が1%以上の破断点伸度を有する、請求項1に記載の樹脂組成物。 The resin composition according to claim 1, wherein when the resin composition is heated at 200°C for 90 minutes to obtain a cured product, the cured product has an elongation at break of 1% or more. 樹脂組成物を170℃にて30分間加熱して硬化物を得て、当該硬化物に疎化処理を施した場合に、当該硬化物が300nm未満の算術平均粗さRaを有する、請求項1に記載の樹脂組成物。 The resin composition according to claim 1, in which the resin composition is heated at 170°C for 30 minutes to obtain a cured product, and the cured product is subjected to a shaving treatment, and the cured product has an arithmetic mean roughness Ra of less than 300 nm. 絶縁層形成用である、請求項1に記載の樹脂組成物。 The resin composition according to claim 1, which is used to form an insulating layer. 請求項1~の何れか1項に記載の樹脂組成物の硬化物。 A cured product of the resin composition according to any one of claims 1 to 9 . 請求項1~の何れか1項に記載の樹脂組成物を含む、シート状積層材料。 A sheet-like laminate material comprising the resin composition according to any one of claims 1 to 9 . 支持体と、当該支持体上に形成された樹脂組成物層と、を備え、
樹脂組成物層が、請求項1~の何れか1項に記載の樹脂組成物を含む、樹脂シート。
A support and a resin composition layer formed on the support,
A resin sheet, wherein a resin composition layer comprises the resin composition according to any one of claims 1 to 9 .
請求項1~の何れか1項に記載の樹脂組成物の硬化物を含む、回路基板。 A circuit board comprising a cured product of the resin composition according to any one of claims 1 to 9 . 請求項1~の何れか1項に記載の樹脂組成物の硬化物を含む、半導体チップパッケージ。 A semiconductor chip package comprising a cured product of the resin composition according to any one of claims 1 to 9 . 請求項13に記載の回路基板を備える、半導体装置。 A semiconductor device comprising the circuit board according to claim 13 . 請求項14に記載の半導体チップパッケージを備える、半導体装置。 A semiconductor device comprising the semiconductor chip package according to claim 14 . カルボジイミド化合物及び無機充填材を混合して、(C)カルボジイミド化合物で表面処理された無機充填材を得る第一工程と、
(C)カルボジイミド化合物で表面処理された無機充填材、(A)エポキシ樹脂及び(B)硬化剤を混合する第二工程と、
を含む、樹脂組成物の製造方法であって、
(C)成分の量が、樹脂組成物の不揮発成分100質量%に対して、55質量%以上であり、
(B)成分が、活性エステル系硬化剤及びシアネートエステル系硬化剤からなる群より選ばれる1種類以上を含み、
質量比(「活性エステル系硬化剤及びシアネートエステル系硬化剤の合計」/(C)成分)が、0.05以上、0.5以下である、樹脂組成物の製造方法
A first step of mixing a carbodiimide compound and an inorganic filler to obtain (C) an inorganic filler surface-treated with a carbodiimide compound;
(C) a second step of mixing an inorganic filler surface-treated with a carbodiimide compound, (A) an epoxy resin, and (B) a curing agent;
A method for producing a resin composition comprising:
The amount of the (C) component is 55% by mass or more based on 100% by mass of the non-volatile components of the resin composition;
The component (B) contains one or more selected from the group consisting of active ester-based curing agents and cyanate ester-based curing agents,
A method for producing a resin composition, wherein the mass ratio ("total of active ester-based curing agent and cyanate ester-based curing agent"/component (C)) is 0.05 or more and 0.5 or less .
JP2022076093A 2022-05-02 2022-05-02 Resin composition Active JP7501567B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022076093A JP7501567B2 (en) 2022-05-02 2022-05-02 Resin composition
TW112114681A TW202348720A (en) 2022-05-02 2023-04-20 Resin composition capable of obtaining a low minimum melt viscosity
KR1020230055165A KR20230154753A (en) 2022-05-02 2023-04-27 Resin composition
CN202310489251.XA CN116987364A (en) 2022-05-02 2023-04-28 Resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022076093A JP7501567B2 (en) 2022-05-02 2022-05-02 Resin composition

Publications (2)

Publication Number Publication Date
JP2023165263A JP2023165263A (en) 2023-11-15
JP7501567B2 true JP7501567B2 (en) 2024-06-18

Family

ID=88520168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022076093A Active JP7501567B2 (en) 2022-05-02 2022-05-02 Resin composition

Country Status (4)

Country Link
JP (1) JP7501567B2 (en)
KR (1) KR20230154753A (en)
CN (1) CN116987364A (en)
TW (1) TW202348720A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000136291A (en) 1998-11-02 2000-05-16 Toshiba Chem Corp Resin composition for sealing and semiconductor-sealed device
JP2016027097A (en) 2014-06-30 2016-02-18 味の素株式会社 Resin composition

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7230421B2 (en) 2018-10-18 2023-03-01 味の素株式会社 resin composition
JP7379829B2 (en) 2019-02-21 2023-11-15 味の素株式会社 Manufacturing method of printed wiring board

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000136291A (en) 1998-11-02 2000-05-16 Toshiba Chem Corp Resin composition for sealing and semiconductor-sealed device
JP2016027097A (en) 2014-06-30 2016-02-18 味の素株式会社 Resin composition

Also Published As

Publication number Publication date
JP2023165263A (en) 2023-11-15
KR20230154753A (en) 2023-11-09
CN116987364A (en) 2023-11-03
TW202348720A (en) 2023-12-16

Similar Documents

Publication Publication Date Title
JP2022108928A (en) resin composition
KR20230063875A (en) Resin composition
JP7501567B2 (en) Resin composition
JP2022151212A (en) Method for manufacturing printed wiring board
WO2023203906A1 (en) Resin composition
JP7537485B2 (en) Resin composition
JP7552673B2 (en) Resin composition
JP7472839B2 (en) Resin composition
JP7494960B1 (en) Hardened body
TW202346444A (en) Resin composition capable of obtaining a cured product that is excellent in both crack resistance and desmear resistance
JP2024085325A (en) Resin composition layer
JP2023165254A (en) resin composition
JP2024124019A (en) Circuit board manufacturing method and resin sheet
KR20240028939A (en) Resin composition
TW202328322A (en) Resin composition including a cyclic carbonate compound, an epoxy resin, and an inorganic filler
JP2024116733A (en) Circuit board manufacturing method
JP2022109003A (en) resin composition
TW202239866A (en) resin composition
JP2023069752A (en) resin composition
JP2024059029A (en) Resin composition
CN116063897A (en) Resin composition
JP2022108927A (en) resin composition
JP2024085315A (en) Resin composition
CN115505313A (en) Resin composition
JP2022109004A (en) resin composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240117

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20240117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240520

R150 Certificate of patent or registration of utility model

Ref document number: 7501567

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150