JP7497516B2 - 等式制約を代数モデルに課すための射影方法 - Google Patents

等式制約を代数モデルに課すための射影方法 Download PDF

Info

Publication number
JP7497516B2
JP7497516B2 JP2023506350A JP2023506350A JP7497516B2 JP 7497516 B2 JP7497516 B2 JP 7497516B2 JP 2023506350 A JP2023506350 A JP 2023506350A JP 2023506350 A JP2023506350 A JP 2023506350A JP 7497516 B2 JP7497516 B2 JP 7497516B2
Authority
JP
Japan
Prior art keywords
constraint
model
computer
coefficients
linear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2023506350A
Other languages
English (en)
Other versions
JP2023537697A (ja
Inventor
アンドリュー・ヴィクトリア・グラス
セルニールズ・スヴェン
ヴァルヴァレゾス・ディミトリオス
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aspentech Corp
Original Assignee
Aspentech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aspentech Corp filed Critical Aspentech Corp
Publication of JP2023537697A publication Critical patent/JP2023537697A/ja
Application granted granted Critical
Publication of JP7497516B2 publication Critical patent/JP7497516B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
    • G05B19/41885Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by modeling, simulation of the manufacturing system
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
    • G05B19/41865Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by job scheduling, process planning, material flow
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0218Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
    • G05B23/0243Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults model based detection method, e.g. first-principles knowledge model
    • G05B23/0254Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults model based detection method, e.g. first-principles knowledge model based on a quantitative model, e.g. mathematical relationships between inputs and outputs; functions: observer, Kalman filter, residual calculation, Neural Networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/11Complex mathematical operations for solving equations, e.g. nonlinear equations, general mathematical optimization problems
    • G06F17/13Differential equations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/18Complex mathematical operations for evaluating statistical data, e.g. average values, frequency distributions, probability functions, regression analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N5/00Computing arrangements using knowledge-based models
    • G06N5/01Dynamic search techniques; Heuristics; Dynamic trees; Branch-and-bound

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Analysis (AREA)
  • Computational Mathematics (AREA)
  • Software Systems (AREA)
  • Automation & Control Theory (AREA)
  • Evolutionary Computation (AREA)
  • Artificial Intelligence (AREA)
  • Manufacturing & Machinery (AREA)
  • Databases & Information Systems (AREA)
  • Quality & Reliability (AREA)
  • Operations Research (AREA)
  • Algebra (AREA)
  • Computing Systems (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Evolutionary Biology (AREA)
  • Probability & Statistics with Applications (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Medical Informatics (AREA)
  • Computational Linguistics (AREA)
  • Feedback Control In General (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Description

関連出願の相互参照
本出願は、2020年7月31日出願の米国出願第16/945,202号の継続出願である。上記出願全体の教示は、参照により本明細書に組み込まれる。
石油精製所、化学コンビナート、およびプロセス産業などの産業プラントは、一般的に、化学反応およびプロセスを予測、定量化、計算、および制御するために、数学モデルを使用する。回帰モデルは、物理的プロセス、化学反応もしくはプロセス、またはより一般的には、プロセスエンジニアリングシステム構築の入出力など、データセットの独立変数と従属変数との間の関係を推定するために使用される。回帰モデルは、それによってモデル化されるシステム(化学プロセスまたは産業プロセス)の基礎特性によって課される制約として、物理的または化学的な保存則を満たす必要がある。例えば、このような保存則には、システムに入る質量が、システムから出る質量と等しくなければならないと仮定する物質収支式、またはシステムに入る要素に存在する原子の質量が、システムから出る要素の個々の原子の質量と等しくなければならないと仮定する原子収支式が含まれる。回帰モデルは、ゲイン制約、つまり物理システムを表すモデルの応答変数の一次微分(dy/dz)に適用される制約をさらに満たすべきである。例えば、バルブ開口部後の温度変化は、急上昇または原因不明の振動がなく、滑らかに増加するべきである。先行技術のデータ駆動型機械学習モデルは、これらの不可欠な物理的、化学的、または他の工学的特性を保持せず、システム内の質量の増加または即時の大幅な温度変動などの実現不可能な予測を生成することはできない。したがって、化学反応および産業プロセスのモデリングにおける改良型技術、ならびに対応するプロセスおよびシステムの改良型モデルに対するニーズが存在する。
本発明の実施形態は、上記の当分野の欠点に対処する。化学/産業反応、プロセス、およびシステムのより良好でより正確なモデルを作成するために、出願人の手法は、領域に特異的な知識を含み、特に、モデルの性質およびその性能を損なうことなく、物理的特性およびゲイン制約を保持するモデル制約を含む。
線形回帰モデルは、データセット中の予測変数(独立変数)に対する応答変数(従属変数)の線形近似を求める。具体的には、線形回帰モデルは、独立変数と従属変数との間の関係が線形であると推定し、データに最も適合する最近の超平面を決定する。超平面は、数式の集合により定義可能で、一つの数式yは、各従属変数に対して、各数式は、一組の二つの値の積、すなわち、すべての独立変数にそれぞれの係数を乗じた値の総和であり、
=C+C+Cで表され、nは、従属変数の数で、mは、独立変数の数である。化学プロセスのデータセットを使用して、その対象の化学プロセスに関する有用な情報を提供する線形(または非線形)回帰モデルを作成し得る。線形回帰モデルは、一旦作成されると、独立変数に基づいて、従属変数の値を「予測」することができる。言い換えれば、予測は、従属変数のデータ点を、予測変数が及ぶ超平面に射影したものである。異なる線形回帰モデルによって、異なる超平面、すなわち、その「近い」という定義に基づく独立変数の異なる係数が生成される。例えば、通常の最小二乗の場合、最近の超平面は、既知の従属変数およびその対応する予測との間のユークリッド距離を最小化するものとして定義される。線形回帰モデルは、化学プロセスに適用される場合、化学プロセスの将来の挙動を予測するのに役立つ。回帰モデルからの予測は、産業プラントのプロセス制御およびその他の主要な機能で使用される。
データセットが線形制約を満たす場合、データセットの線形モデルの予測も制約を満たすべきであると示すことができる。残念なことに、測定誤差、ノイズ、または数値計算の誤差により、これは通常、当てはまらない。さらに、一部の制約は線形でない場合があり、その場合、該制約は、線形モデルに保存されない。したがって、既存の方法を修正して、元のモデルの性質を可能な限り維持しながら、等式制約およびゲイン制約を組み込む線形回帰モデルを生成するニーズが存在する。具体的には、等式制約および/またはゲイン制約に基づく制約式の集合も満たすデータセットを使用して、制約付き回帰モデル(線形または非線形のいずれか)を生成する必要がある。
一部の先行技術の方法は、数値最適化を使用して、制約をモデルに組み込むことを試みた。このような手法は、いくつかの種類の制約に対しては有効である一方、多くの状況では、直接適用され得ない。ユーザが、生成されたモデルの制約であるものを直接指定可能である、いくつかの線形および非線形ソルバが存在する一方、質量、原子、またはエネルギー収支などの等式制約の場合、モデルが満たす必要のある式の総数は、データ点の数にシステム内の収支の数を乗じた値と等しくなる。等式制約式が未知数よりも多く存在するため、数値最適化装置は、解を見つけることができない。等式制約を組み込むための別の先行技術の手法は、制約違反を罰するために、ペナルティ項を損失関数に追加することである。この手法により、予測が、制約を満たすのに近いことは保証されるが、一般的に、所望の小さい許容範囲まで満たされる保証はない。多くの制約は、物質の基本的な特性であるため、常に正確に満たされなければならない。さらに、上述の先行技術の手法が、モデルを生成するために使用されるデータに対して満足のいく結果をもたらす場合があるが、モデルが将来のデータに適用される場合に、制約が満たされる保証はどこにもない。
本発明は、基本的なモデル構築レベルで、非常に簡便かつ効率的な方法で、等式制約を回帰モデルに組み込む実施形態(例えば、方法、システム、および技術)を提供する。本発明の実施形態は、線形回帰モデルおよび非線形回帰モデルの両方を生成することができる。出願人の手法が簡便である理由は、一部の実施形態が、係数行列の形態である、制約なし線形モデルの解に、制約を強いる行列を乗じることによる、線形マップの構築からなることである。出願人の手法は、制約なし問題の係数行列を構築するために、利用可能なソフトウェアまたは作業プログラムパッケージの能力を使用できるため、効率的である。本発明の実施形態は、化学/プロセス産業において適用される場合、化学/産業プロセスまたはシステムの高速かつ信頼性の高いモデルを構築可能で、モデルは、データを生成し、物質収支、原子収支、および/またはエネルギー収支などの重要な物理的制約を配慮する結果を予測することができる。
一つの実施形態は、化学プロセスの改良型予測モデルを生成する、コンピュータ実装方法を提供する。第一のステップとして、プロセッサは、産業プラントにおける対象の化学プロセスを表すデータを受信する。該データは、独立変数と従属変数を含む。次に、プロセッサは、制約式の係数を有する少なくとも一つの線形制約式を受信する。受信された線形制約式は、対象の化学プロセスの一つ以上の物理的特性を表す。この方法は、制約式の係数からなる制約行列を構築することによって、続行される。次のステップは、各従属変数の潜在的な係数を含む係数行列を構築する。潜在的な係数は、独立変数と従属変数との間の線形関係を定義する。次に、該方法は、制約係数として、制約行列と係数行列の積をゼロにする潜在的な係数を定義する。最後のステップは、独立変数と各従属変数との間の代数関係を定義するモデル係数を有する代数モデルを生成する。モデル生成ステップでは、制約係数を、モデル係数として使用する。得られた代数モデルは、その一つ以上の物理的特性に適合する、対象の化学プロセスの挙動の改良型予測を提供する。
化学プロセスは、より一般的な用語によれば、化学反応、処理システムにおける対象の変換、産業プロセスの一部、産業プラントの生産ユニットの運転、および/または産業プラントにおける機器の特定の部分の作動の物理特性などを含むが、これらに限定されない、任意の物理ベースまたは化学ベースのプロセスであり得る。産業プラントは、精製所、化学製造、医薬品製造、パーソナル&ホームケア製造、栄養素製造、または類似のプロセス産業施設であり得る。生成されたモデルは、化学/産業プロセス(すなわち、対象の物理ベースまたは化学ベースのプロセス)のプロセス制御に使用され得、対象のプロセスを最適化するために使用され得、および/または対象のプロセスまたは関連システムを設計するために使用され得る。代数モデルは、線形であり得、通常の最小二乗回帰、リッジ回帰、LASSO回帰、部分最小二乗回帰、または弾性ネット回帰のうちの少なくとも一つを使用して生成され得る。
係数行列は、(i)上部ブロックとしての単位行列、および(ii)下部ブロックとしての潜在的な係数からなる行列を有する、垂直ブロック行列となり得る。モデル係数は、ラグランジュの乗数を使用して、直接決定され得る。このような実施形態では、モデル係数は、下記数式の解であり得、
Figure 0007497516000001

式中、Bは、モデル係数の行列であり、Iは、単位行列であり、nは、独立変数の数であり、mは、従属変数の数であり、Γ’は、正またはゼロの入力を有する対角行列であり、Gは、制約行列であり、は、行列転置を示し、BUcは、受信されたデータの制約なし線形モデルの係数の行列である。あるいは、モデル係数は、数値最適化装置を使用して、決定され得る。
少なくとも一つの物理的特性は、物質収支を含み得る。少なくとも一つの物理的特性はまた、エネルギー収支を含み得る。少なくとも一つの物理的特性はまた、プロセス制御システムに対するゲイン制約を含んでもよい。
一部の実施形態はまた、少なくとも一つのほぼ線形制約式を受信することを含み得る。その後、実施形態は、受信されたデータの制約なし代数モデルを決定し、制約なし代数モデルを使用して、固定するための独立変数と従属変数の少なくとも一つを識別する。これらの実施形態はまた、少なくとも一つのほぼ線形制約式および固定変数を使用して、少なくとも一つの線形制約式を作成することを含む。少なくとも一つのほぼ線形制約式は、エネルギー制約および/または原子収支制約であり得る。
追加の実施形態は、プロセスシステムの改良型予測モデルを生成するための、実装された方法を提供する。第一のステップとして、プロセッサは、独立変数と従属変数を含む、産業プラントにおけるプロセスシステムを表すデータを受信する。該方法は、受信されたデータの線形モデルを決定するように構成された目的関数を構築することによって、継続される。プロセッサはまた、少なくとも一つの制約式を受信し、少なくとも一つの制約式は、プロセスシステムの少なくとも一つの物理的特性を表す。次に、従属変数の一次式を、少なくとも一つの制約式に代入し、代入された少なくとも一つの制約式中の独立変数の係数を導く。この方法は、その後、その入力が、目的関数と、ゼロに等しい独立変数に対する導出係数とからなる、数値最適化問題を構築する。該方法は、独立変数と各従属変数との間の代数関係を定義するモデル係数の集合を有する代数モデルを生成することで終了し、モデル係数は、数値最適化問題の解であり、生成されたモデルは、少なくとも一つの物理的特性を満たすプロセスシステムの挙動の改良型予測を提供する。
このような追加的な実施形態では、少なくとも一つの制約式は、原子収支制約、エネルギー制約、および/またはゲイン制約であり得る。
別の実施形態は、プロセスシステム(例えば、化学プロセスまたは産業プロセス)の改良型予測モデルを生成するためのコンピュータ実装方法を提供する。第一のステップとして、プロセッサは、独立変数と従属変数を含む、産業プラントにおけるプロセスシステムを表すデータを受信する。該方法は、受信されたデータの線形モデルを決定するように構成された目的関数を構築することによって、継続される。プロセッサはまた、少なくとも一つの制約式を受信し、少なくとも一つの制約式は、プロセスシステムの少なくとも一つの物理的特性を表す。次に、少なくとも一つの制約式を、選択された従属変数に対して解く。その後、目的関数内の一つの選択された従属変数を、解かれた少なくとも一つの制約式で置換して、制約付き目的関数を生成する。置換後、該方法は、入力が、制約付き目的関数からなる、数値最適化問題を構築する。該方法は、独立変数と各従属変数との間の関係を定義するモデル係数の集合を有する代数モデルを生成することで終了し、モデル係数は、数値最適化問題の解であり、生成された代数モデルは、少なくとも一つの物理的特性を満たすプロセスシステムの挙動の改良型予測を提供する。生成されたモデルは、線形モデルまたは非線形モデルであり得る。
このような実施形態は、分散に基づく少なくとも一つの選択された従属変数として、最も高い変数を有する従属変数を選択するステップをさらに含み得る。
上記記載事項は、添付図面に示すように、例示的な実施形態の以下のより具体的な説明から明らかであり、参照文字が同じであれば、異なる図面全体にわたって、同じ部分を指す。図面は必ずしも原寸通りではない代わりに、実施形態の例示に重点が置かれている。
図1Aは、本発明を例示し、それゆえに、制約を、化学/産業プロセスの改良モデルに組み込むプロセス制御(またはより一般的には、プロセスモデリングおよびシミュレーション)の方法およびシステムのブロック図である。 図1Bは、一つの独立変数xと二つの従属変数y1、が、実施形態の制約空間上に射影された、通常の最小二乗回帰のグラフである。 図2は、実施形態における線形等式制約式を組み込む線形回帰モデルに対する制約係数を取得するために使用される直交射影のワークフロー図である。 図3は、実施形態におけるほぼ線形等式制約を組み込む線形回帰モデルを取得するために使用される数値最適化装置のワークフロー図である。 図4は、実施形態におけるほぼ線形制約式を組み込む線形回帰モデルに対する制約係数を取得するために使用される非線形直交射影のワークフロー図である。 図5は、構成要素の射影法のグラフであって、モデルが、yに対して訓練され、その値が一旦見つかると、構成要素の射影は、制約空間へのyの方向に沿って実行される。 図6は、実施形態における一般的な制約式を組み込む線形回帰モデルに対する制約係数を取得するために使用される構成要素の射影のワークフロー図である。 図7は、本発明の実施形態が実施され得る、コンピュータネットワークまたは類似のデジタル処理環境の概略図である。 図8は、図7のコンピュータシステムにおける、コンピュータ(例えば、クライアントプロセッサ/デバイスまたはサーバーコンピュータ)の内部構造のブロック図である。
例示的な実施形態の説明は、以下の通りである。
数学モデルは、対象の化学/産業プロセスを表すために使用される。これらのプロセスは、個々の反応(物理ベースまたは化学ベース)または機械部品から、産業プラントの生産ユニット全体まで及ぶ可能性がある。産業プラントは、リアルタイム、またはそれ以外ではオンライン、もしくはオフラインで、極めて広範な重要タスクに対し、これらの数学的モデルを含むシミュレーションに依存する。例えば、最適化装置に組み込まれたシミュレーションは、数学的モデルを使用して、バルブなどの機器の個々の部品を操作する最も効率的な方法を決定し得る。あるいは、シミュレーションでは、生産ユニット全体の最良な構成を決定するために、数学モデルを使用し得る。シミュレーションの別の重要な用途は、産業プラントにおける機器を制御する際に、該シミュレーションを使用することである。シミュレーションは、長期計画、スケジュール作成、および高度なプロセス制御を含む、プロセス制御のすべてのステップで適用され得る。シミュレーションは、現在のプラント状況を能動的にモデル化し、リアルタイムのアプリケーションに使用可能である。あるいは、シミュレーションは、将来の状況をモデル化するために、使用され得、また、望ましい時間を決定して、プラント機能を実施する、または将来のプラントの設計もしくは既存プラントの修正さえも実施するために使用され得る。
先行技術の方法は、第一の原理、すなわち自然界の基本法則のみに基づいて、モデルを構築することができる。第一の原理モデルを使用するシミュレーションには、(i)シミュレーションが、最適化などのリアルタイム操作に含まれることが禁じられる程度まで、計算集中的であり得ること、および(ii)第一の原理が、時として、モデル化された化学プロセスにおいて分散を生じるすべての物理現象を記述せず、その予測に不正確性がもたらされることの二つの実際的な限界がある。
第一の原理モデルに関連する問題を緩和する一つの方法は、シミュレーションまたは実際のデータからのデータを使用して生成されるデータ駆動型モデルを作成することである。その後、これらのデータ駆動型モデルを、シミュレーションにおいて、該モデルに対応する第一の原理モデルに置換することができる。データをプロセスシミュレーションモデルに組み込む手法には、未知のパラメータの回帰、および拡張カルマンフィルタリングなどの他のパラメータ推定方法が含まれる。これらのデータ駆動型モデル、または次数低減モデルは、計算をはるかに高速に実行する上で、第一の原理モデルの代わりに使用され得る。しかし、最適なシミュレーションモデルは、モデル化するシステムの物理的特性によって課せられる制約を満たす必要がある。データ解析のみによって作成されたモデルは、これらの制約を記述することができず、自然の基本特性に違反する不可能な予測を生成し得る。より煩雑な第一の原理モデルを、次数低減モデルで置き換えるために、置換モデルは、物質収支、原子収支、エネルギー収支、およびゲイン制約などであるがこれらに限定されない、現実的な(物理ベースの)制約も配慮すべきである。
以下の開示は、第一の原理モデルの自然法則に対する忠実性、および次数低減モデルの計算速度および適応性を提供するモデルを作成するための方法を説明する。本方法により、より一般的な第一の原理モデルによって捕捉されない場合がある、対象の化学/産業プロセスに特有の現象を組み込むモデルの作成がさらに可能になる。
図1Aを参照すると、本発明および制約を化学/産業プロセス124のモデルに組み込むための記載された新しい方法を例示する、プロセス制御(またはより一般的には、モデリングおよびシミュレーション)の方法およびシステム140が示されている。簡潔に述べると、産業プラント(化学処理プラント、精製所など)120は、対象の化学プロセス124を実施する。非限定的な実施例としては、医薬品製造、石油精製、ポリマー加工などが挙げられる。プロセス124を実施するためのプラント設備には、蒸留塔、様々な種類の反応器および反応器タンク、蒸発器、配管系統、バルブ、ヒーターなどが含まれるが、例示のためであって限定するものではない。プラントデータ105は、化学プロセス124の入力(供給量、特定の変数の値など)および出力(生産量、残差、物理的動作特性/状態など)を表す。制御装置122は、対象の化学プロセス124を実施する際に、プラント機器を操作する設定132(すなわち、パラメータ値、温度選択、圧力設定、流量、物理的特性を表す変数の他の値)を構成・維持するために、モデルプロセス制御を採用する。制御装置122はまた、設定132に対するより長期的な計画およびスケジュール作成による操作を実行し得る。
プロセス制御、計画、スケジュール作成、およびリアルタイム最適化アプリケーションは、プロセスモデリングシステム130によって生成される(対象の物理的、化学的、または工学的プロセス124の)モデルに基づく。プラント120は、任意の数の化学プロセス124、任意の数の制御装置122、およびそれらのそれぞれの設定132を構成・維持するために使用される任意の数のプロセスモデリングシステム130を有し得る。
先行技術の方法では、プロセスモデリングシステム130は、第一の原理モデルを利用した可能性がある。本発明の実施形態では、プロセスモデリングシステム130は、化学プロセス124の物理的特性および動作条件を詳述し、化学プロセス124の物理的特性および/または限定を表す等式制約202、302、402、602を組み込む、受信されたデータ201、301、401、601から生成された、対象の化学プロセス124のモデル110を生成および展開する。データ201、301、401、601は、プラントデータ105の一部、既存のデータセットの一部、第一の原理モデルによって生成される模擬データセット、または上記事項の任意の組み合わせとして、受信され得る。モデル110は、正確さの改良により、対象の化学プロセス124の進捗および物理的特性/状態を予測する。モデル110の予測はまた、受信された等式制約202、302、402、602を満たす。予測により、プロセスエンジニアが、化学プロセスをより効率的にトラブルシューティングすることを可能にすること、化学プロセスの障壁除去を可能にすること、措置を計画およびスケジュール作成すること、ならびに産業プラント120での化学プロセスの性能の最適化を可能にすることのいずれかにより、対象の化学プロセス124の性能の改良が可能になる。線形モデル予測は、設定132を更新する任意の必要性の表示、設定132を定量的に更新するための特定の値、および設定132を更新するための所望の時間をさらに含む。図2、3、4、6およびワークフロー200、300、400、600は、システム140におけるプロセスモデリング、シミュレーション、最適化、および制御のために利用される、出願人の発明および有利なモデル110を構築するための方法をさらに詳述する。
一般的に言えば、制御装置122は、プロセスモデリングシステム130と産業プラント120との間のインターフェースである。プロセスモデリングシステム130とプラント120との間の他のインターフェースは、制御装置122に加えて、および/または制御装置122の代わりに、本明細書の開示を考慮すると、好適で、当業者の所掌範囲内にある。例えば、プロセスモデリングシステム130とプラント120のシステムとの間にインターフェースがあり得る。プロセスモデリングシステム130用のユーザインターフェースが存在し得る。プロセスモデリングシステム130は、非限定的な実施例のためのシミュレータまたは最適化装置の、実質的に一部であり得る。このような様々なインターフェースによって、エンドユーザ、例えばプロセスエンジニアは、(a)プラント操業および対象の化学プロセス124の監視およびトラブルシューティング、(b)化学プロセス124の障壁の特定、(c)該障壁の除去、および(d)長期的な計画およびスケジュール作成の措置の実行などにおいて、モデル予測を活用可能である。実施形態では、インターフェースにより、プロセスエンジニアは、プラント120で化学プロセス124を最適化(オンラインまたはオフラインで)する際に、モデル予測を活用可能である。これらおよび他の同様の方法で、実施形態により、対象のプラント120での化学プロセス124の性能の様々な改良が可能である。
プロセスモデリングシステム130はまた、プラント120を設計する(完全にまたは特定箇所の修正のいずれか)ために利用され得る。プロセスモデリングシステム130は、モデル110を使用して、仮定設定132を用いて潜在的な設計の出力を予測することによって、プラント120のどのような提案構成が、ユーザのニーズを最良に適合しているかを識別できる。
本発明の実施形態は、ある範囲の種類の制約を処理できるいくつかの方法を含み、第一の方法200(後に図2で詳述)は、複数の線形等式制約を処理し、第二の方法400(後に図4で詳述)は、第一の方法の延長であり、ほぼ線形等式制約(外積の追加など)を処理可能で、一般的な方法600(後の図6で詳述)は、任意の種類の制約を潜在的に処理可能である。
第一の方法200は、選択される線形回帰モデルによって与えられる最良の線形適合を、制約式が及ぶ空間上に直交的に射影することによって、応答変数(従属変数)の新しい線形近似を取得する。結果として、方法200は、制約式が及ぶ空間内に、新しい回帰モデルを生成する。新しい回帰モデルの予測を、元の回帰モデルに可能な限り近づけるために、新しいモデルの予測は、元のモデルの予測に対応する点までの距離が最小である制約空間内で選択される。直交射影は、独立変数が、制約空間内で一定であり、予測変数を確実に固定し続けるように、構築される。元のモデルの線形性および射影の選択により、新しい回帰モデルはまた、線形である。言い換えれば、所望の形態のモデルの出力および予測が保持される。
第二の方法400は、線形ではないが、独立変数と従属変数の積の総和である、等式制約式を処理可能である。この形態の非線形制約式は、例えば、原子収支およびエネルギー収支では自然に現れる。例えば、粒子の正確な分子組成が不明であり、物質収支および原子収支を配慮するモデルを作成する必要がある場合、各要素の質量を予測し、粒子中の質量の、その原子に対応する割合を推定し得る。この場合、原子収支式は非線形であるが、各要素の質量の予測に、その粒子中の原子の質量の割合の予測を乗じた積の総和として、記述することができる。エネルギー収支制約式は、同様の問題がある。出願人は、これらの種類の制約に対処するために二つの解である、非線形ながら効率的な解と、線形ながら効率的な代替の解ではない解を提示する。ユーザは、線形の性質または効率が、モデルにとってより優先順位が高いかどうかに応じて、最も便利な解を選択可能である。
線形解の場合、実施形態は、数値最適化問題のための新規の入力を構築する。この方法の注意点の一つは、制約が非線形であるため、収束が必ずしも保証されないことである。非線形解の場合、第一の方法からの射影の変動を使用して、多項式の商である閉形式解を取得する。このような非線形解では、所望の形態の出力は必ずしも保持されないが、解は、解釈が容易な類似の形態で取得される。この場合、数値最適化装置の使用は不要であり、それゆえ、解(収束)は、常に取得される。唯一の潜在的な問題は、分母がゼロになり得ることである。しかし、この問題は、冗長または一貫性のない制約を回避することによって、制御され得る。
追加的な方法600は、制約空間への異なる射影および数値最適化を使用することによって、一般的な非線形制約を処理できる。該方法はまた、上述の原子収支およびエネルギー収支、ならびに線形制約などの状況に対処するためにも使用され得る。しかしながら、数値最適化が必要なため、非線形制約については収束が保証されない。
制約が線形であるか非線形であるかに関わらず、出願人の実施形態(提案された方法200、400、600)が、予測空間全体を制約空間上に射影することを含むため、制約式は、モデルの生成に使用されない視認不可のデータおよび将来のデータに対しても、常に満たされる。
第一の方法200:線形等式制約
この方法(実施形態)200は、線形回帰およびデータ調整の二つの線形問題の解の組み合わせである。データ調整は、産業プロセスにおける測定誤差を修正するために使用される一般的な手法である。データ調整は、分子組成が既知であり、エンタルピーが予測される条件下で、物質収支、原子収支、およびエネルギー収支などの線形等式制約のみを扱うことができる。データ調整は、制約を満たす、問題の測定値に最近の点を見つけることを試みる。すなわち、データ調整により、各点の制約空間への直交射影が見いだされる。制約空間は、制約式によって定義されるマニホールドである。言い換えれば、制約空間内のすべての点は、制約式に対する解である。この方法200は、データ調整の同一の基礎概念を適用するが、射影を個々の測定値(または予測)に限定するのではなく、線形回帰モデルに対するすべての解からなる予測空間全体を射影する。
数学的に、データ調整により、制約空間内に点が見いだされるが、測定値の座標と制約空間内の点との間の差の二乗の加重和は、その最小値に達する。この最適化問題の解析解は、当該技術分野で周知であるが、例えば、ラグランジュの乗数を使用して導出可能でもある。このような導出では、制約付き測定値は、元の測定値と、制約(物質収支など)および総和の重みを定義する線形方程式に依存する行列との積である。したがって、総和の重みが測定値の集合に対して変わらないと仮定すると、元の測定値から制約付き測定値を取得するために使用されるマップは、常に同じである。
本発明の第一の方法によって適用される、予測空間全体の射影に戻ると、線形モデルの制約なし予測空間は、データセットの予測変数(独立変数)と応答変数(従属変数)に線形変換を適用することによって、取得される。線形回帰モデルの変数係数からなる、線形回帰モデルの線形マップを定義する、係数行列を構築できる。さらに、制約式および誤差の平方和の重みの両方は、線形回帰モデルの全ての予測にわたって一定(固定)である。すなわち、全ての予測は、同じ制約を満たす必要があり、重みは、線形回帰の一定の係数によって与えられる。制約空間内の解の新たな線形空間を得るために、線形回帰モデルの係数行列は、制約式から導出された調整行列によって乗じられる。
物質収支などの一部の線形等式制約は、応答変数だけでなく、予測変数も伴う。従来のデータ調整では、射影される測定値の任意の変数の値は、決定される制約を満たす、射影された測定値に対して独立して調整され得る。物質収支および他の物理的等式制約が、それらの近似値ではなく、特定の所与の入力値に対して成り立つため、化学プロセスまたはシステムなどのシステムに対する予測にデータ調整を適用しても、所望の解は得られない。本明細書に記載される方法および実施形態は、この問題を解決し、提供される線形制約式の集合を常に満たすデータセットに対する最良の線形近似値を、数学的に決定する。
本発明の重要な能力は、制約の数を減らし、任意のデータ点(視認できないものも含む)の予測が、制約式を満たすように、すべての情報をコード化する能力である。制約は線形方程式であるため、制約行列と、独立変数と従属変数の順序付きベクトルとの積として表現することができる。制約行列の各行は、制約(物質収支式、原子収支式、または線形の場合は、エネルギー収支式)を表し、各入力は、対応する式中の変数の係数である。独立変数と従属変数のベクトルはまた、応答変数(従属変数)が、予測変数(独立変数)に対して線形であるため、行列の乗算として記述できる。この場合、上記行列の積は、拡張係数の垂直ブロック行列(そのブロックは、予測変数に対応する単位行列、および応答変数に対応する係数行列である)、および予測変数(独立変数)の行列のみからなる。任意の所与の独立変数の予測/出力が、制約式を確実に満たすために、制約行列と拡張係数行列の積は、ゼロである必要がある。したがって、制約は、入力された予測変数(独立変数)から独立して、視認されないデータに対しても満たされることが保証される。新しい制約はまた、係数に対して線形である。さらに、係数の数は、大幅に減少した。係数の数は、制約式の数(すなわち、物質収支の数)に独立変数の数を乗じた値である。
線形回帰モデルにおける物質収支などの線形等式制約を課すための、第一の方法200の例示的な実施形態用の詳細な数学的基礎は、以下の通りである。n個の独立変数(x)とm個の従属変数(y)からなるデータセットから作成された回帰モデルが、1≦k≦l(エル)において、
Figure 0007497516000002

などのl(エル)個のほぼ等式制約を満たす必要があると仮定する。全体で使用する上付き文字は、データ点を示し、下付き文字は、独立変数の特徴と従属変数の特徴を示す。等式制約式は線形であるため、行列表記で以下のように記述できる。
Figure 0007497516000003

式中、Gは、l(エル)×(n+m)行列であって、各行は、制約式を表し、各列は、異なる制約式中の各変数の係数(aおよびb)を表す。
目的は、k=1、...mに対して、
Figure 0007497516000004

のように、
Figure 0007497516000005

が、j=1...nに対して、データ点
Figure 0007497516000006

に近く、制約式lを満たすように、
Figure 0007497516000007

を見つけることである。これは、行列表記で記述することも可能である。βを、データの線形回帰の係数を含む行列(m×n)として表し、さらに、
Figure 0007497516000008

である。線形回帰モデルの予測が、行列Gで定義される等式制約式を常に満たすためには、以下の式が成り立たなければならない。
Figure 0007497516000009
式中、Iは、(n×n)サイズの単位行列である。線形制約情報を含む上述の統合された制約式が、xおよび/またはXの任意の値に対して真であり続けるべきであるため、式は、最初の二つの行列の積をゼロに単純化され得る。
Figure 0007497516000010
より一般的には、線形制約式を、以下のように解釈可能である。制約式中の従属変数を、それらの式によって、独立変数の線形関数として置き換えることができる。得られた式は、独立変数を共通因数として使用して、統合され得る。得られた統合された式では、各制約式に対する各独立変数の係数がゼロである場合、制約式は、任意選択の独立変数に対して満たされる。統合された式におけるこれらの係数は、データの線形回帰の係数の一次結合である。
線形回帰は、統合された制約式の係数をゼロにしつつ、データに最も適合するような形となり得る。この方法200の次の部分は、損失関数が微分可能な場合の最適化問題の解を見つけることである。例えば、通常の最小二乗では、損失関数は、単に、微分可能な最小二乗である。線形制約式によって制約される、線形回帰モデルの解は、線形回帰の制約なし解の係数に、データ調整行列を乗じることによって導出され、入力変数に対応する座標の総和の重みは、ゼロに設定される。この解は、数値最適化装置によって、またはラグランジュの乗数を分析的に使用するかのいずれかにより、導き出され得る。
制約最適化問題を定義して、線形回帰
Figure 0007497516000011

を決定することができる。最適化問題は、数値最適化または直接導出によって、解かれ得る。以下の導出は、両方のモデル関数が微分可能であるため、通常の最小二乗(OLS)およびリッジ回帰(RR)モデルを利用するが、部分最小二乗(PLS)、LASSO、または弾性ネットなどの任意の線形回帰モデルを利用する。
Figure 0007497516000012

を、多変量OLSの目的関数とし、
Figure 0007497516000013

を、多変量RRの目的関数とし、
Figure 0007497516000014

は、正定値対角行列である。従来、γは、yの分散として選択される。次に、以下の制約最適化問題の解を示す。
Figure 0007497516000015

f=fOLSまたはf=fRRに対して、上記式が成り立ち、該解は、
制約を満たす線形回帰の係数を含む(m×n)行列である行列βであり、以下の式で与えられる。
Figure 0007497516000016
式中、βUCは、制約から独立したデータへの線形回帰適合の係数を含む(m×n)行列であり、
Figure 0007497516000017

は、上部n対角要素が0に等しく、下部m対角要素がΓと同じである、(m+n)×(m+n)対角行列である。βUCの解は、OLS、RR、PLS、またはLASSOなどであって、これらに限定されない、任意の所望の線形回帰モデリング技術によって導き出され得る。その後、全てのl(エル)制約式を満たす出力/予測を常に提供する、β値、それゆえ線形回帰モデル
Figure 0007497516000018

を計算することができる。重要な点として、これは、βUCまたはβの導出に使用されたデータセットに含まれなかった未知のデータ点に対しても、成り立つ。
直観によれば、出願人の方法200は、制約なしに線形回帰問題の射影を使用するが、異なる最適な点を選択する。この場合、第三の直交射影が生じ、それは、制約空間と、予測変数が及ぶ空間との交点上にあるもので、これにより、制約は、入力の元の集合により満たされることが保証される。図1は例示である。
図1は、一つの独立変数xと二つの従属変数y1、が制約空間に射影された、通常の最小二乗回帰を示す。空間100は、三次元x、y、およびyを有する。制約空間101は、ax+by+cy=0の線形制約式によって定義される空間100の部分空間である。制約なしOLS回帰モデルからの点102は、空間100に存在するが、制約空間101には存在しない。点103は、点102の制約空間101への射影である。射影点103は、点102の直交射影により、x値が一定であることが保証されるため、予測変数xの値を保持する。したがって、OLSの性質は、射影中に維持される。制約なしOLS回帰モデルのすべての点を、同様に射影することができる。この方法によって、OLS回帰モデルの全体の射影は、元の回帰モデルを生成するために使用されない未知のおよび将来のデータ点を含む制約空間101上に射影される。
上述のように、この方法200は、非常に効率的であり、NumpPy、SciPy、TensorFlow、およびPyTorchなどであるが、これらに限定されない、任意の利用可能なパッケージを使用して、またはPythonベースの言語において、実行され得、最適合解を計算し、データ調整行列を計算し、拡張係数行列およびデータ調整行列を乗じる。さらに、本発明のすべての方法は、FORTRAN、C、C++、C#、Julia、R、MATLAB(登録商標)、およびOctaveなどであるが、これらに限定されない、数値演算を実行可能な任意のプログラミング言語で等価に生成され得る。図2は、非限定的な実施例のための、プロセスモデリングシステム130および制御装置システム122に見られるような一つの実施形態の流れ図である。
図2は、線形制約式202を組み込む線形回帰モデル204に対する制約係数210を取得するために使用される直交射影のワークフロー200である。プロセスモデリングシステム130または制御装置システム122は、産業システム、反応、または対象のプロセス(非限定的な実施例用の化学プロセス124など)に関するデータ201を受信する。データ201は、独立変数と従属変数を含む。データ201は、データ変数間の線形関係を定量化する線形回帰モデル204の基礎として機能する。データ201は、203で前処理され、線形回帰モデル204を生成するために使用される。プロセスモデリングシステム130または制御装置システム122は、通常の最小二乗(OLS)およびリッジ回帰(RR)を含むが、これらに限定されない、任意の公知の技術を使用して、線形回帰モデル204を作成する。
プロセスモデリングシステム130または制御装置システム122はまた、線形制約式202を受信する。線形制約式は、例えば、物質収支式など、対象のシステム/反応/プロセスの物理的特性によって課され得る。線形制約式202および線形回帰モデル204を使用して、ステップまたはモジュール221は、以下のように、データ調整射影行列206を構築する。調整射影行列は、独立変数に関連付けられた重みが、すべての潜在的入力に対するコンプライアンスを確保するために0に設定されることを除いて、データ調整における予測の調整と同等である。最初に、ビルダモジュール221は、制約行列(G)211を線形制約式202の係数から構築する。次に、204の線形回帰の重み205を使用して、ビルダモジュール221は、制約行列(G)211を使用して、上記に数学的に記述された射影行列206
Figure 0007497516000019

を構築する。
次に、ステップまたはモジュール223は、線形回帰モデル204を使用して、係数行列(βUC)207を生成する。上述した数学的基礎から想起されたいのは、係数行列(βUC)207は、制約式202と独立した線形回帰モデル204の係数を含む行列である。方法200を続行すると、ステップ/モジュール223は、単位行列208を係数行列207の上部に追加することによって、係数行列を拡張し、ブロック行列(拡張係数行列207’と称する)を生成する。最後に、直交射影209は、拡張係数行列207’(ステップ/モジュール223からの出力)とデータ調整射影行列206(ビルダモジュール221からの出力)を乗じる、プロセスモデリングシステム130または制御装置システム122によって達成される。ブロック行列は、二つの行列207’と206の積からもたらされる。結果として得られるブロック行列の下部ブロックは、制約式202も満たす、データ201の線形回帰モデル204の制約係数(β)210を含む。
あるいは、数値最適化装置を使用して、最良の制約係数βを決定できる。しかしながら、この代替案は、図2に関して上記で詳述した行列の乗算による、制約付き線形回帰モデルを直接計算するのと同程度に効率的ではない。本明細書に記載される方法200はまた、得られた結果が、上述の明示的な最適を表していなくても、任意の従来の数値最適化手法よりもはるかに高速な微分可能な損失関数を有するものだけでない、任意の線形回帰で使用され得る。
第二の方法400:ほぼ線形等式制約
上述の第一の方法200は、独立変数と従属変数の積の総和の形態の非線形等式制約式に拡張することができる。一つの可能な適応は、数値最適化装置を使用して、解を取得することである。システムが優決定されるため、制約を数値最適化装置に直接組み込むことはできない。そのため、自由度の数を減らさなければならない。これは、第一の方法200に記載されるのと同じ方法で実行可能で、制約式の従属変数については、制約式の独立変数(予測変数)の一次式を置換し、独立変数(およびその外積)でグループ化する。新しく置換されグループ化された制約式は、線形ではない場合があるが、結果として生じる制約式中の予測変数の係数は、新しい制約を表す。解は、選択された損失関数および新しい制約式を有する非線形数値最適化装置を使用することによって、取得され得る。この場合、置換および自由度の減少のために、方程式系は、一般的には、優決定されない。しかしながら、結果として生じる制約式が非線形であるため、最適化はもはや凸状問題ではなく、従って、収束を保証できない。第二の方法(実施形態)400の重要な能力は、収束、したがって解を識別するために、最適化装置を配置することである。このような収束により、対象の化学プロセス124をモデル化するレベルが改良されることで、制約が視認可および不可のデータに対して正確に満たされることが保証される。
非限定的な実施例について、原子収支制約などのほぼ線形等式制約を含むための、第一の方法200におけるプロセスの例示的な一般化の詳細な数学的記述は、以下のとおりである。この場合、制約式は、従属変数と独立変数の積の総和である。n個の独立変数xとm個の従属変数yを有するデータは、例えば、以下のl(エル)個のほぼ線形等式制約を満たす:
Figure 0007497516000020
1≦k≦l(エル)である。
Figure 0007497516000021

を、データセット用の線形回帰モデルを示すものとする。制約式の各従属変数yを、独立変数xの線形関数として表現され得る
Figure 0007497516000022

で置換すると、以下の式が導出される。
Figure 0007497516000023
1≦k≦l(エル)である。上記の導出および選択された目的関数(第一の方法200で上記に定義されるfOLSまたはfRRなど)を使用して、数値最適化問題を作成できる。独立変数の任意の値に対して制約式を満たす必要があるため、新しい一般的な制約式は、これらの新しい制約式の独立変数の係数をゼロに設定することによって、取得される。
Figure 0007497516000024
i、j=1、...、nおよびk=1、...、l(エル)である。これらの一般的な制約式は、選択された回帰目的関数と共に、制約式を常に満たす線形回帰モデルβを生成する係数行列を決定するために使用される数値最適化装置に入力を提供する。一般的な制約式はまた、数値最適化装置の収束の可能性を増加させるために必要な変数の減少も提供する。
図3は、ほぼ線形制約(実施形態におけるプロセスモデリングシステム130または制御装置システム122を支持するモデル)を組み込むモデルを取得するために使用される数値最適化のための方法ワークフロー300を示す。初めに、方法300または対応する実装システム130、122は、データ301およびほぼ線形制約式302を受信する。プリプロセッサ303は、任意の所望の前処理方法を使用して、データ301を前処理する。ステップ305は、目的によるデータ301用の目的関数を構築して、最も適合した線形回帰モデルを作成する。結果として得られる目的関数は、通常の最小二乗またはリッジ回帰目的関数などの任意の目的関数であり得る。
ビルダモジュール/ステップ321は、ほぼ線形制約式302を使用して、ステップ305からの目的関数と組み合わせて、数値最適化308の入力として使用される制約を構築する。ビルダモジュール/ステップ321は、受信されたほぼ線形制約式302を使用して、より一般的な制約を導出し、数値最適化308に入力される変数の数を減少させ、収束の可能性を増加させる。第一のビルダモジュール321は、受信されたほぼ線形制約式302中の従属変数に対する数式304を生成する。生成された数式304は、独立変数の一次式である。次のビルダモジュール321は、生成された従属変数方程式304を、元の受信された制約式302に置換方法で差し込み、独立変数のみを使用して表現された、更新された制約式306を作成する。更新された制約式306中の新しい独立変数の係数は、分離され得る。元の受信された制約式302が、すべての独立変数値に対して満たされなければならないため、ビルダモジュール321は、更新された制約式306中の独立変数に対する新しい係数を、分離してゼロに設定することによって、新しい一般的な制約307を生成する。これらの一般化された制約307は、目的関数305と共に、数値最適化308に入力される。次いで、数値最適化308は、ほぼ線形制約式302を満たす制約付きモデルの係数を生成する。
数値最適化装置のワークフロー300に加えて、第一の方法200と類似した射影手法を使用して、ほぼ線形制約式により解を得ることもできる。この手法の主な利点は、閉形式解が常に見つけられることである。この方法400では、各固定データ点について、いくつかの変数のみが変更可能で、他の変数を固定することによって、非線形方程式を調整させることができる。したがって、本手法は、線形等式制約を作成するために必要なだけ多くの変数を固定し、その後、線形等式制約について方法200で上述したものと同じ数学的アルゴリズムおよびプロセスを使用する。データセット全体に対して同じ変数(例えば、より良い性能を有する変数)を固定することで、実施形態は、非線形等式制約を満たす予測の新しい集合を作成できる。
例えば、物質収支および原子収支が、線形回帰モデルで配慮される必要があると仮定する。各要素の分子組成は未知であるが、各要素の質量および各要素中の原子の含有量は、モデルによって予測されると仮定する。上述のように、原子収支は、各要素の質量に原子の含有量を乗じた積の総和を含む、非線形制約式として表される。原子の含有量は、元のモデルによって予測される値に固定され得る。収支を満たすために変更され得る変数のみが、各要素の質量である。したがって、制約行列では、物質収支用に一行と、各原子が収支を取るために一行の、二種類の行のみを作成する必要がある。物質収支に対応する行は、線形制約式のための方法200で上述したように構築される。各原子収支は、各入力が、対応する要素の原子の含有量である行を与える。
この手法の例示的な実施形態に対する詳細な数学的説明は、以下の通りである。この方法/実施形態400では、固定される従属変数の部分集合を選択し、その他の変数を変化させることができる。この方法400は、簡便な実施例で図示される。データが、以下の制約式を満たすと仮定する。
+y+y=0およびx+y+y=0である。
およびy2、またはyおよびyのいずれかを固定して、線形制約式を生成することができる。yおよびyは、制約なし線形回帰の性能がyおよびyに対して高かったため、固定されると仮定する。その後、制約式を、行列表記で以下のように記述することができる。
Figure 0007497516000025
各データ点について、この記述は今や線形問題であり、最適な解を、線形等式制約に対する第一の方法200を使用して、導き出すことができる。具体的には、各データ点に対して異なるデータ調整行列を適用して、制約を満たす予測を取得する。第一の方法200のように、独立変数と従属変数との間の線形関係を、
Figure 0007497516000026

として定義し得る。この関係を使用して、制約行列中の従属変数を、独立変数の一次式で置換して、以下を取得することができる。
Figure 0007497516000027
この置換を使用して、第一の方法200に記載されるように、記号データ調整行列を計算および使用して、常に制約を満たすyおよびyに対する新しい式を取得することができる。独立変数の式がデータ点ごとに異なるため、手法の非線形性は、制約行列に表示される。実際には、記号による作業により、固有の制約および調整行列を取得可能である。
図4は、ほぼ線形等式制約式を組み込む線形回帰モデルに対する制約式を取得するために使用される、非線形直交射影の方法400のワークフローである。実装プロセスのモデリングシステム130または制御装置システム122は、データ401およびほぼ線形制約式402を受信する。モジュール403は、任意の所望の方法または技術(一般的または当該技術分野で公知)を使用して、データ401を前処理する。線形回帰モジュール404は、データ401に対して線形回帰を実行する。モジュール404、モジュールまたはステップ407から結果として得られる線形回帰出力を使用して、独立変数と従属変数の記号による線形方程式を生成する。次に、ステップまたはモジュール409は、調整行列に、モジュール407から出力される記号による線形方程式を含むベクトルを乗じることによって、直交射影を行う。行列乗算により、ほぼ線形制約式402によって、変数の一部に対して制約付きの線形方程式が生成される。
方法/システム400は、線形制約式のワークフロー200におけるデータ調整射影行列221と同様の様式で、データ調整射影行列421を構築する。しかしながら、行列421を構築する前に、方法/システム400により、ほぼ線形制約式402は線形様式に見える。ステップ405は、モジュール404から出力される線形回帰における変数の性能を使用して、線形等式制約を生成するために、調整され、固定値として扱われる変数を識別する。ステップ/モジュール406は、各データ点について、ほぼ線形制約式402を線形方程式として表す、記号による制約行列を構築する。ステップ408は、モジュール404によって実行される線形回帰からの重みを使用して、ステップ406によって構成された制約行列中の従属変数を、独立変数の一次式で置換することによって、記号による射影行列を構築する。
したがって、閉形式解は、結果として得られる記号による調整射影行列421に、独立変数と従属変数のモジュール407から出力される記号による一次式を含むベクトルを乗じることによって、取得され得る。この方法/実施形態400の重要な利点は、閉形式解が常に取得されることである。
第三の方法600:一般的な非線形等式制約
別の射影方法(実施形態)600を使用して、物質収支などの線形と、潜在的に原子収支などの非線形の両方に対して、等式制約を課すことができる。直交射影を使用する代わりに、構成要素の射影を使用して、制約が満たされることを保証可能である。制約式が従属変数の一部に対して解かれる場合、制約なしモデルを、数値最適化を使用して訓練可能で、従属変数の一部の値を、等式制約の解で置き換える。
図5は、直交射影511および構成要素の射影513を示す。この方法では、モデルは、yについて訓練され、一旦その値が見つかると、構成要素の射影513は、yの方向に沿って制約空間515まで実行される。図5は、直交射影と比較して、構成要素の射影図であり、方法600における構成要素の射影の特定の使用を反映することを意図しない。方法600は、制約式を使用して、構成要素の射影を介して解の空間を最初に減少させ、そして減少された空間における数値最適化を介して最適を見つけることを含む。
第三の方法600の例示的な実施形態のより詳細な数学的背景である構成要素の射影は、以下のとおりである。データが以下の等式制約を満たす場合、以下が成り立つ。
Figure 0007497516000028
式中、φは、連続的に微分可能な関数であり、
Figure 0007497516000029

である。Y’’に対するφのヤコビ行列式が所与の点(X、Y’)でゼロにならない場合、陰関数の定理によって、以下の関数が存在する。
Figure 0007497516000030
i=1、...l(エル)であり、その結果、以下が成り立つ。
Figure 0007497516000031
その点の近傍のすべてのX、Y’に対し、成り立つ。したがって、制約を、l(エル)個の従属変数に対して解くことができる。
例えば、OLS目的関数(または類似の回帰目的関数)を使用して、等式制約を含む最適化問題を作成し、解くことができる。新しい制約なしの目的関数は、以下の式で定義可能である。
Figure 0007497516000032
式中、
Figure 0007497516000033

およびΓ’とΓ’’は、それぞれY’およびY’’に関連する誤差共分散行列を示す。
Y’’の予測は、以下によって求めることができる。
Figure 0007497516000034
この導出により、制約がすべての予測に対して完全に満たされることが保証される。
図6は、一般的な制約式を組み込む線形回帰モデルに対する制約係数を取得するために使用される、構成要素の射影の実施形態の方法600のワークフローを示す。方法600を実施するプロセスモデリングシステム130または制御装置システム122は、データ601を受信する。プリプロセッサのステップまたはモジュール603は、受信されたデータ601を、一般的または当技術分野で公知の任意の所望の前処理方法または技術に供する。モジュール621のステップ605は、データ601を使用して、データ601に適合する制約なし線形モデルを決定する、目的関数605を作成する。プロセスモデリングシステム130または制御装置システム122はまた、制約式602を受信する。制約式602は、一般的な等式制約であり、線形方程式またはほぼ線形方程式である必要はない。ステップ604は、それらの従属変数の一部に対する制約式602を解く。次に、ステップ606は、制約式602の解かれた変数を、ステップ605から出力される初期目的関数への置換として使用する。該置換は、その解が制約式602を満たす、制約付き目的関数607を生成する。この置換はまた、図5が示すものに類似する構成要素の射影513を作成する。
制約付き目的関数607がモジュール621で導出される後、ステップ608は、図3で上述のように、数値最適化を応答的に適用して、解を見つける。制約付き目的関数607の解は、制約式602を満たすデータ601の線形回帰モデルに対する制約係数610を提供する。
従来において、類似の数値最適化手法は、二回微分可能な凸型最適化関数を備える線形等式制約にのみ使用される。しかしながら、実施形態/方法600は、このような技術を、非線形等式制約にも適用するよう拡張する。このような状況では、モデルの凸状が失われる可能性があるため、モデルの収束は保証され得ない。しかし、現在のほとんどの数値最適化装置は、問題が凸状でない場合でも、最適な解を見つけることができる。したがって、方法600の重要な部分は、一般的な非線形制約式を処理できる数値最適化用の設定を提供することである。
第四の方法:モデルの線形性を維持するほぼ線形等式制約
この方法/実施形態は、線形と非線形等式制約の両方を扱う場合に、第二の方法400および第三の方法600のいくつかの制限に対処する代替的な解を提供する。これらの制限は、所望の制約付きモデルが線形である必要があるが、制約は線形の必要がない場合に表示される。化学工学では、制約付きモデルは、製品と生産計画を最適化するためによく使用される。結果として、線形モデルまたは多項式モデルなどの単純なモデルは、信頼性の高い結果をより高速に、より正確に達成するためには、非常に望ましい。
線形制約を処理する解を記述する前に、第二の方法400および第三の方法600の潜在的な非線形性を探索すべきである。第三の方法600では、ほぼ線形等式制約を解くために使用される変数のモデルは、一般的に、二つの多項式の比率であって、分子は二次多項式であり、分母は線形項である。第二の方法400では、第一の方法200のワークフローを使用する場合、制約付き空間上に射影される変数のモデルは、高次多項式および非線形項の比となる。しかしながら、図3に記載される数値最適化手法300を使用して、所望の線形モデル形態を取得することができる。残念ながら、第二の方法400が生成可能な制約の数は、時には未知数の数よりも多いため、制約付き最適化を解くには十分な自由度がない。例えば、モデルが、m個の従属変数に対してn個の独立変数を有する場合、未知数の数は(n+1)m個となる。モデルが、一つのほぼ線形等式制約を満たす必要がある場合、
Figure 0007497516000035

の式を生じる。したがって、
Figure 0007497516000036

であれば、最適化装置は、解を生成できない。
第三の方法600の簡略化は、ワークフローを大幅に高速化し、変数のうちの一つの性能をわずかに損い得るのと引き換えに、収束の問題に対処可能であるように存在する。元のデータが、制約を小さい許容範囲まで満たす場合、制約なし非線形モデルの制約違反は、一般的に、元のデータよりも高いが、全体としては比較的小さいものとなる。制約式を、選択された変数を分離するために解き、残りの変数の出力を決定するために、制約なし線形モデルは、作成・使用され得る。性能を改良するために、分離された変数は、最も高い分散を有する変数とすることができる。その後、選択された変数は、制約式に置換された制約なしモデルからの他の変数の値を使用することによって、決定される。したがって、選択された変数は、制約式が満たされることを保証する値を常に有する。いかなる制約違反も軽度であり、制約を解くために使用される選択された変数が大きいため、選択された変数は、正確な線形モデルを生成するすべての誤差を吸収する。任意の利用可能なソフトウェアパッケージまたは方法を使用して、制約なし線形モデルをデータセットから計算することができ、数値最適化は不要である。この修正により、実行時間がはるかに短くなり、確実に解決策は、常に取得されるようになる。
線形性を可能な限り維持する別の方法は、第三の方法600の修正からなる。以前の簡略化によると、元のデータは、制約を、小さい許容範囲まで満たすものと仮定される。この方法のワークフローは、以下の非限定的な実施例で示され得る。物質収支を満たす線形モデルが必要であるが、モデルの入出力は、質量ベースの変数ではないと仮定する。例えば、質量は、体積と比重の積として与えられ得る。これにより、線形物質収支式が非線形方程式に変換され、反応の入力の体積と比重の積の総和は、その反応の出力の体積と比重の積の総和と等しくなければならない。
この方法の最初のステップは、各入力および出力の体積と比重を乗じて、対応する質量変数を加えることである。次のステップは、最大の体積変数および関連する質量変数を除き、データのすべての変数に対して線形モデルを適合させることである。物質収支制約は、これらの変数に対して線形である。制約式は、線形モデルから除外された質量変数に対して解かれ、包含された変数に対する制約なしモデルを使用して、すべての質量変数に対する線形モデルを取得することができる。質量が体積と比重の積でなければならないという関係を使用して、ほぼ線形モデルを、同様に線形モデルから除外された体積質量変数に対して取得することができる。最後の体積モデル用のモデルの線形性を保証できなくても、線形モデルは、他のすべての変数に対して作成され得る。さらに、非線形体積モデルは、他の変数に対する線形モデルを介して定義される。
第四の方法の例示的な実施形態についての詳細な数学的背景および例示的な詳細な導出は、以下の通りである。以下の導出では、データは質量ベースではないが、体積と比重として与えられる、物質収支を配慮する線形モデルを取得する方法が記載される。
詳細に入る前に、新しい表記を導入する必要がある。Y=(yv,1,...,yv,N)を、体積測定値を含む従属変数の集合を示すものとする。ここで、
Figure 0007497516000037

は、j=1、...、nに対して、m次元ベクトルである。表記を簡略化するには、(y 、...、y )を使用して、データ点とは独立して、異なる体積の特徴を示す。同様に、Y=(yg,1,...,yg,N)は、比重測定値を含む従属変数の集合を示し、
Figure 0007497516000038
は、j=1,...,nに対するm次元ベクトルであり、(y ...,y )は、データ点とは独立して、異なる比重の特徴を示す。
化学工学では、質量が、体積と比重の積に等しいことは公知である。
したがって、従属変数の新しい集合は、化学プロセスまたはシステム内の各要素の質量(または重量)を表す、y =y によって定義される。上記の表記を使用して、物質収支制約式を以下のように記述することができる。
Figure 0007497516000039
式中、Wは、供給流を表し、供給流の質量を含むすべての独立変数の総和である。一般性を失うことなく、W=x+...+x、1≦l≦nである。また、元のデータは、物質収支式を、小さな相対許容範囲まで満たし、すなわち、以下のようになる。
Figure 0007497516000040
式中、tol(許容範囲)は通常、j=1、...、nで、1%未満である。
一般性を失うことなく、y が、最も高い分散を有する変数であると仮定する。上述の表記および仮定を使用して、第四の方法の線形モデルの導出を、以下のように記述することができる。最初のステップは、線形モデルを、以下の変数に対して適合させることである。
質量変数
Figure 0007497516000041
体積変数
Figure 0007497516000042
比重変数
Figure 0007497516000043
第二のステップは、質量、体積、および比重の変数に対して既に適合された線形モデルを、物質収支制約式に代入することによって、y のモデルを取得することである。
Figure 0007497516000044
その後、上記の数式は、y について解かれ得る。
Figure 0007497516000045
したがって、y の線形モデルを取得する。
最後のステップは、y のモデルを取得することである。関係y =y を使用して、y は、y およびy の線形モデルから陰的に定義され得る。すなわち、以下のようになる。
Figure 0007497516000046
一般に、y のモデルは、線形ではない。しかしながら、y およびy の両方のモデルは線形であり、したがって、y を定義する衝撃式は、可能な限り単純である。
本明細書に記述された技術により、制約式を線形回帰モデルに組み込むための計算システムおよび関連方法の例示的な実装は、ソフトウェア、ファームウェア、またはハードウェア環境で実施され得る。図7は、本発明の実施形態(例:システム140)を実装し得る、コンピュータネットワークまたは類似のデジタル処理環境を示す。
クライアントコンピュータ/デバイス50およびサーバーコンピュータ60は、アプリケーションプログラムおよび類似のものを実行する、処理、記憶および入出力デバイスを提供する。クライアントコンピュータ/デバイス50はまた、通信ネットワーク70を介して、他のクライアントデバイス/プロセス50およびサーバーコンピュータ60を含む、他のコンピュータデバイスにリンクできる。通信ネットワーク70は、リモートアクセスネットワーク、グローバルネットワーク(例えば、インターネット)、クラウドコンピューティングのサーバーまたはサービス、世界規模で集積したコンピュータ、ローカルエリアまたは広域ネットワーク、および互いに通信するためにそれぞれのプロトコル(TCP/IP、Bluetoothなど)を現在使用するゲートウェイの一部となり得る。他の電子デバイス/コンピュータネットワークアーキテクチャも好適である。
クライアントコンピュータ/デバイス50およびサーバーコンピュータ60は、係数行列223を構築する、データ調整射影行列221、421を構築する、射影209、409を実行する、数値最適化300、608を実行する、制約なしおよび制約付き目的関数305、605、607を構築する、および/または本明細書に記載される任意の計算または導出を実行することを含む、本発明の実施形態200、400、600の計算ステップまたはプロセスのいずれかを実行し得る。クライアントコンピュータ/デバイス50およびサーバーコンピュータ60は、データ201、301、401、601、利用された制約式202、302、402、602、決定された制約係数210、310、410、610、および/またはモデルを含む、本発明の実施形態のステップまたはプロセスにおいて利用されるデータのいずれかを記憶し得る。
図8は、図7のコンピュータシステムにおける、コンピュータ(例えば、クライアントプロセッサ/デバイス50またはサーバーコンピュータ60)の内部構造の図である。各コンピュータ50、60は、システムバス79を包含し、バスは、コンピュータまたは処理システムの構成要素間でのデータ転送に使用される、一連のハードウェアラインである。バス79は、本質的に、要素間での情報転送を可能にするコンピュータシステムの異なる要素(例えば、プロセッサ、ディスク記憶装置、メモリ、入出力ポート、ネットワークポートなど)を接続する、共用導管である。システムバス79に取り付けられるのは、様々な入出力デバイス(例えば、キーボード、マウス、ディスプレイ、プリンター、スピーカーなど)をコンピュータ50、60に接続するための、I/Oデバイスインターフェース82である。ネットワークインターフェース86によって、コンピュータ50、60は、ネットワーク(例えば、図7のネットワーク70)に取り付けられる、他の様々なデバイスに接続され得る。メモリ90は、本発明の実施形態140を実施するために使用されるコンピュータソフトウェア命令92およびデータ94(例えば、方法200、300、400、および600のワークフローを完了するために使用されるモジュール)用の揮発性記憶装置を提供する。ディスク記憶装置95は、本発明の実施形態を実装するために使用される、コンピュータソフトウェア命令92およびデータ94のための不揮発性記憶装置を提供する。中央処理装置84はまた、システムバス79に取り付けられ、コンピュータ命令の実行に備える。
一つの実施形態では、プロセッサルーチン92およびデータ94は、本発明のシステムにソフトウェア命令の少なくとも一部分を提供する、コンピュータ可読媒体(例えば、一つ以上のDVD-ROM、CD-ROM、ディスケット、テープ、クラウドストレージ、SDカードなどの取り外し可能な記憶媒体)を含む、コンピュータプログラム製品(一般的に、92で参照される)である。コンピュータプログラム製品92は、当技術分野において周知のように、任意の好適なソフトウェアインストール手順によってインストールされ得る。別の実施形態では、ソフトウェア命令の少なくとも一部分はまた、ケーブル、通信および/または無線接続でダウンロードされ得る。他の実施形態では、本発明のプログラムは、伝搬媒体に伝搬信号(例えば、電波、赤外線波、レーザー波、音波、またはインターネットなどのグローバルネットワークもしくは他のネットワーク上で伝搬される電波)上で例示される、コンピュータプログラムにより伝搬信号製品107である。このような搬送媒体または信号は、本発明のルーチン/プログラム92に対し、ソフトウェア命令の少なくとも一部分を提供する。
代替の実施形態では、伝搬信号は、伝搬媒体に伝送されるアナログ搬送波またはデジタル信号である。例えば、伝搬信号は、グローバルネットワーク(例えば、インターネット)、電気通信ネットワークまたは他のネットワーク上で伝搬される、デジタル化信号であり得る。一つの実施形態では、伝搬信号は、ミリ秒、秒、分単位で、またはそれより長い期間にわたってネットワーク上をパケットとして送られるソフトウェアアプリケーションに対する命令など、ある時間の期間にわたって伝搬媒体を介して送信される信号である。別の実施形態では、コンピュータプログラム製品92のコンピュータ可読媒体は、コンピュータプログラムにより伝搬信号製品について上述したように、コンピュータシステム50が、伝搬媒体を受信し、そして伝搬媒体内の例示される伝搬信号を識別することなどによって、受信し、かつ読み出す伝搬媒体である。
一般的に言うと、用語「搬送媒体」または過渡の搬送波は、前述の過渡信号、伝搬信号、伝搬媒体、記憶媒体および類似のものを網羅する。他の実施形態では、プログラム製品92は、いわゆるサービスとしてのソフトウェア(SaaS)、またはエンドユーザを支援する他のインストールまたは通信として実装され得る。
例示的な実施形態が具体的に示され、説明されているが、添付の特許請求の範囲に含まれる実施形態の範囲から逸脱することなく、形態および詳細の様々な変更を行い得ることを、当業者は理解するであろう。
なお、本発明は、実施の態様として以下の内容を含む。
〔態様1〕
産業プロセスまたはプロセスエンジニアリングシステムの改良型予測モデルを生成するためのコンピュータ実装方法であって、
産業プラントにおける対象の物理ベースまたは化学ベースのプロセスを表すデータを受信することであって、前記受信されたデータは、独立変数と従属変数を含み、前記受信することは、一つ以上のデジタルプロセッサによって実行される、受信すること、
前記一つ以上のプロセッサによって、制約係数を有する少なくとも一つの線形等式制約式を受信することであって、前記少なくとも一つの線形制約式は、前記対象のプロセスの少なくとも一つの物理的特性を表す、受信すること、
前記制約係数を含む制約行列を構築することであって、前記構築することは、前記一つ以上のプロセッサによって自動的に実行される、構築すること、
前記一つ以上のプロセッサによって自動的に、潜在的な係数を含む係数行列を構築することであって、前記潜在的な係数は、前記受信されたデータの前記独立変数と前記従属変数との間の線形関係を定義する、構築すること、
前記制約行列と前記係数行列の積をゼロにする、潜在的な係数を、制約係数として定義することであって、前記定義することは、前記一つ以上のプロセッサによって自動的に実行される、定義すること、
前記受信されたデータに対する代数モデルを生成することであって、前記代数モデルは、前記独立変数と前記従属変数との間の代数関係を定義するモデル係数を有し、前記モデル係数は、前記定義することから生じる前記制約係数であり、前記生成された代数モデルは、前記少なくとも一つの物理的特性を満たす前記対象のプロセスの挙動の改良型予測を提供し、前記生成することは、前記一つ以上のプロセッサによって自動的に実行される、生成すること、および
前記対象のプロセスの挙動の予測が、前記産業プラントにおいて生成および適用されるように、前記生成された代数モデルを実行すること、を含む、コンピュータ実装方法。
〔態様2〕
前記対象の物理ベースまたは化学ベースのプロセスは、化学反応、処理システムの対象の変換、産業プロセスの一部、前記産業プラントの生産ユニットの運転、および前記産業プラントにおける機器の特定の部分の作動の物理特性のいずれかである、態様1に記載のコンピュータ実装方法。
〔態様3〕
前記産業プラントは、精製所、化学製造、医薬品製造、パーソナルおよびホームケア製造、栄養素製造、または類似のプロセス産業施設の一つである、態様1に記載のコンピュータ実装方法。
〔態様4〕
前記生成されたモデルは、前記産業プラントで前記対象のプロセスのプロセス制御に自動的に実行および使用される、態様1に記載のコンピュータ実装方法。
〔態様5〕
前記生成されたモデルは、前記対象のプロセスのリアルタイム最適化、オンライン最適化、またはオフライン最適化で実行および使用される、態様1に記載のコンピュータ実装方法。
〔態様6〕
前記生成されたモデルは、前記対象のプロセスを設計するために実行および使用される、態様1に記載のコンピュータ実装方法。
〔態様7〕
前記生成されたモデルは、線形モデルであり、通常の最小二乗回帰、リッジ回帰、LASSO回帰、部分最小二乗回帰、または弾性ネット回帰のうちの少なくとも一つを使用して生成される、態様1に記載のコンピュータ実装方法。
〔態様8〕
前記係数行列は、(i)上部ブロックとしての単位行列、および(ii)下部ブロックとしての前記潜在的な係数からなる行列を有する、垂直ブロック行列である、態様1に記載のコンピュータ実装方法。
〔態様9〕
前記モデル係数は、ラグランジュの乗数を使用して直接決定される、態様1に記載のコンピュータ実装方法。
〔態様10〕
前記モデル係数は、下記の式の解であって、
Figure 0007497516000047

式中、Bcは、前記モデル係数の行列であり、Iは、前記単位行列であり、nは、独立変数の数であり、mは、従属変数の数であり、Γ'は、正またはゼロの入力を有する対角行列であり、Gは、前記制約行列であり、Tは、行列転置を示し、BUCは、前記受信されたデータの制約なし線形モデルの係数の行列である、態様9に記載のコンピュータ実装方法。
〔態様1〕
前記モデル係数は、数値最適化装置を使用して決定される、態様1に記載のコンピュータ実装方法。
〔態様12〕
前記少なくとも一つの物理的特性は、物質収支を含む、態様1に記載のコンピュータ実装方法。
〔態様13〕
前記少なくとも一つの物理的特性は、エネルギー収支を含む、態様1に記載のコンピュータ実装方法。
〔態様14〕
前記少なくとも一つの物理的特性は、プロセス制御システムに対するゲイン制約を含む、態様1に記載のコンピュータ実装方法。
〔態様15〕
前記一つ以上のプロセッサによって、
少なくとも一つのほぼ線形制約式を受信すること、
前記受信されたデータの制約なし代数モデルを決定すること、
前記制約なし代数モデルを使用して、固定するための前記独立変数と従属変数の少なくとも一つを自動的に識別すること、および
前記受信された少なくとも一つのほぼ線形制約式および固定状態の前記識別された少なくとも一つの変数を使用して、前記少なくとも一つの線形制約式を作成することであって、前記作成された少なくとも一つの線形制約式は、前記少なくとも一つの物理的特性を表す、作成すること、をさらに含む、態様1に記載のコンピュータ実装方法。
〔態様16〕
前記少なくとも一つのほぼ線形制約式は、原子収支制約である、態様15に記載のコンピュータ実装方法。
〔態様17〕
前記少なくとも一つのほぼ線形制約式は、エネルギー制約である、態様15に記載のコンピュータ実装方法。
〔態様18〕
プロセスシステムの改良型予測モデルを生成するためのコンピュータ実装方法であって、
産業プラントにおけるプロセスシステムを表すデータを受信することであって、前記受信されたデータは、独立変数と従属変数を含み、前記受信することは、一つ以上のデジタルプロセッサによる、受信すること、
前記受信されたデータの線形モデルを決定するように構成された目的関数を構築することであって、前記構築することは、前記一つ以上のプロセッサによって自動的に実行される、構築すること、
前記一つ以上のプロセッサによって、少なくとも一つの制約式を受信することであって、前記少なくとも一つの制約式は、前記プロセスシステムの少なくとも一つの物理的特性を表す、受信すること、
前記一つ以上のプロセッサによって、その入力が、前記目的関数と前記受信された少なくとも一つの制約式との組み合わせに基づく、数値最適化問題を構築すること、
前記独立変数と各従属変数との間の代数関係を定義するモデル係数の集合を有する代数モデルを生成することであって、前記モデル係数は、前記数値最適化問題の解であり、前記生成されたモデルは、前記少なくとも一つの物理的特性を満たす前記プロセスシステムの挙動の改良型予測を提供し、前記生成することは、前記一つ以上のプロセッサによって自動的に実行される、生成すること、および
前記プロセスシステムの挙動の予測が、前記産業プラントにおいて生成および適用されるように、前記生成されたモデルを実行すること、を含む、コンピュータ実装方法。
〔態様19〕
前記プロセスシステムは、化学反応、処理システムの対象の変換、産業プロセスの一部、前記産業プラントの生産ユニットの運転、および前記産業プラントにおける機器の特定の部分の作動の物理特性のいずれかである、態様18に記載のコンピュータ実装方法。
〔態様20〕
前記産業プラントは、精製所、化学製造、医薬品製造、パーソナルおよびホームケア製造、栄養素製造、または類似のプロセス産業施設の一つである、態様18に記載のコンピュータ実装方法。
〔態様21〕
前記生成されたモデルは、前記産業プラントで前記プロセスシステムのプロセス制御に、自動的に実行および使用される、態様18に記載のコンピュータ実装方法。
〔態様2〕
前記生成されたモデルは、前記プロセスシステムのリアルタイム最適化、オンライン最適化、またはオフライン最適化で実行および使用される、態様18に記載のコンピュータ実装方法。
〔態様23〕
前記生成されたモデルは、前記プロセスシステムを設計するために、実行および使用される、態様18に記載のコンピュータ実装方法。
〔態様24〕
前記目的関数は、通常の最小二乗回帰、リッジ回帰、LASSO回帰、部分最小二乗回帰、または弾性ネット回帰である、態様18に記載のコンピュータ実装方法。
〔態様25〕
前記少なくとも一つの制約式は、原子収支制約である、態様18に記載のコンピュータ実装方法。
〔態様26〕
前記少なくとも一つの制約式は、エネルギー制約である、態様18に記載のコンピュータ実装方法。
〔態様27〕
前記少なくとも一つの制約式は、制御ループゲイン制約である、態様18に記載のコンピュータ実装方法。
〔態様28〕
前記数値最適化問題を構築することは、
少なくとも一つの選択された従属変数に対する前記受信された少なくとも一つの制約式を解くこと、および
制約付き目的関数を生成するために、前記目的関数内の前記少なくとも一つの選択された従属変数を、前記解かれた少なくとも一つの制約式で置換することであって、その結果、前記数値最適化問題への入力が、前記生成された制約付き目的関数を含む、置換すること、をさらに含み、
前記生成されたモデルは、線形モデルである、態様18に記載のコンピュータ実装方法。
〔態様29〕
最大の分散を有する前記従属変数を、前記少なくとも一つの選択された従属変数として選択することをさらに含む、態様28に記載のコンピュータ実装方法。
〔態様30〕
前記数値最適化問題を構築することは、
前記従属変数の一次式を、前記受信された少なくとも一つの制約式に代入すること、および
前記代入された少なくとも一つの制約式中の前記独立変数の係数を導出することであって、その結果、前記構築された数値最適化問題への入力が、前記目的関数を含み、前記独立変数の前記導出された係数が、ゼロに等しい、導出すること、をさらに含む、態様18に記載のコンピュータ実装方法。
〔態様31〕
プロセスシステムの改良型予測モデルを生成するためのコンピュータ実装方法であって、
産業プラントにおけるプロセスシステムを表すデータを受信することであって、前記受信されたデータは、独立変数と従属変数を含み、前記受信することは、一つ以上のプロセッサによる、受信すること、
前記一つ以上のプロセッサによって、少なくとも一つの制約式を受信することであって、前記少なくとも一つの制約式は、前記プロセスシステムの少なくとも一つの物理的特性を表す、受信すること、
少なくとも一つの選択された従属変数を決定することであって、前記決定することは、前記一つ以上のプロセッサによって応答的に実行される、決定すること、
前記決定された少なくとも一つの選択された従属変数を除外する、前記受信されたデータに対する線形モデルを生成することであって、前記生成することは、前記一つ以上のプロセッサによって自動的に実行される、生成すること、
前記決定された少なくとも一つの選択された従属変数に対する前記受信された少なくとも一つの制約式を解くことであって、前記解くことは、前記一つ以上のプロセッサによって自動的に実行される、解くこと、
前記少なくとも一つの選択された従属変数を除外する、前記受信されたデータに対して、前記解かれた少なくとも一つの制約式および前記生成された線形モデルを使用して、前記少なくとも一つの選択された従属変数に対するモデルを形成することであって、前記形成することは、前記一つ以上のプロセッサによって自動的に実行される、形成すること、
前記少なくとも一つの選択された従属変数に対する前記形成されたモデルと、前記少なくとも一つの選択された従属変数を除外する、前記受信されたデータに対する前記生成された線形モデルと、からなる代数モデルを生成することであって、前記生成された代数モデルは、前記少なくとも一つの物理的特性を満たす前記プロセスシステムの挙動の改良型予測を提供し、前記代数モデルを前記生成することは、前記一つ以上のプロセッサによって自動的に実行される、生成すること、および
前記プロセスシステムの挙動の予測が、前記産業プラントにおいて作成および適用されるように、前記生成された代数モデルを実行すること、を含む、コンピュータ実装方法。
〔態様32〕
前記少なくとも一つの制約式は、積の総和である、態様31に記載のコンピュータ実装方法。
〔態様3〕
前記少なくとも一つの制約式は、質量が体積と比重の積として与えられる、物質収支式である、態様32に記載のコンピュータ実装方法。
〔態様34〕
前記少なくとも一つの選択された従属変数は、最大の体積変数である、態様33に記載のコンピュータ実装方法。
〔態様35〕
産業プロセスの改良型予測モデルを生成するコンピュータベースのモデリングシステムであって、
プロセッサと、
プロセスモデラーであって、前記プロセッサによって実行可能であり、
産業プラントにおいて、対象の物理ベースまたは化学ベースのプロセスを表すデータを受信することであって、前記受信されたデータは、独立変数と従属変数を含む、受信すること、
制約係数を有する少なくとも一つの線形等式制約式を受信することであって、前記少なくとも一つの線形制約式は、前記対象のプロセスの少なくとも一つの物理的特性を表す、受信すること、
前記制約係数を含む制約行列を自動的に構築すること、
潜在的な係数を含む係数行列を自動的に構築することであって、前記潜在的な係数は、前記受信されたデータの前記独立変数と前記従属変数との間の線形関係を定義する、構築すること、
制約係数として、前記制約行列と前記係数行列の積をゼロにする、前記潜在的な係数を応答的に定義すること、および
前記受信されたデータに対する代数モデルを自動的に生成することであって、前記代数モデルは、前記独立変数と前記従属変数との間の代数関係を定義するモデル係数を有し、前記モデル係数は、前記定義することから生じる制約係数であり、前記生成されたモデルは、実行時に、前記少なくとも一つの物理的特性を満たす前記対象のプロセスの挙動の改良型予測を提供する、生成すること、を行うように構成された、プロセスモデラーと、を含む、コンピュータベースのモデリングシステム。
〔態様36〕
産業プロセスの改良型予測モデルを生成するための非一時的コンピュータプログラム製品であって、
コンピュータコード命令をその上に格納したコンピュータ可読媒体であって、前記コンピュータコード命令は、プロセッサによって実行される場合、前記プロセッサに関連付けられた装置に、
産業プラントにおいて、対象の物理ベースまたは化学ベースのプロセスを表すデータを受信することであって、前記受信されたデータは、独立変数と従属変数を有する、受信すること、
制約係数を有する少なくとも一つの線形等式制約式を受信することであって、前記少なくとも一つの線形制約式は、前記対象のプロセスの少なくとも一つの物理的特性を表す、受信すること、
前記制約係数を含む制約行列を構築すること、
潜在的な係数を含む係数行列を構築することであって、前記潜在的な係数は、前記受信されたデータの前記独立変数と前記従属変数との間の線形関係を定義する、構築すること、
制約係数として、前記制約行列と前記係数行列の積をゼロにする、前記潜在的な係数を定義すること、および
前記受信されたデータに対する代数モデルを生成することであって、前記生成されたモデルは、前記受信されたデータの前記独立変数と前記従属変数との間の代数関係を定義するモデル係数を有し、前記モデル係数は、前記定義することから生じる前記制約係数であり、前記生成されたモデルは、前記少なくとも一つの物理的特性を満たす前記対象のプロセスの挙動の改良型予測を提供する、生成すること、をさせる、コンピュータ可読媒体を含む、非一時的コンピュータプログラム製品。

Claims (36)

  1. 産業プロセスまたはプロセスエンジニアリングシステムの改良型予測モデルを生成するためのコンピュータ実装方法であって、
    産業プラントにおける対象の物理ベースまたは化学ベースのプロセスを表すデータを受信することであって、前記受信されたデータは、独立変数と従属変数を含み、前記受信することは、一つ以上のデジタルプロセッサによって実行される、受信すること、
    前記一つ以上のプロセッサによって、制約係数を有する少なくとも一つの線形等式制約式を受信することであって、前記少なくとも一つの線形等式制約式は、前記対象のプロセスの少なくとも一つの物理的特性を表す、受信すること、
    前記制約係数を含む制約行列を構築することであって、前記構築することは、前記一つ以上のプロセッサによって自動的に実行される、構築すること、
    前記一つ以上のプロセッサによって自動的に、潜在的な係数を含む係数行列を構築することであって、前記潜在的な係数は、前記受信されたデータの前記独立変数と前記従属変数との間の線形関係を定義する、構築すること、
    前記制約行列と前記係数行列の積をゼロにする、潜在的な係数を、制約係数として定義することであって、前記定義することは、前記一つ以上のプロセッサによって自動的に実行される、定義すること、
    前記受信されたデータに対する代数モデルを、前記少なくとも一つの線形等式制約式によって定義されるマニホールド内に含まれる射影された代数モデルに変換することであって、前記射影された代数モデルは、所与の独立変数と所与の従属変数との間の代数関係を定義するモデル係数を有し、前記モデル係数は、前記定義することから生じる前記制約係数であり、前記射影された代数モデルは、前記少なくとも一つの物理的特性を満たす前記対象のプロセスの挙動の改良型予測を提供し、前記変換することは、前記一つ以上のプロセッサによって自動的に実行される、変換すること、および
    前記対象のプロセスの挙動の予測が、前記産業プラントにおいて生成および適用されるように、前記射影された代数モデルを実行すること、を含む、コンピュータ実装方法。
  2. 前記対象の物理ベースまたは化学ベースのプロセスは、化学反応、処理システムの対象の変換、産業プロセスの一部、前記産業プラントの生産ユニットの運転、および前記産業プラントにおける機器の特定の部分の作動の物理特性のいずれかである、請求項1に記載のコンピュータ実装方法。
  3. 前記産業プラントは、精製所、化学製造、医薬品製造、パーソナルおよびホームケア製造、栄養素製造、または類似のプロセス産業施設の一つである、請求項1に記載のコンピュータ実装方法。
  4. 前記射影された代数モデルは、前記産業プラントで前記対象のプロセスのプロセス制御に自動的に実行および使用される、請求項1に記載のコンピュータ実装方法。
  5. 前記射影された代数モデルは、前記対象のプロセスのリアルタイム最適化、オンライン最適化、またはオフライン最適化で実行および使用される、請求項1に記載のコンピュータ実装方法。
  6. 前記射影された代数モデルは、前記対象のプロセスを設計するために実行および使用される、請求項1に記載のコンピュータ実装方法。
  7. 前記射影された代数モデルは、線形モデルであり、通常の最小二乗回帰、リッジ回帰、LASSO回帰、部分最小二乗回帰、または弾性ネット回帰のうちの少なくとも一つを使用して生成される、請求項1に記載のコンピュータ実装方法。
  8. 前記係数行列は、(i)上部ブロックとしての単位行列、および(ii)下部ブロックとしての前記潜在的な係数からなる行列を有する、垂直ブロック行列である、請求項1に記載のコンピュータ実装方法。
  9. 前記モデル係数は、ラグランジュの乗数を使用して直接決定される、請求項1に記載のコンピュータ実装方法。
  10. 前記モデル係数は、下記の式の解であって、
    Figure 0007497516000048
    式中、Bは、前記モデル係数の行列であり、Iは、単位行列であり、nは、独立変数の数であり、mは、従属変数の数であり、Γ’は、正またはゼロの入力を有する対角行列であり、Gは、前記制約行列であり、は、行列転置を示し、BUCは、前記受信されたデータの前記変換された代数モデルの係数の行列である、請求項9に記載のコンピュータ実装方法。
  11. 前記モデル係数は、数値最適化装置を使用して決定される、請求項1に記載のコンピュータ実装方法。
  12. 前記少なくとも一つの物理的特性は、物質収支を含む、請求項1に記載のコンピュータ実装方法。
  13. 前記少なくとも一つの物理的特性は、エネルギー収支を含む、請求項1に記載のコンピュータ実装方法。
  14. 前記少なくとも一つの物理的特性は、プロセス制御システムに対するゲイン制約を含む、請求項1に記載のコンピュータ実装方法。
  15. 前記一つ以上のプロセッサによって、
    少なくとも一つの線形制約式であって、前記概線形制約式は、独立変数と従属変数の積の総和の形態の非線形等式制約式である、少なくとも一つの概線形制約式を受信すること、
    前記受信されたデータの制約なし代数モデルを決定すること、
    前記制約なし代数モデルを使用して、固定するための前記独立変数と従属変数の少なくとも一つを自動的に識別すること、および
    前記受信された少なくとも一つの線形制約式および固定状態の前記識別された少なくとも一つの変数を使用して、前記少なくとも一つの線形等式制約式を作成することであって、前記作成された少なくとも一つの線形等式制約式は、前記少なくとも一つの物理的特性を表す、作成すること、をさらに含む、請求項1に記載のコンピュータ実装方法。
  16. 前記少なくとも一つの線形制約式は、原子収支制約である、請求項15に記載のコンピュータ実装方法。
  17. 前記少なくとも一つの線形制約式は、エネルギー制約である、請求項15に記載のコンピュータ実装方法。
  18. プロセスシステムの改良型予測モデルを生成するためのコンピュータ実装方法であって、
    産業プラントにおけるプロセスシステムを表すデータを受信することであって、前記受信されたデータは、独立変数と従属変数を含み、前記受信することは、一つ以上のデジタルプロセッサによる、受信すること、
    前記受信されたデータの線形モデルを決定するように構成された目的関数を構築することであって、前記構築することは、前記一つ以上のプロセッサによって自動的に実行される、構築すること、
    前記一つ以上のプロセッサによって、少なくとも一つの制約式を受信することであって、前記少なくとも一つの制約式は、前記プロセスシステムの少なくとも一つの物理的特性を表す、受信すること、
    前記一つ以上のプロセッサによって、その入力が、前記目的関数と前記受信された少なくとも一つの制約式との組み合わせに基づく、数値最適化問題を構築すること、
    前記受信されたデータに対する代数モデルを、所与の独立変数と所与の従属変数との間の代数関係を定義するモデル係数の集合を有する、前記少なくとも一つの制約式によって定義されるマニホールド内に含まれる射影された代数モデルに変換することであって、前記モデル係数は、前記数値最適化問題の解であり、前記射影された代数モデルは、前記少なくとも一つの物理的特性を満たす前記プロセスシステムの挙動の改良型予測を提供し、前記変換することは、前記一つ以上のプロセッサによって自動的に実行される、変換すること、および
    前記プロセスシステムの挙動の予測が、前記産業プラントにおいて生成および適用されるように、前記射影された代数モデルを実行すること、を含む、コンピュータ実装方法。
  19. 前記プロセスシステムは、化学反応、処理システムの対象の変換、産業プロセスの一部、前記産業プラントの生産ユニットの運転、および前記産業プラントにおける機器の特定の部分の作動の物理特性のいずれかである、請求項18に記載のコンピュータ実装方法。
  20. 前記産業プラントは、精製所、化学製造、医薬品製造、パーソナルおよびホームケア製造、栄養素製造、または類似のプロセス産業施設の一つである、請求項18に記載のコンピュータ実装方法。
  21. 前記射影された代数モデルは、前記産業プラントで前記プロセスシステムのプロセス制御に、自動的に実行および使用される、請求項18に記載のコンピュータ実装方法。
  22. 前記射影された代数モデルは、前記プロセスシステムのリアルタイム最適化、オンライン最適化、またはオフライン最適化で実行および使用される、請求項18に記載のコンピュータ実装方法。
  23. 前記射影された代数モデルは、前記プロセスシステムを設計するために、実行および使用される、請求項18に記載のコンピュータ実装方法。
  24. 前記目的関数は、通常の最小二乗回帰、リッジ回帰、LASSO回帰、部分最小二乗回帰、または弾性ネット回帰である、請求項18に記載のコンピュータ実装方法。
  25. 前記少なくとも一つの制約式は、原子収支制約である、請求項18に記載のコンピュータ実装方法。
  26. 前記少なくとも一つの制約式は、エネルギー制約である、請求項18に記載のコンピュータ実装方法。
  27. 前記少なくとも一つの制約式は、制御ループゲイン制約である、請求項18に記載のコンピュータ実装方法。
  28. 前記数値最適化問題を構築することは、
    少なくとも一つの選択された従属変数に対する前記受信された少なくとも一つの制約式を解くこと、および
    制約付き目的関数を生成するために、前記目的関数内の前記少なくとも一つの選択された従属変数を、前記解かれた少なくとも一つの制約式で置換することであって、その結果、前記数値最適化問題への入力が、前記生成された制約付き目的関数を含む、置換すること、をさらに含み、
    前記射影された代数モデルは、線形モデルである、請求項18に記載のコンピュータ実装方法。
  29. 最大の分散を有する前記従属変数を、前記少なくとも一つの選択された従属変数として選択することをさらに含む、請求項28に記載のコンピュータ実装方法。
  30. 前記数値最適化問題を構築することは、
    前記従属変数の一次式を、前記受信された少なくとも一つの制約式に代入すること、および
    前記代入された少なくとも一つの制約式中の前記独立変数の係数を導出することであって、その結果、前記構築された数値最適化問題への入力が、前記目的関数を含み、前記独立変数の前記導出された係数が、ゼロに等しい、導出すること、をさらに含む、請求項18に記載のコンピュータ実装方法。
  31. プロセスシステムの改良型予測モデルを生成するためのコンピュータ実装方法であって、
    産業プラントにおけるプロセスシステムを表すデータを受信することであって、前記受信されたデータは、独立変数と従属変数を含み、前記受信することは、一つ以上のプロセッサによる、受信すること、
    前記一つ以上のプロセッサによって、少なくとも一つの制約式を受信することであって、前記少なくとも一つの制約式は、前記プロセスシステムの少なくとも一つの物理的特性を表す、受信すること、
    少なくとも一つの選択された従属変数を決定することであって、前記決定することは、前記一つ以上のプロセッサによって応答的に実行される、決定すること、
    前記決定された少なくとも一つの選択された従属変数を除外する、前記受信されたデータに対する線形モデルを生成することであって、前記生成することは、前記一つ以上のプロセッサによって自動的に実行される、生成すること、
    前記決定された少なくとも一つの選択された従属変数に対する前記受信された少なくとも一つの制約式を解くことであって、前記解くことは、前記一つ以上のプロセッサによって自動的に実行される、解くこと、
    前記少なくとも一つの選択された従属変数を除外する、前記受信されたデータに対して、前記解かれた少なくとも一つの制約式および前記生成された線形モデルを使用して、前記少なくとも一つの選択された従属変数に対するモデルを形成することであって、前記形成することは、前記一つ以上のプロセッサによって自動的に実行される、形成すること、
    前記少なくとも一つの選択された従属変数に対する前記形成されたモデルと、前記少なくとも一つの選択された従属変数を除外する、前記受信されたデータに対する前記生成された線形モデルと、からなる代数モデルを、前記少なくとも一つの制約式によって定義されるマニホールド内に含まれる射影された代数モデルに変換することであって、前記変換された代数モデルは、前記少なくとも一つの物理的特性を満たす前記プロセスシステムの挙動の改良型予測を提供し、前記代数モデルを前記生成することは、前記一つ以上のプロセッサによって自動的に実行される、変換すること、および
    前記プロセスシステムの挙動の予測が、前記産業プラントにおいて作成および適用されるように、前記変換された代数モデルを実行すること、を含む、コンピュータ実装方法。
  32. 前記少なくとも一つの制約式は、積の総和である、請求項31に記載のコンピュータ実装方法。
  33. 前記少なくとも一つの制約式は、質量が体積と比重の積として与えられる、物質収支式である、請求項32に記載のコンピュータ実装方法。
  34. 前記少なくとも一つの選択された従属変数は、最大の体積変数である、請求項33に記載のコンピュータ実装方法。
  35. 産業プロセスの改良型予測モデルを生成するコンピュータベースのモデリングシステムであって、
    プロセッサと、
    プロセスモデラーであって、前記プロセッサによって実行可能であり、
    産業プラントにおいて、対象の物理ベースまたは化学ベースのプロセスを表すデータを受信することであって、前記受信されたデータは、独立変数と従属変数を含む、受信すること、
    制約係数を有する少なくとも一つの線形等式制約式を受信することであって、前記少なくとも一つの線形等式制約式は、前記対象のプロセスの少なくとも一つの物理的特性を表す、受信すること、
    前記制約係数を含む制約行列を自動的に構築すること、
    潜在的な係数を含む係数行列を自動的に構築することであって、前記潜在的な係数は、前記受信されたデータの前記独立変数と前記従属変数との間の線形関係を定義する、構築すること、
    制約係数として、前記制約行列と前記係数行列の積をゼロにする、前記潜在的な係数を応答的に定義すること、および
    前記受信されたデータに対する代数モデルを自動的に、前記少なくとも一つの線形等式制約式によって定義されるマニホールド内に含まれる射影された代数モデルに変換することであって、前記射影された代数モデルは、所与の独立変数と所与の従属変数との間の代数関係を定義するモデル係数を有し、前記モデル係数は、前記定義することから生じる制約係数であり、前記変換されたモデルは、実行時に、前記少なくとも一つの物理的特性を満たす前記対象のプロセスの挙動の改良型予測を提供する、変換すること、を行うように構成された、プロセスモデラーと、を含む、コンピュータベースのモデリングシステム。
  36. 産業プロセスの改良型予測モデルを生成するためのコンピュータプログラム製品であって、
    コンピュータコード命令をその上に格納したコンピュータ可読媒体であって、前記コンピュータコード命令は、プロセッサによって実行される場合、前記プロセッサに関連付けられた装置に、
    産業プラントにおいて、対象の物理ベースまたは化学ベースのプロセスを表すデータを受信することであって、前記受信されたデータは、独立変数と従属変数を有する、受信すること、
    制約係数を有する少なくとも一つの線形等式制約式を受信することであって、前記少なくとも一つの線形等式制約式は、前記対象のプロセスの少なくとも一つの物理的特性を表す、受信すること、
    前記制約係数を含む制約行列を構築すること、
    潜在的な係数を含む係数行列を構築することであって、前記潜在的な係数は、前記受信されたデータの前記独立変数と前記従属変数との間の線形関係を定義する、構築すること、
    制約係数として、前記制約行列と前記係数行列の積をゼロにする、前記潜在的な係数を定義すること、および
    前記受信されたデータに対する代数モデルを前記少なくとも一つの線形等式制約式によって定義されるマニホールド内に含まれる射影された代数モデルに変換することであって、前記射影されたモデルは、前記受信されたデータの所与の独立変数と所与の従属変数との間の代数関係を定義するモデル係数を有し、前記モデル係数は、前記定義することから生じる前記制約係数であり、前記射影されたモデルは、前記少なくとも一つの物理的特性を満たす前記対象のプロセスの挙動の改良型予測を提供する、変換すること、をさせる、コンピュータ可読媒体を含む、コンピュータプログラム製品。
JP2023506350A 2020-07-31 2021-07-02 等式制約を代数モデルに課すための射影方法 Active JP7497516B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US16/945,202 2020-07-31
US16/945,202 US11474508B2 (en) 2020-07-31 2020-07-31 Projection methods to impose equality constraints on algebraic models
PCT/US2021/040252 WO2022026121A1 (en) 2020-07-31 2021-07-02 Projection methods to impose equality constraints on algebraic models

Publications (2)

Publication Number Publication Date
JP2023537697A JP2023537697A (ja) 2023-09-05
JP7497516B2 true JP7497516B2 (ja) 2024-06-10

Family

ID=77168416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023506350A Active JP7497516B2 (ja) 2020-07-31 2021-07-02 等式制約を代数モデルに課すための射影方法

Country Status (4)

Country Link
US (1) US11474508B2 (ja)
EP (1) EP4189608A1 (ja)
JP (1) JP7497516B2 (ja)
WO (1) WO2022026121A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11474508B2 (en) 2020-07-31 2022-10-18 Aspentech Corporation Projection methods to impose equality constraints on algebraic models
CN112597540B (zh) * 2021-01-28 2021-10-01 支付宝(杭州)信息技术有限公司 基于隐私保护的多重共线性检测方法、装置及系统
US11740598B2 (en) 2021-04-30 2023-08-29 Aspentech Corporation Apparatus and methods to build a reliable deep learning controller by imposing model constraints

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004062440A (ja) 2002-07-26 2004-02-26 Toshiba Corp 予測モデルシステム
JP2012031797A (ja) 2010-07-30 2012-02-16 Toyota Motor Corp モデル構成装置
JP2019521444A (ja) 2016-07-07 2019-07-25 アスペン テクノロジー インコーポレイテッド 予測分析用の動作中心型第一原理プロセスモデルの動的構築及びオンライン配備のためのコンピュータシステム及び方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10310457B2 (en) 2014-11-24 2019-06-04 Aspen Technology, Inc. Runtime modeling approach to updating refinery planning models
US11474508B2 (en) 2020-07-31 2022-10-18 Aspentech Corporation Projection methods to impose equality constraints on algebraic models

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004062440A (ja) 2002-07-26 2004-02-26 Toshiba Corp 予測モデルシステム
JP2012031797A (ja) 2010-07-30 2012-02-16 Toyota Motor Corp モデル構成装置
JP2019521444A (ja) 2016-07-07 2019-07-25 アスペン テクノロジー インコーポレイテッド 予測分析用の動作中心型第一原理プロセスモデルの動的構築及びオンライン配備のためのコンピュータシステム及び方法

Also Published As

Publication number Publication date
WO2022026121A1 (en) 2022-02-03
EP4189608A1 (en) 2023-06-07
US20220035353A1 (en) 2022-02-03
JP2023537697A (ja) 2023-09-05
US11474508B2 (en) 2022-10-18

Similar Documents

Publication Publication Date Title
JP7497516B2 (ja) 等式制約を代数モデルに課すための射影方法
Bouhlel et al. A Python surrogate modeling framework with derivatives
Guénot et al. Adaptive sampling strategies for non‐intrusive POD‐based surrogates
US11169494B2 (en) Parametric universal nonlinear dynamics approximator and use
Kleijnen Kriging metamodeling in simulation: A review
JP2008521138A (ja) 制御システムの解析のための方法
MX2013006155A (es) Sistemas y metodos para reducir el tiempo de ejecucion de un modelo simulador de deposito.
EP3172685A1 (en) Improvements related to forecasting systems
Fu et al. Physics-data combined machine learning for parametric reduced-order modelling of nonlinear dynamical systems in small-data regimes
US20220260980A1 (en) Reluctant First Principles Models
Shokry et al. Sequential dynamic optimization of complex nonlinear processes based on kriging surrogate models
Abreu et al. A study on a feedforward neural network to solve partial differential equations in hyperbolic-transport problems
Yu Simulation-based estimation methods for financial time series models
Alexandridis et al. An offset-free neural controller based on a non-extrapolating scheme for approximating the inverse process dynamics
Zhang et al. A right-hand side function surrogate model-based method for the black-box dynamic optimization problem
WO2024189994A1 (en) Reduced order modeling and control of high dimensional physical systems using neural network model
Han et al. A kriging-based active learning algorithm for contour estimation of integrated response with noise factors
JERBI et al. Lyapunov-based Methods for Maximizing the Domain of Attraction
US11106987B2 (en) Forecasting systems
WO2023149838A2 (en) Machine learning with periodic data
Khowaja et al. Surrogate models for optimization of dynamical systems
CN114169185A (zh) 基于Kriging的随机和区间不确定性混合下系统可靠性分析方法
Santner et al. Some criterion-based experimental designs
Bistrian et al. Application of deterministic and randomized dynamic mode decomposition in epidemiology and fluid dynamics.
Golovkina et al. Neural network representation for ordinary differential equations

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230327

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240529

R150 Certificate of patent or registration of utility model

Ref document number: 7497516

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150