JP7495423B2 - 端末、通信システム、及び通信方法 - Google Patents

端末、通信システム、及び通信方法 Download PDF

Info

Publication number
JP7495423B2
JP7495423B2 JP2021550908A JP2021550908A JP7495423B2 JP 7495423 B2 JP7495423 B2 JP 7495423B2 JP 2021550908 A JP2021550908 A JP 2021550908A JP 2021550908 A JP2021550908 A JP 2021550908A JP 7495423 B2 JP7495423 B2 JP 7495423B2
Authority
JP
Japan
Prior art keywords
rss
cell
user terminal
time
information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021550908A
Other languages
English (en)
Other versions
JPWO2021064969A1 (ja
JPWO2021064969A5 (ja
Inventor
大樹 武田
浩樹 原田
卓馬 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Docomo Inc
Original Assignee
NTT Docomo Inc
Filing date
Publication date
Application filed by NTT Docomo Inc filed Critical NTT Docomo Inc
Priority claimed from PCT/JP2019/039213 external-priority patent/WO2021064969A1/ja
Publication of JPWO2021064969A1 publication Critical patent/JPWO2021064969A1/ja
Publication of JPWO2021064969A5 publication Critical patent/JPWO2021064969A5/ja
Application granted granted Critical
Publication of JP7495423B2 publication Critical patent/JP7495423B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、無線通信システムにおける測定のための技術に関する。
LTEのRel-15におけるeMTCのenhancementにおいて、System acquisition timeの削減が検討された。そこでは、ユーザ端末が時間・周波数の再同期をする際に、PSS/SSS再検出に時間を要することが懸念され、PSS/SSSの拡張及び再同期用の信号について議論がされ、結果として、Resynchronization signal(RSS、再同期信号)と呼ばれる再同期用の信号がRel-15でサポートされた。
更に、Rel-16にてeMTCのenhancementが議論されており、その一つとしてRSSを用いたMeasurement(測定)の検討が進められている。
3GPP TS 36.213 V15.6.0 (2019-06) 3GPP TS 36.331 V15.6.0 (2019-06)
ユーザ端末が、隣接セルで送信されるRSSのRSRP(受信電力)等を測定することを想定した場合、サービングセルの基地局装置から、隣接セルのRSSに関する時間・周波数位置の情報を受信することが望ましい。
上記のように、サービングセルの基地局装置から、隣接セルのRSSに関する時間・周波数位置の情報を受信する場合においては、シグナリングオーバーヘッドが増大するという課題がある。
本発明は上記の点に鑑みてなされたものであり、ユーザ端末が、隣接セルの再同期信号の測定を行うために行われるシグナリングのオーバーヘッドを削減することを可能とする技術を提供することを目的とする。
開示の技術によれば、複数の隣接セルに関する情報であって、セルIDを含む情報に基づいて、所定の数以下の前記隣接セル間で時間または周波数に関して重複しない再同期信号のリソースの位置を決定する制御部と、
前記位置に基づいて、前記隣接セルの再同期信号を受信する受信部と、を備え、
前記複数の隣接セルに関する情報は、前記各セルにおいて再同期信号を用いた測定が可能であるかに関する情報を含む、
端末が提供される。
開示の技術によれば、ユーザ端末が、隣接セルの再同期信号の測定を行うために行われるシグナリングのオーバーヘッドを削減することを可能とする技術が提供される。
本発明の実施の形態における無線通信システムを説明するための図である。 本発明の実施の形態における無線通信システムを説明するための図である。 RSSを説明するための図である。 基本的な動作例を説明するための図である。 RSS設定情報の例を示す図である。 RSSの周波数方向の配置を説明するための図である。 実施例1における課題を説明するための図である。 実施例1-1におけるRSSの配置例を示す図である。 実施例1-1におけるRSSの配置例を示す図である。 実施例1-1における動作例を説明するための図である。 実施例1-2における動作例を説明するための図である。 実施例1-2におけるRSSの配置例を示す図である。 実施例1-3におけるRSSの配置の通知のイメージを示す図である。 実施例1-3におけるRSSの配置の通知のイメージを示す図である。 実施例2における動作例を説明するための図である。 実施例2における動作例を説明するための図である。 実施例3-1の動作例を説明するための図である。 実施例3-2の動作例を説明するための図である。 実施例3-3における動作例を説明するための図である。 本発明の実施の形態における基地局装置10の機能構成の一例を示す図である。 本発明の実施の形態におけるユーザ端末20の機能構成の一例を示す図である。 本発明の実施の形態における基地局装置10又はユーザ端末20のハードウェア構成の一例を示す図である。
以下、図面を参照して本発明の実施の形態を説明する。なお、以下で説明する実施の形態は一例であり、本発明が適用される実施の形態は、以下の実施の形態に限られない。
本発明の実施の形態の無線通信システムの動作にあたっては、適宜、既存技術が使用される。当該既存技術は、例えば既存のLTE又はNRである。なお、本発明は、LTE又はNRに限らず、どのような無線通信システムにも適用可能である。
また、本発明の実施の形態において、複信(Duplex)方式は、TDD(Time Division Duplex)方式でもよいし、FDD(Frequency Division Duplex)方式でもよいし、又はそれ以外(例えば、Flexible Duplex等)の方式でもよい。
また、実施例1~3では、RSS(再同期信号)についての例を説明するが、他の信号を用いても当該信号について実施例1~3を適用できる。再同期信号が他の信号(例:同期信号)に置き換えられてもよい。
(システム構成)
図1は、本発明の実施の形態における無線通信システムを説明するための図である。本発明の実施の形態における無線通信システムは、図1に示されるように、基地局装置10及びユーザ端末20を含む。図1には、基地局装置10及びユーザ端末20が1つずつ示されているが、これは例であり、それぞれ複数であってもよい。
また、例えば、基地局装置10がユーザ端末20に対するサービングセル(自セルと呼んでもよい)を提供し、サービングセルに隣接して、他の1以上の基地局装置により1以上の隣接セルが形成されてもよい。なお、ユーザ端末20を「端末」と呼んでもよい。
基地局装置10は、1つ以上のセルを提供し、ユーザ端末20と無線通信を行う通信装置である。無線信号の物理リソースは、時間領域及び周波数領域で定義され、時間領域は、サブフレーム又はスロット又はOFDMシンボルで定義されてもよいし、周波数領域は、サブバンド、サブキャリア又はリソースブロックで定義されてもよい。
図1に示されるように、基地局装置10は、DL(Downlink)で制御情報又はデータをユーザ端末20に送信し、UL(Uplink)で制御情報又はデータをユーザ端末20から受信する。基地局装置10及びユーザ端末20はいずれも、ビームフォーミングを行って信号の送受信を行うことが可能である。また、基地局装置10及びユーザ端末20はいずれも、MIMO(Multiple Input Multiple Output)による通信をDL又はULに適用することが可能である。また、基地局装置10及びユーザ端末20はいずれも、CA(Carrier Aggregation)によるSCell(Secondary Cell)及びPCell(Primary Cell)を介して通信を行ってもよい。
ユーザ端末20は、スマートフォン、携帯電話機、タブレット、ウェアラブル端末、M2M(Machine-to-Machine)用通信モジュール等の無線通信機能を備えた通信装置である。図1に示されるように、ユーザ端末20は、DLで制御情報又はデータを基地局装置10から受信し、ULで制御情報又はデータを基地局装置10に送信することで、無線通信システムにより提供される各種通信サービスを利用する。なお、本実施の形態におけるユーザ端末20は、NB-IoTあるいはeMTCに対応した、利用可能帯域幅が削減された端末であることを想定しているが、この想定に限られない。
図2は、NR-DC(NR-Dual connectivity)が実行される場合における無線通信システムの構成例を示す。図2に示すとおり、MN(Master Node)となる基地局装置10Aと、SN(Secondary Node)となる基地局装置10Bが備えられる。基地局装置10Aと基地局装置10Bはそれぞれコアネットワークに接続される。ユーザ端末20は基地局装置10Aと基地局装置10Bの両方と通信を行う。
MNである基地局装置10Aにより提供されるセルグループをMCG(Master Cell Group)と呼び、SNである基地局装置10Bにより提供されるセルグループをSCG(Secondary Cell Group)と呼ぶ。実施例1~実施例3で後述する動作は、図1と図2のいずれの構成で行ってもよい。
(RSSについて)
本実施の形態では、サービングセルの基地局装置10、及び1以上の隣接セルの基地局装置のそれぞれからRSSが送信される。
RSSの系列は、Gold系列ベースで生成される。また、RSSは、QPSK変調により2PRBs(2物理リソースブロック)にマッピングされる。
RSSの周波数位置はConfigurableであり、システム情報(SIB)により基地局装置10からユーザ端末20に通知される。具体的には、RSSは、LTEシステム帯域中の連続した2PRBsに配置可能であり、Lowermost PRBの位置が通知される。
RSSの送信周期、時間オフセット、送信する時間長もそれぞれConfigurableであり、システム情報(SIB)により基地局装置10からユーザ端末20に通知される。具体的には、送信周期は160,320,640,1280msから選択され、時間オフセットの粒度は周期により決定される(1,2frame,又は4frame)。送信する時間長は8,16,32,40msから選択される。図3は、時間長が40msである場合のRSSの構成例を示している。
図3を見てもわかるように、RSSについて、PSS/SSSと比較して時間・周波数リソースの量が多く、ユーザ端末20は、基地局装置10との間で短時間での時間・周波数同期を実現できる。非特許文献1の4.1 Cell searchにおいて「For a BL/CE UE, if the UE is configured with higher layer parameter RSS-Config, the UE can use the resynchronization signal (as defined in [3]) to re-acquire time and frequency synchronization with the cell.」と記載されているように、ユーザ端末20は、RSSにより時間・周波数の再同期を行うことができる。
本実施の形態では、RSSは、時間・周波数の同期のみならず、Measurement(測定)にも使用される。ユーザ端末20は、RSSを受信することで、例えば、RSRP(受信電力)又はRSRQ(受信品質)を測定する。
例えば、ユーザ端末20は、RRC-Idle状態において、サービングセルのRSSにより測定した受信電力と、1以上の隣接セルのそれぞれのRSSにより測定した受信電力とに基づいてセル再選択(セル遷移)の判断を行う。
また、例えば、ユーザ端末20は、RRC-Connected状態において、サービングセルのRSSにより測定した受信電力と、1以上の隣接セルのそれぞれのRSSにより測定した受信電力とを基地局装置10に報告し、基地局装置10がユーザ端末20に対してハンドオーバを行わせるかどうかの判断を行うことができる。以降、一例として、RSSにより測定される量を受信電力とするが、RSSにより測定される量は受信品質であってもよい。
ユーザ端末20が、1以上の隣接セルのそれぞれで送信されるRSSの受信電力を測定するために、ユーザ端末20が、各隣接セルで送信されるRSSの時間・周波数リソースの位置(便宜上、時間・周波数位置と記載する)を知っておくことが望ましい。そこで、本実施の形態では、サービングセルの基地局装置10が、ユーザ端末20に対して、RRCメッセージ(システム情報等)により、各隣接セルの時間・周波数位置を示すパラメータを送信してもよい。具体的には、例えば下記のパラメータ群が送信されることとしてもよい。
・ce-rss-periodicity-config: RSS periodicity {160, 320, 640, 1280}ms
・ce-rss-duration-config : RSS duration {8, 16, 32, 40} subframes
・ce-rss-freqPos-config: RSS frequency location (lowest physical resource block number)
・ce-rss-timeOffset-config: RSS time offset in number of radio frames
・ce-rss-powerBoost-config : RSS power offset relative to LTE CRS {0, 3, 4.8, 6} dB
しかし、隣接セル毎に時間・周波数位置を示す上記のような詳細情報を基地局装置10からユーザ端末20に通知するとなると、シグナリング量が増大することから、RSSを配置する時間・周波数位置が制限されてもよい。例えば、「RSS時間オフセットとRSS周波数位置」がセルIDの関数として決めれるようにしてもよい。
(基本的な動作例)
図4は、本実施の形態(実施例1~実施例3を含む)における基本的な動作例を示す図である。図4において、基地局装置10Aは、ユーザ端末20のサービングセルの基地局装置であり、基地局装置10Bは、隣接セルの基地局装置である。なお、隣接セルは複数存在してよいが、図4で便宜上、1つの隣接セルの1つの基地局装置を示している。
S1において、ユーザ端末20は、サービングセルのRSSの時間・周波数位置の設定情報を含むRRCメッセージ(システム情報等)を基地局装置10から受信する。実施例1~3で詳述するように、当該RRCメッセージの中に隣接セルのRSSの時間領域又は周波数領域での配置に関する情報が含まれていてもよい。なお、隣接セルのRSSの時間領域又は周波数領域での配置に関する情報については、サービングセルのRSSの時間・周波数位置の設定情報を送信するRRCメッセージとは別のRRCメッセージで送信されてもよい。
図5は、サービングセルのRSSの時間・周波数位置の設定情報の例(非特許文献2からの抜粋)を示す。図6は、システム帯域幅が20MHzの場合のRSSの周波数領域での配置可能位置を示しており、0~98の99通りの配置が可能であることが示されている。
図4のS2において、ユーザ端末20は、隣接セルのRSSの時間・周波数位置(時間・周波数範囲でもよい)を決定し、S3において、隣接セルのRSSを受信し、RSSの受信電力の測定を行う。
なお、図4は、隣接セルの測定に着目した図であるので、隣接セルの測定が記載されているが、ユーザ端末20は、サービングセルのRSSを用いた測定に加えて、隣接セルのRSSを用いた測定を行ってもよい。
また、図4において、隣接セルの測定を行う段階で、ユーザ端末20は、RRC-Idle状態であってもよいし、RRC-Connected状態であってもよい。
以下、より詳細な動作例を実施例1~実施例3として説明する。実施例1、実施例2、及び実施例3は、任意に組み合わせて実施可能である。
(実施例1)
図6に例示したとおり、RSSの周波数リソースの位置(周波数位置)はLTEシステム帯域幅の中で任意に設定可能であり、かつCell-specificな設定が可能である。
しかし、このようなRSS周波数位置を前提とすると、RSSを用いた隣接セルのMeasurementを想定した場合、ユーザ端末20がモニタ可能な周波数の範囲に、隣接セルのRSSが収まらない場合が想定される。
そのような場合、ユーザ端末20は、サービングセルのRSSと隣接セルのRSSあるいは、複数隣接セルのRSSを同時にモニタすることができず、例えばm複数のRSS周期に渡ったMeasurementを強制される可能性があり、Measurementの負荷が増大する可能性がある。
図7は、ユーザ端末20がモニタ可能な周波数の範囲に、隣接セルのRSSが収まらない場合の例を示している。図7は、ユーザ端末20が6RBの帯域幅をモニタ可能である場合を示している。図7に示すとおり、隣接セルAのRSSと隣接セルBのRSSはともにユーザ端末20がモニタ可能な周波数の範囲の外にある。この場合、例えば、ユーザ端末20は、隣接セルAのRSSと隣接セルBのRSSをモニタできないか、あるいは、モニタ可能な範囲(6RB)を移動させて、隣接セルAのRSSと隣接セルBのRSSをモニタする必要がある。このような動作により、負荷が増大する可能性がある。
そこで、実施例1では、隣接セルのRSSの周波数位置が、サービングセルのRSSの周波数位置(RSS-configで指定されるもの)に対して近いかどうかを示す情報を、基地局装置20がユーザ端末20に対してexplicit又はimplicit通知する。ユーザ端末20は、通知された情報により、隣接セルのRSSの周波数位置が、サービングセルのRSSの周波数位置に対して近いことを把握することで、隣接セルのRSSを少ない負荷でモニタできる。基地局装置側の観点では、実施例1では、隣接するセル間では、特定の周波数範囲にRSSが配置されることが想定される。
具体的には下記の実施例1-1~実施例1-3がある。以下では、隣接セルが1つである例を示しているが、隣接セルの数は2以上であってもよい。
<実施例1-1>
実施例1-1では、基地局装置10がユーザ端末20に対して、隣接セルのRSSの周波数位置が、サービングセルのRSSの周波数位置と共通(同じ)であるかどうかを示す情報、又は、隣接セルのRSSの周波数位置とサービングセルのRSSの周波数位置とが特定の周波数範囲内にあるかどうかを示す情報を通知する。
上記の通知は、図4のS1において、サービングセルのRSSの設定情報送信とともにに行われてもよいし、図4のS1とは別タイミングで行われてもよい。また、上記の通知は、RRCメッセージ、MAC CE、DCIのうちのいずれで行ってもよい。上記の通知には、隣接セルを識別する識別情報(例:隣接セルのセルID)が含まれていてもよい。この識別情報により、ユーザ端末20は、どの隣接セルのRSSを受信するかを把握できる。なお、セルIDは、RSSの系列から取得できる。
基地局装置10がユーザ端末20に対して、隣接セルのRSSの周波数位置が、サービングセルのRSSの周波数位置と共通であることを示す情報を送信する場合におけるRSSの時間・周波数配置の例を図8に示す。横軸は時間であるが、オフセットを表している。つまり、図示の時間位置で、周期的にRSSが送信される。
ユーザ端末20は、RSS-Configにより、サービングセルのRSSの時間・周波数位置(ユーザ端末20によりモニタ可能)を知っているので、それと同じ周波数位置において、隣接セルのRSSを受信し、測定を行うことができる。
隣接セルのRSSの時間位置に関しては、例えば、当該時間位置が基地局装置10からユーザ端末20に通知される。また、ユーザ端末20は、例えば、隣接セルのRSSの時間位置がサービングセルのRSSの時間位置に近い、又は同じであると想定して隣接セルのRSSをブラインドで検出してもよい。
基地局装置10がユーザ端末20に対して、隣接セルのRSSの周波数位置とサービングセルのRSSの周波数位置とが特定の周波数範囲内にあることを示す情報を送信する場合におけるRSSの時間・周波数配置の例を図9に示す。図9の例では、隣接セルのRSSの周波数位置とサービングセルのRSSの周波数位置とが周波数範囲A内にあることが示されている。この周波数範囲Aが、ユーザ端末20のモニタ可能な帯域幅の帯域であってもよい。
ユーザ端末20は、RSS-Configにより、サービングセルのRSSの時間・周波数位置(ユーザ端末20によりモニタ可能)を知っているので、当該周波数位置が存在する周波数範囲A内の周波数位置において、例えばブラインド検出で、隣接セルのRSSを受信し、測定を行うことができる。
隣接セルのRSSの時間リソースの位置(時間位置)に関しては、例えば、当該時間位置が基地局装置10からユーザ端末20に通知される。また、ユーザ端末20は、例えば、隣接セルのRSSの時間位置がサービングセルのRSSの時間位置に近い、又は同じであると想定して隣接セルのRSSをブラインドで検出してもよい。
また、上記の通知を行うことなく、サービングセルと隣接セルとが時間同期しているか否かに応じて動作を変えてもよい。この場合のユーザ端末20の動作例を図10のフローチャートを参照して説明する。対象となる隣接セルは、例えば隣接セルのPSS/SSSにより検出されているとする。
S101において、ユーザ端末20は、サービングセルと隣接セルとが時間同期しているか否かを判断する。時間同期しているか否かを、例えば、サービングセルと隣接セルのMultiplexing modeが両方ともTDDであるか否かで判断してもよい。この場合、サービングセルと隣接セルのMultiplexing modeが両方ともTDDであれば時間同期していると判断する。
S101の判定がYes(時間同期と判断)の場合、S102において、ユーザ端末20は、隣接セルのRSSの周波数位置とサービングセルのRSSの周波数位置とが特定の周波数範囲内にあると判断して、隣接セルのRSSを受信し、測定を行う。S102において、ユーザ端末20は、隣接セルのRSSの周波数位置が、サービングセルのRSSの周波数位置と共通であると判断して、測定を行ってもよい。
S101の判定がNo(時間同期でないと判断)の場合、S103において、ユーザ端末20は、基地局装置10から受信する隣接セルの時間・周波数位置の情報を利用して隣接セルのRSSの測定を行う。ユーザ端末20は、例えば、サービングセルと隣接セルの少なくとも1つのMultiplexing modeがFDDであれば時間同期していないと判断する。
図10の動作が実行される場合、基地局装置10は、自セルと時間同期でない隣接セルについての時間・周波数位置の詳細情報をRRCメッセージ等で送信し、自セルと時間同期である隣接セルについての時間・周波数位置の詳細情報を送信しない。ただし、この動作に限定されるわけではない。
<実施例1-2>
実施例1-2では、基地局装置10がユーザ端末20に対して、隣接セルのRSSの時間位置に関する情報を通知し、ユーザ端末20は、その通知に基づいて、隣接セルのRSSの周波数位置が、サービングセルのRSSの周波数位置と共通であるかどうかを判断する、又は、隣接セルのRSSの周波数位置とサービングセルのRSSの周波数位置とが特定の周波数範囲内にあるかどうかを判断する。つまり、実施例1-2では、サービングセルと隣接セル間でRSSの周波数位置が共通かどうか、又は、サービングセルと隣接セル間でRSSの周波数位置が特定の周波数範囲内にあるかどうかがImplicitにユーザ端末20に通知される。
隣接セルのRSSの時間位置に関する情報は、例えば、サービングセルのRSSと隣接セルのRSSが同じ時間位置に存在するか否かを示す情報である。「同じ時間位置」とは、オフセットと周期の両方がサービングセルのRSSと隣接セルのRSSとの間で同じであることであってもよいし、オフセットが同じで周期は異なっていてもよい、ことであってもよい。
実施例1-2の動作例を図11に示す。図11に示すように、S201において、基地局装置10はユーザ端末20に対して隣接セルのRSSの時間位置に関する情報を送信する。S201での送信は、図4のS1において、サービングセルのRSSの設定情報送信とともにに行われてもよいし、図4のS1とは別タイミングで行われてもよい。また、上記の送信は、RRCメッセージ、MAC CE、DCIのうちのいずれで行ってもよい。上記の隣接セルのRSSの時間位置に関する情報には、隣接セルを識別する識別情報(例:隣接セルのセルID)が含まれていてもよい。
S202において、ユーザ端末20は、S201で受信した情報に基づいて、隣接セルのRSSの周波数位置を判断する。
例えば、隣接セルのRSSの時間位置に関する情報が、サービングセルのRSSと隣接セルのRSSが同じ時間位置に存在することを示す情報である場合、S202において、ユーザ端末20は、例えば図12に示すように、隣接セルのRSSの周波数位置とサービングセルのRSSの周波数位置とが特定の周波数範囲内にあると判断する。
S203において、ユーザ端末20は、S202での判断に基づき隣接セルのRSSを受信し、測定を行う。例えば、S201において、隣接セルのRSSの時間位置に関する情報が、サービングセルのRSSと隣接セルのRSSが同じ時間位置に存在することを示す情報である場合、ユーザ端末20は、サービングセルのRSSの時間位置で、特定の周波数範囲内において、隣接セルのRSSを受信し、測定を行う。
なお、上記の例では、時間位置に関する情報を受信した場合に、周波数位置の想定を行うことを例として挙げているが、時間位置についても同様に、例えば、隣接セルのRSSの時間位置とサービングセルのRSSの時間位置とが特定の範囲内にあると判断することとしてもよい。
次に実施例1-3を説明する。実施例1-3には、第1例と第2例がある。
<実施例1-3の第1例>
実施例1-3の第1例では、基地局装置10がユーザ端末20に対して、サービングセルのRSSの周波数位置と、そこからの相対的な位置として隣接セルのRSSの周波数位置とを通知(設定)する。隣接セルのRSSの周波数位置を、サービングセルのRSSの周波数位置に対する相対位置で指定できるということは、隣接セルのRSSの周波数位置とサービングセルのRSSの周波数位置とが近い周波数位置にあることが想定されている。
上記の通知は、図4のS1において、サービングセルのRSSの設定情報送信とともにに行われてもよいし、図4のS1とは別タイミングで行われてもよい。図4のS1において、サービングセルのRSSの設定情報送信とともに通知を行う場合において、図4のS1で送信される情報は、既存のRSS-Configの情報に代えて、実施例1-3で説明する情報であってもよい。
また、上記の通知は、RRCメッセージ、MAC CE、DCIのうちのいずれで行ってもよい。上記の通知には、隣接セルを識別する識別情報(例:隣接セルのセルID)が含まれていてもよい。
基地局装置10がユーザ端末20に対して、サービングセルのRSSの周波数位置(F1とする)と、そこからの相対的な位置(ΔFとする)とを送信する場合において、F1とΔFとは別々の情報(例:別々のインデックス)であってもよいし、F1とΔFとがJoint-codingされていてもよい。
別々の情報である場合、例えばF1が34(例としてRB番号で示した位置)として通知され、ΔFが例えば3(F1から3RBだけ離れていることを意味する)として通知される。Joint-codingされる場合には、例えば、1つのインデックス(例:2進数の11011)で通知がなされる。インデックスは、例えば、上位3ビットが(例:110)がF1を表し、下位2ビット(例:11)がΔFを表すこととしてもよい。すなわち、サービングセルと隣接セルとで異なる分解能での周波数位置の指定が可能である。
ユーザ端末20は、サービングセルのRSSの周波数位置(F1)と、そこからの相対的な位置(ΔF)を受信することで、例えば図13に示すように、隣接セルのRSSの周波数位置を決定する。図13の例では、F2=F1+ΔFとして決定できる。
実施例1-3においても、実施例1-1と同様に、サービングセルと隣接セルとが時間同期しているか否かに応じて動作を変えてもよい。
例えば、ユーザ端末20は、サービングセルと隣接セルとが時間同期していると判断すると、基地局装置10からF1とΔFを受信することを期待し、F1とΔFを受信し、隣接セルのRSSの周波数位置を決定して、隣接セルのRSSの測定を行う。
ユーザ端末20は、サービングセルと隣接セルとが時間同期していないと判断すると、ユーザ端末20は、基地局装置10からF1とΔFを受信しないことを想定し、基地局装置10から受信する隣接セルの時間・周波数位置の詳細情報を利用して隣接セルのRSSの測定を行う。
サービングセルと隣接セルとが時間同期しているか否かについては、実施例1-1と同様に、サービングセルと隣接セルのMultiplexing modeが両方ともTDDであれば時間同期していると判断し、そうでなければ時間同期していないと判断してもよい。
また、基地局装置10は、例えば、サービングセルと隣接セルとが時間同期していると判断すると、ユーザ端末20に対してF1とΔFを送信し、時間同期していなければ、隣接セルの周波数位置の絶対情報を送信することとしてもよい。
また、隣接セルとサービングセルとが時間同期(例:両方TDDの場合)であり、ユーザ端末20が、隣接セルとサービングセル間でRSSの時間位置が同じであると判断した場合(例えば実施例1-2で説明した情報を受信した場合)において、基地局装置10からF1とΔFを受信し、F1とΔFを用いて隣接セルのRSSの周波数位置を決定することとしてもよい。
隣接セルとサービングセルとが時間同期でない、あるいは、隣接セルとサービングセル間でRSSの時間位置が同じでない場合には、ユーザ端末20は、基地局装置10から受信する隣接セルのRSSの周波数位置の絶対情報により隣接セルのRSSの周波数位置を決定する。
また、隣接セルとサービングセルとが時間同期(例:両方TDDの場合)であり、隣接セルとサービングセル間でRSSの時間位置が同じである場合、基地局装置10は、F1とΔFを送信することで、相対的な位置として隣接セルのRSSの周波数位置を指定する。また、隣接セルとサービングセルとが時間同期でない、あるいは、隣接セルとサービングセル間でRSSの時間位置が同じでない場合には、基地局装置10は、隣接セルのRSSの周波数位置の絶対情報を通知する。ただし、このような基地局装置10の動作は一例である。
ユーザ端末20は、隣接セルのRSSの周波数位置(相対位置)を、サービングセルのセルID又は当該隣接セルのセルIDに基づいて決定しても良い。例えば、隣接セルのセルIDをN(Nは予め定めた整数)で割った余りが、サービングセルのRSSの周波数位置に対する隣接セルのRSSの相対位置を表していてもよい。このようにセルIDを用いる場合には、上述した明示的な相対位置の通知は不要になる。
また、ユーザ端末20は、隣接セルのRSSの周波数位置(相対位置)が存在する周波数範囲を、サービングセルのセルID又は当該隣接セルのセルIDに基づいて決定しても良い。例えば、隣接セルのセルIDをN(Nは予め定めた整数)で割った余りが、サービングセルのRSSの周波数位置に対する隣接セルのRSSの相対位置の周波数範囲を表していてもよい。
上記のセルIDは、PCIそのものであってもよいし、Local IDであってもよいし、Group IDであってもよい。なお、本明細書全体で、セルIDは、PCIそのものであってもよいし、Local IDであってもよいし、Group IDであってもよい。
<実施例1-3における第2例>
上述した例では、RSSの周波数位置について説明したが、RSSの時間位置についても上記の例が同じく適用できる。具体的には下記のとおりである。実施例1-3における第1例と第2例を組み合わせてもよい。下記で説明する時間位置は、オフセットのみでもよいし、オフセットと周期の両方であってもよい。また、第2例では、サービングセルと隣接セルとが時間同期していることを想定している。
実施例1-3の第2例では、基地局装置10がユーザ端末20に対して、サービングセルのRSSの時間位置と、そこからの相対的な位置として隣接セルのRSSの時間位置とを通知(設定)する。隣接セルのRSSの時間位置を、サービングセルのRSSの時間位置に対する相対位置で指定できるということは、隣接セルのRSSの時間位置とサービングセルのRSSの時間位置とが近い時間位置にあることが想定されている。ただし、この想定に限られない。
上記の通知は、図4のS1において、サービングセルのRSSの設定情報送信とともにに行われてもよいし、図4のS1とは別タイミングで行われてもよい。図4のS1において、サービングセルのRSSの設定情報送信とともに通知を行う場合において、図4のS1で送信される情報は、既存のRSS-Configの情報に代えて、実施例1-3で説明する情報であってもよい。
また、上記の通知は、RRCメッセージ、MAC CE、DCIのうちのいずれで行ってもよい。上記の通知には、隣接セルを識別する識別情報(例:隣接セルのセルID)が含まれていてもよい。
基地局装置10がユーザ端末20に対して、サービングセルのRSSの周波数位置(T1とする)と、そこからの相対的な位置(ΔTとする)とを送信する場合において、T1とΔTとは別々の情報(例:別々のインデックス)であってもよいし、T1とΔTとがJoint-codingされていてもよい。
ユーザ端末20は、サービングセルのRSSの時間位置(T1)と、そこからの相対的な位置(ΔT)を受信することで、例えば図14(横軸はオフセットを示す)に示すように、隣接セルのRSSの時間位置を決定できる。図14の例では、T2=T1+ΔTとして決定できる。
ユーザ端末20は、隣接セルのRSSの時間位置(相対位置)を、サービングセルのセルID又は当該隣接セルのセルIDに基づいて決定しても良い。例えば、隣接セルのセルIDをN(Nは予め定めた整数)で割った余りが、サービングセルのRSSの時間位置に対する隣接セルのRSSの相対位置を表していてもよい。このようにセルIDを用いる場合には、上述した明示的な相対位置の通知は不要になる。
また、ユーザ端末20は、隣接セルのRSSの時間位置(相対位置)が存在する時間範囲(候補範囲と呼んでもよい)を、サービングセルのセルID又は当該隣接セルのセルIDに基づいて決定しても良い。例えば、隣接セルのセルIDをN(Nは予め定めた整数)で割った余りが、サービングセルのRSSの時間位置に対する隣接セルのRSSの相対位置の時間範囲を表していてもよい。
上記のセルIDは、PCIそのものであってもよいし、Local IDであってもよいし、Group IDであってもよい。
以上説明した実施例1によれば、ユーザ端末20が効率的に隣接セルの再同期信号を受信することができる。
(実施例2)
次に、実施例2を説明する。ユーザ端末20が隣接セルのRSSを用いた測定を行うために、各隣接セルがRSSを送信しているかどうか、送信している場合にどの時間・周波数位置で送信しているかといった情報(この情報をアシスト情報と呼ぶ。支援情報と呼んでも良い)を、基地局装置10がユーザ端末20に送信することとしてよい。この場合、ユーザ端末20は、アシスト情報を用いて隣接セルのRSSによる測定を行うことができる。なお、実施例1で説明した基地局装置10からユーザ端末20に通知される情報はアシスト情報の一例である。
しかし、基地局装置10が、隣接セルリストの作成、及び各隣接セルのRSSの時間・周波数位置の情報を作成することを行わないことも考えられる。
図15は、アシスト情報が使用される場合における動作例を示す図である。S301において、基地局装置10がアシスト情報をユーザ端末20に送信する。S301で送信されるアシスト情報は、ユーザ端末20に対して隣接セルのRSS測定をサポートする情報であり、例えば、,隣接セルの一覧(例えば隣接セルのセルID一覧)、及び各隣接セルのRSS測定に関する情報を含む。RSS測定に関する情報は、例えば、RSSの時間・周波数位置の情報である。
アシスト情報を受信したユーザ端末20は、S302において、アシスト情報に基づいて隣接セルのRSSの測定を行う。例えば、ある隣接セルに関して、アシスト情報に示された当該隣接セルのRSSの時間・周波数位置をモニタすることで、当該隣接セルを受信し、測定を行う。
アシスト情報の通知は、図4のS1において、サービングセルのRSSの設定情報送信とともに行われてもよいし、図4のS1とは別タイミングで行われてもよい。また、アシスト情報の通知は、RRCメッセージ、MAC CE、DCIのうちのいずれで行ってもよい。
一例として、仕様上において、上記アシスト情報の通知はHigher layer signalingにおけるオプションとして定義され、その通知がされた場合とされない場合とで、隣接セルのRSS測定に関する動作を切り替えてもよい。
図16は、ユーザ端末20における上記切り替え動作の例を示す図である。S401において、ユーザ端末20は、在圏したサービングセルにおいて、上位レイヤシグナリング(例:システム情報)でアシスト情報を受信したかどうかを判断する。
アシスト情報を受信している場合(S401のYes)、S402において、ユーザ端末20は、アシスト情報に基づいて隣接セルのRSSの測定を実施する。
アシスト情報を受信しない場合(S401のNo)、S403において、ユーザ端末20は、例えば、有限個のパターンに基づいてRSSの時間・周波数位置を決定し、測定を実施する。パターンは、例えば、RSSの時間・周波数位置の複数候補、RSSの時間・周波数位置の範囲を示すものであり、ユーザ端末20は、当該パターンに基づいて、隣接セルのRSSをブラインド検出することができる。また、1つのパターンは、複数隣接セルに適用されてもよいし、隣接セルのセルIDに応じて複数のパターンから1つのパターンが選択されてもよい。
上記のパターンは、例えば、隣接セルのRSS測定のみに使用するパターンとして仕様で決められていて、ユーザ端末20及び基地局装置10に予め設定されていてもよい。上記のパターンは、例えば、下記の(1)、(2)、(3)のうちのいずれか1つの要素、いずれか2つの要素、又は、3つの要素を含むパターンである。
(1)RSSの周波数位置;
(2)RSSの送信長及び時間オフセット、又はRSSを配置可能なsubframeの位置;
(3)サービングセルのRSSと隣接セルのRSSが存在する周波数の範囲。
上記(3)が使用される場合、サービングセルのRSSと隣接セルのRSSが特定の周波数範囲にあることを想定でき、その場合、ユーザ端末20は、既知であるサービングセルのRSSの周波数位置周辺の周波数範囲のみモニタすれば良いと判断できる。
ここで、仮にパターン1、パターン2の2パターンが規定されているとする。一例として、パターン1は、「(周波数位置A1,送信長A1及び時間オフセットA1),(周波数位置A2,送信長A2及び時間オフセットA2),(周波数位置A3,送信長A3及び時間オフセットA3)」であり、パターン2は、「(周波数位置B1,送信長B1及び時間オフセットB1),(周波数位置B2,送信長B2及び時間オフセットB2),(周波数位置B3,送信長B及び時間オフセットB3)」である。
また、例えば、ユーザ端末20が、隣接セルのPSS/SSSから隣接セルのセルIDを検出しているとして、ユーザ端末20は、当該セルIDに対応するパターンをパターン1であると決定する。
この場合、ユーザ端末20は、当該隣接セルのRSSをパターン1を用いて検出し、測定を行う。つまり、ユーザ端末20は、(周波数位置A1,送信長A1及び時間オフセットA1),(周波数位置A2,送信長A2及び時間オフセットA2),(周波数位置A3,送信長A3及び時間オフセットA3)のそれぞれで当該隣接セルのRSSをモニタし、当該隣接セルのRSSを検出した時間・周波数位置でRSSを受信し、測定を実行する。
また、複数パターンから1つのパターンを選択することに関して、パターンがシステム帯域幅に対応付けられていることとしてもよい。
例えば、パターン1=20MHz、パターン2=10MHzであるときに、仮にユーザ端末20が、検出した隣接セルからのシステム情報等により、当該隣接セルのシステム帯域幅を20MHzであると検知すると、当該隣接セルのRSSをパターン1を用いてモニタする。
なお、上記の例では、アシスト情報がある場合には、アシスト情報を用いることとしたが、アシスト情報がある場合においても、アシスト情報がない場合の例として説明した方法と同様の方法を用いてもよい。
例えば、ユーザ端末20及び基地局装置10は、基地局装置10が有限個のパターンでRSSを配置可能であると想定し、基地局装置10はそのパターンの中で実際にどの時間・周波数の位置でRSSが送信されるのかを示す情報(アシスト情報の一例)をユーザ端末20に通知することとしてもよい。ユーザ端末20は、隣接セルのセルID等でパターンを特定し、この通知と当該パターンとにより、隣接セルのRSSを受信する。これにより、全ての候補位置から決定する必要がないため、シグナリグ容量の削減になる。
以上説明した実施例2によれば、ユーザ端末20が、隣接セルの再同期信号の測定を支援する支援情報を受信しない場合でも、隣接セルの再同期信号の測定を行うことができる。
(実施例3)
次に、実施例3を説明する。前述したとおり、ユーザ端末20が隣接セルのRSSを用いた測定を行うために、各隣接セルがRSSを送信しているかどうか、送信している場合にどの時間・周波数位置で送信しているかといった情報(アシスト情報)を、基地局装置10がユーザ端末20に送信することとしてよい。
上記アシスト情報が送信される場合、各隣接セル毎に例えば7ビットの時間・周波数位置をユーザ端末に通知する必要がある。
上記のシグナリンクオーバーヘッドの削減が必要であり、そのために、RSS測定におけるRSSの配置可能な位置(時間位置又は周波数位置又は時間・周波数位置)の候補を削減することが考えられる。
前述したように、RSS配置可能な位置の候補を削減するために、配置する「RSS時間オフセットとRSS周波数位置」をセルIDの関数とすることが考えられる。しかし、セルIDに基づいてRSS時間オフセット及び周波数位置(=最大99通りでconfigure可能)を決定することとした場合、サービングセルと隣接セルとの間、あるいは、隣接セル間のセルIDの組み合わせによっては、サービングセルと隣接セルとの間、あるいは、隣接セル間でRSSの時間・周波数位置が衝突する可能性が考えられる。つまり、セルIDの組み合わせによっては、直交した時間・周波数リソースにRSSを配置できない場合が存在する。より詳細には下記のとおりである。なお、ここでの「直交する」とは、時間・周波数位置が重複しないことを意味する。
一例として、RSSをセル間で周波数方向のみで直交させることを想定した場合、RSSの周波数位置は最大で99通り(システム帯域幅が20MHzの場合)であるため、セルID(504通り)に基づく周波数位置では、周波数位置がセル間で衝突する可能性がある。つまり、異なる複数のセルIDが、同じ周波数位置に紐付く可能性があり、この関係に基づき配置を行う場合には、周波数位置がセル間で衝突する可能性がある。
RSSをセル間で時間・周波数方向で直交させることを想定した場合、最大99通りの周波数位置について、RSSの送信周期及び送信長に応じた時間配置を行うが、場合によってはセルIDに時間・周波数位置を対応付けることで、RSSの時間・周波数位置をユニークに設定することができる(セル間で直交化するようにRSSを配置できる)。
直交化するようにRSSを配置できる場合の例1とできない場合の例2を以下に示す。
例1:RSS周期1280msの場合、40msごとの時間粒度で32通りの時間オフセットを適用可能である。この場合、時間方向に32通りの直交した配置を想定することで32×99(504よりも大きい)通りの配置が可能であり、セルIDごとで直交した時間・周波数位置のRSSを配置可能である。
例2:RSS周期160msの場合、10msごとの時間粒度で16通りの時間オフセットを適用可能である。例えばRSS送信長が40msの場合、40ms単位での時間オフセットを適用することで、RSSが互いに重ならないように4通りの時間配置パターンを想定可能であるが、4×99は504よりも小さいので、セルIDで「時間オフセット及び周波数位置」を表し、各セルでのRSS配置を行う場合には、セル間でRSSが直交化しない場合が生じる。
上記に加えて、もしもユーザ端末20が同時にモニタ可能な周波数の範囲が制限されており、その周波数範囲にRSSを配置するとした場合、セルIDごとで個別の時間・周波数リソースを想定することはより難しくなる。
上記の点を鑑みて、実施例3では、セルID等により、ユーザ端末20が隣接セル検出のためにモニタすべき候補のリソースを定義することで、シグナリンクオーバーヘッドの削減を図ることとしている。以下、実施例3-1、実施例3-2、実施例3-3を説明する。
<実施例3-1>
実施例3-1では、ユーザ端末20は、例えば下記の情報(1)、(2)、(3)のうちのいずれか1つ、いずれか2つ、又は3つに基づいて、隣接セルのRSS測定向けにRSSを配置可能な1以上の時間・周波数位置候補を決定する。ユーザ端末20から見て、下記の情報は隣接セルに関する情報である。
(1)Physical cell ID(セルIDと呼ぶ)、又は、その一部の情報(例:Local ID);
(2)LTEシステム帯域幅;
(3)RSSの周期及び時間オフセット。
例えば、図17に示すように、セルID=1の隣接セルから送信されるRSSが配置される時間・周波数位置の候補として、Aで示す時間・周波数領域が仕様等に定義され、セルID=2の隣接セルから送信されるRSSが配置される時間・周波数位置の候補として、Bで示す時間・周波数領域が定義されれる。セルID=3、4でも同様である。各領域のどこかのリソースの位置でRSSが送信される。
上記の記載はユーザ端末20から見た観点での記載であり、隣接セルの基地局装置は、自分のセルIDに対応する時間・周波数領域の中のいずれかの時間・周波数位置でRSSを送信する。
図17は、候補が領域の形式で表されているが、候補が、RSSが送信され得る複数の時間・周波数位置であってもよい。候補が、時間・周波数領域、複数の時間・周波数位置のいずれの場合もこれを「時間・周波数候補」と呼んでよい。
隣接セルのRSSの時間・周波数候補(領域、複数の位置等)は、隣接セル間で重複していてもよい。例えば、図17で示す例において、領域Aが、セルID=1、10、20の3つのセルに対応付けられていてもよい。実際に送信されるRSSが重複していなければよい。ユーザ端末20は、受信するRSSの系列から取得できるセルIDにより、想定したセルのRSSかを認識できる。
上記の技術により、シグナリングオーバーヘッドを削減できる。なお、サービングセルの基地局装置10(あるいは隣接セルの基地局装置)は、隣接セルにおいて、時間・周波数候補(領域、複数の位置等)の中から実際にRSSを送信する時間・周波数位置をユーザ端末20に通知してもよい。この通知は、候補の中の位置(相対的な位置)を示すものなので、絶対位置を通知する場合よりも、少ない情報量での通知が可能である。
この通知により、ユーザ端末20は、ブラインド検出をすることなく、隣接セルのRSSを受信し、測定することが可能となる。ブラインド検出を行う例については実施例3-2として後述する。
上記のように候補を定義することをデフォルトとして規定し、オペレータが手動でRSS位置を調整できるようにOptionalな通知を仕様で規定し、その内容で上記の候補を上書きしても良い。すなわち、隣接セルで、セルID等と対応付けて定義される上記の候補以外の時間・周波数位置からRSSが送信される場合、サービングセルの基地局装置10は、ユーザ端末20に対して当該隣接セルからは、デフォルトの候補以外の時間・周波数位置でRSSが送信されることを通知してもよい。
ユーザ端末20による、ある隣接セルについての、上記(1)、(2)、(3)に基づくRSSの時間・周波数候補の決定例として例えば下記の例1、例2、例3がある。
例1:ユーザ端末20は、隣接セルのセルIDに対応する、RSSの時間・周波数候補(領域、複数位置等)を決定する。この決定は、前述したとおり、例えば仕様書での規定に基づく。
例2:ユーザ端末20は、隣接セルのLTEシステム帯域幅が最大の20MHzの場合のみ、例1の動作を行う。隣接セルのLTEシステム帯域幅が最大の20MHzではない場合には、例えば、実施例1の通知、あるいは実施例2のアシスト情報の通知がなされることを想定して、測定動作を行ってもよい。
例3:ユーザ端末20は、隣接セルのLTEシステム帯域幅が最大の20MHzの場合、又は、RSSの周期が1280msかつ送信長が8msの場合のみ、例1の動作を行ってもよい。いずれの場合でもない場合、例えば、実施例1の通知、あるいは実施例2のアシスト情報の通知がなされることを想定して、測定動作を行ってもよい。なお、「RSSの周期が1280msかつ送信長が8ms」における1280ms、8msは一例に過ぎない。
<実施例3-2>
実施例3-2において、ユーザ端末20は、実施例3-1で説明したとおりの方法で、隣接セルのRSSの時間・周波数候補(領域、複数の位置等)を決定する。実施例3-2では、候補の中で実際にRSSが送信される時間・周波数位置はユーザ端末20に通知されず、ユーザ端末20は、ブラインドで、候補の中から該当隣接セルのRSSを検出する。該当隣接セルのRSSであるかどうかは、RSSの系列から取得できるセルIDにより判断できる。
なお、デフォルトでセルIDに紐付く時間・周波数候補を規定した上で、該当隣接セルでその候補の場所にRSSが配置されていない場合のみ、基地局装置10がユーザ端末20に対して個別に隣接セルのRSSの位置に関する情報を通知しても良い。位置に関する情報は、具体的な時間・周波数位置であってもよいし、実施例1で説明した情報であってもよい。
実施例3-2についての動作例を、図18を参照して説明する。図18には、ユーザ端末20のサービングセルを提供する基地局装置10Aと、サービングセルに対する隣接セルを提供する基地局装置10Bが示されている。
S501において、RRCメッセージが基地局装置10Aからユーザ端末20に送信される。当該RRCメッセージには、サービングセルのRSSの時間・周波数位置の情報を含む。この情報により、後述する隣接セルのRSSの測定に加えて、サービングセルのRSSの測定を行うことができる。
S502において、ユーザ端末20は、隣接セルの基地局装置10BからPSS/SSSを受信することで、S503で隣接セルのセルIDを検知する。ユーザ端末20は、当該セルIDに対応するRSSの時間・周波数候補を把握する。
S504において、ユーザ端末20は、上記時間・周波数候補をモニタすることで、隣接セルのRSSを検出する。S505において、ユーザ端末20は、当該RSSを用いた隣接セルの測定を行う。
<実施例3-3>
実施例1、実施例2、実施例3-1、実施例3-2のいずれの場合にも、RSS測定においては、ユーザ端末20は、同時に複数の隣接セルのRSSを捕捉できる場合がある。
そのような場合を考慮して、実施例3-3では、ユーザ端末20が同時に検出可能なRSSの数(RSSで検知されるセルIDの数と言い換えてもよい)を予め仕様等で規定して、ユーザ端末20はその数までのRSS検出を行う。ユーザ端末20が同時に検出可能なRSSの数は、RRC-IDLE状態とRRC-CONNECTED状態とで別々に定義されてもよい。
また、ユーザ端末20が同時に検出可能なRSSの数を予め仕様等で規定することに代えて(又は、これに加えて)、図19のS701に示すように、ユーザ端末20が、同時に検出可能なRSSの数をUE capabilityとして基地局装置10に通知しても良い。
以上説明した実施例3によれば、ユーザ端末20が、隣接セルの再同期信号の測定を行うために行われるシグナリングのオーバーヘッドを削減することができる。
(装置構成)
次に、これまでに説明した処理及び動作を実行する基地局装置10及びユーザ端末20の機能構成例を説明する。基地局装置10及びユーザ端末20は上述した実施例1~実施例3を実施する機能を含む。ただし、基地局装置10及びユーザ端末20はそれぞれ、実施例1~実施例3のうちの一部の機能のみを備えることとしてもよい。
<基地局装置10>
図20は、基地局装置10の機能構成の一例を示す図である。図20に示されるように、基地局装置10は、送信部110と、受信部120と、設定部130と、制御部140とを有する。図20に示される機能構成は一例に過ぎない。本発明の実施の形態に係る動作を実行できるのであれば、機能区分及び機能部の名称はどのようなものでもよい。また、送信部110と、受信部120とをまとめて通信部と称してもよい。
送信部110は、ユーザ端末20側に送信する信号を生成し、当該信号を無線で送信する機能を含む。受信部120は、ユーザ端末20から送信された各種の信号を受信し、受信した信号から、例えばより上位のレイヤの情報を取得する機能を含む。また、送信部110は、ユーザ端末20へNR-PSS、NR-SSS、NR-PBCH、DL/UL制御信号、PDCCHによるDCI、PDSCHによるデータ等を送信する機能を有する。
設定部130は、予め設定される設定情報、及び、ユーザ端末20に送信する各種の設定情報を設定部130が備える記憶装置に格納し、必要に応じて記憶装置から読み出す。
制御部140は、送信部110を介してユーザ端末20のDL受信あるいはUL送信のスケジューリングを行う。制御部140における信号送信に関する機能部を送信部110に含め、制御部140における信号受信に関する機能部を受信部120に含めてもよい。また、送信部110を送信機と呼び、受信部120を受信機と呼んでもよい。
<ユーザ端末20>
図21は、ユーザ端末20の機能構成の一例を示す図である。図21に示されるように、ユーザ端末20は、送信部210と、受信部220と、設定部230と、制御部240とを有する。図21に示される機能構成は一例に過ぎない。本発明の実施の形態に係る動作を実行できるのであれば、機能区分及び機能部の名称はどのようなものでもよい。送信部210と、受信部220をまとめて通信部と称してもよい。ユーザ端末20を端末と呼んでもよい。
送信部210は、送信データから送信信号を作成し、当該送信信号を無線で送信する。受信部220は、各種の信号を無線受信し、受信した物理レイヤの信号からより上位のレイヤの信号を取得する。また、受信部220は、基地局装置10から送信されるNR-PSS、NR-SSS、NR-PBCH、DL/UL/SL制御信号、PDCCHによるDCI、PDSCHによるデータ等を受信する機能を有する。また、例えば、送信部210は、D2D通信として、他のユーザ端末20に、PSCCH(Physical Sidelink Control Channel)、PSSCH(Physical Sidelink Shared Channel)、PSDCH(Physical Sidelink Discovery Channel)、PSBCH(Physical Sidelink Broadcast Channel)等を送信し、受信部120は、他のユーザ端末20から、PSCCH、PSSCH、PSDCH又はPSBCH等を受信することとしてもよい。
設定部230は、受信部220により基地局装置10又はユーザ端末20から受信した各種の設定情報を設定部230が備える記憶装置に格納し、必要に応じて記憶装置から読み出す。また、設定部230は、予め設定される設定情報も格納する。
制御部240は、ユーザ端末20の制御を行う。制御部240における信号送信に関する機能部を送信部210に含め、制御部240における信号受信に関する機能部を受信部220に含めてもよい。また、また、送信部210を送信機と呼び、受信部220を受信機と呼んでもよい。
(まとめ)
本実施の形態により、少なくとも、付記1~3のそれぞれに記載の各項の端末等が提供される。
<付記1>
(第1項)
サービングセルの基地局装置から、当該サービングセルの再同期信号の周波数位置と、隣接セルの再同期信号の周波数位置との関係を示す情報を受信する受信部220を備え、
前記受信部は、前記関係に基づく周波数位置で、前記隣接セルの再同期信号を受信する
端末。
(第2項)
サービングセルと隣接セルとが時間同期しているか否かを判断する制御部240と、
前記制御部により、前記サービングセルと前記隣接セルとが時間同期していると判断された場合に、前記サービングセルの再同期信号の周波数位置と、前記隣接セルの再同期信号の周波数位置とが特定の関係にあると想定して、前記隣接セルの再同期信号を受信する受信部220と
を備える端末。
(第3項)
サービングセルの基地局装置から、隣接セルの再同期信号の時間位置に関する情報を受信する受信部220を備え、
前記受信部は、前記情報に基づいて、前記サービングセルの再同期信号の周波数位置又は時間位置と、前記隣接セルの再同期信号の周波数位置又は時間位置とが特定の関係にあると想定して、前記隣接セルの再同期信号を受信する
端末。
(第4項)
サービングセルの基地局装置から、当該サービングセルの再同期信号の位置である第1の位置と、隣接セルの再同期信号の位置としての前記第1の位置からの相対的位置である第2の位置とを受信する受信部220を備え、
前記受信部は、前記第1の位置と前記第2の位置とに基づいて、前記隣接セルの再同期信号を受信する
端末。
(第5項)
前記受信部は、前記第1の位置と前記第2の位置を、ジョイントコーディングされた1つの値として受信する
第4項に記載の端末。
(第6項)
サービングセルの再同期信号の周波数位置と、隣接セルの再同期信号の周波数位置との関係を示す情報を端末に送信する送信部110を備え、
前記端末において、前記関係に基づく周波数位置で、前記隣接セルの再同期信号が受信される
基地局装置。
第1項~第6項に記載されたいずれの構成によっても、ユーザ端末が効率的に隣接セルの再同期信号を受信することができる。
<付記2>
(第1項)
隣接セルの再同期信号による測定を支援する支援情報が受信されない場合に、隣接セルの情報に基づいて、当該隣接セルの再同期信号が送信され得るリソースの位置のパターンを決定する制御部240と、
前記パターンに基づいて、前記隣接セルの再同期信号を受信する受信部220と
を備える端末。
(第2項)
前記受信部は、前記支援情報を受信する場合には、
当該支援情報を使用して前記隣接セルの再同期信号を受信する、又は、
前記隣接セルの情報を使用して前記隣接セルの再同期信号が送信され得るリソースの位置のパターンを決定し、当該パターンを使用して前記隣接セルの再同期信号を受信する、
第1項に記載の端末。
(第3項)
前記隣接セルの情報は、セルID又はシステム帯域幅である
第1項又は第2項に記載の端末。
(第4項)
前記パターンは、前記隣接セルの再同期信号の周波数位置候補、時間位置候補、又は、周波数範囲を含む
第1項ないし第3項のうちいずれか1項に記載の端末。
(第5項)
隣接セルの再同期信号による測定を支援する支援情報が受信されない場合に、隣接セルの情報に基づいて、当該隣接セルの再同期信号が送信され得るリソースの位置のパターンを決定するステップと、
前記パターンに基づいて、前記隣接セルの再同期信号を受信するステップと
を備える、端末が実行する受信方法。
第1項~第5項に記載されたいずれの構成によっても、ユーザ端末が、隣接セルの再同期信号の測定を支援する支援情報を受信しない場合でも、隣接セルの再同期信号の測定を行うことができる。
<付記3>
(第1項)
隣接セルの情報に基づいて、当該隣接セルの再同期信号が送信され得るリソースの位置の候補を決定する制御部240と、
前記候補に基づいて、前記隣接セルの再同期信号を受信する受信部220と
を備える端末。
(第2項)
前記受信部は、前記候補と、前記隣接セルの再同期信号が実際に送信されるリソースの位置を示す情報とに基づいて、前記隣接セルの再同期信号を受信する
第1項に記載の端末。
(第3項)
前記受信部は、前記候補に基づいて、前記隣接セルの再同期信号のブラインド検出を行う
第1項に記載の端末。
(第4項)
前記隣接セルの情報は、セルID、システム帯域幅、又は、再同期信号の時間位置に関する情報を含む
第1項ないし第3項のうちいずれか1項に記載の端末。
(第5項)
同時に受信可能な再同期信号の数を能力情報として基地局装置に送信する送信部210
を更に備える第1項ないし第4項のうちいずれか1項に記載の端末。
第1項~第5項に記載されたいずれの構成によっても、ユーザ端末が、隣接セルの再同期信号の測定を行うために行われるシグナリングのオーバーヘッドを削減することができる。
(ハードウェア構成)
上記実施形態の説明に用いたブロック図(図20及び図21)は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、見做し、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。たとえば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)や送信機(transmitter)と呼称される。いずれも、上述したとおり、実現方法は特に限定されない。
例えば、本開示の一実施の形態における基地局装置10、ユーザ端末20等は、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図22は、本開示の一実施の形態に係る基地局装置10及びユーザ端末20のハードウェア構成の一例を示す図である。上述の基地局装置10及びユーザ端末20は、物理的には、プロセッサ1001、記憶装置1002、補助記憶装置1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニット等に読み替えることができる。基地局装置10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
基地局装置10及びユーザ端末20における各機能は、プロセッサ1001、記憶装置1002等のハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004による通信を制御したり、記憶装置1002及び補助記憶装置1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。
プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインタフェース、制御装置、演算装置、レジスタ等を含む中央処理装置(CPU:Central Processing Unit)で構成されてもよい。例えば、上述の制御部140、制御部240等は、プロセッサ1001によって実現されてもよい。
また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール又はデータ等を、補助記憶装置1003及び通信装置1004の少なくとも一方から記憶装置1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、図20に示した基地局装置10の制御部140は、記憶装置1002に格納され、プロセッサ1001で動作する制御プログラムによって実現されてもよい。また、例えば、図21に示したユーザ端末20の制御部240は、記憶装置1002に格納され、プロセッサ1001で動作する制御プログラムによって実現されてもよい。上述の各種処理は、1つのプロセッサ1001によって実行される旨を説明してきたが、2以上のプロセッサ1001により同時又は逐次に実行されてもよい。プロセッサ1001は、1以上のチップによって実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されてもよい。
記憶装置1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically Erasable Programmable ROM)、RAM(Random Access Memory)等の少なくとも1つによって構成されてもよい。記憶装置1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)等と呼ばれてもよい。記憶装置1002は、本開示の一実施の形態に係る通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュール等を保存することができる。
補助記憶装置1003は、コンピュータ読み取り可能な記録媒体であり、例えば、CD-ROM(Compact Disc ROM)等の光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップ等の少なくとも1つによって構成されてもよい。上述の記憶媒体は、例えば、記憶装置1002及び補助記憶装置1003の少なくとも一方を含むデータベース、サーバその他の適切な媒体であってもよい。
通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(FDD:Frequency Division Duplex)及び時分割複信(TDD:Time Division Duplex)の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、送受信アンテナ、アンプ部、送受信部、伝送路インターフェース等は、通信装置1004によって実現されてもよい。送受信部は、送信部と受信部とで、物理的に、または論理的に分離された実装がなされてもよい。
入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサ等)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプ等)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
また、プロセッサ1001及び記憶装置1002等の各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。
また、基地局装置10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)等のハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。
(実施形態の補足)
以上、本発明の実施の形態を説明してきたが、開示される発明はそのような実施形態に限定されず、当業者は様々な変形例、修正例、代替例、置換例等を理解するであろう。発明の理解を促すため具体的な数値例を用いて説明がなされたが、特に断りのない限り、それらの数値は単なる一例に過ぎず適切な如何なる値が使用されてもよい。上記の説明における項目の区分けは本発明に本質的ではなく、2以上の項目に記載された事項が必要に応じて組み合わせて使用されてよいし、ある項目に記載された事項が、別の項目に記載された事項に(矛盾しない限り)適用されてよい。機能ブロック図における機能部又は処理部の境界は必ずしも物理的な部品の境界に対応するとは限らない。複数の機能部の動作が物理的には1つの部品で行われてもよいし、あるいは1つの機能部の動作が物理的には複数の部品により行われてもよい。実施の形態で述べた処理手順については、矛盾の無い限り処理の順序を入れ替えてもよい。処理説明の便宜上、基地局装置10及びユーザ端末20は機能的なブロック図を用いて説明されたが、そのような装置はハードウェアで、ソフトウェアで又はそれらの組み合わせで実現されてもよい。本発明の実施の形態に従って基地局装置10が有するプロセッサにより動作するソフトウェア及び本発明の実施の形態に従ってユーザ端末20が有するプロセッサにより動作するソフトウェアはそれぞれ、ランダムアクセスメモリ(RAM)、フラッシュメモリ、読み取り専用メモリ(ROM)、EPROM、EEPROM、レジスタ、ハードディスク(HDD)、リムーバブルディスク、CD-ROM、データベース、サーバその他の適切な如何なる記憶媒体に保存されてもよい。
また、情報の通知は、本開示で説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、DCI(Downlink Control Information)、UCI(Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、MAC(Medium Access Control)シグナリング、報知情報(MIB(Master Information Block)、SIB(System Information Block))、その他の信号又はこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージ等であってもよい。
本開示において説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、FRA(Future Radio Access)、NR(new Radio)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及びこれらに基づいて拡張された次世代システムの少なくとも一つに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE及びLTE-Aの少なくとも一方と5Gとの組み合わせ等)適用されてもよい。
本明細書で説明した各態様/実施形態の処理手順、シーケンス、フローチャート等は、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。
本明細書において基地局装置10によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局装置10を有する1つ又は複数のネットワークノード(network nodes)からなるネットワークにおいて、ユーザ端末20との通信のために行われる様々な動作は、基地局装置10及び基地局装置10以外の他のネットワークノード(例えば、MME又はS-GW等が考えられるが、これらに限られない)の少なくとも1つによって行われ得ることは明らかである。上記において基地局装置10以外の他のネットワークノードが1つである場合を例示したが、他のネットワークノードは、複数の他のネットワークノードの組み合わせ(例えば、MME及びS-GW)であってもよい。
本開示において説明した情報又は信号等は、上位レイヤ(又は下位レイヤ)から下位レイヤ(又は上位レイヤ)へ出力され得る。複数のネットワークノードを介して入出力されてもよい。
入出力された情報等は特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報等は、上書き、更新、又は追記され得る。出力された情報等は削除されてもよい。入力された情報等は他の装置へ送信されてもよい。
本開示における判定は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:true又はfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(DSL:Digital Subscriber Line)など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。
本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及びシンボルの少なくとも一方は信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。また、コンポーネントキャリア(CC:Component Carrier)は、キャリア周波数、セル、周波数キャリアなどと呼ばれてもよい。
本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。
また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースはインデックスによって指示されるものであってもよい。
上述したパラメータに使用する名称はいかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式等は、本開示で明示的に開示したものと異なる場合もある。様々なチャネル(例えば、PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。
本開示においては、「基地局(BS:Base Station)」、「無線基地局」、「基地局装置」、「固定局(fixed station)」、「NodeB」、「eNodeB(eNB)」、「gNodeB(gNB)」、「アクセスポイント(access point)」、「送信ポイント(transmission point)」、「受信ポイント(reception point)、「送受信ポイント(transmission/reception point)」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。
基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(RRH:Remote Radio Head)によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。
本開示においては、「移動局(MS:Mobile Station)」、「ユーザ端末(user terminal)」、「ユーザ端末(UE:User Equipment)」、「端末」などの用語は、互換的に使用され得る。
移動局は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、又はいくつかの他の適切な用語で呼ばれる場合もある。
基地局及び移動局の少なくとも一方は、送信装置、受信装置、通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのIoT(Internet of Things)機器であってもよい。
また、本開示における基地局は、ユーザ端末で読み替えてもよい。例えば、基地局及びユーザ端末間の通信を、複数のユーザ端末20間の通信(例えば、D2D(Device-to-Device)、V2X(Vehicle-to-Everything)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の基地局装置10が有する機能をユーザ端末20が有する構成としてもよい。また、「上り」及び「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。
同様に、本開示におけるユーザ端末は、基地局で読み替えてもよい。この場合、上述のユーザ端末が有する機能を基地局が有する構成としてもよい。
本開示で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。
「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的なものであっても、論理的なものであっても、或いはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。本開示で使用する場合、2つの要素は、1又はそれ以上の電線、ケーブル及びプリント電気接続の少なくとも一つを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。
参照信号は、RS(Reference Signal)と略称することもでき、適用される標準によってパイロット(Pilot)と呼ばれてもよい。
本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素への参照は、2つの要素のみが採用され得ること、又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
上記の各装置の構成における「手段」を、「部」、「回路」、「デバイス」等に置き換えてもよい。
本開示において、「含む(include)」、「含んでいる(including)」及びそれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。
無線フレームは時間領域において1つ又は複数のフレームによって構成されてもよい。時間領域において1つ又は複数の各フレームはサブフレームと呼ばれてもよい。サブフレームは更に時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジ(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。
ニューメロロジは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジは、例えば、サブキャリア間隔(SCS:SubCarrier Spacing)、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(TTI:Transmission Time Interval)、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。
スロットは、時間領域において1つ又は複数のシンボル(OFDM(Orthogonal Frequency Division Multiplexing)シンボル、SC-FDMA(Single Carrier Frequency Division Multiple Access)シンボル等)で構成されてもよい。スロットは、ニューメロロジに基づく時間単位であってもよい。
スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(又はPUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(又はPUSCH)マッピングタイプBと呼ばれてもよい。
無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。
例えば、1サブフレームは送信時間間隔(TTI:Transmission Time Interval)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。また、1スロットが単位時間と呼ばれてもよい。単位時間は、ニューメロロジに応じてセル毎に異なっていてもよい。
ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末20に対して、無線リソース(各ユーザ端末20において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。
TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。
なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。
1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。
なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。
リソースブロック(RB)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(subcarrier)を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジに基づいて決定されてもよい。
また、RBの時間領域は、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム、又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックで構成されてもよい。
なお、1つ又は複数のRBは、物理リソースブロック(PRB:Physical RB)、サブキャリアグループ(SCG:Sub-Carrier Group)、リソースエレメントグループ(REG:Resource Element Group)、PRBペア、RBペアなどと呼ばれてもよい。
また、リソースブロックは、1つ又は複数のリソースエレメント(RE:Resource Element)によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。
帯域幅部分(BWP:Bandwidth Part)(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジ用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。
BWPには、UL用のBWP(UL BWP)と、DL用のBWP(DL BWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。
設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。
上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(CP:Cyclic Prefix)長などの構成は、様々に変更することができる。
本開示において、例えば、英語でのa, an及びtheのように、翻訳により冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。
本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。
本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。
なお、本開示において、送信部210及び受信部220は、通信部の一例である。送信部110及び受信部120は、通信部の一例である。UECapabilityEnquiryは、ユーザ端末の能力を問い合わせる第1のRRCメッセージの一例である。UECapabilityInformationは、UE能力を報告する第2のRRCメッセージの一例である。
以上、本開示について詳細に説明したが、当業者にとっては、本開示が本開示中に説明した実施形態に限定されるものではないということは明らかである。本開示は、請求の範囲の記載により定まる本開示の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とするものであり、本開示に対して何ら制限的な意味を有するものではない。
10 基地局装置
110 送信部
120 受信部
130 設定部
140 制御部
20 ユーザ端末
210 送信部
220 受信部
230 設定部
240 制御部
1001 プロセッサ
1002 記憶装置
1003 補助記憶装置
1004 通信装置
1005 入力装置
1006 出力装置

Claims (3)

  1. 複数の隣接セルに関する情報であって、セルIDを含む情報に基づいて、所定の数以下の前記隣接セル間で時間または周波数に関して重複しない再同期信号のリソースの位置を決定する制御部と、
    前記位置に基づいて、前記隣接セルの再同期信号を受信する受信部と、を備え、
    前記複数の隣接セルに関する情報は、前記各セルにおいて再同期信号を用いた測定が可能であるかに関する情報を含む、
    端末。
  2. 複数の隣接セルに関する情報であって、セルIDを含む情報に基づいて、所定の数以下の前記隣接セル間で時間または周波数に関して重複しない再同期信号のリソースの位置を決定する制御部と、
    前記位置に基づいて、前記隣接セルの再同期信号を受信する受信部と、を備え、
    前記複数の隣接セルに関する情報は、前記各セルにおいて再同期信号を用いた測定が可能であるかに関する情報を含む、
    端末と、
    前記再同期信号を前記端末に送信する基地局と、
    を備える通信システム。
  3. 複数の隣接セルに関する情報であって、セルIDを含む情報に基づいて、所定の数以下の前記隣接セル間で時間または周波数に関して重複しない再同期信号のリソースの位置を決定するステップと、
    前記位置に基づいて、前記隣接セルの再同期信号を受信するステップと、を備え、
    前記複数の隣接セルに関する情報は、前記各セルにおいて再同期信号を用いた測定が可能であるかに関する情報を含む、
    端末が実行する通信方法。
JP2021550908A 2019-10-03 端末、通信システム、及び通信方法 Active JP7495423B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/039213 WO2021064969A1 (ja) 2019-10-03 2019-10-03 端末

Publications (3)

Publication Number Publication Date
JPWO2021064969A1 JPWO2021064969A1 (ja) 2021-04-08
JPWO2021064969A5 JPWO2021064969A5 (ja) 2022-06-14
JP7495423B2 true JP7495423B2 (ja) 2024-06-04

Family

ID=

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012029845A1 (ja) 2010-09-03 2012-03-08 シャープ株式会社 端末装置、基地局装置、通信システム、および通信方法
US20190229973A1 (en) 2018-01-25 2019-07-25 Qualcomm Incorporated Resynchronization signal design

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012029845A1 (ja) 2010-09-03 2012-03-08 シャープ株式会社 端末装置、基地局装置、通信システム、および通信方法
US20190229973A1 (en) 2018-01-25 2019-07-25 Qualcomm Incorporated Resynchronization signal design
JP2021511760A (ja) 2018-01-25 2021-05-06 クゥアルコム・インコーポレイテッドQualcomm Incorporated 再同期信号設計

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Huawei, HiSilicon,Considerations on RSS for measurement improvements[online],3GPP TSG RAN WG1 #98 R1-1908711,2019年08月30日,Internet<URL:https://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_98/Docs/R1-1908711.zip>
Huawei, HiSilicon,Use of RSS for measurement improvements[online],3GPP TSG RAN WG2 #107 R2-1910070,2019年08月30日,Internet<URL:https://www.3gpp.org/ftp/tsg_ran/WG2_RL2/TSGR2_107/Docs/R2-1910070.zip>
Sony,Summary of the use of RSS for measurement improvements[online],3GPP TSG RAN WG1 #97 R1-1907071,2019年05月17日,Internet<URL:https://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_97/Docs/R1-1907071.zip>
ZTE,Use of RSS for measurement improvement[online],3GPP TSG RAN WG1 #98 R1-1908263,2019年08月30日,Internet<URL:https://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_98/Docs/R1-1908263.zip>

Similar Documents

Publication Publication Date Title
CN110915274B (zh) 终端、无线通信方法、基站以及无线通信系统
WO2018084138A1 (ja) ユーザ端末及び無線通信方法
WO2018143399A1 (ja) ユーザ端末及び無線通信方法
JPWO2018128184A1 (ja) ユーザ端末及び無線通信方法
US20220353814A1 (en) Terminal, base station and communication method
JP7433336B2 (ja) 端末、基地局、通信システム、及び通信方法
JP7469334B2 (ja) 端末、及び通信方法
WO2021064969A1 (ja) 端末
US11895523B2 (en) User apparatus
JP7495423B2 (ja) 端末、通信システム、及び通信方法
WO2020144786A1 (ja) 端末及び通信方法
WO2020144785A1 (ja) 端末及び通信方法
AU2019468730B2 (en) Terminal and reception method
RU2803781C1 (ru) Терминал
JP7478171B2 (ja) 端末及び通信方法
JP7480311B2 (ja) 端末、基地局、無線通信システム、及び通信方法
WO2023012883A1 (ja) 端末、基地局及び通信方法
JP7427687B2 (ja) 端末、通信システム、及び通信方法
CN113412641B (zh) 用户装置
CN116671151A (zh) 终端以及通信方法
AU2019429344A1 (en) User device and control method