JP7494402B2 - Insulated electric wire and its manufacturing method, and insulated electric wire with terminal and its manufacturing method - Google Patents

Insulated electric wire and its manufacturing method, and insulated electric wire with terminal and its manufacturing method Download PDF

Info

Publication number
JP7494402B2
JP7494402B2 JP2023549241A JP2023549241A JP7494402B2 JP 7494402 B2 JP7494402 B2 JP 7494402B2 JP 2023549241 A JP2023549241 A JP 2023549241A JP 2023549241 A JP2023549241 A JP 2023549241A JP 7494402 B2 JP7494402 B2 JP 7494402B2
Authority
JP
Japan
Prior art keywords
conductor
coating layer
insulated wire
central strand
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2023549241A
Other languages
Japanese (ja)
Other versions
JPWO2023047514A1 (en
Inventor
勉 小泉
龍一 新井
照人 仲津
リサ 今井
慎之介 植田
伸明 光地
道朝 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SWCC Corp
Original Assignee
SWCC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SWCC Corp filed Critical SWCC Corp
Publication of JPWO2023047514A1 publication Critical patent/JPWO2023047514A1/ja
Application granted granted Critical
Publication of JP7494402B2 publication Critical patent/JP7494402B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/01Alloys based on copper with aluminium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/02Alloys based on copper with tin as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/04Alloys based on copper with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/06Alloys based on copper with nickel or cobalt as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/08Several wires or the like stranded in the form of a rope
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/02Disposition of insulation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Non-Insulated Conductors (AREA)
  • Insulated Conductors (AREA)

Description

本発明は絶縁電線およびその製造方法ならびに端子付き絶縁電線およびその製造方法に関する。 The present invention relates to an insulated electric wire and a method for manufacturing the same, and an insulated electric wire with a terminal and a method for manufacturing the same.

車両用や産業用の電力線や信号線等として、導体とそれを被覆する被覆層とを有する絶縁電線が用いられてきた。昨今、車両および産業機械の複雑制御や自動化に伴い、電線の細径化および高強度化が求められている。車両用の絶縁電線においては、多くは断面積が0.35mmの絶縁電線が使用されているものの、これより細径の絶縁電線の開発も進んでいる。 Insulated electric wires having a conductor and a coating layer that covers the conductor have been used as power lines, signal lines, etc. for vehicles and industrial use. Recently, with the complex control and automation of vehicles and industrial machines, there is a demand for thinner and stronger electric wires. Insulated electric wires for vehicles are often used with a cross-sectional area of 0.35 mm2, but the development of insulated electric wires with smaller diameters is also progressing.

例えば、特許文献1では、導体の断面積が略0.22mmとするため、導体に用いる銅合金の組成を調整することが記載されている。
特許文献2では、絶縁電線を細線化したときの座屈を抑制するため、導体の中心素線の表面に付着する油分量を低減することが記載されている。
For example, Patent Document 1 describes adjusting the composition of the copper alloy used in the conductor so that the cross-sectional area of the conductor is approximately 0.22 mm2 .
Patent Document 2 describes reducing the amount of oil adhering to the surface of the central strand of the conductor in order to suppress buckling when the insulated wire is thinned.

特許第6134103号公報Patent No. 6134103 特許第6864856号公報Patent No. 6864856

ここで、一般的に絶縁電線は単独で使用されることは少なく、絶縁電線の両端に端子を接続し、これを介して各種機器と接続する。そして、自動車や産業機械組み立ての際、またはこれらの使用時に、各種機器と電線とを接続した状態で、機器が落下することがある。これにより、絶縁電線に瞬間的に、自由落下方向への応力がかかり、電線が破断することがある。このような破断が生じると、機器が破損したり、機器間で十分な導通が図れなくなったりする。上記特許文献1や特許文献2に記載の絶縁電線では、このような瞬間的にかかる応力への耐性までは言及されていない。Generally, insulated wires are rarely used alone, but terminals are connected to both ends of the insulated wire, and the wire is connected to various devices through these. When assembling automobiles or industrial machinery, or when using these, the device may fall while the wire is connected to the device. This may cause instantaneous stress in the direction of free fall on the insulated wire, which may cause the wire to break. If such a break occurs, the device may be damaged or sufficient conductivity may not be achieved between the devices. The insulated wires described in Patent Documents 1 and 2 do not mention resistance to such instantaneous stress.

本発明の主な目的は、瞬間的にかかる応力にも耐えられる、破断が生じ難い絶縁電線を提供することにある。The main object of the present invention is to provide an insulated electric wire that can withstand momentary stress and is less likely to break.

上記課題を解決するため、本発明によれば、
複数の素線が撚り合わされた導体とそれを被覆する被覆層とを有する絶縁電線であって、
前記素線が銅合金から構成され、当該銅合金がFe、Ti、Mg、Sn、Ag、Ni、In、Zn、Cr、Al、P、Be、CoおよびSiからなる群から選ばれる1種以上の添加元素を含有し、残部がCuおよび不可避元素からなる合金であり、
前記銅合金中の前記添加元素の量が0.2~0.4質量%であり、
前記導体が中心素線とその周囲に同心状に配置された複数の同心素線とから構成され、
前記中心素線に付着する油分量が前記中心素線の質量に対して6μg/g以下であり、 前記導体の撚りピッチが5~10mmでかつ断面積が0.15mm以下であり、
前記被覆層がポリ塩化ビニル樹脂から構成され、
前記被覆層の厚さが0.15~0.25mmである、絶縁電線が提供される。
In order to solve the above problems, according to the present invention,
An insulated wire having a conductor in which a plurality of strands are twisted together and a coating layer that covers the conductor,
The wire is made of a copper alloy, and the copper alloy contains one or more additive elements selected from the group consisting of Fe, Ti, Mg, Sn, Ag, Ni, In, Zn, Cr, Al, P, Be, Co, and Si, with the balance being Cu and unavoidable elements;
The amount of the additive element in the copper alloy is 0.2 to 0.4 mass %,
The conductor is composed of a central strand and a plurality of concentric strands arranged concentrically around the central strand,
The amount of oil adhering to the central strand is 6 μg/g or less relative to the mass of the central strand, the twist pitch of the conductor is 5 to 10 mm, and the cross-sectional area is 0.15 mm2 or less ,
The coating layer is made of polyvinyl chloride resin,
The insulated wire has a coating layer having a thickness of 0.15 to 0.25 mm.

本発明によれば、瞬間的にかかる応力にも耐えうる、破断が生じ難い絶縁電線を提供することができる。 According to the present invention, it is possible to provide an insulated electric wire that is less likely to break and can withstand momentary stress.

図1Aは、絶縁電線の一例を示す概略断面図である。FIG. 1A is a schematic cross-sectional view showing an example of an insulated wire. 図1Bは、絶縁電線の他の例を示す概略断面図である。FIG. 1B is a schematic cross-sectional view showing another example of an insulated wire. 図2は、絶縁電線の製造方法を概略的に示すフローチャートである。FIG. 2 is a flow chart that generally illustrates a method for producing an insulated wire. 図3は、端子付き絶縁電線の一例を示す側面図である。FIG. 3 is a side view showing an example of an insulated electric wire with a terminal.

以下、本発明の好ましい実施形態について説明する。
本明細書において数値範囲を示す「~」には上限値および下限値が当該数値範囲に含まれる。
Preferred embodiments of the present invention will now be described.
In this specification, the term "to" indicating a range of values means that the upper and lower limits of the range are included.

(絶縁電線)
本発明の好ましい実施形態にかかる絶縁電線は、いわゆる自動車や産業機械の電力線や信号線として非常に有用である。
(Insulated wire)
INDUSTRIAL APPLICABILITY The insulated wire according to the preferred embodiment of the present invention is extremely useful as a power line or a signal line for automobiles or industrial machines.

図1A、図1Bに示すとおり、本実施形態の絶縁電線1は、複数の素線が撚り合わされた導体2と、当該導体2を覆うための被覆層3とを有する。導体2は後述の銅合金から構成され、被覆層3は後述の樹脂から構成されている。
導体2は図1Aに示す態様のとおり、1本の中心素線2aと、これを同心状に取り囲む6本の同心素線2bとから構成されている。ただし、これらの本数は、絶縁電線1の用途等に応じて適宜選択される。
1A and 1B , an insulated wire 1 of the present embodiment includes a conductor 2 formed by twisting together a plurality of wires, and a coating layer 3 for covering the conductor 2. The conductor 2 is made of a copper alloy, which will be described later, and the coating layer 3 is made of a resin, which will be described later.
1A, the conductor 2 is composed of one central strand 2a and six concentric strands 2b surrounding it in a concentric manner, although the number of these strands may be appropriately selected depending on the application of the insulated wire 1, etc.

導体2は、図1Aに示すように、複数の素線を撚り合わせただけの非圧縮導体であってもよく、例えば、図1Bに示すように、複数の素線を撚り合わせた後、所望の形状に圧縮した圧縮導体であってもよい。Conductor 2 may be a non-compressed conductor made by simply twisting together multiple strands as shown in FIG. 1A, or it may be a compressed conductor made by twisting together multiple strands and then compressing them into a desired shape as shown in FIG. 1B.

各素線の断面積や直径は特に制限されないが、各素線の合計断面積、すなわち導体2の断面積は、0.15mm以下である。導体2の断面積は、0.120mm以上0.140mm以下が好ましく、0.125mm以上0.134mm以下がより好ましい。本実施形態の構成の絶縁電線1によれば、導体2の断面積を0.15mm以下のように細くしても、使用に耐えうる十分な強度や導電性が得られる。 Although the cross-sectional area and diameter of each wire are not particularly limited, the total cross-sectional area of each wire, i.e., the cross-sectional area of the conductor 2, is 0.15 mm2 or less. The cross-sectional area of the conductor 2 is preferably 0.120 mm2 or more and 0.140 mm2 or less, and more preferably 0.125 mm2 or more and 0.134 mm2 or less. According to the insulated wire 1 having the configuration of this embodiment, even if the cross-sectional area of the conductor 2 is reduced to 0.15 mm2 or less, sufficient strength and conductivity to withstand use can be obtained.

導体2の断面形状は、略円形状や楕円状であってもよく、多角形状等であってもよい。導体2を構成する各素線の太さは同一であってもよく、異なっていてもよいが、通常同一である。The cross-sectional shape of the conductor 2 may be approximately circular or elliptical, or may be polygonal, etc. The thickness of each of the wires constituting the conductor 2 may be the same or different, but is usually the same.

当該導体2では、中心素線2aと、その周囲に配置された同心素線2bとが、中心素線2aを軸として一定方向に撚られている。このときの撚りピッチは、5~10mmであればよく、6~8mmがより好ましい。「撚りピッチ」とは、中心線を軸として、導体2が360°回転するまでに必要な導体2の長さをいう。
導体2の撚りピッチが10mm以下であると、導体2の周囲に被覆層3を形成する際に、被覆層3が、導体2に食い込みやすくなる。その結果、導体2だけでなく被覆層3がテンションメンバーとして働くことが可能となる。つまり、絶縁電線1に瞬間的に応力(引張応力)がかかった際に、導体2だけでなく、被覆層3も当該応力を緩和し、絶縁電線1の破断を抑制できる。一方、導体2の撚りピッチが5mm以上であると、導体2と被覆層3との密着力が過度に高まりすぎず、導体2と端子とを接続するとき等に、被覆層3を跡残りなく剥離できる。
In the conductor 2, a central strand 2a and concentric strands 2b arranged around the central strand 2a are twisted in a fixed direction with the central strand 2a as the axis. The twist pitch may be 5 to 10 mm, and more preferably 6 to 8 mm. The "twist pitch" refers to the length of the conductor 2 required for the conductor 2 to rotate 360° around the central wire as the axis.
If the twist pitch of the conductor 2 is 10 mm or less, when the coating layer 3 is formed around the conductor 2, the coating layer 3 is likely to bite into the conductor 2. As a result, not only the conductor 2 but also the coating layer 3 can function as a tension member. In other words, when a stress (tensile stress) is momentarily applied to the insulated wire 1, not only the conductor 2 but also the coating layer 3 can relieve the stress, thereby suppressing breakage of the insulated wire 1. On the other hand, if the twist pitch of the conductor 2 is 5 mm or more, the adhesive force between the conductor 2 and the coating layer 3 is not excessively high, and the coating layer 3 can be peeled off without leaving any trace when, for example, connecting the conductor 2 to a terminal.

ここで、導体2の各素線は、調質されたものであることが好ましい。各素線が調質されていると、導体2の強度および伸びを両立させることが可能である。Here, it is preferable that each of the strands of the conductor 2 is tempered. If each strand is tempered, it is possible to achieve both strength and elongation of the conductor 2.

さらに、導体2の中心素線2aに付着する油分量は、中心素線2aの質量に対して10μg/g以下であり、6μg/g以下がより好ましい。
中心素線2aに付着する油分量が少ないほど、導体2と被覆層3との親和性が高まりやすい。その結果、素線の隙間に被覆層3が入り込んだり、導体2の表面に被覆層3が密着したりしやすくなる。したがって、絶縁電線1に瞬間的に応力がかかった際に、絶縁電線1の破断が抑制されやすくなる。
なおここで、導体2の同心素線2bの油分量を測定対象から外したのは、(i)導体2に被覆層3を形成した場合に、同心素線2bには、被覆層3の樹脂組成物に含まれる可塑剤などの添加剤が製造の過程で付着し正確な油分量を測定できず、または逆に(ii)被覆層3を導体2から除去する場合に、同心素線2bから付着していた油も同時に除去され正確な油分量を測定できないからである。すなわち、ここでは、中心素線2aの油分量を測定しこれを制御すれば、それが同心素線2bの本数に反映され、結果的に導体2全体の油分量を制御することにつながり、素線の隙間への被覆層3の入り込みや導体2の表面への被覆層3の密着性を定量化することができる。
Furthermore, the amount of oil adhering to the central strand 2a of the conductor 2 is 10 μg/g or less, more preferably 6 μg/g or less, relative to the mass of the central strand 2a.
The smaller the amount of oil adhering to the central strand 2a, the greater the affinity between the conductor 2 and the coating layer 3. As a result, the coating layer 3 is more likely to penetrate into the gaps between the strands and to adhere to the surface of the conductor 2. Therefore, when a stress is momentarily applied to the insulated wire 1, breakage of the insulated wire 1 is more likely to be suppressed.
The reason why the oil content of the concentric wires 2b of the conductor 2 was excluded from the measurement target is that (i) when the coating layer 3 is formed on the conductor 2, additives such as plasticizers contained in the resin composition of the coating layer 3 adhere to the concentric wires 2b during the manufacturing process, making it impossible to measure the oil content accurately, or conversely, (ii) when the coating layer 3 is removed from the conductor 2, the oil adhered to the concentric wires 2b is also removed at the same time, making it impossible to measure the oil content accurately. That is, if the oil content of the central wire 2a is measured and controlled, it is reflected in the number of concentric wires 2b, which ultimately leads to controlling the oil content of the entire conductor 2, making it possible to quantify the penetration of the coating layer 3 into the gaps between the wires and the adhesion of the coating layer 3 to the surface of the conductor 2.

導体2の中心素線2aに付着している油分量は、例えば以下の方法で特定できる。
絶縁電線1を所定の長さに切り分け、被覆層3をストリッパー等の専用工具で除去する。そして、導体2を抜き出す。そして、当該導体2から中心素線2aを取り出し、抽出溶媒(例えばクロロトリフルオロエチレンの3量体)で、油分を抽出する。これを複数回繰り返し、抽出液中の油分を、油分濃度計で特定する。そして、得られた油分量を、測定に供した中心素線2aの質量で除して算出できる。中心素線2aに付着する油分量は、後述の絶縁電線1の製造方法における導体2の脱脂工程で行う処理の種類や時間によって調整できる。
The amount of oil adhering to the central strand 2a of the conductor 2 can be determined, for example, by the following method.
The insulated wire 1 is cut to a predetermined length, and the coating layer 3 is removed with a dedicated tool such as a stripper. The conductor 2 is then pulled out. The central strand 2a is then taken out of the conductor 2, and the oil is extracted with an extraction solvent (e.g., a trimer of chlorotrifluoroethylene). This process is repeated multiple times, and the oil content in the extract is determined with an oil concentration meter. The amount of oil thus obtained is then divided by the mass of the central strand 2a used for measurement to calculate the amount of oil. The amount of oil adhering to the central strand 2a can be adjusted by the type and time of treatment performed in the degreasing step of the conductor 2 in the manufacturing method of the insulated wire 1 described below.

ここで、導体2の各素線を構成する銅合金はFe、Ti、Mg、Sn、Ag、Ni、In、Zn、Cr、Al、P、Be、CoおよびSiからなる群から選ばれる1種以上の添加元素を含有し、残部がCuおよび不可避元素から構成されている。
添加元素は1種類のみでもよいし、または2種以上含んでいてもよい。通常3種以下である。添加元素は、上記の中でも特に、MgおよびSnが好ましい。
Here, the copper alloy constituting each wire of the conductor 2 contains one or more additive elements selected from the group consisting of Fe, Ti, Mg, Sn, Ag, Ni, In, Zn, Cr, Al, P, Be, Co and Si, with the remainder being composed of Cu and unavoidable elements.
The additive element may be one kind or two or more kinds. Usually, the number of kinds is three or less. Among the above-mentioned additive elements, Mg and Sn are particularly preferable.

銅合金中の添加元素の量は、0.2~0.4質量%であり、0.25~0.35質量%が好ましく、0.28~0.32質量%がより好ましい。銅合金中の添加元素の量が0.2質量%以上であると、導体2の強度が高まり、例えば引っ張り強さが強くなる。一方、銅合金中の添加元素の量が0.4質量%以下であると、導体2の導電率が高まりやすい。The amount of the additive element in the copper alloy is 0.2 to 0.4 mass%, preferably 0.25 to 0.35 mass%, and more preferably 0.28 to 0.32 mass%. When the amount of the additive element in the copper alloy is 0.2 mass% or more, the strength of the conductor 2 is increased, for example, the tensile strength is increased. On the other hand, when the amount of the additive element in the copper alloy is 0.4 mass% or less, the conductivity of the conductor 2 is likely to be increased.

ここで、導体2の導電率は、75%IACS以上が好ましく、80%IACS以上がより好ましい。導体2の導電率が75%IACS以上であると、絶縁電線1を各種用途に使用可能となる。導体2の導電率は、JIS H 0505に基づき電気抵抗値から算出される値である。当該電気抵抗値は、長さ500mmの導体を用いてダブルブリッジ法にて測定される。導体2の導電率は、例えば上記添加元素の種類や量によって調整できる。Here, the conductivity of the conductor 2 is preferably 75% IACS or more, and more preferably 80% IACS or more. When the conductivity of the conductor 2 is 75% IACS or more, the insulated wire 1 can be used for various applications. The conductivity of the conductor 2 is a value calculated from the electrical resistance value based on JIS H 0505. The electrical resistance value is measured by the double bridge method using a conductor with a length of 500 mm. The conductivity of the conductor 2 can be adjusted, for example, by the type and amount of the above-mentioned added elements.

導体2の強度は、350MPa以上450MPaが好ましく、390MPa以上430MPa以下がより好ましく、400MPa以上420MPa以下がさらに好ましい。導体2の強度が当該範囲であると、絶縁電線1を各種用途に使用可能となる。導体2の強度は株式会社島津製作所製万能試験機(オートグラフ)で測定される値である。導体2の強度は、上記添加元素の種類や量、調質度合い等によって調整される。The strength of the conductor 2 is preferably 350 MPa or more and 450 MPa or less, more preferably 390 MPa or more and 430 MPa or less, and even more preferably 400 MPa or more and 420 MPa or less. When the strength of the conductor 2 is within this range, the insulated electric wire 1 can be used for various applications. The strength of the conductor 2 is a value measured using a universal testing machine (autograph) manufactured by Shimadzu Corporation. The strength of the conductor 2 is adjusted by the type and amount of the added elements, the degree of tempering, etc.

導体2の伸び率は、5~10%が好ましく、8~10%がより好ましく、9~10%がさらに好ましい。導体2の伸び率が当該範囲であると、絶縁電線1を各種用途に使用可能となる。導体2の伸び率も株式会社島津製作所製万能試験機(オートグラフ)で測定される値である。導体2の伸び率は、上記添加元素の種類や量、調質度合い等によって調整される。The elongation of the conductor 2 is preferably 5 to 10%, more preferably 8 to 10%, and even more preferably 9 to 10%. When the elongation of the conductor 2 is within this range, the insulated wire 1 can be used for a variety of applications. The elongation of the conductor 2 is also a value measured using a universal testing machine (autograph) manufactured by Shimadzu Corporation. The elongation of the conductor 2 is adjusted according to the type and amount of the added elements, the degree of tempering, etc.

一方、被覆層3は、導体2を絶縁被覆する層であり、ポリ塩化ビニル樹脂を含む層である。通常、被覆層3は、押出機による押出し等によって形成される。被覆層3は、ポリ塩化ビニル樹脂を主に含んでいればよく、本実施形態の目的よび効果を損なわない範囲で、ポリ塩化ビニル樹脂以外の成分を一部に含んでいてもよい。ポリ塩化ビニル樹脂を含む被覆層3は、例えばポリプロピレン樹脂を含む被覆層と比較して、導体2との密着性が低くなることがあるが、導体2の撚りピッチを制御した本実施形態によれば、導体2との密着性を十分に高めることができ、瞬間的な応力にも耐えうる絶縁電線1とすることができる。On the other hand, the coating layer 3 is a layer that insulates the conductor 2 and contains polyvinyl chloride resin. Usually, the coating layer 3 is formed by extrusion using an extruder or the like. The coating layer 3 only needs to contain polyvinyl chloride resin as a main component, and may contain components other than polyvinyl chloride resin as long as the purpose and effect of this embodiment are not impaired. The coating layer 3 containing polyvinyl chloride resin may have lower adhesion to the conductor 2 compared to, for example, a coating layer containing polypropylene resin. However, according to this embodiment in which the twist pitch of the conductor 2 is controlled, the adhesion to the conductor 2 can be sufficiently increased, and an insulated wire 1 that can withstand momentary stress can be obtained.

被覆層3の厚さは特に制限されないが、通常0.15mm~0.25mmが好ましく、0.15mm~0.20mmがより好ましい。被覆層3の厚さが0.15mm以上であると、十分な絶縁性が得られやすく、さらには上述のように、絶縁電線1に瞬間的な引張応力がかかったときに、被覆層3もテンションメンバーとして働くことができる。一方で、被覆層3の厚さが0.25mm以下であると、絶縁電線1を細くできる。 The thickness of the coating layer 3 is not particularly limited, but is usually preferably 0.15 mm to 0.25 mm, and more preferably 0.15 mm to 0.20 mm. If the thickness of the coating layer 3 is 0.15 mm or more, sufficient insulation is easily obtained, and further, as described above, the coating layer 3 can also function as a tension member when instantaneous tensile stress is applied to the insulated wire 1. On the other hand, if the thickness of the coating layer 3 is 0.25 mm or less, the insulated wire 1 can be made thinner.

ここで、導体2と被覆層3との密着強度は、(i)導体2が非圧縮導体である場合、19~23Nが好ましく、(ii)導体2が圧縮導体であって当該圧縮度が3~4%である場合、20~21Nが好ましい。密着強度が各下限値以上であると、これらの密着力が十分となり、各種用途に絶縁電線1を使用可能となる。一方で、密着強度が各上限値以下であると、絶縁電線1を端子等と接続するときに、被覆層3を除去しやすい。当該密着強度は、JASO D618に基づいて測定される。
なお、導体2が圧縮導体である場合、当該圧縮率は3~4%であるのが好ましい。導体2の圧縮率は下記式から導出される。
圧縮率=(圧縮前の導体断面積-圧縮後の導体断面積)/圧縮前の導体断面積×100%
Here, the adhesion strength between the conductor 2 and the coating layer 3 is preferably 19 to 23 N (i) when the conductor 2 is a non-compressed conductor, and preferably 20 to 21 N (ii) when the conductor 2 is a compressed conductor with a degree of compression of 3 to 4%. When the adhesion strength is equal to or greater than each lower limit, the adhesion is sufficient, and the insulated wire 1 can be used for various applications. On the other hand, when the adhesion strength is equal to or less than each upper limit, the coating layer 3 can be easily removed when connecting the insulated wire 1 to a terminal or the like. The adhesion strength is measured based on JASO D618.
When the conductor 2 is a compressed conductor, the compression ratio is preferably 3 to 4%. The compression ratio of the conductor 2 is calculated by the following formula.
Compression ratio = (conductor cross-sectional area before compression - conductor cross-sectional area after compression) / conductor cross-sectional area before compression x 100%

(絶縁電線の製造方法)
図2に示すとおり、絶縁電線1の製造方法は基本的には、複数の素線を撚り合わせて導体2を準備する工程S1と、導体2を脱脂する工程S2と、導体2を調質する工程S3と、導体2をポリ塩化ビニル樹脂で被覆し被覆層3を形成する工程S4とで構成される。
(Method of manufacturing insulated wire)
As shown in FIG. 2 , the method for manufacturing the insulated wire 1 basically includes a step S1 of twisting a plurality of wires together to prepare the conductor 2, a step S2 of degreasing the conductor 2, a step S3 of conditioning the conductor 2, and a step S4 of covering the conductor 2 with polyvinyl chloride resin to form a covering layer 3.

導体2の準備工程S1では、各素線は、例えば、上記銅合金を鋳造して鋳造材を形成し、これを線状に加工して得られるが、この製造方法に限定されない。
導体2の準備工程S1では、複数の素線を撚りピッチ5~10mmで撚り合わせ、断面積を0.15mm以下に制御する。このとき、1本の素線を中心素線2aとしてその周囲に6本の同心素線2bを同心状に配置し、これを上記撚りピッチで撚り合わせる。
得られた導体2は圧縮加工してもよい。
圧縮する方法の例には、ダイスに導体2を供給し、当該ダイスから引き抜く方法等が挙げられるが、これに限定されない。
In the preparation step S1 of the conductor 2, each wire is obtained, for example, by casting the copper alloy to form a casting material and processing the casting material into a wire shape, but the manufacturing method is not limited to this.
In the preparation step S1 of the conductor 2, a plurality of wires are twisted together at a twist pitch of 5 to 10 mm, and the cross-sectional area is controlled to 0.15 mm2 or less. At this time, one wire is arranged as a central wire 2a, and six concentric wires 2b are arranged concentrically around it, and these are twisted together at the twist pitch mentioned above.
The resulting conductor 2 may be subjected to compression processing.
An example of the compression method includes, but is not limited to, a method in which the conductor 2 is fed into a die and then pulled out from the die.

導体2の脱脂工程S2では、中心素線2aに付着する油分の合計量が、中心素線2aの合計質量に対して10μg/g以下となるまで、好ましくは6μg/g以下となるまで脱脂を行う。油分の合計量が6μg/g以下となるまで脱脂を行うと、各素線とこれを覆う被覆層3との親和性が高まる。さらに、このように脱脂を行うと、各素線に均一に熱が伝わりやすくなり、素線同士の隙間に均一に被覆層3が入り込んだり、各素線の表面に被覆層3が密着したりしやすくなる。In the degreasing process S2 of the conductor 2, degreasing is performed until the total amount of oil adhering to the central strand 2a is 10 μg/g or less, preferably 6 μg/g or less, relative to the total mass of the central strand 2a. Degreasing until the total amount of oil is 6 μg/g or less increases the affinity between each strand and the coating layer 3 that covers it. Furthermore, degreasing in this manner makes it easier for heat to be transferred uniformly to each strand, making it easier for the coating layer 3 to penetrate uniformly into the gaps between the strands and for the coating layer 3 to adhere to the surface of each strand.

導体2の脱脂工程S2の処理方法は特に制限されず、例えば、有機溶媒により脱脂してもよく、熱処理によって脱脂してもよい。
有機溶媒により脱脂を行う場合、有機溶媒の種類は、素線に付着している油分の種類に応じて適宜選択される。例えば、アルコール等を用いることができる。有機溶媒で処理する方法は特に制限されず、例えば素線を有機溶媒の中に浸漬する方法であってもよく、有機溶媒を染みこませたクロス等によってふき取る方法であってもよい。
一方、熱処理によって脱脂を行う場合、不活性ガス存在下、加熱を行うことが好ましい。加熱温度や加熱時間は、素線に付着している油分の種類に応じて適宜選択される。例えば、250~350℃で2~10時間加熱する方法であってもよい。
The method of the degreasing step S2 of the conductor 2 is not particularly limited, and for example, the conductor 2 may be degreased with an organic solvent or may be degreased by heat treatment.
When degreasing is performed with an organic solvent, the type of organic solvent is appropriately selected depending on the type of oil adhering to the wire. For example, alcohol or the like can be used. The method of treating with an organic solvent is not particularly limited, and may be, for example, a method of immersing the wire in an organic solvent or a method of wiping it off with a cloth or the like soaked in an organic solvent.
On the other hand, when degreasing is performed by heat treatment, it is preferable to perform heating in the presence of an inert gas. The heating temperature and heating time are appropriately selected depending on the type of oil adhering to the wire. For example, a method of heating at 250 to 350°C for 2 to 10 hours may be used.

導体2の調質工程S3では、導体2に調質を行う温度や時間は特に制限されないが、例えば250~350℃の範囲で2~10時間行うことが好ましい。このとき、例えば窒素気流下等、不活性ガス存在下で加熱を行うことが好ましい。調質を行うことで、導体2の伸びおよび強度が両立する。さらに、調質を行うことで、素線にほどよい柔軟性が付与されるため、被覆層3を形成する際に樹脂が、素線同士の隙間に入り込みやすくなる。In the conductor 2 tempering step S3, the temperature and time for tempering the conductor 2 are not particularly limited, but it is preferable to perform the tempering at a temperature in the range of 250 to 350°C for 2 to 10 hours, for example. At this time, it is preferable to perform the heating in the presence of an inert gas, such as a nitrogen gas flow. By tempering, the conductor 2 is able to achieve both elongation and strength. Furthermore, tempering gives the wires a suitable degree of flexibility, which makes it easier for the resin to penetrate into the gaps between the wires when forming the coating layer 3.

なお、導体2の脱脂工程S2では、複数の素線をまとめて脱脂しているが、1本ずつ脱脂してもよい。絶縁電線1の製造効率の観点で複数本まとめて脱脂することが好ましい。
導体2の脱脂工程S2と導体2の調質工程S3とは、導体2の準備工程S1において素線を撚る前に実施してもよいし、順序を入れ替えてもよいし、同時に実施してもよい。例えば、導体2を250~350℃で2~10時間加熱すれば、導体2の脱脂工程S2と調質工程S3とを同時に実施することができる。
導体2の脱脂工程S2および調質工程S3の処理は基本的には、素線の製造後で絶縁層3の形成前であればいつでもよい。
In the degreasing step S2 of the conductor 2, a plurality of wires are degreased together, but they may be degreased one by one. From the viewpoint of the production efficiency of the insulated electric wire 1, it is preferable to degrease a plurality of wires together.
The degreasing step S2 and the tempering step S3 of the conductor 2 may be performed before twisting the wires in the preparation step S1 of the conductor 2, or the order of the steps may be reversed, or the steps may be performed simultaneously. For example, the degreasing step S2 and the tempering step S3 of the conductor 2 can be performed simultaneously by heating the conductor 2 at 250 to 350° C. for 2 to 10 hours.
Basically, the degreasing step S2 and the thermal refining step S3 of the conductor 2 may be carried out at any time after the wire is manufactured and before the insulating layer 3 is formed.

被覆層3の形成工程S4では、ポリ塩化ビニル樹脂の押出し加工等によって、被覆層3を形成できる。これにより、導体2の周囲に被覆層3が配置された上述の絶縁電線1を得ることができる。In the coating layer 3 formation step S4, the coating layer 3 can be formed by extrusion processing of polyvinyl chloride resin or the like. This makes it possible to obtain the above-mentioned insulated wire 1 in which the coating layer 3 is disposed around the conductor 2.

(端子付き絶縁電線)
本実施形態の端子付き絶縁電線は、各種の配線に利用できる。例えば、自動車や飛行機等の機器、産業用ロボット等の制御機器の各種電気機器の配線に使用可能である。より具体的には、自動車用ワイヤーハーネス等に使用可能である。
(insulated wire with terminal)
The insulated electric wire with terminal of the present embodiment can be used for various wiring applications. For example, it can be used for wiring various electric devices such as devices for automobiles and airplanes, and control devices for industrial robots. More specifically, it can be used for automobile wire harnesses, etc.

図3に示すように、端子付き絶縁電線は、絶縁電線1と、絶縁電線1の端部に接続された端子10とを有する。端子付き絶縁電線では、端子10は絶縁電線1の一方の端部に接続されていてもよいし、両方の端部に接続されていてもよい。
端子10には、一端側から、各種装置と接続するための雌型または雄型の嵌合部11と、絶縁電線1の導体2を固定するワイヤバレル部12と、絶縁電線1の被覆層3を支持するためのインシュレーションバレル部13とが順に配置されている。
嵌合部11は、各種装置と接続可能な構造であればよく、その種類に応じて適宜選択される。ワイヤバレル部12は、導体2と端子10とを電気的および機械的に確実に接続するため、導体2を圧縮して固定するための構造を有している。インシュレーションバレル部13は、被覆層3を十分に支持し、固定するための構造を有している。これらは、一般的な端子の構造と同様である。
3, the insulated electric wire with terminal has an insulated electric wire 1 and a terminal 10 connected to an end of the insulated electric wire 1. In the insulated electric wire with terminal, the terminal 10 may be connected to one end of the insulated electric wire 1 or to both ends.
Terminal 10 has, arranged from one end, a female or male fitting portion 11 for connecting to various devices, a wire barrel portion 12 for fixing conductor 2 of insulated wire 1, and an insulation barrel portion 13 for supporting coating layer 3 of insulated wire 1, in that order.
The fitting portion 11 may have any structure that allows connection to various devices, and is appropriately selected depending on the type of device. The wire barrel portion 12 has a structure for compressing and fixing the conductor 2 to reliably connect the conductor 2 and the terminal 10 electrically and mechanically. The insulation barrel portion 13 has a structure for adequately supporting and fixing the coating layer 3. These structures are similar to those of a general terminal.

(端子付き絶縁電線の製造方法)
端子付き絶縁電線の製造方法は基本的に、絶縁電線1の端部から被覆層3を剥離し導体2を露出させる工程と、導体2の露出部分に端子10を接続する工程とで構成される。
(Manufacturing method of insulated electric wire with terminal)
The method for manufacturing an insulated electric wire with a terminal basically includes a step of peeling off the coating layer 3 from the end of the insulated electric wire 1 to expose the conductor 2 , and a step of connecting the terminal 10 to the exposed portion of the conductor 2 .

絶縁電線1の端部から被覆層3を剥離し導体2を露出させる方法は、一般的な方法と同様であり、例えば、ストリッパー等の専用器具で導体2を露出させてもよい。The method for peeling off the coating layer 3 from the end of the insulated wire 1 to expose the conductor 2 is similar to a general method, and for example, the conductor 2 may be exposed using a dedicated tool such as a stripper.

絶縁電線1の導体2に端子10を接続する方法も、一般的な方法と同様であり、例えば端子10のインシュレーションバレル部13に絶縁電線1の被覆層3を固定するとともに、ワイヤバレル部12を加締めて、ワイヤバレル部12に露出した導体2を圧接させる方法とすることができる。The method of connecting the terminal 10 to the conductor 2 of the insulated wire 1 is similar to the general method, and can involve, for example, fixing the coating layer 3 of the insulated wire 1 to the insulation barrel portion 13 of the terminal 10, and crimping the wire barrel portion 12 to press the conductor 2 exposed to the wire barrel portion 12.

なお、本実施形態によれば、2015年9月の国連サミットで採択された「持続可能な開発のための2030アジェンダ」にて記載された2030年までに持続可能でよりよい世界を目指す国際標である持続可能な開発目標(SDGs)の目標9「強靱(レジリエント)なインフラ構築、包摂的かつ持続可能な産業化の促進及びイノベーションの推進を図る」に貢献することにもつながる。 In addition, this embodiment will also contribute to Goal 9 of the Sustainable Development Goals (SDGs), which are international targets aimed at a sustainable and better world by 2030 as set out in the 2030 Agenda for Sustainable Development adopted at the United Nations Summit in September 2015, and which states, "Build resilient infrastructure, promote inclusive and sustainable industrialization and foster innovation."

(1)サンプルの作製
(1.1)サンプル1
0.3質量%のSnを含有し、残部がCuおよび不可避元素から構成される銅合金を、外周に水冷ジャケットを設けた黒鉛鋳型を有する水平連続鋳造機によって連続鋳造して、直径12mmの鋳造ロッドを作製した。当該鋳造ロッドに冷間加工を施して直径約0.16mmの複数本の素線を得た。
(1) Preparation of samples (1.1) Sample 1
A copper alloy containing 0.3 mass% Sn and the balance being Cu and unavoidable elements was continuously cast by a horizontal continuous casting machine having a graphite mold with a water-cooled jacket on the outer periphery to produce a cast rod having a diameter of 12 mm. The cast rod was subjected to cold working to obtain a plurality of strands having a diameter of about 0.16 mm.

その後、素線を7本準備し、そのうちの1本を中心素線と、残りの6本を中心素線の周囲に同心状に配置する同心素線とした。そして、これらの素線を撚りピッチ12mmで撚り合わせて導体とした。当該導体の断面積は、0.13mmであった。
その後、導体を、窒素気流中において300℃で2時間熱処理した(導体を脱脂および調質した)。
Then, seven strands were prepared, one of which was a central strand and the remaining six were concentric strands arranged concentrically around the central strand. These strands were then twisted together at a twist pitch of 12 mm to form a conductor. The cross-sectional area of the conductor was 0.13 mm2.
The conductor was then heat treated at 300° C. for 2 hours in a nitrogen stream (to degrease and condition the conductor).

その後、導体の周囲を覆うように、ポリ塩化ビニル樹脂を押出機のダイスから押し出して、導体の周囲に被覆層を形成した。被覆層の厚さは0.2mmとした。 After that, polyvinyl chloride resin was extruded from the die of the extruder to cover the conductor, forming a coating layer around the conductor. The coating layer was 0.2 mm thick.

(1.2)サンプル2~5
導体の撚りピッチを、表1に示すように変更した。
それ以外は、サンプル1と同様にサンプル2~5を作製した。
(1.2) Samples 2 to 5
The twist pitch of the conductor was changed as shown in Table 1.
Other than that, Samples 2 to 5 were prepared in the same manner as Sample 1.

(1.3)サンプル11
サンプル1の作製時と同様に素線を作製し、撚りピッチが15mmの導体を準備した。
その後、導体をダイスの穴に通して円形圧縮加工を施した。圧縮率は3%とした。
その後、導体を、窒素気流中において300℃で2時間熱処理した(導体を脱脂および調質した)。
それ以外は、サンプル1と同様にサンプル11を作製した。
(1.3) Sample 11
A wire was produced in the same manner as in the production of Sample 1, and a conductor with a twist pitch of 15 mm was prepared.
The conductor was then passed through a die hole and subjected to a circular compression process with a compression ratio of 3%.
The conductor was then heat treated at 300° C. for 2 hours in a nitrogen stream (to degrease and condition the conductor).
Other than that, Sample 11 was prepared in the same manner as Sample 1.

(1.4)サンプル12~16
導体の撚りピッチを、表1に示すように変更した。
それ以外は、サンプル11と同様にサンプル12~16を作製した。
(1.4) Samples 12 to 16
The twist pitch of the conductor was changed as shown in Table 1.
Other than that, Samples 12 to 16 were prepared in the same manner as Sample 11.

(2)評価
サンプル1~5およびサンプル11~16に対しそれぞれ以下の測定および試験を実施した。その結果を表1に示す。
(2) Evaluation The following measurements and tests were carried out on Samples 1 to 5 and Samples 11 to 16. The results are shown in Table 1.

(2.1)中心素線の油分付着量の測定
絶縁電線80mを所定の長さに切り分け、被覆層を専用工具で除去して導体を抜きだした。同心素線を、撚り方向と逆向きに撚って外し、中心素線を抜きだした。当該作業は、25℃、湿度20%の恒温恒湿槽内部で行った。そして、抜き出した中心素線の質量を測定した。その後、油分洗浄したガラス共栓付き三角フラスコに中心素線と抽出溶媒(クロロトリフルオロエチレンの3量体)を入れ、ガラス栓をしてよく撹拌した。中心素線に付着した油分が抽出された溶液をメスフラスコに移し、共栓付き三角フラスコに更に抽出溶媒を加え、再撹拌し、油分が抽出された溶液をメスフラスコに移した。これらの作業を3回繰り返しメスアップした。当該抽出液を、油分濃度計(堀場製作所社製OCMA-555H)を用いて、抽出溶媒中に溶解した油分の質量を測定した。そして、中心素線の質量で除し、残留油分を把握した。
(2.1) Measurement of the amount of oil adhering to the central strand 80 m of insulated wire was cut into a predetermined length, and the coating layer was removed with a special tool to extract the conductor. The concentric strands were twisted in the opposite direction to the twisting direction to remove them, and the central strand was extracted. This operation was performed inside a thermostatic chamber at 25°C and 20% humidity. The mass of the extracted central strand was then measured. After that, the central strand and the extraction solvent (chlorotrifluoroethylene trimer) were placed in an oil-cleaned glass Erlenmeyer flask with a stopper, and the flask was stopped with a glass stopper and stirred well. The solution in which the oil adhering to the central strand had been extracted was transferred to a measuring flask, and the extraction solvent was further added to the Erlenmeyer flask with a stopper, stirred again, and the solution in which the oil had been extracted was transferred to the measuring flask. These operations were repeated three times to measure up the volume. The mass of the oil dissolved in the extraction solvent was measured using an oil concentration meter (OCMA-555H manufactured by Horiba, Ltd.). The mass was then divided by the mass of the central strand to determine the residual oil.

(2.2)伸びおよび導体強度の測定
各絶縁電線について、伸びおよび導体強度を株式会社島津製作所製万能試験機(オートグラフ)で測定した。測定の結果、すべてのサンプルにおいて、伸びが10%で導体強度が402MPaであった(表への記載は省略)。
(2.2) Measurement of elongation and conductor strength The elongation and conductor strength of each insulated wire were measured using a universal testing machine (autograph) manufactured by Shimadzu Corporation. As a result of the measurement, the elongation was 10% and the conductor strength was 402 MPa in all samples (not shown in the table).

(2.3)導電率の測定
各絶縁電線について、導電率をJIS H 0505に基づき電気抵抗値から算出した。当該電気抵抗値は長さ500mmの導体を用いてダブルブリッジ法にて測定した。測定算出の結果、すべてのサンプルにおいて、導電率が81%IACSであった(表への記載は省略)。
(2.3) Measurement of Electrical Conductivity The electrical conductivity of each insulated wire was calculated from the electrical resistance value based on JIS H 0505. The electrical resistance value was measured by a double bridge method using a conductor with a length of 500 mm. As a result of the measurement and calculation, the electrical conductivity was 81% IACS in all samples (not shown in the table).

(2.4)被覆層の密着強度の測定
被覆層の密着強度は、JASO D618に基づいて測定した。具体的には、長さ100mmの絶縁電線を準備して、その一端部の被覆層を除去して長さ25mm分の導体を露出させるとともに、他端部の長さ25mm分を切断し廃棄した。全長75mmの当該絶縁電線を測定対象として、露出させた導体を保持板の貫通孔(直径が導体の外径より大きく、かつ絶縁電線の外径より小さい孔)に挿通した。当該保持板を固定し、保持板から突出した導体の一端部を引っ張った。そして、被覆層が導体から剥離し、導体が抜けたときの最小荷重を密着強度とした。
(2.4) Measurement of Adhesion Strength of Coating Layer The adhesion strength of the coating layer was measured based on JASO D618. Specifically, an insulated electric wire with a length of 100 mm was prepared, and the coating layer at one end of the wire was removed to expose a conductor with a length of 25 mm, and the other end was cut and discarded with a length of 25 mm. The insulated electric wire with a total length of 75 mm was used as the measurement object, and the exposed conductor was inserted into a through hole of a holding plate (a hole whose diameter is larger than the outer diameter of the conductor and smaller than the outer diameter of the insulated electric wire). The holding plate was fixed, and one end of the conductor protruding from the holding plate was pulled. The minimum load at which the coating layer peeled off from the conductor and the conductor was pulled out was determined as the adhesion strength.

(2.5)自由落下試験
各絶縁電線300mmの一方の端部に、端子を取り付けて、端子のワイヤバレル部およびインシュレーションバレル部に負荷がかかるように、端子の先端に400gの重りを付けた。そして、端子を取り付けていない側の端部を、高さ1000mmの位置で固定した。そして、重りを高さ1000mmの位置から自由落下させて、絶縁電線に破断が生じたかどうかを、目視によって確認した。評価は以下の基準で行った。
合格 :絶縁電線に破断が生じなかった
不合格:絶縁電線に破断が生じた
(2.5) Free-fall test A terminal was attached to one end of each 300 mm insulated electric wire, and a 400 g weight was attached to the tip of the terminal so that a load was applied to the wire barrel part and the insulation barrel part of the terminal. The end on the side not attached to the terminal was fixed at a height of 1000 mm. The weight was then allowed to freely fall from the height of 1000 mm, and visual inspection was performed to see whether or not the insulated electric wire had broken. Evaluation was performed according to the following criteria.
Pass: No break occurred in the insulated wire. Fail: Break occurred in the insulated wire.

(2.6)被覆除去試験
各絶縁電線の一端の被覆層を専用工具(小寺電子製作所製全自動電線切断皮剥機)で除去し、被覆層の除去の可否を確認した。評価は以下の基準で行った。
合格 :所定の引抜き力で被覆層を除去した際に被覆層の樹脂の残留が認められなかった
不合格:所定の引抜き力で被覆層を除去した際に被覆層の一部(樹脂)が付着したまま残留した
(2.6) Coating Removal Test The coating layer at one end of each insulated electric wire was removed with a dedicated tool (a fully automatic wire cutting and stripping machine manufactured by Kodera Electronics Manufacturing Co., Ltd.) to check whether the coating layer could be removed. Evaluation was performed according to the following criteria.
Pass: When the coating layer was removed with a specified pull-out force, no residual resin of the coating layer was observed. Fail: When the coating layer was removed with a specified pull-out force, part of the coating layer (resin) remained attached.

表1に示すように、サンプル2~4およびサンプル13~15では自由落下試験および被覆除去試験の両方で優れた結果を得られた。
詳しくは、導体の撚りピッチが5~10mmである場合には、自由落下試験の結果が良好であった(サンプル2~4およびサンプル13~15)。これに対し、導体の撚りピッチが10mmを超えると、自由落下試験の結果が不合格であった(サンプル1およびサンプル11、12)。撚りピッチが5mmを下回ると、被覆層をすべて除去できなかった。
これらのことから、瞬間的にかかる応力に耐えうる、破断が生じ難い絶縁電線を提供するうえでは、導体の撚りピッチや中心素線の油分量、被覆層の材質、被覆層の厚さなどを総合的に考慮し一定に制御することが有用であると推測された。
As shown in Table 1, samples 2 to 4 and samples 13 to 15 gave excellent results in both the free drop test and the coating removal test.
Specifically, when the conductor twist pitch was 5 to 10 mm, the free drop test results were good (Samples 2 to 4 and Samples 13 to 15). In contrast, when the conductor twist pitch exceeded 10 mm, the free drop test results were unsuccessful (Samples 1, 11, and 12). When the twist pitch was less than 5 mm, the coating layer could not be completely removed.
From these findings, it was inferred that in order to provide an insulated electric wire that can withstand momentary stress and is less likely to break, it would be useful to comprehensively consider and control the conductor twist pitch, the amount of oil in the central wire, the material of the coating layer, the thickness of the coating layer, etc., to keep them constant.

本発明は複数の素線が撚り合わされた導体とそれを被覆する被覆層とを有する絶縁電線にかかり、いわゆる自動車や産業機械の電力線や信号線として有用である。 The present invention relates to an insulated electric wire having a conductor made of multiple strands twisted together and a coating layer covering the conductor, which is useful as a power line or signal line for automobiles and industrial machinery.

1 絶縁電線
2 導体
2a 中心素線
2b 同心素線
3 被覆層
10 端子
11 嵌合部
12 ワイヤバレル部
13 インシュレーションバレル部
Reference Signs List 1 Insulated wire 2 Conductor 2a Central strand 2b Concentric strand 3 Covering layer 10 Terminal 11 Fitting portion 12 Wire barrel portion 13 Insulation barrel portion

Claims (5)

複数の素線が撚り合わされた導体とそれを被覆する被覆層とを有する絶縁電線であって、
前記素線が銅合金から構成され、当該銅合金がFe、Ti、Mg、Sn、Ag、Ni、In、Zn、Cr、Al、P、Be、CoおよびSiからなる群から選ばれる1種以上の添加元素を含有し、残部がCuおよび不可避元素からなる合金であり、
前記銅合金中の前記添加元素の量が0.2~0.4質量%であり、
前記導体が中心素線とその周囲に同心状に配置された複数の同心素線とから構成され、
前記中心素線に付着する油分量が前記中心素線の質量に対して6μg/g以下であり、 前記導体の撚りピッチが5~10mmでかつ断面積が0.15mm以下であり、
前記被覆層がポリ塩化ビニル樹脂から構成され、
前記被覆層の厚さが0.15~0.25mmである、絶縁電線。
An insulated wire having a conductor in which a plurality of strands are twisted together and a coating layer that covers the conductor,
The wire is made of a copper alloy, and the copper alloy contains one or more additive elements selected from the group consisting of Fe, Ti, Mg, Sn, Ag, Ni, In, Zn, Cr, Al, P, Be, Co, and Si, with the balance being Cu and unavoidable elements;
The amount of the additive element in the copper alloy is 0.2 to 0.4 mass %,
The conductor is composed of a central strand and a plurality of concentric strands arranged concentrically around the central strand,
The amount of oil adhering to the central strand is 6 μg/g or less relative to the mass of the central strand, the twist pitch of the conductor is 5 to 10 mm, and the cross-sectional area is 0.15 mm2 or less ,
The coating layer is made of polyvinyl chloride resin,
The coating layer has a thickness of 0.15 to 0.25 mm.
請求項1の絶縁電線において、
前記導体が非圧縮導体である場合、前記導体と前記被覆層との密着強度が19~23Nであり、
前記導体が圧縮率3~4%の圧縮導体である場合、前記導体と前記被覆層との密着強度が20~21Nであることを特徴とする、絶縁電線。
The insulated wire according to claim 1,
When the conductor is a non-compressed conductor, the adhesion strength between the conductor and the coating layer is 19 to 23 N;
An insulated wire, characterized in that when the conductor is a compressed conductor having a compression rate of 3 to 4%, the adhesion strength between the conductor and the coating layer is 20 to 21 N.
請求項1または2に記載の絶縁電線と、
前記絶縁電線の端部に接続された端子と、
を有する、端子付き絶縁電線。
The insulated wire according to claim 1 or 2,
A terminal connected to an end of the insulated wire;
A terminal-attached insulated wire having the following features.
複数の素線を撚り合わせて導体を準備する工程と、
前記導体を脱脂する工程と、
前記導体を調質する工程と、
前記導体を樹脂で被覆し被覆層を形成する工程と、を有し、
前記導体を準備する工程では、Fe、Ti、Mg、Sn、Ag、Ni、In、Zn、Cr、Al、P、Be、CoおよびSiからなる群から選ばれる1種以上の添加元素を含有し、残部がCuおよび不可避元素からなる銅合金であって、前記添加元素の量が0.2~0.4質量%である銅合金から複数の素線を製造し、当該複数の素線のうち、1本を中心素線としてその周囲に複数の同心素線を同心状に配置しながら撚りピッチ5~10mmで撚り合わせ、断面積が0.15mm以下である前記導体を製造し、
前記導体を脱脂する工程では、前記中心素線に付着する油分量を前記中心素線の質量に対して6μg/g以下に制御し、
前記導体を調質する工程では、前記導体を250~350℃で2~10時間加熱し、
前記被覆層を形成する工程では、前記導体をポリ塩化ビニル樹脂で被覆して厚さが0.15~0.25mmである前記被覆層を形成する、絶縁電線の製造方法。
preparing a conductor by twisting together a plurality of wires;
degreasing the conductor;
a step of tempering the conductor;
and a step of coating the conductor with a resin to form a coating layer,
In the step of preparing the conductor, a copper alloy containing one or more additive elements selected from the group consisting of Fe, Ti, Mg, Sn, Ag, Ni, In, Zn, Cr, Al, P, Be, Co, and Si, with the balance being Cu and unavoidable elements, is produced from the copper alloy in which the amount of the additive element is 0.2 to 0.4 mass%, and among the plurality of strands, one is used as a central strand, and a plurality of concentric strands are concentrically arranged around the central strand with a stranding pitch of 5 to 10 mm to produce the conductor having a cross-sectional area of 0.15 mm2 or less;
In the step of degreasing the conductor, an amount of oil adhering to the central strand is controlled to 6 μg/g or less relative to a mass of the central strand;
In the step of tempering the conductor, the conductor is heated at 250 to 350° C. for 2 to 10 hours;
In the step of forming the coating layer, the conductor is coated with polyvinyl chloride resin to form the coating layer having a thickness of 0.15 to 0.25 mm.
請求項4に記載の絶縁電線の製造方法で製造した絶縁電線の端部から前記被覆層を剥離し前記導体を露出させる工程と、
前記導体の露出部分に端子を接続する工程と、
を有する、端子付き電線の製造方法。
a step of peeling off the coating layer from an end of the insulated wire manufactured by the method for manufacturing an insulated wire according to claim 4 to expose the conductor;
connecting a terminal to the exposed portion of the conductor;
The method for producing an electric wire with a terminal comprising the steps of:
JP2023549241A 2021-09-24 2021-09-24 Insulated electric wire and its manufacturing method, and insulated electric wire with terminal and its manufacturing method Active JP7494402B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/035011 WO2023047514A1 (en) 2021-09-24 2021-09-24 Insulated wire, method for producing same, terminal-equipped insulated wire, and method for producing same

Publications (2)

Publication Number Publication Date
JPWO2023047514A1 JPWO2023047514A1 (en) 2023-03-30
JP7494402B2 true JP7494402B2 (en) 2024-06-03

Family

ID=85719378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023549241A Active JP7494402B2 (en) 2021-09-24 2021-09-24 Insulated electric wire and its manufacturing method, and insulated electric wire with terminal and its manufacturing method

Country Status (3)

Country Link
JP (1) JP7494402B2 (en)
CN (1) CN118043915A (en)
WO (1) WO2023047514A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014032819A (en) 2012-08-02 2014-02-20 Swcc Showa Cable Systems Co Ltd Aluminum electric wire
WO2019013074A1 (en) 2017-07-14 2019-01-17 株式会社オートネットワーク技術研究所 Covered electrical wire, electrical wire with terminal, and stranded wire
WO2019013073A1 (en) 2017-07-14 2019-01-17 株式会社オートネットワーク技術研究所 Covered electrical wire, and electrical wire with terminal

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014032819A (en) 2012-08-02 2014-02-20 Swcc Showa Cable Systems Co Ltd Aluminum electric wire
WO2019013074A1 (en) 2017-07-14 2019-01-17 株式会社オートネットワーク技術研究所 Covered electrical wire, electrical wire with terminal, and stranded wire
WO2019013073A1 (en) 2017-07-14 2019-01-17 株式会社オートネットワーク技術研究所 Covered electrical wire, and electrical wire with terminal

Also Published As

Publication number Publication date
JPWO2023047514A1 (en) 2023-03-30
WO2023047514A1 (en) 2023-03-30
CN118043915A (en) 2024-05-14

Similar Documents

Publication Publication Date Title
KR101521408B1 (en) Electrical wire conductor for wiring, method for producing electrical wire conductor for wiring, electrical wire for wiring, and copper alloy wire
CN109983141B (en) Covered electric wire, electric wire with terminal, copper alloy wire, and copper alloy stranded wire
WO2015064357A1 (en) Copper alloy wire, copper alloy stranded wire, coated electric wire, wire harness and manufacturing method of copper alloy wire
CN106232843B (en) Copper alloy wire, copper-alloy stranded conductor and electric wire for automobiles
JP2011210730A5 (en)
JP7494402B2 (en) Insulated electric wire and its manufacturing method, and insulated electric wire with terminal and its manufacturing method
JP7503240B2 (en) Coated electric wire, electric wire with terminal, copper alloy wire, copper alloy stranded wire, and method for manufacturing copper alloy wire
US20190360074A1 (en) Covered Electrical Wire, Terminal-Equipped Electrical Wire, Copper Alloy Wire, and Copper Alloy Stranded Wire
WO2024116240A1 (en) Copper alloy wire, insulated electric wire, insulated electric wire with terminal, and copper alloy wire manufacturing method
JP6807041B2 (en) Covered wires, wires with terminals, copper alloy wires, and copper alloy stranded wires
CN110914923B (en) Coated electric wire, electric wire with terminal, and stranded wire
WO2024057541A1 (en) Evaluation prediction method for insulated wire with terminal
CN113299421A (en) Copper alloy wire, plated wire, electric wire and cable
JP7054482B2 (en) Manufacturing method of coated electric wire, manufacturing method of copper alloy wire, and manufacturing method of copper alloy stranded wire
JP6807040B2 (en) Covered wires, wires with terminals, and copper alloy wires
JP7488151B2 (en) Wire with crimp terminal
JP7424042B2 (en) Stranded conductor, insulated wire, and method for manufacturing stranded conductor
JP6807027B2 (en) Covered wires, wires with terminals, copper alloy wires, and copper alloy stranded wires
US20210183532A1 (en) Covered electrical wire, terminal-equipped electrical wire, copper alloy wire, copper alloy stranded wire, and method for manufacturing copper alloy wire
JP2022109209A (en) Copper alloy wire, plated wire, electric wire, and cable
JP2015196880A (en) Aluminum alloy strand, aluminum alloy strand wire, and electric wire for vehicle
JP2018060776A (en) Plated copper wire, plated stranded wire, insulation wire and method for manufacturing plated copper wire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240314

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20240318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240423

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240522

R150 Certificate of patent or registration of utility model

Ref document number: 7494402

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150