JP7488151B2 - Wire with crimp terminal - Google Patents

Wire with crimp terminal Download PDF

Info

Publication number
JP7488151B2
JP7488151B2 JP2020133766A JP2020133766A JP7488151B2 JP 7488151 B2 JP7488151 B2 JP 7488151B2 JP 2020133766 A JP2020133766 A JP 2020133766A JP 2020133766 A JP2020133766 A JP 2020133766A JP 7488151 B2 JP7488151 B2 JP 7488151B2
Authority
JP
Japan
Prior art keywords
conductor
wire
crimped
electric wire
crimp terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020133766A
Other languages
Japanese (ja)
Other versions
JP2022030045A (en
Inventor
祥 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Furukawa Automotive Systems Inc
Original Assignee
Furukawa Electric Co Ltd
Furukawa Automotive Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd, Furukawa Automotive Systems Inc filed Critical Furukawa Electric Co Ltd
Priority to JP2020133766A priority Critical patent/JP7488151B2/en
Publication of JP2022030045A publication Critical patent/JP2022030045A/en
Application granted granted Critical
Publication of JP7488151B2 publication Critical patent/JP7488151B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Connections Effected By Soldering, Adhesion, Or Permanent Deformation (AREA)
  • Insulated Conductors (AREA)

Description

本開示は、圧着端子付き電線に関する。 This disclosure relates to an electric wire with a crimp terminal.

近年、自動車の軽量化を目的に、自動車用ワイヤハーネスの素線について、銅系材料からアルミニウム系材料への切り替えが進んでいる。一方で、アルミニウム系材料の表面は体積抵抗率の高い酸化皮膜で覆われているため、アルミニウム系材料からなる素線間の接触抵抗値は高い。 In recent years, in order to reduce the weight of automobiles, there has been a shift from copper-based materials to aluminum-based materials for the wires in automotive wire harnesses. However, because the surface of aluminum-based materials is covered with an oxide film that has a high volume resistivity, the contact resistance between wires made of aluminum-based materials is high.

アルミニウム系材料の素線間の抵抗を下げるために、アルミニウム系材料の素線同士をはんだで接合する方法や、表面の酸化皮膜を破壊する程度にアルミニウム系材料の素線同士を強圧着する方法が検討されている。しかしながら、はんだで接合する方法では、素線間の抵抗値のばらつきが大きいことがある。また、素線同士を強圧着する方法では、圧着によって素線が切れることがある。 In order to reduce the resistance between wires of aluminum-based materials, methods of joining wires of aluminum-based materials with solder and methods of strongly crimping wires of aluminum-based materials to the extent that the oxide film on the surface is destroyed are being considered. However, when joining wires with solder, there can be a large variation in the resistance value between the wires. Also, when strongly crimping wires together, the wires can break due to the crimping.

また、特許文献1には、導線の先端部に形成されて素線同士を接合する素線一体化部が素線束部よりも大径の半球状に形成され、先端面に球面状に曲がる曲面を有するとともに後端面に平面を有しており、素線束部に圧着端子の圧着部が圧着された、圧着端子付き電線が記載されている。 Patent Document 1 also describes an electric wire with a crimp terminal, in which a wire integration section formed at the tip of the conductor to join the wires together is formed in a hemispherical shape with a larger diameter than the wire bundle section, has a spherically curved surface at the tip end and a flat surface at the rear end, and the crimp section of the crimp terminal is crimped to the wire bundle section.

特許文献1の圧着端子付き電線では、素線の損傷などが従来に比べて改善されてるものの、導線の最外周に配置される素線と圧着端子との間の接触抵抗値は依然として高く、素線と圧着端子との抵抗値を低下させるための強圧着加工によって、素線切れが発生する可能性がある。また、素線同士の溶接で形成された素線一体化部の凝固組織部を含む、素線の溶接時の熱の影響を受ける熱影響組織部と、素線の溶接時の熱の影響を受けない非熱影響組織部とは、材料としての変形の挙動が異なる。凝固組織部を含む熱影響組織部と非熱影響組織部とを含む導線部分が同じ圧着条件で圧着端子と圧着加工されるため、これらの組織部の変形挙動の違いによって、素線切れが生じることがある。 In the electric wire with crimp terminal of Patent Document 1, damage to the wires has been improved compared to conventional techniques, but the contact resistance between the wires arranged at the outermost circumference of the conductor and the crimp terminal is still high, and strong crimping processing to reduce the resistance between the wires and the crimp terminal may cause the wires to break. In addition, the deformation behavior of the material differs between the heat-affected structure portion, which is affected by the heat when the wires are welded and the non-heat-affected structure portion, which is not affected by the heat when the wires are welded, including the solidified structure portion of the wire integration portion formed by welding the wires together. The conductor portion including the heat-affected structure portion including the solidified structure portion and the non-heat-affected structure portion is crimped to the crimp terminal under the same crimping conditions, so the difference in deformation behavior of these structures may cause the wires to break.

特許第6373077号Patent No. 6373077

本開示の目的は、素線間の抵抗の上昇を抑制すると共に、素線切れを抑制した圧着端子付き電線を提供することである。 The objective of this disclosure is to provide an electric wire with a crimp terminal that suppresses an increase in resistance between the wires and also suppresses wire breakage.

[1] 複数の素線から構成される導線および前記導線の外周を被覆する絶縁被覆部を有する電線と、前記電線の前記導線に圧着されている圧着端子とを備え、前記圧着端子が前記導線に圧着されている圧着部を有する圧着端子付き電線であって、前記導線は、アルミニウム系材料からなり、前記圧着部の縦断面において、前記電線の延在方向に沿った、前記圧着部の長さLに対する前記複数の素線のうちの少なくとも一部が溶接している溶接部の長さL1の比(L1/L)は、0.10以上であることを特徴とする圧着端子付き電線。
[2] 前記圧着部以外の前記導線の断面における平均結晶粒径(d)に対する前記圧着部の前記導線の断面における平均結晶粒径(d1)の比(d1/d)は、1.1以上である、上記[1]に記載の圧着端子付き電線。
[3] 前記圧着部以外の前記導線の断面における平均ビッカース硬さ(h)に対する前記圧着部の前記導線の断面における平均ビッカース硬さ(h1)の比(h1/h)は、0.80以下である、上記[1]または[2]に記載の圧着端子付き電線。
[1] An electric wire with a crimp terminal, comprising: a conductor formed of a plurality of strands and an insulating coating portion coating an outer periphery of the conductor; and a crimp terminal crimped to the conductor of the electric wire, the crimp terminal having a crimp portion where the crimp terminal is crimped to the conductor, the conductor being made of an aluminum-based material, and a ratio (L1/L) of a length L1 of a welded portion where at least a part of the plurality of strands is welded to a length L of the crimped portion in a longitudinal cross section along an extension direction of the electric wire is 0.10 or more.
[2] The electric wire with a crimp terminal according to the above-mentioned [1], wherein a ratio (d1/d) of an average crystal grain size (d1) in a cross section of the conductor at the crimping portion to an average crystal grain size (d) in a cross section of the conductor other than the crimping portion is 1.1 or more.
[3] The electric wire with crimp terminal according to the above [1] or [2], wherein a ratio (h1/h) of an average Vickers hardness (h1) in a cross section of the conductor at the crimping portion to an average Vickers hardness (h) in a cross section of the conductor other than the crimping portion is 0.80 or less.

本開示によれば、素線間の抵抗の上昇を抑制すると共に、素線切れを抑制した圧着端子付き電線を提供することができる。 According to the present disclosure, it is possible to provide an electric wire with a crimp terminal that suppresses an increase in resistance between the wires and also suppresses breakage of the wires.

図1は、実施形態の圧着端子付き電線の一例を示す縦断面図である。FIG. 1 is a vertical cross-sectional view showing an example of an electric wire with a crimp terminal according to an embodiment.

以下、実施形態に基づき詳細に説明する。 The following provides a detailed explanation based on the embodiment.

本発明者らは、鋭意研究を重ねた結果、圧着端子が圧着している圧着部における導線の状態を適正化することによって、素線間の抵抗の上昇を抑制すると共に素線切れを抑制できることを見出し、かかる知見に基づき本開示を完成させるに至った。 As a result of extensive research, the inventors discovered that optimizing the condition of the conductor wire at the crimping portion where the crimp terminal is crimped can suppress an increase in resistance between the wires and prevent wire breakage, and have completed the present disclosure based on this knowledge.

実施形態の圧着端子付き電線は、複数の素線から構成される導線および前記導線の外周を被覆する絶縁被覆部を有する電線と、前記電線の前記導線に圧着されている圧着端子とを備え、前記圧着端子が前記導線に圧着されている圧着部を有する圧着端子付き電線であって、前記導線は、アルミニウム系材料からなり、前記圧着部の縦断面において、前記電線の延在方向に沿った、前記圧着部の長さLに対する前記複数の素線のうちの少なくとも一部が溶接している溶接部の長さL1の比(L1/L)は、0.10以上である。 The electric wire with crimp terminal of the embodiment includes a conductor wire composed of multiple strands and an insulating coating portion that covers the outer circumference of the conductor wire, and a crimp terminal crimped to the conductor wire of the electric wire, the crimp terminal having a crimp portion where the crimp terminal is crimped to the conductor wire, the conductor wire is made of an aluminum-based material, and in a longitudinal cross section of the crimp portion, the ratio (L1/L) of the length L of the crimp portion along the extension direction of the electric wire to the length L of the crimp portion is 0.10 or more.

図1は、実施形態の圧着端子付き電線の一例を示す縦断面図である。図1に示すように、実施形態の圧着端子付き電線1は、電線10および圧着端子20を備える。また、圧着端子付き電線1は、圧着端子20が導線11に圧着されている圧着部30を有する。 Figure 1 is a longitudinal cross-sectional view showing an example of an electric wire with a crimp terminal according to an embodiment. As shown in Figure 1, the electric wire with a crimp terminal 1 according to an embodiment includes an electric wire 10 and a crimp terminal 20. The electric wire with a crimp terminal 1 also has a crimp portion 30 in which the crimp terminal 20 is crimped to the conductor wire 11.

電線10は、導線11および絶縁被覆部13を有する。導線11は、複数の素線12から構成される。導線11の端部には、溶接部41aが設けられる。溶接部41aでは、複数の素線12のうちの少なくとも一部が溶接している。複数の素線12は、溶接部41aを介して、相互に接続される。 The electric wire 10 has a conductor 11 and an insulating coating 13. The conductor 11 is composed of a plurality of strands 12. A welded portion 41a is provided at the end of the conductor 11. At least some of the strands 12 are welded at the welded portion 41a. The strands 12 are connected to each other via the welded portion 41a.

導線11は、圧縮されていてもよく、導線11の延在方向に垂直な断面の外径は、円形でもよいし、平形でもよい。また、導線11は、複数の素線12を撚り合わせた撚線でもよいし、複数の素線12の束である束線でもよい。 The conductor 11 may be compressed, and the outer diameter of the cross section perpendicular to the direction of extension of the conductor 11 may be circular or flat. The conductor 11 may also be a stranded wire in which multiple strands 12 are twisted together, or a bundled wire in which multiple strands 12 are bundled.

絶縁被覆部13は、導線11の外周を被覆する。絶縁被覆部13の形状は筒状である。 The insulating coating portion 13 covers the outer circumference of the conductor 11. The insulating coating portion 13 is cylindrical in shape.

圧着端子20は、導線11の端部に設けられる溶接部41aを含む電線10の導線11に圧着されている。導線11の端部に圧着されている圧着端子20は、導線11の外周を環状に覆っている。 The crimp terminal 20 is crimped to the conductor 11 of the electric wire 10, including the welded portion 41a provided at the end of the conductor 11. The crimp terminal 20 crimped to the end of the conductor 11 covers the outer circumference of the conductor 11 in a ring shape.

具体的には、電線10の端部から絶縁被覆部13の一部を剥離、いわゆる皮剥ぎし、皮剥ぎで露出した導線11の端部を溶接してなる溶接部41aを含む導線11の部分に対して、圧着端子20のワイヤバレル部21がかしめられると、ワイヤバレル部21は、溶接部41aおよび露出している導線11の外周を環状に覆うように、電線10に圧着される。圧着端子20のワイヤバレル部21が電線10に圧着されると、環状の圧着部30が形成される。圧着端子20は、圧着部30を介して、電線10の導線11と電気的に接続される。 Specifically, when a portion of the insulating coating 13 is peeled off (stripped) from the end of the electric wire 10 and the end of the electric wire 11 exposed by the stripping is welded to a portion of the electric wire 11 including the welded portion 41a, the wire barrel portion 21 is crimped to the electric wire 10 so as to annularly cover the welded portion 41a and the outer circumference of the exposed electric wire 11. When the wire barrel portion 21 of the crimp terminal 20 is crimped to the electric wire 10, an annular crimp portion 30 is formed. The crimp terminal 20 is electrically connected to the electric wire 11 of the electric wire 10 via the crimp portion 30.

上記のように、圧着端子20は溶接部41aにも圧着されている。そのため、電線10に対する圧着端子20の圧着力を従来に比べて小さくしても、素線12および圧着端子20の接触抵抗値を低下できると共に、素線12間の抵抗値のばらつきを小さくできる。圧着部30における素線12の減面率が小さいため、素線切れを抑制できる。一方で、圧着部30における素線12の減面率が大きいと、素線切れを生じることがある。 As described above, the crimp terminal 20 is also crimped to the welded portion 41a. Therefore, even if the crimping force of the crimp terminal 20 against the electric wire 10 is reduced compared to the conventional method, the contact resistance value between the wires 12 and the crimp terminal 20 can be reduced, and the variation in resistance value between the wires 12 can be reduced. Since the area reduction rate of the wires 12 in the crimping portion 30 is small, wire breakage can be suppressed. On the other hand, if the area reduction rate of the wires 12 in the crimping portion 30 is large, wire breakage may occur.

例えば、電線10の端部から5mm以上20mm以下離れた部分の絶縁被覆部13を皮剥ぎし、露出した導線11の端部を溶接加工した後、溶接部41aを含む導線11の端部に圧着端子20が圧着される。また、図1に示すように、導線11の外周を覆う絶縁被覆部13、すなわち皮剥ぎしていない絶縁被覆部13に対して、圧着端子20のインシュレーションバルブ部22が圧着されてもよい。 For example, the insulating coating 13 is stripped from a portion 5 mm to 20 mm away from the end of the electric wire 10, the exposed end of the conductor 11 is welded, and then the crimp terminal 20 is crimped to the end of the conductor 11 including the welded portion 41a. Also, as shown in FIG. 1, the insulation bulb portion 22 of the crimp terminal 20 may be crimped to the insulating coating 13 that covers the outer periphery of the conductor 11, i.e., the insulating coating portion 13 that has not been stripped.

導線11は、アルミニウム合金を含むアルミニウム系材料からなる。換言すると、導線11を構成する複数の素線12は、アルミニウム系材料からなる。アルミニウム系材料の組成は、97.5質量%以上のAl、任意成分としてFe、Si、CuおよびMgからなる群より選択される1種以上の元素、ならびに不可避不純物からなる。 The conductor 11 is made of an aluminum-based material including an aluminum alloy. In other words, the multiple strands 12 that make up the conductor 11 are made of an aluminum-based material. The aluminum-based material is composed of 97.5% by mass or more of Al, one or more elements selected from the group consisting of Fe, Si, Cu, and Mg as optional components, and unavoidable impurities.

Fe(鉄)の含有量が0.05質量%以上であると、導線の強度を向上できるため、素線切れを抑制できる。Feの含有量が0.50質量%以下であると、導線の高い導電性を維持できると共に、伸線加工性の低下を抑制できる。このため、Feの含有量の下限値は、好ましくは0.05質量%以上、より好ましくは0.10質量%以上であり、Feの含有量の上限値は、好ましくは0.50質量%以下、より好ましくは0.25質量%以下である。 When the Fe (iron) content is 0.05% by mass or more, the strength of the conductor wire can be improved, and wire breakage can be suppressed. When the Fe content is 0.50% by mass or less, the high electrical conductivity of the conductor wire can be maintained and deterioration of wire drawing workability can be suppressed. Therefore, the lower limit of the Fe content is preferably 0.05% by mass or more, more preferably 0.10% by mass or more, and the upper limit of the Fe content is preferably 0.50% by mass or less, more preferably 0.25% by mass or less.

Si(ケイ素)の含有量が0.01質量%以上であると、導線の強度を向上できるため、素線切れを抑制できる。Siの含有量が0.20質量%以下であると、導線の高い導電性を維持できる。このため、Siの含有量の下限値は、好ましくは0.01質量%以上、より好ましくは0.05質量%以上であり、Siの含有量の上限値は、好ましくは0.20質量%以下、より好ましくは0.10質量%以下である。ただし、時効析出型の6000系合金を用いる場合は強度と導電性への寄与度が異なり、Siの含有量の下限値は、好ましくは0.30質量%以上、Siの含有量の上限値は、好ましくは0.7質量%以下である。 If the Si (silicon) content is 0.01% by mass or more, the strength of the conductor can be improved, and wire breakage can be suppressed. If the Si content is 0.20% by mass or less, the high conductivity of the conductor can be maintained. For this reason, the lower limit of the Si content is preferably 0.01% by mass or more, more preferably 0.05% by mass or more, and the upper limit of the Si content is preferably 0.20% by mass or less, more preferably 0.10% by mass or less. However, when using an age-precipitation type 6000 series alloy, the contributions to strength and conductivity differ, and the lower limit of the Si content is preferably 0.30% by mass or more, and the upper limit of the Si content is preferably 0.7% by mass or less.

Cu(銅)の含有量が0.10質量%以上であると、導線の高い導電性を維持しながら、導線の強度を向上できる。Cuの含有量が0.25質量%以下であると、導線の高い導電性を維持できる。このため、Cuの含有量の下限値は、好ましくは0.10質量%以上、より好ましくは0.15質量%以上であり、Cuの含有量の上限値は、好ましくは0.25質量%以下、より好ましくは0.20質量%以下である。 When the Cu (copper) content is 0.10% by mass or more, the strength of the conductor can be improved while maintaining the high conductivity of the conductor. When the Cu content is 0.25% by mass or less, the high conductivity of the conductor can be maintained. Therefore, the lower limit of the Cu content is preferably 0.10% by mass or more, more preferably 0.15% by mass or more, and the upper limit of the Cu content is preferably 0.25% by mass or less, more preferably 0.20% by mass or less.

Mg(マグネシウム)の含有量が0.03質量%以上であると、導線の高い導電性を維持しながら、導線の強度を向上できる。Mgの含有量が0.15質量%以下であると、導線の高い導電性を維持できる。このため、Mgの含有量の下限値は、好ましくは0.03質量%以上、より好ましくは0.05質量%以上であり、Mgの含有量の上限値は、好ましくは0.15質量%以下、より好ましくは0.10質量%以下である。ただし、時効析出型の6000系合金を用いる場合は強度と導電性への寄与度が異なり、Mgの含有量の下限値は、好ましくは0.35質量%以上、Mgの含有量の上限値は、好ましくは0.80質量%以下である。 When the Mg (magnesium) content is 0.03% by mass or more, the strength of the conductor can be improved while maintaining high electrical conductivity of the conductor. When the Mg content is 0.15% by mass or less, the high electrical conductivity of the conductor can be maintained. Therefore, the lower limit of the Mg content is preferably 0.03% by mass or more, more preferably 0.05% by mass or more, and the upper limit of the Mg content is preferably 0.15% by mass or less, more preferably 0.10% by mass or less. However, when using an age-precipitation type 6000 series alloy, the contributions to strength and electrical conductivity are different, and the lower limit of the Mg content is preferably 0.35% by mass or more, and the upper limit of the Mg content is preferably 0.80% by mass or less.

任意成分としてのFe、Si、CuおよびMgからなる群より選択される1種以上の元素の合計含有量が0.05質量%以上であると、導線の強度を向上できるため、素線切れを抑制できる。任意成分の合計含有量が2.10質量%以下であると、導線の高い導電性を維持できると共に、伸線加工性の低下を抑制できる。このため、任意成分の含有量の下限値は、好ましくは0.05質量%以上、より好ましくは0.10質量%以上であり、任意成分の含有量の上限値は、好ましくは2.10質量%以下、より好ましくは0.50質量%以下である。 When the total content of one or more elements selected from the group consisting of Fe, Si, Cu, and Mg as optional components is 0.05 mass% or more, the strength of the conductor wire can be improved, and wire breakage can be suppressed. When the total content of optional components is 2.10 mass% or less, the high conductivity of the conductor wire can be maintained and deterioration of wire drawing processability can be suppressed. Therefore, the lower limit of the content of optional components is preferably 0.05 mass% or more, more preferably 0.10 mass% or more, and the upper limit of the content of optional components is preferably 2.10 mass% or less, more preferably 0.50 mass% or less.

上述した成分以外の残部は不可避不純物である。不可避不純物は、製造工程上、不可避的に含まれうることもあり、含有量によっては導線の導電率および強度を低下させる要因にもなりうるため、不可避不純物の含有量は少ないことが好ましい。不可避不純物としては、例えば、Mn、Zn、Ti、B、Vなどの元素が挙げられる。なお、上記不可避不純物の含有量の上限は、上記元素毎に、好ましくは0.03質量%以下、より好ましくは0.01質量%以下であり、上記元素の合計で、好ましくは0.10質量%以下、より好ましくは0.05質量%以下である。 The remainder other than the above-mentioned components are unavoidable impurities. Inevitable impurities may be unavoidably included in the manufacturing process, and depending on the content, they may be a factor in reducing the electrical conductivity and strength of the conductor, so it is preferable that the content of unavoidable impurities is small. Examples of unavoidable impurities include elements such as Mn, Zn, Ti, B, and V. The upper limit of the content of the above unavoidable impurities is preferably 0.03 mass% or less, more preferably 0.01 mass% or less, for each of the above elements, and preferably 0.10 mass% or less, more preferably 0.05 mass% or less in total for the above elements.

図1に示すように、圧着部30の縦断面において、電線10の延在方向に沿った、圧着部30の長さLに対する溶接部41aの長さL1の比(L1/L)は、0.10以上である。圧着部30の縦断面は、圧着部30における導線11の中心軸に沿った面である。溶接部41aは、複数の素線12のうちの少なくとも一部の素線12同士が溶接している部分である。 As shown in FIG. 1, in the longitudinal section of the crimping portion 30, the ratio (L1/L) of the length L1 of the welded portion 41a to the length L of the crimping portion 30 along the extension direction of the electric wire 10 is 0.10 or more. The longitudinal section of the crimping portion 30 is a surface along the central axis of the conductor 11 in the crimping portion 30. The welded portion 41a is a portion where at least some of the multiple strands 12 are welded together.

ここで、複数の素線12を溶接して溶接部41aが形成されると、溶接部41aの組織、および導線11における溶接部41aに隣接した溶接隣接部41bの組織は、溶接時の熱の影響を受けて変化する。このように、導線11は、溶接部41aおよび溶接隣接部41bを有する熱影響組織部41を端部側に有し、溶接時の熱の影響を受けない非熱影響組織部42を溶接隣接部41bと隣接する中央部側に有する。 Here, when the welded portion 41a is formed by welding multiple wires 12, the structure of the welded portion 41a and the structure of the welded adjacent portion 41b adjacent to the welded portion 41a in the conductor 11 change due to the influence of the heat during welding. In this way, the conductor 11 has a heat-affected structure portion 41 having the welded portion 41a and the welded adjacent portion 41b on the end side, and a non-heat-affected structure portion 42 on the central side adjacent to the welded adjacent portion 41b that is not affected by the heat during welding.

非熱影響組織部42は、溶接前の導線11の組織と同じであり、熱影響組織部41は、溶接前の導線11の組織が溶接の熱によって変化した組織である。熱影響組織部41および非熱影響組織部42は、材料としての変形の挙動が異なる。熱影響組織部41および非熱影響組織部42は、SEMで観察すると、明確に異なる。 The non-heat-affected structure portion 42 is the same as the structure of the conductor 11 before welding, and the heat-affected structure portion 41 is a structure in which the structure of the conductor 11 before welding has been changed by the heat of welding. The heat-affected structure portion 41 and the non-heat-affected structure portion 42 have different deformation behavior as materials. The heat-affected structure portion 41 and the non-heat-affected structure portion 42 are clearly different when observed with an SEM.

そして、電線10の延在方向に沿った圧着部30の長さLに対する電線10の延在方向に沿った溶接部41aの長さL1の比(L1/L)が0.10以上であると、圧着部30の大部分が熱影響組織部41であるため、熱影響組織部41と非熱影響組織部42との圧着時の変形挙動の違いによって発生する素線12の切れやクラックを抑制できる。素線12のクラックの発生を抑制できるので、素線12間の抵抗値の上昇、導線11の耐食性の低下、導線11の引張破断強度の低下などを抑制できる。このような観点から、上記比(L1/L)は、0.10以上であり、好ましくは0.30以上、より好ましくは0.50以上である。 When the ratio (L1/L) of the length L1 of the welded portion 41a along the extension direction of the electric wire 10 to the length L of the crimped portion 30 along the extension direction of the electric wire 10 is 0.10 or more, most of the crimped portion 30 is the heat-affected tissue portion 41, so that breakage and cracks in the wire 12 caused by the difference in deformation behavior during crimping between the heat-affected tissue portion 41 and the non-heat-affected tissue portion 42 can be suppressed. Since the occurrence of cracks in the wire 12 can be suppressed, an increase in the resistance value between the wires 12, a decrease in the corrosion resistance of the conductor 11, a decrease in the tensile breaking strength of the conductor 11, etc. can be suppressed. From this viewpoint, the ratio (L1/L) is 0.10 or more, preferably 0.30 or more, and more preferably 0.50 or more.

一方で、上記比(L1/L)が0.10未満であると、圧着端子20の圧着時における熱影響組織部41と非熱影響組織部42との変形挙動の違いで生じる素線12の切れやクラックを抑制できない。 On the other hand, if the above ratio (L1/L) is less than 0.10, it is not possible to suppress breakage or cracking of the wire 12 caused by the difference in deformation behavior between the heat-affected tissue portion 41 and the non-heat-affected tissue portion 42 during crimping of the crimp terminal 20.

圧着端子20の構成としては、Fクリンプのように、導線11に圧着されているときに、導線11の外周を環状に覆っていればよく、ワイヤバレル部21やインシュレーションバルブ部22を具備しなくてもよい。 The crimp terminal 20 is configured in such a way that, like an F crimp, it covers the outer circumference of the conductor 11 in an annular shape when it is crimped to the conductor 11, and does not need to include a wire barrel portion 21 or an insulation bulb portion 22.

また、圧着部30以外の導線11の断面における平均結晶粒径(d)に対する圧着部30の導線11の断面における平均結晶粒径(d1)の比(d1/d)は、1.1以上であることが好ましい。圧着部30以外の導線11は、圧着部30で圧着されていない導線11の部分、すなわち非圧着部である。 The ratio (d1/d) of the average crystal grain size (d1) in the cross section of the conductor 11 in the crimped portion 30 to the average crystal grain size (d) in the cross section of the conductor 11 other than the crimped portion 30 is preferably 1.1 or more. The conductor 11 other than the crimped portion 30 is the portion of the conductor 11 that is not crimped by the crimped portion 30, i.e., the non-crimped portion.

比(d1/d)が1.1以上であると、非圧着部における導線11の平均結晶粒径(d)に比べて、圧着部30における導線11の平均結晶粒径(d1)が粗大化することによって、圧着部30における導線11の応力緩和性が増加し、圧着部30における内部圧力の低下が抑制される。そのため、素線間の抵抗の上昇を抑制することができる。このような観点から、上記比(d1/d)は、好ましくは1.1以上であり、より好ましくは1.5以上、さらに好ましくは2.0以上である。 When the ratio (d1/d) is 1.1 or more, the average crystal grain size (d1) of the conductor 11 in the crimped portion 30 becomes coarser than the average crystal grain size (d) of the conductor 11 in the non-crimped portion, thereby increasing the stress relaxation of the conductor 11 in the crimped portion 30 and suppressing the decrease in internal pressure in the crimped portion 30. As a result, the increase in resistance between the strands can be suppressed. From this perspective, the ratio (d1/d) is preferably 1.1 or more, more preferably 1.5 or more, and even more preferably 2.0 or more.

平均結晶粒径(d1)は、圧着部30の縦断面において、電線の延在方向に沿って圧着部30の長さLを5等分し、5つの横断面毎に平均結晶粒径を測定し、これらの測定値を平均して得ることができる。また、平均結晶粒径(d)は、圧着部30以外の導線11の縦断面において、圧着部30の長さLに相当する長さを5等分し、5つの横断面毎に平均結晶粒径を測定し、これらの測定値を平均して得ることができる。 The average crystal grain size (d1) can be obtained by dividing the length L of the crimped portion 30 into five equal parts along the extension direction of the wire in the longitudinal section of the crimped portion 30, measuring the average crystal grain size for each of the five cross sections, and averaging these measured values. The average crystal grain size (d) can be obtained by dividing the length equivalent to the length L of the crimped portion 30 into five equal parts in the longitudinal section of the conductor 11 other than the crimped portion 30, measuring the average crystal grain size for each of the five cross sections, and averaging these measured values.

また、圧着部30以外の導線11の断面における平均ビッカース硬さ(h)に対する圧着部30の導線11の断面における平均ビッカース硬さ(h1)の比(h1/h)は、0.80以下であることが好ましい。 In addition, it is preferable that the ratio (h1/h) of the average Vickers hardness (h1) at the cross section of the conductor 11 at the crimping portion 30 to the average Vickers hardness (h) at the cross section of the conductor 11 other than the crimping portion 30 is 0.80 or less.

比(h1/h)が0.80以下であると、圧着部30における導線11が変形しやすいことによって、圧着部30における導線11全体で変形が進み、局所的な抵抗値の上昇が抑制される。そのため、素線間の抵抗の上昇を抑制することができる。このような観点から、上記比(h1/h)は、好ましくは0.80以下であり、より好ましくは0.70以下、さらに好ましくは0.60以下である。 When the ratio (h1/h) is 0.80 or less, the conductor 11 in the crimping portion 30 is easily deformed, so that deformation of the entire conductor 11 in the crimping portion 30 progresses, suppressing a local increase in resistance value. As a result, an increase in resistance between the strands can be suppressed. From this perspective, the ratio (h1/h) is preferably 0.80 or less, more preferably 0.70 or less, and even more preferably 0.60 or less.

平均ビッカース硬さ(h1)は、圧着部30の縦断面において、電線の延在方向に沿って圧着部30の長さLを5等分し、5つの横断面毎に1mm間隔で5カ所のビッカース硬さを測定し、これらの測定値を平均して得ることができる。また、平均ビッカース硬さ(h)は、圧着部30以外の導線11の縦断面において、圧着部30の長さLに相当する長さを5等分し、5つの横断面毎に1mm間隔で5カ所のビッカース硬さを測定し、これらの測定値を平均して得ることができる。 The average Vickers hardness (h1) can be obtained by dividing the length L of the crimped portion 30 into five equal parts along the extension direction of the wire in the longitudinal section of the crimped portion 30, measuring the Vickers hardness at five points at 1 mm intervals for each of the five cross sections, and averaging these measured values. The average Vickers hardness (h) can be obtained by dividing the length equivalent to the length L of the crimped portion 30 into five equal parts in the longitudinal section of the conductor 11 other than the crimped portion 30, measuring the Vickers hardness at five points at 1 mm intervals for each of the five cross sections, and averaging these measured values.

0.2mm以上1.0mm以下の線径を有する素線12を7本以上300本以下で撚り合わせてなる導線11では、素線間の抵抗上昇の抑制および素線切れの抑制がさらに向上する。特に、上記範囲内の線径を有する素線12が7本以上であると、導線11の柔軟性が増加するため、圧着端子付き電線1に対する作業性を向上できる。また、上記範囲内の線径を有する素線12が300本以下であると、導線11を構成する素線12の素線切れをさらに抑制できる。また、3.0sq(3.0mm)以上の断面積を有するアルミニウム系材料の導線において、素線間の抵抗上昇の抑制は従来困難であったが、比(L1/L)が0.10以上である圧着端子付き電線1では、3.0sq以上の断面積を有する導線11であっても、素線間の抵抗の上昇を抑制することができる。導線11を構成する素線12の本数および素線12の線径は、圧着端子付き電線1の用途に応じて、適宜選択される。 In the conductor 11 formed by twisting together 7 to 300 strands of strands 12 each having a wire diameter of 0.2 mm to 1.0 mm, the resistance increase between the strands and the wire breakage are further suppressed. In particular, when the number of strands 12 each having a wire diameter within the above range is 7 or more, the flexibility of the conductor 11 is increased, and the workability of the electric wire with crimp terminal 1 can be improved. Furthermore, when the number of strands 12 each having a wire diameter within the above range is 300 or less, the wire breakage of the strands 12 constituting the conductor 11 can be further suppressed. Furthermore, in a conductor made of an aluminum-based material having a cross-sectional area of 3.0 sq (3.0 mm 2 ) or more, it has been difficult to suppress the resistance increase between the strands. However, in the electric wire with crimp terminal 1 having a ratio (L1/L) of 0.10 or more, the resistance increase between the strands can be suppressed even in the conductor 11 having a cross-sectional area of 3.0 sq or more. The number of wires 12 constituting the conductor 11 and the wire diameter of the wires 12 are appropriately selected depending on the application of the electric wire with crimp terminal 1 .

圧着端子20を構成する材料は、圧着端子付き電線1の用途や導線11を構成するアルミニウム系材料の種類に応じて、適宜選択される。その中でも、圧着端子付き電線1の低抵抗化の観点から、アルミニウムおよびアルミニウム合金を含むアルミニウム系材料、銅および銅合金を含む銅系材料が好ましく、純銅および黄銅がより好ましい。さらに、アルミニウム合金および銅合金は、Ni、Si、Zn、Sn、Mg、Mn、Cr、およびCoからなる群より選択される1種以上の元素を含有してもよい。 The material constituting the crimp terminal 20 is appropriately selected depending on the application of the electric wire with crimp terminal 1 and the type of aluminum-based material constituting the conductor 11. Among them, from the viewpoint of reducing the resistance of the electric wire with crimp terminal 1, aluminum-based materials including aluminum and aluminum alloys, copper-based materials including copper and copper alloys are preferred, and pure copper and brass are more preferred. Furthermore, the aluminum alloy and copper alloy may contain one or more elements selected from the group consisting of Ni, Si, Zn, Sn, Mg, Mn, Cr, and Co.

圧着端子付き電線1は、軽量化に加えて、素線間の抵抗上昇の抑制や素線切れが起こらないことを要求される、ワイヤハーネス、好ましくは自動車用のワイヤハーネスに好適に用いられる。 The electric wire 1 with crimp terminal is suitable for use in wire harnesses, preferably wire harnesses for automobiles, which require not only light weight but also the prevention of resistance increases between wires and the prevention of wire breakage.

次に、上記圧着端子付き電線1の製造方法について説明する。まず、電線10から絶縁被覆部13の一部を皮剥ぎし、導線11の端部を露出する。続いて、露出している導線11のうち、導線11の端部を含む端部周辺を構成している複数の素線12の少なくとも一部を溶接して、溶接部41aを形成する。 Next, a method for manufacturing the electric wire 1 with the crimp terminal will be described. First, a part of the insulating coating 13 is stripped from the electric wire 10 to expose the end of the conductor 11. Next, at least a part of the multiple strands 12 constituting the periphery of the end of the exposed conductor 11, including the end of the conductor 11, is welded to form the welded portion 41a.

ファイバレーザー、YAGレーザ、半導体レーザのようなレーザで溶接部41aを形成する場合、導線11の端部の周辺から、電線の延在方向に沿ってレーザを走査し、導線11の端部まで溶接する。レーザ溶接では、導線11の端部を最後に溶接する。このような方法でレーザ溶接を行うことによって、溶接欠陥を減少できるため、導線11の引張破断強度の低下を抑制できる。また、上記のレーザ溶接に加えて、アーク溶接も適用できる。アーク溶接の場合、導線11の端部のみを溶接する。 When forming the welded portion 41a with a laser such as a fiber laser, YAG laser, or semiconductor laser, the laser is scanned from the periphery of the end of the conductor 11 along the extension direction of the wire, and welding is performed up to the end of the conductor 11. In laser welding, the end of the conductor 11 is welded last. By performing laser welding in this manner, welding defects can be reduced, and therefore a decrease in the tensile breaking strength of the conductor 11 can be suppressed. In addition to the above laser welding, arc welding can also be applied. In the case of arc welding, only the end of the conductor 11 is welded.

続いて、電線10の延在方向に沿った圧着部30の長さLに対する電線10の延在方向に沿った溶接部41aの長さL1の比(L1/L)が0.10以上になるように、溶接部41aを含む導線11に圧着端子20を圧着する。こうして、圧着端子付き電線1を得ることができる。 Then, the crimp terminal 20 is crimped to the conductor 11 including the welded portion 41a so that the ratio (L1/L) of the length L1 of the welded portion 41a along the extension direction of the electric wire 10 to the length L of the crimped portion 30 along the extension direction of the electric wire 10 is 0.10 or more. In this way, the electric wire 1 with the crimped terminal can be obtained.

以上説明した実施形態によれば、圧着部の長さLに対する溶接部の長さL1の比(L1/L)を調整し、圧着部における導線の状態を適正化することによって、圧着端子付き電線では、素線間の抵抗の上昇を抑制できると共に、素線切れを抑制できる。 According to the embodiment described above, by adjusting the ratio (L1/L) of the length L1 of the welded portion to the length L of the crimped portion and optimizing the condition of the conductor in the crimped portion, it is possible to suppress an increase in resistance between the wires and prevent wire breakage in an electric wire with a crimp terminal.

以上、実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、本開示の概念および特許請求の範囲に含まれるあらゆる態様を含み、本開示の範囲内で種々に改変することができる。 Although the embodiments have been described above, the present invention is not limited to the above embodiments, but includes all aspects included in the concept and claims of this disclosure, and can be modified in various ways within the scope of this disclosure.

次に、実施例および比較例について説明するが、本発明はこれら実施例に限定されるものではない。 Next, examples and comparative examples will be described, but the present invention is not limited to these examples.

(実施例1~14および比較例1~4)
表1に示す組成を有する複数の素線を撚り合わせることによって、表1に示す撚り構成(導線の断面積、素線の本数)を満たす電線を得た。続いて、表2に示す数値になるように、圧着端子を電線に圧着させた。こうして、圧着端子付き電線を得た。






(Examples 1 to 14 and Comparative Examples 1 to 4)
A plurality of wires having the composition shown in Table 1 were twisted together to obtain an electric wire having the twist configuration (cross-sectional area of the conductor wire, number of wires) shown in Table 1. Then, a crimp terminal was crimped onto the electric wire so as to obtain the values shown in Table 2. In this manner, an electric wire with a crimp terminal was obtained.






Figure 0007488151000001
Figure 0007488151000001

[測定および評価]
上記実施例および比較例で得られた圧着端子付き電線について、下記の測定および評価を行った。結果を表2に示す。
[Measurement and Evaluation]
The electric wires with crimp terminals obtained in the above Examples and Comparative Examples were subjected to the following measurements and evaluations. The results are shown in Table 2.

[1] 比(L1/L)
電線の延在方向に沿った圧着部の長さLに対する電線の延在方向に沿った溶接部の長さL1の比(L1/L)は、上記実施例および比較例で得られた圧着端子付き電線について、圧着部における導線の中心軸に沿った面である圧着部の縦断面をSEMで観察した画像から得た。
[1] Ratio (L1/L)
The ratio (L1/L) of the length L1 of the welded portion along the extension direction of the electric wire to the length L of the crimped portion along the extension direction of the electric wire was obtained from images of the longitudinal cross sections of the crimped portion, which is the surface along the central axis of the conductor in the crimped portion, observed with a SEM for the electric wires with crimp terminals obtained in the above examples and comparative examples.

[2] 比(d1/d)
圧着部の導線の断面における平均結晶粒径(d1)は、圧着部の上記縦断面において、電線の延在方向に沿って圧着部の長さLを5等分し、5つの横断面毎に平均結晶粒径を測定し、これらの測定値を平均して得た。また、圧着部以外の導線の断面における平均結晶粒径(d)は、圧着部以外の導線の縦断面をSEMで観察し、この縦断面における圧着部の長さLに相当する長さを5等分し、5つの横断面毎に平均結晶粒径を測定し、これらの測定値を平均して得た。そして、得られた平均結晶粒径(d1)および平均結晶粒径(d)から比(d1/d)を算出した。
[2] Ratio (d1/d)
The average crystal grain size (d1) in the cross section of the conductor at the crimping portion was obtained by dividing the length L of the crimping portion into 5 equal parts along the extension direction of the electric wire, measuring the average crystal grain size for each of the 5 cross sections, and averaging these measured values. The average crystal grain size (d) in the cross section of the conductor other than the crimping portion was obtained by observing the vertical cross section of the conductor other than the crimping portion with a SEM, dividing the length corresponding to the length L of the crimping portion in this vertical cross section into 5 equal parts, measuring the average crystal grain size for each of the 5 cross sections, and averaging these measured values. Then, the ratio (d1/d) was calculated from the obtained average crystal grain size (d1) and average crystal grain size (d).

[3] 比(h1/h)
圧着部の導線の断面における平均ビッカース硬さ(h1)は、圧着部の上記縦断面において、電線の延在方向に沿って圧着部の長さLを5等分し、5つの横断面毎に1mm間隔で5カ所のビッカース硬さを測定し、これらの測定値を平均して得た。また、圧着部以外の導線の断面における平均ビッカース硬さ(h)は、圧着部以外の導線の縦断面をSEMで観察し、この縦断面における圧着部の長さLに相当する長さを5等分し、5つの横断面毎に1mm間隔で5カ所のビッカース硬さを測定し、これらの測定値を平均して得た。そして、得られた平均ビッカース硬さ(h1)および平均ビッカース硬さ(h)から比(h1/h)を算出した。
[3] Ratio (h1 / h)
The average Vickers hardness (h1) in the cross section of the conductor at the crimped portion was obtained by dividing the length L of the crimped portion into 5 equal parts along the extension direction of the electric wire in the longitudinal section of the crimped portion, measuring the Vickers hardness at 5 points at 1 mm intervals for each of the 5 cross sections, and averaging these measured values. The average Vickers hardness (h) in the cross section of the conductor other than the crimped portion was obtained by observing the longitudinal section of the conductor other than the crimped portion with an SEM, dividing the length corresponding to the length L of the crimped portion in this longitudinal section into 5 equal parts, measuring the Vickers hardness at 5 points at 1 mm intervals for each of the 5 cross sections, and averaging these measured values. Then, the ratio (h1/h) was calculated from the obtained average Vickers hardness (h1) and the average Vickers hardness (h).

[4] サーマルサイクル試験後の素線間の抵抗値の上昇率
まず、サーマルサイクル試験前の圧着端子付き電線の電気抵抗値について、回路素子測定器(日置電機株式会社製、3560ACミリオームハイテスタ)を用いて、素線毎に、圧着端子と素線と間の抵抗値を測定した。次に、小型冷熱衝撃装置(エスペック株式会社製、TSE-12-A)を用いて、圧着端子付き電線について、-40℃で30分および120℃で30分の温度サイクルを240回繰り返すサーマルサイクル試験を行った。次に、サーマルサイクル試験後の圧着端子付き電線の電気抵抗値について、回路素子測定器を用いて、素線毎に、圧着端子と素線と間の抵抗値を測定した。これらの測定値から、抵抗値の上昇率について、平均値および標準偏差を算出した。平均値および標準偏差について、以下のランク付けを行った。抵抗値の上昇率が小さいほど、圧着端子付き電線は良好である。
[4] Rate of increase in resistance between strands after thermal cycle test First, the electrical resistance of the crimp terminal-attached electric wire before the thermal cycle test was measured for each strand using a circuit element measuring instrument (HIOKI EE 3560AC milliohm high tester). Next, a thermal cycle test was performed on the crimp terminal-attached electric wire by repeating a temperature cycle of 30 minutes at -40°C and 30 minutes at 120°C 240 times using a small thermal shock device (ESPEC TSE-12-A). Next, the electrical resistance of the crimp terminal-attached electric wire after the thermal cycle test was measured for each strand using a circuit element measuring instrument. From these measured values, the average value and standard deviation of the rate of increase in resistance were calculated. The following ranking was performed for the average value and standard deviation. The smaller the rate of increase in resistance, the better the crimp terminal-attached electric wire.

平均値は以下の通りである。
A:抵抗値の上昇率が120%以下
B:抵抗値の上昇率が120%超150%以下
C:抵抗値の上昇率が150%超
The average values are as follows:
A: The rate of increase in resistance value is 120% or less. B: The rate of increase in resistance value is more than 120% and less than 150%. C: The rate of increase in resistance value is more than 150%.

標準偏差は以下の通りである。
A:抵抗値の上昇率が150%以下
B:抵抗値の上昇率が150%超300%以下
C:抵抗値の上昇率が300%超
The standard deviation is as follows:
A: The rate of increase in resistance value is 150% or less. B: The rate of increase in resistance value is more than 150% and less than 300%. C: The rate of increase in resistance value is more than 300%.

[5] 引張破断強度
圧着端子付き電線の圧着端子と電線とを引張試験機に固定し、チャック間距離を100mm、引張速度を10mm/minの条件で引張試験を行った。そして、引張破断荷重を圧着部の断面積で割ることによって、引張破断強度(引張破断荷重/圧着部の断面積)を算出した。引張破断強度について、以下のランク付けを行った。引張破断強度が大きいほど、圧着端子付き電線は良好である。
[5] Tensile Breaking Strength The crimp terminal and the electric wire of the crimp terminal-attached electric wire were fixed to a tensile tester, and a tensile test was performed under the conditions of a chuck distance of 100 mm and a tensile speed of 10 mm/min. The tensile breaking strength (tensile breaking load/cross-sectional area of the crimp portion) was calculated by dividing the tensile breaking load by the cross-sectional area of the crimp portion. The tensile breaking strength was ranked as follows. The higher the tensile breaking strength, the better the electric wire with the crimp terminal.

A:引張破断強度が50N/mm以上
C:引張破断強度が50N/mm未満
A: Tensile breaking strength is 50 N/ mm2 or more C: Tensile breaking strength is less than 50 N/ mm2

[6] 素線切れ
圧着端子付き電線について、圧着端子を電線に圧着させた直後に目視で素線切れを観察した。素線切れについて、以下のランク付けを行った。素線切れの本数が少ないほど、圧着端子付き電線は良好である。
[6] Wire Breakage The electric wire with the crimp terminal was visually observed for wire breakage immediately after the crimp terminal was crimped to the electric wire. The wire breakage was ranked as follows. The fewer the number of wire breakages, the better the electric wire with the crimp terminal.

A:素線切れが生じない
C:素線切れが生じる
A: No wire breakage occurs. C: Wire breakage occurs.

[7] 総合評価
総合評価として、以下のランク付けを行った。
[7] Overall Evaluation The overall evaluation was performed using the following rankings.

◎:抵抗値の上昇率の平均値が120%以下、かつ抵抗値の上昇率の標準偏差が150%以下、かつ引張破断強度が50N/mm以上、かつ素線切れが生じない
○:抵抗値の上昇率の平均値が150%以下、かつ抵抗値の上昇率の標準偏差が300%以下、かつ引張破断強度が50N/mm以上、かつ素線切れが生じなく、抵抗値の上昇率の平均値が120%超、または抵抗値の上昇率の標準偏差が150%超である
×:抵抗値の上昇率の平均値が150%超、または抵抗値の上昇率の標準偏差が300%超、または引張破断強度が50N/mm未満、または素線切れが生じる
◎: The average rate of increase in resistance is 120% or less, the standard deviation of the rate of increase in resistance is 150% or less, the tensile breaking strength is 50 N/mm2 or more, and no wire breakage occurs. ○: The average rate of increase in resistance is 150% or less, the standard deviation of the rate of increase in resistance is 300% or less, the tensile breaking strength is 50 N/mm2 or more, and no wire breakage occurs, and the average rate of increase in resistance is more than 120% or the standard deviation of the rate of increase in resistance is more than 150%. ×: The average rate of increase in resistance is more than 150%, or the standard deviation of the rate of increase in resistance is more than 300%, or the tensile breaking strength is less than 50 N/ mm2 , or wire breakage occurs.

Figure 0007488151000002
Figure 0007488151000002

表1~2に示すように、実施例1~14では、比(L1/L)が0.10以上であるため、素線間の抵抗値の上昇、引張破断強度の低下、および素線切れを抑制できた。特に、実施例4~9、11、13では、比(d1/d)が1.1以上かつ比(h1/h)が0.80以下であるため、素線間の抵抗値の上昇および引張破断強度の低下をさらに抑制できた。 As shown in Tables 1 and 2, in Examples 1 to 14, the ratio (L1/L) was 0.10 or more, so an increase in resistance between the strands, a decrease in tensile breaking strength, and strand breakage were suppressed. In particular, in Examples 4 to 9, 11, and 13, the ratio (d1/d) was 1.1 or more and the ratio (h1/h) was 0.80 or less, so an increase in resistance between the strands and a decrease in tensile breaking strength were further suppressed.

一方、比較例1では、導線端部の溶接を行わなかったため、比(L1/L)が0であり、その結果、素線間の抵抗値が上昇し、引張破断強度が低下し、素線切れが生じた。比較例2では、比(L1/L)が0.10未満であるため、素線間の抵抗値が上昇し、素線切れが生じた。比較例3では、溶接が不十分であったため、比(L1/L)が0であり、その結果、素線間の抵抗値が上昇した。比較例4では、アーク溶接で導線の端部のみを溶接して比(L1/L)を0にしたため、素線間の抵抗値が上昇し、素線切れが生じた。 In Comparative Example 1, the conductor ends were not welded, so the ratio (L1/L) was 0, resulting in an increase in the resistance between the strands, a decrease in the tensile strength, and strand breakage. In Comparative Example 2, the ratio (L1/L) was less than 0.10, so the resistance between the strands increased and strand breakage occurred. In Comparative Example 3, the welding was insufficient, so the ratio (L1/L) was 0, resulting in an increase in the resistance between the strands. In Comparative Example 4, only the ends of the conductor were welded by arc welding, so the ratio (L1/L) was 0, resulting in an increase in the resistance between the strands and strand breakage.

1 圧着端子付き電線
10 電線
11 導線
12 素線
13 絶縁被覆部
20 圧着端子
21 ワイヤバレル部
22 インシュレーションバルブ部
30 圧着部
41 熱影響組織部
41a 溶接部
41b 溶接隣接部
42 非熱影響組織部
L 圧着部30の長さ
L1 溶接部31の長さ
REFERENCE SIGNS LIST 1 Electric wire with crimp terminal 10 Electric wire 11 Conductor 12 Wire 13 Insulation coating portion 20 Crimp terminal 21 Wire barrel portion 22 Insulation bulb portion 30 Crimp portion 41 Heat-affected structure portion 41a Welded portion 41b Weld adjacent portion 42 Non-heat-affected structure portion L Length of crimped portion 30 L1 Length of welded portion 31

Claims (1)

複数の素線から構成される導線および前記導線の外周を被覆する絶縁被覆部を有する電線と、前記電線の前記導線に圧着されている圧着端子とを備え、前記圧着端子が前記導線に圧着されている圧着部を有する圧着端子付き電線であって、
前記複数の素線の本数は37本以上であり、
前記導線の断面積は3.0mm 以上であり、
前記導線は、97.5質量%以上のAl、0.05質量%以上0.50質量%以下のFe、0.01質量%以上0.70質量%以下のSiを含み、CuおよびMgのうちの任意のものを任意成分として含むことができ、残部が不可避不純物からなる組成のアルミニウム系材料からなり、
前記圧着部の縦断面において、前記電線の延在方向に沿った、前記圧着部の長さLに対する前記複数の素線のうちの少なくとも一部が溶接している溶接部の長さL1の比(L1/L)は、0.10以上であり、
前記圧着部以外の前記導線の断面における平均結晶粒径(d)に対する前記圧着部の前記導線の断面における平均結晶粒径(d1)の比(d1/d)は、1.1以上であり、
前記圧着部以外の前記導線の断面における平均ビッカース硬さ(h)に対する前記圧着部の前記導線の断面における平均ビッカース硬さ(h1)の比(h1/h)は、0.80以下であることを特徴とする圧着端子付き電線。
An electric wire having a conductor wire composed of a plurality of wires and an insulating coating portion that coats an outer periphery of the conductor wire, and a crimp terminal that is crimped to the conductor wire of the electric wire, the crimp terminal having a crimp portion that is crimped to the conductor wire,
The number of the plurality of strands is 37 or more,
The cross-sectional area of the conductor is 3.0 mm2 or more,
the conductive wire is made of an aluminum-based material having a composition including 97.5% by mass or more of Al, 0.05% by mass or more and 0.50% by mass or less of Fe, 0.01% by mass or more and 0.70% by mass or less of Si, and may include any of Cu and Mg as optional components, with the remainder being unavoidable impurities;
In a longitudinal section of the crimping portion, a ratio (L1/L) of a length L1 of a welded portion to which at least a part of the plurality of wires is welded to a length L of the crimping portion along an extending direction of the electric wire is 0.10 or more,
The ratio (d1/d) of the average crystal grain size (d1) in the cross section of the conductor at the crimped portion to the average crystal grain size (d) in the cross section of the conductor other than the crimped portion is 1.1 or more;
an average Vickers hardness (h1) ratio (h1/h) of the average Vickers hardness (h) of the cross section of the conductor at the crimped portion to the average Vickers hardness (h) of the cross section of the conductor other than the crimped portion is 0.80 or less .
JP2020133766A 2020-08-06 2020-08-06 Wire with crimp terminal Active JP7488151B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020133766A JP7488151B2 (en) 2020-08-06 2020-08-06 Wire with crimp terminal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020133766A JP7488151B2 (en) 2020-08-06 2020-08-06 Wire with crimp terminal

Publications (2)

Publication Number Publication Date
JP2022030045A JP2022030045A (en) 2022-02-18
JP7488151B2 true JP7488151B2 (en) 2024-05-21

Family

ID=80323909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020133766A Active JP7488151B2 (en) 2020-08-06 2020-08-06 Wire with crimp terminal

Country Status (1)

Country Link
JP (1) JP7488151B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002071563A1 (en) 2001-03-01 2002-09-12 The Furukawa Electric Co., Ltd. Power distribution assembly
JP2013257944A (en) 2012-06-08 2013-12-26 Sumitomo Electric Ind Ltd Aluminum base terminal fitting, and terminal connection structure of wire
WO2016047627A1 (en) 2014-09-22 2016-03-31 古河電気工業株式会社 Terminal-equipped electrical wire
JP2019096570A (en) 2017-11-28 2019-06-20 矢崎総業株式会社 Terminal-equipped electric wire and manufacturing method of terminal-equipped electric wire
JP2019192354A (en) 2018-04-19 2019-10-31 古河電気工業株式会社 Wire with terminal

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002071563A1 (en) 2001-03-01 2002-09-12 The Furukawa Electric Co., Ltd. Power distribution assembly
JP2013257944A (en) 2012-06-08 2013-12-26 Sumitomo Electric Ind Ltd Aluminum base terminal fitting, and terminal connection structure of wire
WO2016047627A1 (en) 2014-09-22 2016-03-31 古河電気工業株式会社 Terminal-equipped electrical wire
JP2019096570A (en) 2017-11-28 2019-06-20 矢崎総業株式会社 Terminal-equipped electric wire and manufacturing method of terminal-equipped electric wire
JP2019192354A (en) 2018-04-19 2019-10-31 古河電気工業株式会社 Wire with terminal

Also Published As

Publication number Publication date
JP2022030045A (en) 2022-02-18

Similar Documents

Publication Publication Date Title
JP5367759B2 (en) Wire conductor for wiring, method for manufacturing wire conductor for wiring, wire for wiring and copper alloy wire
CN109983141B (en) Covered electric wire, electric wire with terminal, copper alloy wire, and copper alloy stranded wire
WO2010147018A1 (en) Electrical wire conductor and electrical wire for automobile
JP2008016284A (en) Electric wire conductor for automobile
JP6080336B2 (en) Electric wire / cable
WO2018092350A1 (en) Twisted wire for wire harness and wire harness
JP7488151B2 (en) Wire with crimp terminal
US20190360074A1 (en) Covered Electrical Wire, Terminal-Equipped Electrical Wire, Copper Alloy Wire, and Copper Alloy Stranded Wire
CN110914923B (en) Coated electric wire, electric wire with terminal, and stranded wire
JP6807041B2 (en) Covered wires, wires with terminals, copper alloy wires, and copper alloy stranded wires
US11830638B2 (en) Covered electrical wire, terminal-equipped electrical wire, copper alloy wire, copper alloy stranded wire, and method for manufacturing copper alloy wire
CN114402401A (en) Aluminum wire material, aluminum twisted wire, coated electric wire with crimp terminal, and CVT cable or CVT cable with crimp terminal
JP7448428B2 (en) Conductor for power cable and method for manufacturing power cable conductor having intermediate layer
JP2021144805A (en) Connection structure
JP7054482B2 (en) Manufacturing method of coated electric wire, manufacturing method of copper alloy wire, and manufacturing method of copper alloy stranded wire
JP7393743B2 (en) Electric wires and electric wires with terminals
RU204344U1 (en) ONBOARD AIRCRAFT ELECTRIC WIRE
JP6807040B2 (en) Covered wires, wires with terminals, and copper alloy wires
JP2019133869A (en) Twisted wire for wire harness and wire harness
JP7494402B2 (en) Insulated electric wire and its manufacturing method, and insulated electric wire with terminal and its manufacturing method
JP7380459B2 (en) Electric wire with terminal
JP7295817B2 (en) Conductor stranded wire for wire harness
US20210183532A1 (en) Covered electrical wire, terminal-equipped electrical wire, copper alloy wire, copper alloy stranded wire, and method for manufacturing copper alloy wire
JP6807027B2 (en) Covered wires, wires with terminals, copper alloy wires, and copper alloy stranded wires
JP2023146294A (en) Conductor with terminal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240423

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240509

R150 Certificate of patent or registration of utility model

Ref document number: 7488151

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150