JP7489294B2 - Synchronous motor control device - Google Patents
Synchronous motor control device Download PDFInfo
- Publication number
- JP7489294B2 JP7489294B2 JP2020185193A JP2020185193A JP7489294B2 JP 7489294 B2 JP7489294 B2 JP 7489294B2 JP 2020185193 A JP2020185193 A JP 2020185193A JP 2020185193 A JP2020185193 A JP 2020185193A JP 7489294 B2 JP7489294 B2 JP 7489294B2
- Authority
- JP
- Japan
- Prior art keywords
- command value
- current command
- synchronous motor
- field
- calculation unit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000001360 synchronised effect Effects 0.000 title claims description 24
- 230000004907 flux Effects 0.000 claims description 5
- 238000001514 detection method Methods 0.000 description 6
- 230000003313 weakening effect Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Landscapes
- Control Of Ac Motors In General (AREA)
Description
本明細書は、同期電動機の制御装置を開示する。 This specification discloses a control device for a synchronous motor.
電動機が回転する場合、電動機には、振動が発生する。振動が大きい場合、騒音や故障の原因となることから、電動機は、その振動をできるだけ小さくすることが求められる。 When an electric motor rotates, it generates vibrations. If the vibrations are too strong, they can cause noise and breakdowns, so electric motors are required to minimize vibrations as much as possible.
電動機が振動する原因は様々である。例えば、ロータのアンバランスやトルクリップルが考えられる。インバータによる速度制御を行う電動機では、ステータとロータ間に発生する電磁力に起因する振動の振動数と、電動機の固有振動数と、が一致する回転速度が存在する場合があり、共振することで大きな振動、および騒音が発生する。一般に電動機が振動する場合は、図1に示すような円環振動モードで振動が発生する。このような振動を抑制する対策としてステータの外側に電動機の固有振動数を変更するための質量体をとりつけることで電動機の振動を抑制する方法が知られている(特許文献1参照)。 There are various causes of vibration in electric motors. For example, rotor imbalance and torque ripple are considered. In an electric motor that uses an inverter for speed control, there may be a rotational speed where the frequency of vibration caused by electromagnetic forces generated between the stator and rotor matches the natural frequency of the electric motor, causing resonance and generating large vibrations and noise. Generally, when an electric motor vibrates, the vibration occurs in a circular vibration mode as shown in Figure 1. As a measure to suppress such vibration, a method is known in which a mass body is attached to the outside of the stator to change the natural frequency of the electric motor to suppress the vibration of the electric motor (see Patent Document 1).
ステータの外側に電動機の固有振動数を変更するための質量体をとりつける方法ではステータの外側に取り付ける質量体が必要であり、また、質量体を取り付けることができる機構が必要となる。 The method of attaching a mass to the outside of the stator to change the natural frequency of the motor requires a mass to be attached to the outside of the stator, and also requires a mechanism to which the mass can be attached.
本明細書では、電動機に新たな機構を付与することなく、振動の発生を抑制し、騒音を低減することができる制御装置を開示する。 This specification discloses a control device that can suppress the generation of vibrations and reduce noise without adding any new mechanisms to the electric motor.
本明細書で開示する同期電動機の制御装置は、トルク指令値および前記同期電動機の回転速度に基づいて、仮d軸電流指令値とq軸電流指令値とを算出する電流指令値算出部と、現在の前記回転速度が、前記同期電動機の共振を誘発する回転速度の範囲内にある場合に、永久磁石の磁気吸引力を低減させるための弱め界磁電流指令値を出力する弱め界磁電流指令値算出部と、前記弱め界磁電流指令値と前記仮d軸電流指令値とを加算して、d軸電流指令値を算出する弱め界磁電流指令値加算部と、を備えることを特徴とする。 The control device for a synchronous motor disclosed in this specification is characterized by comprising: a current command value calculation unit that calculates a tentative d-axis current command value and a q-axis current command value based on a torque command value and the rotation speed of the synchronous motor; a field-weakening current command value calculation unit that outputs a field-weakening current command value for reducing the magnetic attraction force of the permanent magnet when the current rotation speed is within a range of rotation speeds that induce resonance of the synchronous motor; and a field-weakening current command value addition unit that adds the field-weakening current command value and the tentative d-axis current command value to calculate a d-axis current command value.
この場合、前記弱め界磁電流指令値算出部は、前記同期電動機の磁極数をP、スロット数をS、円環振動モードの次数をk、固有振動数をf[Hz]、自然数をn、(S×n)±kと磁極数Pの倍数が一致する値をhとした場合、N*=f÷h×60を満たす回転速度N*を基準として、前記同期電動機の共振を誘発する回転速度の範囲を設定してもよい。 In this case, the field-weakening current command value calculation unit may set a range of rotational speeds that induce resonance of the synchronous motor based on the rotational speed N* that satisfies N* = f ÷ h × 60, where P is the number of magnetic poles of the synchronous motor, S is the number of slots, k is the order of the circular vibration mode, f is the natural frequency [Hz], n is a natural number, and h is a value that is equal to (S × n ) ± k and a multiple of the number of magnetic poles P.
前記弱め界磁電流指令値算出部は、前記N*[min-1]の±10%の回転速度の範囲を、前記同期電動機の共振を誘発する回転速度の範囲として設定してもよい。 The field-weakening current command value calculation unit may set a rotation speed range of ±10% of N * [min −1 ] as the rotation speed range that induces resonance of the synchronous motor.
また、前記弱め界磁電流指令値算出部において、前記N*が0<N*≦前記同期電動機の最高回転速度の範囲となるように自然数nの範囲を制限してもよい。 The field-weakening current command value calculation unit may limit the range of the natural number n so that N * is in the range of 0<N * ≦maximum rotation speed of the synchronous motor.
また、前記弱め界磁電流指令値算出部は、前記永久磁石の磁束をφm、d軸インダクタンスをLd、前記仮d軸電流指令値をid*とした場合、前記弱め界磁電流指令値id′を、id′=-φm÷Ld-id*の式に基づいて算出してもよい。 Furthermore, the field-weakening current command value calculation unit may calculate the field-weakening current command value id' based on an equation, id' = -φm ÷ Ld - id *, where φm is the magnetic flux of the permanent magnet, Ld is a d-axis inductance, and id* is the virtual d-axis current command value.
本明細書で開示の技術を用いることにより、共振を誘発する回転速度での振動を抑制でき、騒音を低減することができる。 By using the technology disclosed in this specification, it is possible to suppress vibrations at rotational speeds that induce resonance, thereby reducing noise.
一般に電動機が振動する場合、円環振動モードで振動が発生する。円環振動モードとは、円環の物体が径方向に変形する際のモードであり、図1に示すようにk=0が膨張収縮、k=1が並進、k=2が楕円、k=3が三角形、k=4が四角形となる。 When an electric motor vibrates, it generally does so in a circular vibration mode. A circular vibration mode is a mode in which a circular object deforms in the radial direction, and as shown in Figure 1, k=0 is expansion/contraction, k=1 is translation, k=2 is an ellipse, k=3 is a triangle, and k=4 is a rectangle.
電動機のスロット数をSとした場合、自然数をnとすると、ステータが円環振動モードによって変形する振動数Tは次式(1)で計算できる。
T=(S×n)±k (1)
When the number of slots of the motor is S and n is a natural number, the frequency T at which the stator deforms due to the circular vibration mode can be calculated by the following equation (1).
T = (S × n) ± k (1)
電動機の磁極数をPとすると、ステータは、モータ一回転に対して磁極数Pの振動数で磁気吸引力を受けるため、円環振動モードによって変形する振動数Tと磁極数Pの公倍数となる振動数で円環振動が発生する。この円環振動が発生する振動数と電動機の持つ固有振動数が一致する回転速度で電動機が回転した場合、共振が誘発され、振動が発生する。 If the number of magnetic poles in a motor is P, then the stator receives a magnetic attraction force at a frequency equal to the number of magnetic poles P for one rotation of the motor, and so a circular vibration occurs at a frequency that is a common multiple of the frequency T at which deformation occurs due to the circular vibration mode and the number of magnetic poles P. If the motor rotates at a rotational speed at which the frequency at which this circular vibration occurs matches the natural frequency of the motor, resonance is induced and vibration occurs.
図2は、同期電動機の制御装置の一例を示すブロック図である。図中の電動機1は、同期電動機であり、インバータ2によって可変電圧、可変周波数の3相交流電圧を印加して駆動している。なお、インバータ2は、直流電源3を入力として3相電圧指令値eu*,ev*,ew*に応じて、電動機1に印加する電圧を制御している。電動機1に流れる3相電流は、電流検出器4によって検出されており、この検出値iu,iv,iwを入力として3相2相変換器5は、演算を行って2相信号id,iqを出力する。上記idは、ステータ巻線に流れる交流電流のうち磁極位置に同期した磁束を発生させる成分を表す直流量であり、「d軸電流検出値」と称する。また、iqは、磁極位置と90度の位相差をもった磁束を発生させる成分を表す直流量であり、「q軸電流検出値」と称する。これらd軸電流検出値idおよびq軸電流検出値iqは、dq軸電圧指令値算出部6に入力される。電流指令値演算部9は、上流側から入力されるトルク指令値Tq*と、電動機1の回転速度Nとに基づいて、仮d軸電流指令値id*と、q軸電流指令値iq*と、を算出する。弱め界磁電流指令値加算部12は、この仮d軸電流指令値id*と弱め界磁電流指令値id′を加算し、d軸電流指令値(id*+id′)を算出するが、これについては、後述する。dq軸電圧指令値算出部6は、d軸電流検出値idとd軸電流指令値(id*+id′)との偏差に基づいてd軸電圧指令値ed*を、q軸電流検出値とq軸電流指令値iq*との偏差に応じてq軸電圧指令値eq*を、それぞれ演算している。さらに、d軸電圧指令値ed*およびq軸電圧指令値eq*は、2相3相変換器7によって3相交流電圧指令値eu*,ev*,ew*に変換される。このようにステータに通電される3相交流電流をd軸電流、q軸電流のそれぞれに分配してフィードバック制御することによって、電動機1の発生トルクは、d軸電流指令値(id*+id′)とq軸電流指令値iq*とによって任意に制御することが可能となる。 FIG. 2 is a block diagram showing an example of a control device for a synchronous motor. The motor 1 in the figure is a synchronous motor, and is driven by applying a three-phase AC voltage with a variable voltage and a variable frequency by an inverter 2. The inverter 2 controls the voltage applied to the motor 1 according to three-phase voltage command values eu * , ev * , ew * , which are input from a DC power source 3. The three-phase current flowing through the motor 1 is detected by a current detector 4, and the three-phase to two-phase converter 5 performs calculations using the detected values iu, iv, and iw as inputs to output two-phase signals id and iq. The above id is a DC amount representing a component of the AC current flowing through the stator winding that generates a magnetic flux synchronized with the magnetic pole position, and is referred to as a "d-axis current detection value". Moreover, iq is a DC amount representing a component that generates a magnetic flux having a phase difference of 90 degrees from the magnetic pole position, and is referred to as a "q-axis current detection value". These d-axis current detection value id and q-axis current detection value iq are input to a dq-axis voltage command value calculation unit 6. The current command value calculation unit 9 calculates a tentative d-axis current command value id * and a q-axis current command value iq * based on the torque command value Tq * input from the upstream side and the rotation speed N of the motor 1. The field-weakening current command value addition unit 12 adds the tentative d-axis current command value id* and the field-weakening current command value id' to calculate a d-axis current command value (id * +id'), which will be described later. The dq-axis voltage command value calculation unit 6 calculates a d-axis voltage command value ed * based on the deviation between the d-axis current detection value id and the d-axis current command value (id * +id ' ) and a q-axis voltage command value eq * according to the deviation between the q-axis current detection value and the q-axis current command value iq * . Furthermore, the d-axis voltage command value ed * and the q-axis voltage command value eq * are converted into three-phase AC voltage command values eu * , ev *, ew * by the two-phase to three-phase converter 7. By distributing the three-phase AC current passing through the stator in this manner to the d-axis current and the q-axis current and performing feedback control, the torque generated by the motor 1 can be arbitrarily controlled by the d-axis current command value (id * +id') and the q-axis current command value iq * .
次に、電動機1が振動の発生する回転速度で回転しているとき、弱め界磁を発生させる制御について説明する。電動機1の回転速度をN[min-1]、電動機1の共振を誘発する回転速度をN*[min-1]とする。N=N*のときのみ、弱め界磁電流指令値id′を発生させ、dq軸電流指令値算出部6で算出した仮d軸電流指令値id*に足し合せる。ここで、N*[min-1]は、電動機個体ごとに振動センサを取り付け、振動が発生する回転速度を計測してN*[min-1]とする。 Next, a control for generating a field weakening when the motor 1 rotates at a rotation speed at which vibration occurs will be described. The rotation speed of the motor 1 is N [min -1 ], and the rotation speed at which resonance of the motor 1 is induced is N * [min -1 ]. Only when N = N * , a field weakening current command value id' is generated and added to the virtual d-axis current command value id * calculated by the dq-axis current command value calculation unit 6. Here, N * [min -1 ] is determined by attaching a vibration sensor to each individual motor and measuring the rotation speed at which vibration occurs.
電動機1に振動センサを取り付けることができない場合は、以下のようにN*[min-1]を算出する。電動機1の磁極数をP、スロット数をS、円環振動モードの次数をk、固有振動数をf[Hz]、自然数をn、(S×n)±kと磁極数Pの倍数が一致する値をhとすると、N*[min-1]の計算式は次式となる。
N*=f÷h×60 (2)
If a vibration sensor cannot be attached to the electric motor 1, N * [min -1 ] is calculated as follows: If the number of magnetic poles of the electric motor 1 is P, the number of slots is S, the order of the circular vibration mode is k, the natural frequency is f [Hz], n is a natural number, and h is the value at which (S×n)±k is equal to a multiple of the number of magnetic poles P, the calculation formula for N * [min -1 ] is as follows:
N * = f ÷ h × 60 (2)
弱め界磁電流指令値算出部8に上記式(2)で計算した回転速度をあらかじめ設定しておき、回転速度Nが、N*と一致したとき弱め界磁電流指令値id′を指令し、弱め界磁電流指令値加算部12で仮d軸電流指令値id*に足し合せる。 The rotation speed calculated by the above formula (2) is preset in a field-weakening current command value calculation unit 8, and when the rotation speed N coincides with N * , a field-weakening current command value id' is commanded, and a field-weakening current command value addition unit 12 adds it to the virtual d-axis current command value id * .
ここで、q軸電圧をvq、巻線抵抗をr、d軸インダクタンスをLd、ロータの角速度をω、永久磁石の磁束をφmとすると、q軸電圧は次式となる。
vq=r×iq+ω×Ld×(id*+id′)+ω×φm (3)
Here, if the q-axis voltage is vq, the winding resistance is r, the d-axis inductance is Ld, the angular velocity of the rotor is ω, and the magnetic flux of the permanent magnet is φm, the q-axis voltage is expressed by the following equation.
vq = r × iq + ω × Ld × (id * + id ') + ω × φm (3)
よって、弱め界磁電流指令値id′は、次式とする。
id′=-φm÷Ld-id* (4)
Therefore, the field weakening current command value id' is expressed by the following equation.
id ′=−φm ÷ Ld−id * (4)
N*[min-1]の算出に使用する自然数nは0<N*≦前記同期電動機の最高回転速度の範囲となるように自然数nの範囲を制限する。 The range of the natural number n used in the calculation of N * [min −1 ] is restricted so as to be within the range of 0<N * ≦the maximum rotation speed of the synchronous motor.
また、一般に、電動機は、個体差があり、固有振動数も個体ごとでばらつきがある。そのため、弱め界磁電流指令値算出部8の計算式で算出したN*[min-1]は±10%の範囲を取ることが望ましい。一方で、回転速度Nが、振動が発生する回転速度N*から十分に乖離しており、現在の回転速度Nでは振動が発生しないと判断された場合、弱め界磁電流指令値算出部8は、弱め界磁電流指令値id′を出力しない、あるいは、id′=0として出力する。したがって、この場合には、仮d軸電流指令値id*が、正式なd軸電流指令値id*となる。 In addition, electric motors generally have individual differences, and the natural frequency also varies from one motor to another. Therefore, it is desirable that N * [min -1 ] calculated by the calculation formula of the field-weakening current command value calculation unit 8 be in the range of ±10%. On the other hand, if it is determined that the rotation speed N is sufficiently different from the rotation speed N * at which vibration occurs and vibration will not occur at the current rotation speed N, the field-weakening current command value calculation unit 8 does not output the field-weakening current command value id', or outputs id'=0. Therefore, in this case, the provisional d-axis current command value id * becomes the formal d-axis current command value id * .
上記のように算出したd軸電流およびq軸電流を電動機に印加することで共振の発生を抑え、振動を低減することができる。 By applying the d-axis current and q-axis current calculated as above to the motor, it is possible to suppress the occurrence of resonance and reduce vibration.
1 電動機、2 インバータ、3 直流電源、4 電流検出器、5 3相2相変換器、6 dq軸電圧指令値算出部、7 2相3相変換器、8 弱め界磁電流指令値算出部、9 電流指令値算出部、10 微分器、11 エンコーダ、12 弱め界磁電流指令値加算部。
REFERENCE SIGNS LIST 1 electric motor, 2 inverter, 3 DC power supply, 4 current detector, 5 three-phase to two-phase converter, 6 dq axis voltage command value calculation unit, 7 two-phase to three-phase converter, 8 field weakening current command value calculation unit, 9 current command value calculation unit, 10 differentiator, 11 encoder, 12 field weakening current command value addition unit.
Claims (3)
トルク指令値および前記同期電動機の回転速度に基づいて、仮d軸電流指令値とq軸電流指令値とを算出する電流指令値算出部と、
現在の前記回転速度が、前記同期電動機の共振を誘発する回転速度の範囲内にある場合に、永久磁石の磁気吸引力を低減させるための弱め界磁電流指令値を出力する弱め界磁電流指令値算出部と、
前記弱め界磁電流指令値と前記仮d軸電流指令値とを加算して、d軸電流指令値を算出する弱め界磁電流指令値加算部と、
を備え、
前記弱め界磁電流指令値算出部は、前記同期電動機の磁極数をP、スロット数をS、円環振動モードの次数をk、固有振動数をf[Hz]、自然数をn、(S×n)±kと磁極数Pの倍数が一致する値をhとした場合、N * =f÷h×60を満たす回転速度N * を基準として、前記同期電動機の共振を誘発する回転速度の範囲を設定する、
ことを特徴とする同期電動機の制御装置。 A control device for a synchronous motor,
a current command value calculation unit that calculates a virtual d-axis current command value and a q-axis current command value based on a torque command value and a rotation speed of the synchronous motor;
a field-weakening current command value calculation unit that outputs a field-weakening current command value for reducing a magnetic attraction force of a permanent magnet when the current rotation speed is within a range of rotation speeds that induce resonance of the synchronous motor;
a field-weakening current command value adder that calculates a d-axis current command value by adding the field-weakening current command value and the virtual d-axis current command value;
Equipped with
The field-weakening current command value calculation unit sets a range of rotation speeds that induces resonance of the synchronous motor based on a rotation speed N * that satisfies N*=f÷h×60, where P is the number of magnetic poles of the synchronous motor, S is the number of slots, k is the order of the circular vibration mode, f is the natural frequency [Hz], n is a natural number, and h is a value that is equal to a multiple of ( S ×n)±k .
A control device for a synchronous motor.
前記弱め界磁電流指令値算出部は、前記N*[min-1]の±10%の回転速度の範囲を、前記同期電動機の共振を誘発する回転速度の範囲として設定する、ことを特徴とする同期電動機の制御装置。 The control device for a synchronous motor according to claim 1 ,
The control device for a synchronous motor, wherein the weak field current command value calculation unit sets a rotation speed range of ±10% of the N * [min −1 ] as a rotation speed range that induces resonance of the synchronous motor.
前記弱め界磁電流指令値算出部は、前記永久磁石の磁束をφm、d軸インダクタンスをLd、前記仮d軸電流指令値をid*とした場合、前記弱め界磁電流指令値id′を、id′=-φm÷Ld-id*の式に基づいて算出することを特徴とする同期電動機の制御装置。 The control device for a synchronous motor according to claim 1 or 2 ,
the field-weakening current command value calculation unit calculates the field-weakening current command value id' based on an equation: id' = -φm ÷ Ld - id *, where φm is the magnetic flux of the permanent magnet, Ld is a d-axis inductance, and id* is the virtual d-axis current command value.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020185193A JP7489294B2 (en) | 2020-11-05 | 2020-11-05 | Synchronous motor control device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020185193A JP7489294B2 (en) | 2020-11-05 | 2020-11-05 | Synchronous motor control device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2022074821A JP2022074821A (en) | 2022-05-18 |
JP7489294B2 true JP7489294B2 (en) | 2024-05-23 |
Family
ID=81606123
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020185193A Active JP7489294B2 (en) | 2020-11-05 | 2020-11-05 | Synchronous motor control device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7489294B2 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002252947A (en) | 2001-02-26 | 2002-09-06 | Hitachi Ltd | Dynamo electric machine and electric vehicle using the same |
JP2009027898A (en) | 2007-07-24 | 2009-02-05 | Honda Motor Co Ltd | Controller of electromotor |
JP2014233109A (en) | 2013-05-28 | 2014-12-11 | 株式会社デンソー | Electric vehicle control method |
-
2020
- 2020-11-05 JP JP2020185193A patent/JP7489294B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002252947A (en) | 2001-02-26 | 2002-09-06 | Hitachi Ltd | Dynamo electric machine and electric vehicle using the same |
JP2009027898A (en) | 2007-07-24 | 2009-02-05 | Honda Motor Co Ltd | Controller of electromotor |
JP2014233109A (en) | 2013-05-28 | 2014-12-11 | 株式会社デンソー | Electric vehicle control method |
Also Published As
Publication number | Publication date |
---|---|
JP2022074821A (en) | 2022-05-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4909797B2 (en) | Motor control device | |
EP2327148B1 (en) | A method and a controlling arrangement for controlling an ac generator | |
JPWO2009040884A1 (en) | Electric motor control device | |
JP6190967B2 (en) | Power generation system | |
US6426605B1 (en) | Multi-phase induction motor drive system and method | |
JP2004072906A (en) | Vector control inverter arrangement | |
JP4899509B2 (en) | AC motor rotor phase estimation device | |
JP2004032907A (en) | Controller for permanent magnet type synchronous motor | |
JP2023549847A (en) | Method and device for synchronous motor control | |
Singh et al. | Performance investigation of permanent magnet synchronous motor drive using vector controlled technique | |
JP7489294B2 (en) | Synchronous motor control device | |
JP4924115B2 (en) | Permanent magnet synchronous motor drive control device | |
EP2747273A1 (en) | Method and arrangement for torque estimation of a synchronous machine | |
JP3735836B2 (en) | Vector control method for permanent magnet synchronous motor | |
WO2022065141A1 (en) | Stepping motor drive device | |
JP5464329B2 (en) | Permanent magnet synchronous motor drive control device | |
Cervone et al. | A Constrained Optimal Model Predictive Control for Mono Inverter Dual Parallel PMSM Drives | |
JPH09191697A (en) | Vector controlling device for ac motor | |
Mohammadi et al. | Speed control of non-collocated stator-rotor synchronous motor with application in robotic surgery | |
JP3290099B2 (en) | Control device for reluctance type synchronous motor | |
Kwon et al. | Fault-tolerant operation with 1-phase open in parallel-connected motor | |
JP3958920B2 (en) | Spindle controller | |
JP6032809B2 (en) | Control device for permanent magnet synchronous motor | |
US20230402953A1 (en) | Motor control device, electro-mechanical integrated unit, hybrid system, and electric power steering system | |
JP7571648B2 (en) | Rotating Electric Machine Control System |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20230531 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20240214 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20240312 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20240409 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20240507 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20240513 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7489294 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |