JP7486300B2 - Bend-resistant insulated wire - Google Patents

Bend-resistant insulated wire Download PDF

Info

Publication number
JP7486300B2
JP7486300B2 JP2019192554A JP2019192554A JP7486300B2 JP 7486300 B2 JP7486300 B2 JP 7486300B2 JP 2019192554 A JP2019192554 A JP 2019192554A JP 2019192554 A JP2019192554 A JP 2019192554A JP 7486300 B2 JP7486300 B2 JP 7486300B2
Authority
JP
Japan
Prior art keywords
stranded conductor
fiber core
fiber
outer diameter
bend
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019192554A
Other languages
Japanese (ja)
Other versions
JP2021068573A (en
Inventor
裕昭 杉本
毅安 中山
大介 田中
誠 宮下
裕一 仲條
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Totoku
Original Assignee
Totoku
Filing date
Publication date
Application filed by Totoku filed Critical Totoku
Priority to JP2019192554A priority Critical patent/JP7486300B2/en
Publication of JP2021068573A publication Critical patent/JP2021068573A/en
Application granted granted Critical
Publication of JP7486300B2 publication Critical patent/JP7486300B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、耐屈曲絶縁電線に関する。さらに詳しくは、本発明は、屈曲性に優れるとともに軽量化が図られ、特に自動車用配線として好適な耐屈曲絶縁電線に関する。 The present invention relates to a bend-resistant insulated electric wire. More specifically, the present invention relates to a bend-resistant insulated electric wire that is excellent in bendability and lightweight, and is particularly suitable for use as wiring in automobiles.

近年、自動車、産業ロボット、電気機器、熱機器等では、その高性能化とともに配線箇所が多くなっている。それらの配線に使用される電線に対しては、要求される信頼性も高まっている。さらに、省エネルギーとコンパクト化の要請から、電線自体の軽量化も要求されている。 In recent years, the number of wiring locations has increased in automobiles, industrial robots, electrical equipment, thermal equipment, etc., as their performance has improved. The demands for reliability of the electric wires used in these wiring have also increased. Furthermore, there is a demand for lighter electric wires themselves due to the demands for energy saving and compactness.

こうした要求に対し、例えば特許文献1には、アラミド系繊維束又は紐を中心としてその周りに銅素線を配置した撚り線を圧縮加工し、熱処理を行ったハーネス用電線導体が提案されている。また、特許文献2には、架空送電線に関するものであるが、中心部にアラミド繊維、ガラス繊維などのテンションメンバーを配置し、その外側に複数本の軟銅素線の撚り合わせからなる撚線導体を設け、その外側に絶縁被覆を施した絶縁電線が提案されている。また、特許文献3には、最大伸びが10%以上に形成された銅又は銅合金からなる中心線の周囲に、その最大伸びが10%以上の有機繊維を複数本撚り合わせた構造を有し、銅又は銅合金に対する有機繊維の重量比と太さの断面積を規定したワイヤーハーネス用細径電線が提案されている。 In response to such demands, for example, Patent Document 1 proposes a harness electric wire conductor in which a stranded wire with copper wires arranged around an aramid fiber bundle or string is compressed and heat-treated. Patent Document 2, which relates to an overhead transmission line, proposes an insulated electric wire in which a tension member such as aramid fiber or glass fiber is arranged in the center, a stranded conductor consisting of multiple stranded soft copper wires is provided on the outside, and an insulating coating is applied to the outside. Patent Document 3 proposes a thin-diameter electric wire for a wire harness having a structure in which multiple organic fibers with a maximum elongation of 10% or more are twisted around a central wire made of copper or copper alloy formed with a maximum elongation of 10% or more, and the weight ratio of the organic fibers to the copper or copper alloy and the cross-sectional area of the thickness are specified.

特開2008-91214号公報JP 2008-91214 A 特開平4-138616号公報Japanese Patent Application Laid-Open No. 4-138616 特開2003-123542号公報JP 2003-123542 A

上記従来技術の各電線は、中心に繊維を設け、その外周に金属素線を設け、さらにその外周に絶縁体を設けている。しかし、これら電線は、繊維の一部が金属素線の間からはみ出しやすく、電線の外観が悪くなりやすい。また、繊維には水分やオイルが付着することがあり、繊維に付着した水分等は、金属素線の外周に絶縁体を設ける際に絶縁体の発泡や肌荒れを引き起こす原因となる。電線の外観悪化、絶縁体の発泡や肌荒れは、局部的な不均一性を生じさせ、耐屈曲寿命が低下する原因となっていた。 Each of the electric wires of the above-mentioned conventional technologies has a fiber in the center, a metal wire around the fiber, and an insulator around the metal wire. However, with these electric wires, some of the fiber tends to protrude from between the metal wires, which can lead to a poor appearance of the electric wire. In addition, moisture and oil can adhere to the fiber, and moisture and other substances adhering to the fiber can cause foaming and roughness of the insulation when the insulation is provided around the metal wire. The deterioration of the wire's appearance and foaming and roughness of the insulation cause localized non-uniformity, which reduces the flex life.

また、特許文献1では、絶縁体を被覆する際に繊維芯が押出樹脂と接触するため、繊維芯が熱影響を受けてしまい、繊維芯としての機能を発揮できないことがある。こうした現象は、押出温度が高い場合に顕著に発生しやすく、耐屈曲寿命が低下する原因となる。 In addition, in Patent Document 1, the fiber core comes into contact with the extruded resin when covering the insulator, and is therefore thermally affected, which can prevent the fiber core from functioning as a fiber core. This phenomenon is more likely to occur when the extrusion temperature is high, and can cause the flex life to decrease.

本発明は、上記課題を解決するためになされたものである。その目的は、屈曲性に優れるとともに軽量化が図られ、特に自動車用配線として好適な耐屈曲絶縁電線を提供することにある。 The present invention was made to solve the above problems. The purpose is to provide a bend-resistant insulated electric wire that is lightweight and has excellent flexibility, and is particularly suitable for use in automotive wiring.

本発明に係る耐屈曲絶縁電線は、2種以上の繊維糸からなる繊維芯と、該繊維芯の外周に設けられた複数本の金属素線を撚ってなる撚線導体と、該撚線導体の外周に設けられた絶縁体とを有する、ことを特徴とする。 The bend-resistant insulated electric wire of the present invention is characterized by having a fiber core made of two or more types of fiber yarn, a stranded conductor made by twisting multiple metal wires arranged around the outer periphery of the fiber core, and an insulator arranged around the outer periphery of the stranded conductor.

この発明によれば、2種以上の繊維糸で繊維芯が構成されているので、屈曲時に加わる応力が分散して応力集中が起きにくく、屈曲特性が良好とすることができる。そうした繊維芯は、複数本の金属素線からなる撚線導体の撚りに追従して蛇行するので、繊維芯の中心位置と撚線導体の中心位置とが一致せず、耐屈曲絶縁電線の中心に位置しない。その結果、屈曲時に加わる応力で柔軟に変形することができ、柔軟性が良好な耐屈曲絶縁電線となる。なお、中心位置とは、繊維芯の断面の輪郭から算出した中心位置、撚線導体の断面の輪郭から算出した中心位置のことであり、両者が一致しないので、絶縁電線に負荷が加わった際に絶縁電線が扁平形状になりやすく、その扁平形状によって特定部位に応力集中が起こらず、応力が逃げて屈曲特性が向上する。 According to this invention, the fiber core is made of two or more types of fiber yarn, so that the stress applied during bending is dispersed and stress concentration is unlikely to occur, and bending characteristics can be improved. Such a fiber core meanders following the twist of the stranded conductor made of multiple metal wires, so the center position of the fiber core and the center position of the stranded conductor do not match, and it is not located at the center of the bend-resistant insulated electric wire. As a result, it can flexibly deform with the stress applied during bending, and the bend-resistant insulated electric wire has good flexibility. Note that the center position refers to the center position calculated from the outline of the cross section of the fiber core and the center position calculated from the outline of the cross section of the stranded conductor. Since the two do not match, the insulated electric wire is likely to become flat when a load is applied to it, and the flat shape prevents stress concentration in a specific area, and the stress escapes, improving bending characteristics.

本発明に係る耐屈曲絶縁電線において、前記繊維芯は、該繊維芯の中心位置と前記撚線導体の中心位置とが一致せず、前記撚線導体の撚りに追従して蛇行していることが好ましい。 In the bend-resistant insulated electric wire according to the present invention, it is preferable that the center position of the fiber core does not coincide with the center position of the stranded conductor, and the fiber core meanders in accordance with the twist of the stranded conductor.

本発明に係る耐屈曲絶縁電線において、前記繊維芯の中心位置と前記撚線導体の中心位置とのずれが0.10~0.30mmであることが好ましい。 In the bend-resistant insulated electric wire according to the present invention, it is preferable that the deviation between the center position of the fiber core and the center position of the stranded conductor is 0.10 to 0.30 mm.

本発明に係る耐屈曲絶縁電線において、前記撚線導体の外径が1.6mm以下である。 In the bend-resistant insulated electric wire of the present invention, the outer diameter of the stranded conductor is 1.6 mm or less.

本発明に係る耐屈曲絶縁電線において、前記繊維芯は、第1繊維糸と該第1繊維糸の1.5~4倍のdtexの第2繊維糸とで少なくとも構成されている。3種以上の場合においては、少なくとも2種の繊維糸がその関係であればよい。 In the bend-resistant insulated electric wire according to the present invention, the fiber core is composed of at least a first fiber thread and a second fiber thread having a dtex 1.5 to 4 times that of the first fiber thread. In the case of three or more types, at least two types of fiber threads should have this relationship.

本発明によれば、屈曲性に優れるとともに軽量化が図られ、特に自動車用配線として好適な耐屈曲絶縁電線を提供することができる。特に、繊維芯が太さの異なる2種以上の繊維糸で構成されているので、屈曲時に加わる応力が分散して応力集中が起きにくく、屈曲特性が良好とすることができる。繊維芯は、複数本の金属素線からなる撚線導体の撚りに追従して蛇行するので、繊維芯の中心位置と撚線導体の中心位置とが一致せず、耐屈曲絶縁電線の中心に位置しない。その結果、屈曲時に加わる応力で柔軟に変形することができ、柔軟性が良好な耐屈曲絶縁電線となる。 According to the present invention, it is possible to provide a bend-resistant insulated electric wire that is excellent in flexibility and lightweight, and is particularly suitable for automotive wiring. In particular, since the fiber core is composed of two or more types of fiber yarns with different thicknesses, the stress applied when bending is dispersed and stress concentration is unlikely to occur, resulting in good bending characteristics. Since the fiber core meanders following the twist of the stranded conductor made of multiple metal wires, the center position of the fiber core does not coincide with the center position of the stranded conductor, and it is not located at the center of the bend-resistant insulated electric wire. As a result, it can flexibly deform with the stress applied when bending, resulting in a bend-resistant insulated electric wire with good flexibility.

本発明に係る耐屈曲絶縁電線の一例を示す模式的な説明図である。FIG. 1 is a schematic explanatory diagram illustrating an example of a bend-resistant insulated electric wire according to the present invention. 耐屈曲絶縁電線を構成する各寸法の説明図である。FIG. 2 is an explanatory diagram of each dimension constituting the bend-resistant insulated electric wire. 撚線導体の撚り状態の説明図である。FIG. 4 is an explanatory diagram of a twisted state of a stranded conductor. 屈曲試験の態様を示す説明図である。FIG. 1 is an explanatory diagram showing an embodiment of a bending test. 柔軟性試験の態様を示す説明図である。FIG. 1 is an explanatory diagram showing an embodiment of a flexibility test.

以下、本発明に係る耐屈曲絶縁電線について図面を参照しつつ説明する。なお、本発明は図示の実施形態に限定されるものではない。 The following describes the bend-resistant insulated electric wire of the present invention with reference to the drawings. Note that the present invention is not limited to the illustrated embodiment.

[耐屈曲絶縁電線]
本発明に係る耐屈曲絶縁電線10(以下、「絶縁電線10」ともいう。)は、図1及び図2に示すように、2種以上の繊維糸1a,1bからなる繊維芯1と、繊維芯1の外周に設けられた複数本の金属素線3を撚ってなる撚線導体2と、撚線導体2の外周に設けられた絶縁体4とを有する。なお、「有し」とは、本発明の効果を阻害しない範囲でそれ以外の構成が含まれていてもよいことを意味し、例えば、撚線導体2と絶縁体4との間に押さえ巻きフィルム、金属素線3の表面にめっきや絶縁被覆層、絶縁体4の外周に融着層等が設けられていてもよいことを意味している。
[Flex-resistant insulated wire]
1 and 2, a bend-resistant insulated electric wire 10 according to the present invention (hereinafter, also referred to as "insulated electric wire 10") has a fiber core 1 made of two or more types of fiber yarns 1a and 1b, a stranded conductor 2 formed by twisting a plurality of metal wires 3 provided on the outer periphery of the fiber core 1, and an insulator 4 provided on the outer periphery of the stranded conductor 2. Note that "having" means that other configurations may be included as long as they do not impair the effects of the present invention, and for example, means that a pressure winding film may be provided between the stranded conductor 2 and the insulator 4, a plating or insulating coating layer may be provided on the surface of the metal wires 3, and a fusion layer may be provided on the outer periphery of the insulator 4.

以下、耐屈曲絶縁電線の各構成要素を詳しく説明する。 The components of the bend-resistant insulated wire are explained in detail below.

(繊維芯)
繊維芯1は、耐屈曲絶縁電線10の略中央に位置する必須の構成であり、巻芯として機能する高張力体であることが好ましい。繊維芯1の例としては、複数の繊維を束ねた繊維糸が好ましく用いられる。繊維糸を構成する繊維としては、強度があり、耐熱性であればなおよい。例えば、繊維として、テトロン(登録商標)等のポリエステル繊維や、ケブラ(登録商標)等の全芳香族ポリアミド繊維や、ベクトラン(登録商標)等のポリアリレート繊維、ガラス繊維等を挙げることができる。繊維の材質は、同じ材質であってもよいし異なる材質であってもよい。
(fiber core)
The fiber core 1 is an essential component located approximately at the center of the bend-resistant insulated electric wire 10, and is preferably a high-tension body that functions as a winding core. As an example of the fiber core 1, a fiber thread formed by bundling a plurality of fibers is preferably used. The fibers constituting the fiber thread are preferably strong and heat-resistant. For example, the fibers may be polyester fibers such as Tetoron (registered trademark), wholly aromatic polyamide fibers such as Kevlar (registered trademark), polyarylate fibers such as Vectran (registered trademark), glass fibers, etc. The materials of the fibers may be the same or different materials.

繊維芯1は、繊維糸を集合線、撚り線又は編み込み線にして同心円状(真円形)又は略同心円状の断面になっている。このとき、繊維芯1をより同心円状又は略同心円状の断面にするためには、繊維糸を撚り線とすることがより好ましい。繊維芯1の外径は特に限定されないが、例えば0.1~1.0mmの範囲を挙げることができる。繊維糸からなる繊維芯1は柔軟で変形し易いことから、繊維芯1の外径は、繊維芯1が真円形である場合はその外径とし、繊維芯1が扁平形である場合はその断面積から真円形の断面積に換算した外径として評価する。 The fiber core 1 is made of fiber yarns that are bundled, twisted, or braided to have a concentric (perfect circle) or nearly concentric cross section. In this case, it is more preferable to use twisted fiber yarns to make the fiber core 1 have a more concentric or nearly concentric cross section. The outer diameter of the fiber core 1 is not particularly limited, but may be in the range of 0.1 to 1.0 mm, for example. Since the fiber core 1 made of fiber yarns is flexible and easily deformed, the outer diameter of the fiber core 1 is evaluated as the outer diameter when the fiber core 1 is a perfect circle, and as the outer diameter converted from the cross-sectional area of the fiber core 1 to the cross-sectional area of a perfect circle when the fiber core 1 is flat.

繊維芯1は、太さの異なる2種以上の繊維糸1a,1bで構成されている。こうした構成により、屈曲時に加わる応力が分散して応力集中が起きにくく、屈曲特性が良好とすることができる。繊維芯1は、第1繊維糸1aと、第1繊維糸1aの1.5~4倍、好ましくは1.5~2倍のdtexの第2繊維糸1bとで少なくとも構成されている。これら以外の第3繊維糸は、第1繊維糸1aのdtexよりも小さくてもよいし、第2繊維糸1bのdtexよりも大きくてもよいし、第1繊維糸1aと第2繊維糸1bとの間のdtexであってもよい。繊維糸の太さは、通常、繊維糸を重量換算で示す繊度(dtex)で表示され、1dtexは、長さ10000mで1gである。太さの異なる2種以上の繊維糸のdtexの範囲は、110~2000dtexであることが好ましい。110dtex未満では、耐久性不足となりやすい。一方、2000dtexを超えると、外径が大きくなり、作業性や加工性に影響が出やすい。 The fiber core 1 is composed of two or more types of fiber threads 1a and 1b with different thicknesses. This configuration disperses the stress applied during bending, making it difficult for stress concentration to occur, and allows for good bending characteristics. The fiber core 1 is composed of at least a first fiber thread 1a and a second fiber thread 1b with a dtex that is 1.5 to 4 times, preferably 1.5 to 2 times, that of the first fiber thread 1a. The third fiber thread other than these may have a dtex smaller than that of the first fiber thread 1a, a dtex larger than that of the second fiber thread 1b, or a dtex between that of the first fiber thread 1a and the second fiber thread 1b. The thickness of the fiber thread is usually expressed as a fineness (dtex) that indicates the fiber thread in weight conversion, and 1 dtex is 1 g for a length of 10,000 m. The dtex range of two or more types of fiber threads with different thicknesses is preferably 110 to 2,000 dtex. If it is less than 110 dtex, it is likely to lack durability. On the other hand, if it exceeds 2000 dtex, the outer diameter becomes large, which is likely to affect workability and processability.

繊維芯1は、複数本の金属素線3からなる撚線導体2の撚りに追従して蛇行しており、繊維芯1の中心位置C1と撚線導体2の中心位置C2とが一致せず、耐屈曲絶縁電線10の中心に位置しない。その結果、屈曲時に加わる応力で柔軟に変形することができ、柔軟性が良好な耐屈曲絶縁電線10となる。なお、中心位置とは、繊維芯1の断面の輪郭から算出した中心位置C1、撚線導体2の断面の輪郭から算出した中心位置C2のことであり、両者が一致しないので、絶縁電線10に負荷が加わった際に絶縁電線10が扁平形状になりやすく、その扁平形状によって特定部位に応力集中が起こらず、応力が逃げて屈曲特性が向上する。 The fiber core 1 meanders in accordance with the twisting of the stranded conductor 2, which is made up of multiple metal wires 3, and the center position C1 of the fiber core 1 and the center position C2 of the stranded conductor 2 do not coincide, and the fiber core 1 is not located at the center of the bend-resistant insulated wire 10. As a result, the bend-resistant insulated wire 10 can flexibly deform due to the stress applied when bent, and has good flexibility. Note that the center position refers to the center position C1 calculated from the outline of the cross section of the fiber core 1 and the center position C2 calculated from the outline of the cross section of the stranded conductor 2. Since the two do not coincide, the insulated wire 10 is likely to become flat when a load is applied to it, and the flat shape prevents stress concentration in a specific area, allowing stress to escape and improving bending characteristics.

繊維芯1の中心位置C1と、後述する撚線導体2の断面の輪郭から算出した中心位置C2とのずれは、0.10~0.30mmであることが好ましい。こうしたずれは、絶縁電線10に負荷が加わった際に絶縁電線10が扁平形状になりやすく、その扁平形状によって特定部位に応力集中が起こらず、絶縁電線10に加わった負荷応力が逃げ、屈曲特性を向上させることができる。ずれが0.10mm未満では、応力集中を逃す効果が得られないことがある。ずれが0.30mmを超えると、過剰な扁平状態となることがある。 The deviation between the center position C1 of the fiber core 1 and the center position C2 calculated from the outline of the cross section of the stranded conductor 2 described below is preferably 0.10 to 0.30 mm. Such deviation makes the insulated wire 10 prone to become flat when a load is applied to the insulated wire 10, and this flat shape prevents stress concentration in specific areas, allowing the load stress applied to the insulated wire 10 to escape, improving the bending characteristics. If the deviation is less than 0.10 mm, the effect of relieving stress concentration may not be obtained. If the deviation exceeds 0.30 mm, the wire may become excessively flat.

繊維芯1が設けられているのは、耐屈曲絶縁電線10の断面の略中央である。「略中央」とは、繊維芯1の中心位置C1が耐屈曲絶縁電線10の断面の中心位置(詳しくは撚線導体2の断面の中心位置C2)には設けられておらず、繊維芯1の中心位置C1と撚線導体2の中心位置C2とがずれていて一致していないことを意味している。繊維芯1の中心位置C1とは、繊維芯1の断面の輪郭から算出した位置のことであり、いわゆる輪郭の重心位置の意味である。なお、繊維芯1の断面形状は、その周りに後述の撚線導体2が設けられた後においては、撚線導体2から加わる加圧力により円形又は略円形を保持することが困難なことが多く、図1に示すように、略三角形や略四角形等に変形した形状になりやすい。 The fiber core 1 is provided approximately at the center of the cross section of the bend-resistant insulated wire 10. "Approximately at the center" means that the center position C1 of the fiber core 1 is not provided at the center position of the cross section of the bend-resistant insulated wire 10 (specifically, the center position C2 of the cross section of the twisted conductor 2), and the center position C1 of the fiber core 1 and the center position C2 of the twisted conductor 2 are shifted and do not coincide. The center position C1 of the fiber core 1 is a position calculated from the outline of the cross section of the fiber core 1, and means the so-called center of gravity of the outline. Note that after the twisted conductor 2 described below is provided around the fiber core 1, it is often difficult to maintain the circular or approximately circular cross section due to the pressure applied by the twisted conductor 2, and it is likely to become deformed into an approximately triangular or approximately rectangular shape as shown in FIG. 1.

(撚線導体)
撚線導体2は、繊維芯1の外周に設けられた必須の構成であり、図3に示すように、多数本の金属素線3を撚ってなる撚り線である。多本数の金属素線3を撚って撚線導体2とすることにより、繊維芯1の中心位置C1と撚線導体2の中心位置C2とを一致させずにずらすことができるとともに、軽量化も実現させることができる。本数としては、50~150本とすることが好ましい。金属素線3が50本未満では、耐久性不足となる。一方、金属素線3が150本を超えると、外径が大きくなり、作業性や加工性に影響が出やすい。さらに、下記外径範囲の細い金属素線3を上記範囲の本数で構成することにより、撚線導体2を設けた後の全体の外径を小さくでき、耐屈曲絶縁電線全体の細径化と軽量化を実現できる。
(Stranded conductor)
The stranded conductor 2 is an essential component provided on the outer periphery of the fiber core 1, and is a stranded wire formed by stranding a large number of metal wires 3 as shown in FIG. 3. By stranding a large number of metal wires 3 to form the stranded conductor 2, the center position C1 of the fiber core 1 and the center position C2 of the stranded conductor 2 can be shifted from each other without being coincident with each other, and weight reduction can also be achieved. The number of wires is preferably 50 to 150. If the number of metal wires 3 is less than 50, durability is insufficient. On the other hand, if the number of metal wires 3 exceeds 150, the outer diameter becomes large, which tends to affect workability and processability. Furthermore, by configuring the number of metal wires 3 having a small outer diameter within the following range, the overall outer diameter after the stranded conductor 2 is provided can be reduced, and the overall diameter and weight of the bend-resistant insulated electric wire can be reduced.

金属素線3の撚りピッチPと、撚線導体2の外径との関係は、「撚りピッチP(mm)」÷「撚線導体の外径(mm)」が5倍~25倍の範囲であることが好ましい。この範囲内とすることにより、撚りがほどけることを抑制でき、屈曲特性のバラツキを小さくすることができ、さらに断面が丸くなりやすく、良好な外観と耐久性を得ることができる。この値が5倍未満では、金属素線3をきつめに巻くことになるので、撚線導体2の重なりが多くなり易く、金属素線3の浮きが発生することがある。その結果、断面が丸くならない場合があったり、堅くなって屈曲特性を満たさないか又はバラツキが生じたりすることがある。一方、この値が25倍を超えると、撚りがゆるくなって糸が飛び出してしまい、作業中にほどけるような挙動を示すことがある。その結果、断面が丸くならない場合もあり、屈曲特性にもバラツキが生じることがある。 The relationship between the twist pitch P of the metal wire 3 and the outer diameter of the stranded conductor 2 is preferably in the range of 5 to 25 times the "twist pitch P (mm)" ÷ "outer diameter (mm) of the stranded conductor". By keeping it within this range, it is possible to suppress unraveling, reduce the variation in bending characteristics, and furthermore, the cross section is more likely to be rounded, resulting in good appearance and durability. If this value is less than 5 times, the metal wire 3 will be tightly wound, so the stranded conductor 2 is more likely to overlap, and the metal wire 3 may float. As a result, the cross section may not be rounded, or it may become hard and not satisfy the bending characteristics or may cause variation. On the other hand, if this value exceeds 25 times, the twist may become loose and the thread may pop out, and the wire may behave as if it is unraveling during work. As a result, the cross section may not be rounded, and the bending characteristics may also vary.

金属素線3の外径は、0.02mm以上、0.2mm以下の範囲内であることが好ましい。こうすることにより、細い金属素線3を多本数撚り合わせて撚線導体2とするので、撚線導体2を細径化でき、絶縁電線全体の細径化と軽量化と柔軟化を実現できる。その結果、多本数の金属素線3で応力集中を低減して引張強度や屈曲特性を向上させることができる。金属素線3の外径が0.02mm未満では、金属素線自体が細径化して多くの本数が必要になるとともに単線強度の絶対値が小さくなる。一方、金属素線3の外径が0.2mmを超えると、表面凹凸が大きくなってしまう。 The outer diameter of the metal strands 3 is preferably in the range of 0.02 mm or more and 0.2 mm or less. In this way, a large number of thin metal strands 3 are twisted together to form the stranded conductor 2, which allows the stranded conductor 2 to be made thinner, and the entire insulated electric wire can be made thinner, lighter, and more flexible. As a result, the large number of metal strands 3 reduces stress concentration and improves tensile strength and bending characteristics. If the outer diameter of the metal strands 3 is less than 0.02 mm, the metal strands themselves will be thinner, requiring a larger number of strands, and the absolute value of the single wire strength will be smaller. On the other hand, if the outer diameter of the metal strands 3 exceeds 0.2 mm, the surface unevenness will be large.

金属素線3は、良導電性金属であればその種類は特に限定されないが、銅線、銅合金線、アルミニウム線、アルミニウム合金線、銅アルミニウム複合線等の良導電性の金属導体、又はそれらの表面にめっき層が施されたものを好ましく挙げることができる。銅線、銅合金線が特に好ましい。めっき層としては、はんだめっき層、錫めっき層、金めっき層、銀めっき層、ニッケルめっき層等が好ましい。金属素線3の表面には、必要に応じて絶縁皮膜(図示しない)が設けられていてもよい。絶縁皮膜の種類は特に限定されないが、一般的なエナメル皮膜を挙げることができ、例えば、ウレタン、ポリエステル、ポリエステルイミド(PEI)、ポリイミド(PI)、ポリアミドイミド(PAI)等を挙げることができる。その厚さは特に限定されないが、一般的な日本工業規格(JIS C 3202:2014)で1種、2種、3種の程度を挙げることができる。 The metal wire 3 is not particularly limited in type as long as it is a metal with good electrical conductivity, but is preferably a metal conductor with good electrical conductivity such as copper wire, copper alloy wire, aluminum wire, aluminum alloy wire, copper-aluminum composite wire, or a metal conductor with a plating layer applied to the surface thereof. Copper wire and copper alloy wire are particularly preferred. As the plating layer, a solder plating layer, a tin plating layer, a gold plating layer, a silver plating layer, a nickel plating layer, or the like is preferred. An insulating film (not shown) may be provided on the surface of the metal wire 3 as necessary. The type of the insulating film is not particularly limited, but examples thereof include a general enamel film, such as urethane, polyester, polyesterimide (PEI), polyimide (PI), polyamideimide (PAI), etc. The thickness is not particularly limited, but examples of the thickness are generally in the range of 1, 2, or 3 according to the Japanese Industrial Standards (JIS C 3202:2014).

撚線導体2の外径D2は、1.6mm以下であることが好ましい。こうすることにより、上記外径D2の撚線導体2は、耐屈曲性に優れた絶縁電線10の細径化を実現でき、軽量化を図ることができる。なお、撚線導体2の外径の下限は特に限定されないが、上記した繊維芯1の外径、金属素線3の外径と本数により、0.12mmとすることができる。 The outer diameter D2 of the stranded conductor 2 is preferably 1.6 mm or less. In this way, the stranded conductor 2 with the above outer diameter D2 can realize a thinner insulated electric wire 10 with excellent bending resistance, and can be made lighter. There is no particular lower limit to the outer diameter of the stranded conductor 2, but it can be 0.12 mm depending on the outer diameter of the fiber core 1 and the outer diameter and number of the metal wires 3 described above.

(絶縁体)
絶縁体4は、撚線導体2を覆うように設けられている。例えば、撚線導体2を設けた後に、その外周を覆うように樹脂押出等で形成することができる。絶縁体4の構成材料としては、絶縁性があり、耐熱性のある樹脂材料であればよく、例えばポリイミド樹脂、アクリル樹脂、ポリ塩化ビニル(PVC)、ポリアミド樹脂、ポリエステル樹脂、フッ素系樹脂等を挙げることができる。絶縁体4の厚さは、0.05mm以上、1.0mm以下の程度であればよいが、屈曲特性向上のためには厚い方がよく、例えば0.1mm~0.3mm程度が好ましい。
(Insulator)
The insulator 4 is provided so as to cover the stranded conductor 2. For example, after the stranded conductor 2 is provided, the insulator 4 can be formed by resin extrusion or the like so as to cover the outer periphery of the conductor. The constituent material of the insulator 4 may be any resin material that has insulating properties and is heat resistant, such as polyimide resin, acrylic resin, polyvinyl chloride (PVC), polyamide resin, polyester resin, fluorine-based resin, etc. The thickness of the insulator 4 may be about 0.05 mm or more and 1.0 mm or less, but a thicker thickness is better in order to improve bending characteristics, and for example, about 0.1 mm to 0.3 mm is preferable.

絶縁体4の厚さと、撚線導体2の外径との関係は、「絶縁体4の厚さ(mm)」÷「撚線導体の外径(mm)」が0.15~0.30の範囲であることが好ましい。この範囲内とすることにより、耐久性と柔軟性が両立できる。この値が0.15未満では、耐久性が不足することがある。一方、この値が0.30を超えると、柔軟性が不足することがある。 The relationship between the thickness of the insulator 4 and the outer diameter of the stranded conductor 2 is preferably such that "thickness of the insulator 4 (mm)" ÷ "outer diameter of the stranded conductor (mm)" is in the range of 0.15 to 0.30. By keeping this within this range, durability and flexibility can be achieved at the same time. If this value is less than 0.15, durability may be insufficient. On the other hand, if this value exceeds 0.30, flexibility may be insufficient.

絶縁体4の厚さは均等であることが好ましい。ただし、絶縁体4は主に樹脂押出で形成されることから、樹脂押出し前の段階である撚線導体2が設けられた後の表面は、金属素線3に基づいた表面凹凸が小さいことが好ましい。本発明では、多数本の金属素線3を撚り合わせてなる撚線導体2が繊維芯1を覆うように設けているので、撚線導体2の表面の凹凸が小さくなっている。したがって、その外周に絶縁体4を樹脂押出で形成した後の外径も表面凹凸が小さくなり、かつ絶縁体4の厚さも各部で均一になる。その結果、局部的な応力集中を低減でき、屈曲寿命が長くなる。 The thickness of the insulator 4 is preferably uniform. However, since the insulator 4 is mainly formed by resin extrusion, it is preferable that the surface after the stranded conductor 2 is provided, which is the stage before the resin extrusion, has small surface irregularities due to the metal wires 3. In the present invention, the stranded conductor 2, which is made by twisting together a large number of metal wires 3, is provided to cover the fiber core 1, so that the surface irregularities of the stranded conductor 2 are small. Therefore, the outer diameter after the insulator 4 is formed around the outer periphery by resin extrusion also has small surface irregularities, and the thickness of the insulator 4 is uniform in each part. As a result, local stress concentration can be reduced, and the flex life is extended.

(断面積)
繊維芯1の断面積は、撚線導体2の断面積の5~20%の範囲内であることが好ましい。この範囲内とすることにより、良好な外観と耐久性を両立することができる。断面積が5%未満では、耐久性不足となることがある。一方、断面積が20%を超えると、外観不良となることがある。各断面積は、撮影した断面画像の画像解析により容易に算出することができる。
(Cross-sectional area)
The cross-sectional area of the fiber core 1 is preferably within a range of 5 to 20% of the cross-sectional area of the stranded conductor 2. By setting it within this range, it is possible to achieve both good appearance and durability. If the cross-sectional area is less than 5%, durability may be insufficient. On the other hand, if the cross-sectional area exceeds 20%, the appearance may be poor. Each cross-sectional area can be easily calculated by image analysis of the captured cross-sectional image.

また、金属素線3の断面積は、繊維芯1の断面積の4~20%の範囲内であることが好ましい。の範囲内とすることにより、生産性と耐久性を両立することができる。断面積が4%未満では、生産時に断線することがある。一方、断面積が20%を超えると、耐久性が低下することがある。各断面積は、撮影した断面画像の画像解析により容易に算出することができる。 The cross-sectional area of the metal wire 3 is preferably within the range of 4-20% of the cross-sectional area of the fiber core 1. By setting it within this range, productivity and durability can be achieved at the same time. If the cross-sectional area is less than 4%, the wire may break during production. On the other hand, if the cross-sectional area exceeds 20%, durability may decrease. Each cross-sectional area can be easily calculated by image analysis of the captured cross-sectional image.

以下、実施例により本発明をさらに詳しく説明する。なお、これにより本発明が限定されるものではない。 The present invention will be described in more detail below with reference to examples. Note that the present invention is not limited to these examples.

[実施例1]
アラミド(ポリアミド)繊維からなる第1繊維糸1a(220dtex)とアラミド(ポリアミド)繊維からなる第2繊維糸1b(440dtex)とからなる外径約0.245mmの繊維芯1を用いた。この繊維芯1上に、外径0.08mmの軟銅線を100本用い、撚りピッチ15mmで撚り合わせて外径0.97mmの撚線導体2とした。次に、溶融押出しによって、FEP樹脂(絶縁体4)を厚さ0.2mmで形成し、外径1.4mmの絶縁電線10を作製した。
[Example 1]
A fiber core 1 having an outer diameter of about 0.245 mm was used, which was composed of a first fiber thread 1a (220 dtex) made of aramid (polyamide) fiber and a second fiber thread 1b (440 dtex) made of aramid (polyamide) fiber. 100 soft copper wires having an outer diameter of 0.08 mm were used on the fiber core 1 and twisted together at a twist pitch of 15 mm to form a stranded conductor 2 having an outer diameter of 0.97 mm. Next, FEP resin (insulator 4) was formed to a thickness of 0.2 mm by melt extrusion to produce an insulated wire 10 having an outer diameter of 1.4 mm.

[実施例2]
外径0.08mmの金属素線50本を撚りピッチ11mmで撚った外径0.72mmの撚線導体2とし、外径1.1mmの絶縁電線10を作製した他は、実施例1と同様にした。
[Example 2]
The same procedure as in Example 1 was repeated except that a stranded conductor 2 having an outer diameter of 0.72 mm was prepared by stranding 50 metal wires having an outer diameter of 0.08 mm at a stranding pitch of 11 mm, and an insulated wire 10 having an outer diameter of 1.1 mm was prepared.

[実施例3]
外径0.11mmの金属素線50本を撚りピッチ14mmで撚った外径0.94mmの撚線導体2とし、外径1.3mmの絶縁電線10を作製した他は、実施例1と同様にした。
[Example 3]
The same procedure as in Example 1 was repeated except that a stranded conductor 2 having an outer diameter of 0.94 mm was prepared by stranding 50 metal wires having an outer diameter of 0.11 mm at a stranding pitch of 14 mm to prepare an insulated wire 10 having an outer diameter of 1.3 mm.

[実施例4]
外径0.09mmの金属素線150本を撚りピッチ18mmで撚った外径1.17mmの撚線導体2とし、外径1.6mmの絶縁電線10を作製した他は、実施例1と同様にした。
[Example 4]
The same procedure as in Example 1 was repeated except that a stranded conductor 2 having an outer diameter of 1.17 mm was prepared by stranding 150 metal wires having an outer diameter of 0.09 mm at a stranding pitch of 18 mm to prepare an insulated wire 10 having an outer diameter of 1.6 mm.

[実施例5]
外径0.05mmの金属素線150本を撚りピッチ11mmで撚った外径0.76mmの撚線導体2とし、外径1.2mmの絶縁電線10を作製した他は、実施例1と同様にした。
[Example 5]
The same procedure as in Example 1 was repeated except that a stranded conductor 2 having an outer diameter of 0.76 mm was prepared by stranding 150 metal wires having an outer diameter of 0.05 mm at a stranding pitch of 11 mm, and an insulated wire 10 having an outer diameter of 1.2 mm was prepared.

[実施例6]
アラミド(ポリアミド)繊維からなる第1繊維糸1a(110dtex)とアラミド(ポリアミド)繊維からなる第2繊維糸1b(440dtex)とからなる外径約0.220mmの繊維芯1を用いた。この繊維芯1上に、外径0.08mmの軟銅線を100本用い、撚りピッチ14mmで撚り合わせて外径0.96mmの撚線導体2とした。次に、溶融押出しによって、FEP樹脂(絶縁体4)を厚さ0.2mmで形成し、外径1.4mmの絶縁電線10を作製した。
[Example 6]
A fiber core 1 having an outer diameter of about 0.220 mm was used, which was composed of a first fiber thread 1a (110 dtex) made of aramid (polyamide) fiber and a second fiber thread 1b (440 dtex) made of aramid (polyamide) fiber. 100 soft copper wires having an outer diameter of 0.08 mm were used on the fiber core 1 and twisted together at a twist pitch of 14 mm to form a stranded conductor 2 having an outer diameter of 0.96 mm. Next, FEP resin (insulator 4) was formed to a thickness of 0.2 mm by melt extrusion to produce an insulated wire 10 having an outer diameter of 1.4 mm.

[屈曲試験と柔軟性]
各実施例について屈曲試験を図4に示す方法で行った。屈曲試験は、図4に示すように、半径5mmのマンドレル42,42の間に各実施例で作製した長さ1000mmの絶縁電線10を挟み、絶縁電線10の下方端部に荷重41を取り付け、マンドレル42と垂直方向に毎分30回の速度で両側90度ずつの屈曲を1回として屈曲回数を測定した。屈曲回数の評価は、絶縁電線10の抵抗値が10%上昇するまでの回数とした。実施例1~5の絶縁電線は、いずれも屈曲回数2万回を超えたので、評価を「○」とし、超えた時点で測定は終了した。
[Flexibility test and flexibility]
A bending test was performed for each Example by the method shown in Fig. 4. In the bending test, as shown in Fig. 4, an insulated electric wire 10 having a length of 1000 mm produced in each Example was sandwiched between mandrels 42, 42 having a radius of 5 mm, a load 41 was attached to the lower end of the insulated electric wire 10, and the number of bendings was measured in a direction perpendicular to the mandrel 42 at a speed of 30 times per minute, with each bending being counted as one bending at 90 degrees on both sides. The number of bendings was evaluated as the number of bendings until the resistance value of the insulated electric wire 10 increased by 10%. Since the number of bendings of all of the insulated electric wires of Examples 1 to 5 exceeded 20,000 times, the evaluation was made "○", and the measurement was terminated when the number of bendings exceeded 20,000 times.

柔軟性は、図5に示す方法で評価した。柔軟性試験は、長さ700mmの絶縁電線10の両端を固定具31で固定し、重り32をつけない場合の最大幅Wと、2gの重り32を絶縁電線10の最下点につけた場合の最大幅Wを測定した。最大幅Wが小さいほど柔軟であるといえる。実施例1~6の絶縁電線について試験したところ、いずれも最大幅は150mm以下となったことから、実施例1~6の絶縁電線はいずいれも柔軟であるといえる。 Flexibility was evaluated using the method shown in Figure 5. In the flexibility test, both ends of an insulated electric wire 10 with a length of 700 mm were fixed with a fixture 31, and the maximum width W was measured when no weight 32 was attached, and when a 2 g weight 32 was attached to the lowest point of the insulated electric wire 10. The smaller the maximum width W, the more flexible the wire. When the insulated electric wires of Examples 1 to 6 were tested, all of the maximum widths were 150 mm or less, so it can be said that all of the insulated electric wires of Examples 1 to 6 are flexible.

[中心位置のずれ]
得られた耐屈曲絶縁電線10を樹脂中に硬化させて断面を切り出し、研磨して顕微鏡で観察した、繊維芯1の中心位置C1と撚線導体2の中心位置C2との距離Lを測定した。
[Center position deviation]
The obtained bend-resistant insulated electric wire 10 was cured in resin, and a cross section was cut out, polished, and observed under a microscope. The distance L between the center position C1 of the fiber core 1 and the center position C2 of the stranded conductor 2 was measured.

Figure 0007486300000001
Figure 0007486300000001

1 繊維芯
1a 第1繊維糸
1b 第2繊維糸
2 撚線導体
3 金属素線
4 絶縁体
10 耐屈曲絶縁電線
A1 繊維芯の断面積
A2 撚線導体の断面積
A3 1本の金属素線の断面積
D1 繊維芯の外径
D2 撚線導体の外径
D3 耐屈曲絶縁電線の外径
d 金属素線の外径
C1 繊維芯の中心位置
C2 撚線導体の中心位置
L C1とC2との距離
P 撚線導体の撚りピッチ
T 絶縁体の厚さ


REFERENCE SIGNS LIST 1 fiber core 1a first fiber thread 1b second fiber thread 2 stranded conductor 3 metal strand 4 insulator 10 bend-resistant insulated wire A1 cross-sectional area of fiber core A2 cross-sectional area of stranded conductor A3 cross-sectional area of one metal strand D1 outer diameter of fiber core D2 outer diameter of stranded conductor D3 outer diameter of bend-resistant insulated wire d outer diameter of metal strand C1 center position of fiber core C2 center position of stranded conductor L distance between C1 and C2 P twist pitch of stranded conductor T thickness of insulator


Claims (3)

第1繊維糸と該第1繊維糸の1.5~2倍のdtexの第2繊維糸とで少なくとも構成されている太さの異なる2種以上の繊維糸からなる外径0.1~1.0mmの繊維芯と、該繊維芯の外周に設けられた外径0.02mm以上0.2mm以下の金属素線を50~150本撚ってなる撚線導体と、該撚線導体の外周に設けられた絶縁体とを有し、前記金属素線の表面には絶縁皮膜は設けられておらず、前記繊維芯の中心位置と前記撚線導体の中心位置とのずれが0.10~0.30mmであり、前記繊維芯の断面積が前記撚線導体の断面積の5~20%の範囲内である、ことを特徴とする耐屈曲絶縁電線。 A bend-resistant insulated electric wire comprising: a fiber core having an outer diameter of 0.1 to 1.0 mm and made of two or more kinds of fiber yarns having different thicknesses, the fiber core being composed of at least a first fiber yarn and a second fiber yarn having a dtex 1.5 to 2 times that of the first fiber yarn; a stranded conductor formed by twisting 50 to 150 metal wires having an outer diameter of 0.02 mm or more and 0.2 mm or less and provided on the outer periphery of the fiber core; and an insulator provided on the outer periphery of the stranded conductor, wherein no insulating coating is provided on the surface of the metal wires, the deviation between the center position of the fiber core and the center position of the stranded conductor is 0.10 to 0.30 mm, and the cross-sectional area of the fiber core is within the range of 5 to 20% of the cross-sectional area of the stranded conductor . 前記繊維芯は、該繊維芯の中心位置と前記撚線導体の中心位置とが一致せず、前記撚線導体の撚りに追従して蛇行している、請求項1に記載の耐屈曲絶縁電線。 The bend-resistant insulated electric wire according to claim 1, wherein the center position of the fiber core does not coincide with the center position of the stranded conductor, and the fiber core meanders in accordance with the twist of the stranded conductor. 前記撚線導体の外径が1.6mm以下である、請求項1又は2に記載の耐屈曲絶縁電線。

3. The bend-resistant insulated electric wire according to claim 1, wherein the stranded conductor has an outer diameter of 1.6 mm or less.

JP2019192554A 2019-10-23 Bend-resistant insulated wire Active JP7486300B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019192554A JP7486300B2 (en) 2019-10-23 Bend-resistant insulated wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019192554A JP7486300B2 (en) 2019-10-23 Bend-resistant insulated wire

Publications (2)

Publication Number Publication Date
JP2021068573A JP2021068573A (en) 2021-04-30
JP7486300B2 true JP7486300B2 (en) 2024-05-17

Family

ID=

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017208275A (en) 2016-05-19 2017-11-24 東京特殊電線株式会社 High-bent heater wire and planar heating element

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017208275A (en) 2016-05-19 2017-11-24 東京特殊電線株式会社 High-bent heater wire and planar heating element

Similar Documents

Publication Publication Date Title
US7847192B2 (en) Electrical conductor
JP6783550B2 (en) High bending heater wire and planar heating element
US7228627B1 (en) Method of manufacturing a high strength aluminum-clad steel strand core wire for ACSR power transmission cables
JP4092237B2 (en) Fiber rope for rope
US10249412B2 (en) Composite cable
CN112185614B (en) Double-layer sheath spiral cable and manufacturing process thereof
JP6893496B2 (en) coaxial cable
JP4938403B2 (en) Fiber composite wire conductor and insulated wire
JP6335981B2 (en) Stranded conductor
JP7486300B2 (en) Bend-resistant insulated wire
US5354954A (en) Dielectric miniature electric cable
JP7412126B2 (en) Flexible insulated wire
JP7412125B2 (en) Flexible insulated wire
JP7412127B2 (en) Flexible insulated wire
JP2021068573A (en) Flex-resistance insulated wire
JP6774462B2 (en) Multi-core communication cable
JP2021068574A (en) Flex-resistance insulated wire
CN217008685U (en) Extrusion-resistant small-diameter conductive fiber coaxial cable
JP2862543B2 (en) Composite twist type tensile strength element
CN217008686U (en) Thin-diameter light soft coaxial cable
JP7433053B2 (en) coaxial cable
JP7113801B2 (en) cable
JP7010249B2 (en) Conductor and power cable
WO2023276629A1 (en) Rectangular cross-section multi-core insulated wire, and method for manufacturing same
US20240080944A1 (en) Heater wire and heat-emitting element